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Abstract 

Advances in variance analysis permit the splitting of the total quadratic variation of a 
jump diffusion process into upside and downside components. Recent studies establish 
that this decomposition enhances volatility predictions, and highlight the 
upside/downside variance spread as a driver of the asymmetry in stock price 
distributions. To appraise the economic gain of this decomposition, we design a new and 
flexible option pricing model in which the underlying asset price exhibits distinct upside 
and downside semi-variance dynamics driven by their model-free proxies. The new 
model outperforms common benchmarks, especially the alternative that splits the 
quadratic variation into diffusive and jump components. 

Bank topics: Asset pricing; Econometric and statistical methods 
JEL code: G12 

 

Résumé 

Grâce aux avancées dans le domaine de l’analyse des écarts, il est possible de diviser la 
variation quadratique totale d’un processus de diffusion à sauts en composantes à la 
hausse et à la baisse. Selon de récentes études, cette division améliore les prévisions de 
volatilité et fait ressortir que la différence entre les variances à la hausse et à la baisse 
constitue un facteur d’asymétrie dans les distributions des cours des actions. Pour estimer 
les gains économiques que procure cette division, nous concevons un nouveau modèle 
flexible d’évaluation des options dans lequel le prix de l’actif sous-jacent présente des 
dynamiques de variance à la hausse et à la baisse distinctes, déterminées par leurs 
équivalents non paramétriques. Le nouveau modèle surpasse les modèles de référence 
communs, surtout l’approche qui scinde la variation quadratique en composantes de 
diffusion et de sauts. 

Sujets : Évaluation des actifs ; Méthodes économétriques et statistiques 
Code JEL : G12 

 

 
 



Non-Technical Summary 

One of the most important recent developments in the financial econometrics literature is the use 
of intraday observations to precisely evaluate the variability of the price of any financial asset on 
a given day. That estimate is commonly known as the “realized variance.”  

Using the realized variance, we can evaluate, for instance, the effect of a policy announcement or 
macroeconomic news on the uncertainty of a given asset’s price. Investors have asymmetric 
views of increases and decreases in asset prices. On the one hand, they like positive movements 
and would be willing to be exposed to them. On the other hand, they dislike negative movements 
and would ask to be paid a premium for taking on such an exposure. Different types of news and 
announcements affect these two movements differently. 

Hence, it is of interest to academics and policy-makers to measure how much variability is 
attributable to positive movements in prices versus negative movements. Looking at intraday 
trading activities, researchers have provided a decomposition of realized variance as the sum of 
good variance (positive returns variability) and bad variance (negative returns variability).  

This paper evaluates the economic significance of that decomposition by evaluating the 
mispricing of S&P 500 derivatives under two scenarios: ignoring or using the decomposition of 
the realized variance. We find that the split is very informative for option pricing as it reduces 
pricing errors significantly. This new model can be used to better measure downside risks 
embedded in asset prices. In addition, it can be used to understand compensation for downside 
risk. To be more specific, we disentangle the downside risk embedded in option prices in terms 
of an investor aversion component and a historical downside risk estimate. 



1 Introduction

The proper specification of underlying asset volatility dynamics is a key input for designing a

successful option valuation framework. Volatility randomness, a persistent memory pattern, and

substantial conditional tail thickness of the underlying distribution are a few empirical regularities

often accounted for in valuation models to accurately fit the observed option prices. Heston and

Nandi (2000), Bates (2000), Duffie et al. (2000), and Huang and Wu (2004), among others, have

made far-reaching contributions in this regard. Moreover, the asymmetric volatility response to

positive versus negative shocks is a well-established stylized fact.

Building on these insights, this paper develops an option valuation model in which the under-

lying asset price features specific upside (good) and downside (bad) variance dynamics. In our

modeling framework, good and bad volatilities are factors governing the return process, and are

directly driven by model-free empirical measures. The theoretical and empirical justifications for

constructing reliable realized variance measures using high-frequency observations are addressed in

seminal papers by Andersen et al. (2001a), Andersen et al. (2001b), and Andersen et al. (2003),

to cite a few. Drawing on similar “infill asymptotics” arguments, Barndorff-Nielsen et al. (2010)

show, in a model-free way, how to dissect the realized variance into upside and downside semi-

variances obtained by summing high-frequency positive and negative squared returns, respectively.

This decomposition has been used to improve realized variance forecasts (Patton and Sheppard,

2015), predict the equity risk premium given the standard risk-return tradeoff (Guo et al., 2015),

or explain the cross-section of stock returns (Bollerslev et al., 2017). We extend these studies by

helping gauge the economic value-added of disentangling the upside (semi-)variance motion from

its downside counterpart in our option pricing framework.

This paper is related to a growing body of finance literature that aims at building option pricing

models with empirically grounded properties. This strand of the option pricing literature is distinct

from standard stochastic volatility option pricing models,1 as it uses observed (realized) quantities

to update factors: the factors are no longer latent. This modeling approach is not only practically

appealing since we do not need a sophisticated filtering technique, but also bridges the gap between

developments in the high-frequency econometrics and the option pricing literatures. A few studies

1See Andersen, Fusari and Todorov (2015) for a review of the various developments in this literature.
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propose to model the joint dynamics of returns and realized variances in the context of option

pricing. This class of option valuation models is shown to deliver superior pricing performance

compared with models optimized only on returns. Recent developments include papers by Stentoft

(2008), Corsi et al. (2013), and Christoffersen et al. (2014).

The aforementioned papers focus exclusively on the total realized variation, and do not incor-

porate the information pertaining to the direction of the variation. To the best of our knowledge,

our framework is the first that explicitly prices options with distinct dynamics for observable upside

and downside realized variations. By modeling the directional variations, our model successfully

and explicitly accounts for the asymmetry in the distribution of the underlying asset. We refer to

our specification as the generalized skew affine realized variance (GSARV) model. Moreover, the

model is affine and cast in discrete time, which permits computing explicit pricing formulas, and

entails a straightforward fitting procedure.

The closely related bipower and jump variation option pricing model (BPJVM) developed in

Christoffersen et al. (2015) exploits an alternative dissection of the total quadratic variation into

a diffusive volatility and a squared jump variation. Thus, the modeling approach in Christoffersen

et al. (2015) can be viewed as the discrete time analog of a classical continuous time affine jump-

diffusion specification such as Bates (2000), where the two factors capture the change in “normal”

variation (diffusion) and the intensity of “extreme” moves (jumps), and are connected to their

realized counterparts.

While modeling approaches based on these two decompositions (up-down variation versus jump-

diffusive variation) of the total quadratic variation account for the departure from a conditional

normal distribution, their relative empirical performance remains an open question. In the con-

tinuous time framework, a recent study by Andersen, Fusari and Todorov (2015) underscores the

importance of isolating negative expected jump variations from their positive counterparts. The

authors demonstrate that accounting for directional jumps improves their option valuation model

over the benchmark affine jump-diffusion specification of Bates (2000). Therefore in a discrete

time setup, we expect our GSARV model to outperform the BPJVM. Our empirical investigation

confirms this prediction, as we find that our preferred GSARV specification improves the option

price fitting by a sizeable 10% over the BPJVM.
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The contribution of this work is not, however, limited to constructing a novel option pricing

framework. We also formally describe the major factors driving market compensations of good

versus bad uncertainty. We estimate the model and show that it performs well in matching the

historical as well as the risk-neutral distributions of the S&P 500 index returns. Namely, the model

improves significantly upon popular specifications with respect to various performance criteria,

when optimized on a data set of S&P 500 index options, realized upside and downside variances,

and returns. We find that the conditional asymmetry, mainly driven by the wedge between upside

and downside volatilities in our specification, matters for delivering realistic market variance risk

premia. Allowing for distinct up/down variance dynamics is useful to track the time variation in

the variance risk premium and its up/down components at different horizons.

The paper is organized as follows. In Section 2, we present the theoretical and empirical

arguments underpinning the construction and the use of good/bad (upside/downside) variation

measures. Section 3 introduces a novel option pricing model that is general enough to accommodate

specific upside and downside variance dynamics in the underlying return process, while drawing

relevant information from their empirical proxies. In Section 4, we describe the physical estimation

strategy and discuss the different specifications that our option pricing framework encompasses.

We also discuss the estimation findings based on historical observations. Section 5 investigates the

empirical ability of the various nested models to fit the risk-neutral distribution embedded in option

contracts. We implement a joint optimization procedure that combines historical information and

option data in Section 6. In addition, we study the performance of our pricing kernel and document

the determinants of the variance risk premium components. Section 7 concludes.

2 Daily Returns and Realized Variation Measures

We outline the arguments supporting the decomposition of the total quadratic variation into its

upside and downside components. Disentangling the upside realized semi-variation from its down-

side counterpart can be achieved by exploiting the fine structure of high-frequency observations.

For instance, empirical measures of daily realized good (or bad) volatility are often constructed

from intraday records exceeding (or falling below) a specified threshold.
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2.1 Separating downside from upside volatility: Theoretical arguments

We briefly review the key theoretical results that allow us to separate daily positive from negative

quadratic variation using intraday data. We mainly rely on Barndorff-Nielsen et al. (2010), who

assume that the log stock price (denoted by s) follows a jump-diffusion motion of the form

dst = µtdt+ σtdWt + ∆st, (1)

where dWt is an increment of standard Brownian motion and ∆st ≡ st − st− refers to the jump

component.

For a given day of interest t + 1, the upside realized variance (denoted by RV U
t+1), and the

downside realized variance (denoted by RV D
t+1) are defined as

RV U
t+1 =

nt+1∑
j=1

R2
tj I[Rtj>0],

RV D
t+1 =

nt+1∑
j=1

R2
tj I[Rtj≤0],

where Rtj ≡ stj − stj−1 and t < t1 < · · · < tnt+1 = t + 1 are the time at which (trade or quote)

prices are available. The total realized variance is RVt+1 = RV U
t+1 +RV D

t+1.

Under this general assumption on the instantaneous return process, Barndorff-Nielsen et al.

(2010) use infill asymptotics – convergence as the time separating two consecutive observations

collapses to 0 – to prove that

RV U
t+1

p→ 1

2

∫ t+1

t
σ2
υdυ +

∑
t≤υ≤t+1

(∆sυ)2 I[∆sυ>0], (2)

RV D
t+1

p→ 1

2

∫ t+1

t
σ2
υdυ +

∑
t≤υ≤t+1

(∆sυ)2 I[∆sυ≤0].

This decomposition of the realized variance into its up and down components is used by Patton

and Sheppard (2015) to assess the information content and the predictive ability of signed squared

jumps.
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In a recent study, Feunou et al. (forthcoming) investigate the asymmetric behavior of investors

towards good versus bad uncertainty by analyzing the premia related to upside and downside

realized variances. Moreover, the difference between realized upside and downside variance, also

known as the signed jump variation, can be perceived as a measure of (realized) skewness. This

measure of asymmetry, denoted as RSVt, is obtained by subtracting the downside variance from

the upside variance:

RSVt+1 = RV U
t+1 −RV D

t+1.

Thus, if RSVt+1 < 0 the distribution is left-skewed, and when RSVt+1 > 0 it is right-skewed. A

theoretical justification for using RSVt+1 as a measure of skewness can be found in Feunou et al.

(2016). To provide more intuition on the behavior of RSVt+1, we combine the previous asymptotic

results to get

RSVt+1
p→

∑
t<υ≤t+1

(∆sυ)2 (I[∆sυ>0] − I[∆sυ≤0]

)
.

Assuming that jump sizes are i.i.d. and uncorrelated with the jump occurrence, the expectation of

the realized skewness – a measure of the conditional skewness – is

EP
t [RSVt+1] ≈ EP

[
(∆s)2

] ∑
t<υ≤t+1

(P[∆sυ > 0]− P[∆sυ ≤ 0]) .

Thus, EP
t [RSVt+1] captures – up to a multiplicative constant – the wedge between positive and

negative jump intensities. This realized skewness measure shows, in relative terms, how likely

positive jumps are with respect to negative jumps. The realizations of directional jumps receive

different weights according their sizes, consistent with the volatility jump risk study of Bandi and

Ren (2016). Bigger weights are assigned to larger jump sizes in the computation of RSVt+1.
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2.2 Alternative decomposition of the total quadratic variation

Starting from the very general instantaneous return process in Equation 1, Barndorff-Nielsen and

Shephard (2004) show the following limiting result, as the sampling frequency goes to infinity:

RJVt+1 ≡ RVt+1 −BPVt+1
p→

∑
t≤υ≤t+1

(∆sυ)2 , (3)

BPVt+1
p→

∫ t+1

t
σ2
υdυ,

where BPVt+1 denotes the bipower variation measuring the diffusive volatility. This alternative

decomposition of the realized variation into smooth (diffusion) and rough (jumps) components is

used by Christoffersen et al. (2015) in their option pricing framework. While RJVt+1 estimates∑
t≤υ≤t+1 (∆sυ)2 , it is “blind” to the asymmetric behavior of jumps. In continuous time, Andersen,

Fusari and Todorov (2015) demonstrate the importance of disentangling negative jump dynamics

from positive jump dynamics. Empirically, Andersen, Fusari and Todorov’s approach is shown to

be superior to the alternative classic affine jump-diffusion approach of Bates (2000), where negative

and positive jumps occur with the same intensity. In Section 6.2.1, we also compare the empirical

option pricing implications of these two decompositions.

2.3 Separating downside from upside volatility: Empirical implementation

To empirically construct the upside and downside components of the realized variance, we download

intraday S&P 500 cash index data from TickData.com. On a given day, we use the last record in

each five-minute interval to build a grid of five-minute equity index log-returns. Following Andersen

et al. (2003, 2001a) and Barndorff-Nielsen et al. (2010), we construct (pre-scaled) measures of total

quadratic variation, and their upside and downside components on any given trading day t as

R̃V t =

nt∑
j=1

R2
j,t,

R̃V
U

t =

nt∑
j=1

R2
j,tI[Rj,t>0],

R̃V
D

t =

nt∑
j=1

R2
j,tI[Rj,t≤0],
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where R2
j,t is the jth five-minute squared log-return, and nt is the number of (five-minute)

intraday returns recorded on that day.2 We add the squared overnight log-return (the difference in

log-price between when the market opens at t and when it closes at t − 1) to the total variation.

We add the squared overnight log-return to the downside variation component when the overnight

return is negative and to the upside variation component otherwise. To ensure that the sample

average of daily realized variances equals the sample variance of daily log-returns, we perform the

following scaling:

RVt =

∑T
t=1

(
Rt − R̄T

)2∑T
t=1 R̃V t

R̃V t,

RV U
t =

∑T
t=1

(
Rt − R̄T

)2∑T
t=1 R̃V t

R̃V
U

t ,

RV D
t =

∑T
t=1

(
Rt − R̄T

)2∑T
t=1 R̃V t

R̃V
D

t ,

where T is the sample size and R̄T the sample average log-return. Different approaches to ad-

justing open-to-close realized variance measures are discussed in Hansen and Lunde (2006). By

construction, the total realized variance adds up the realized upside and downside variances:

RVt ≡ RV U
t +RV D

t . (4)

2.4 Empirical dynamics of downside and upside volatilities

Figure 1 plots the daily time series of the return on S&P 500 index (Graph A), along with the

square root of the daily realized variance (Graph C), the square root of its upside (Graph B) and

the square root of its downside (Graph D) components from January 10, 1990 to August 28, 2013.

Periods of market instability, characterized by large swings in returns and a high level of volatility,

are clearly apparent. These turbulent periods include the recent financial market meltdown of 2008-

2009, the early 2000s, and the early 1990s. By contrast, the mid 1990s and the mid 2000s periods

exhibit low levels of volatility. The time series of the realized variance and its components display

a good level of synchronicity, as they tend to rise and fall around the same periods. The difference

between (square roots) of upside and downside variance (Graph E), which is an alternative measure

2On a typical trading day, we observe nt = 78 five-minute returns.
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of asymmetry, appears to be time-varying with important fluctuations during the 2008 financial

crisis period.

Consistent with established empirical regularities, realized variance RVt series exhibit markedly

higher persistence, dispersion, positive asymmetry, and heavy-tailness, compared with returns dis-

tribution. Moreover, we see that RV U
t and RV D

t have similar magnitudes. This observation is

supported by the nearly identical average values of RV U
t and RV D

t presented in Table 1, along

with other common summary statistics. Sizeable discrepancies between these two time series can

arise from risk-neutral (rather than historical) expectations extracted from option data. Using a

similar logic as Bollerslev et al. (2009), dynamic “variance-of-(semi-)variance” processes are needed

to generate premia for second-order semi-moments. Specifically, the realized downside variance

measure requires a dynamic specification of its own, one that is likely different from the dynamic

specification of upside variation. Building a dynamic return model with such features is our next

task.

3 New Dynamic Model for Asset Returns

This section builds a model for option valuation that incorporates the information in Rt, RV
U
t ,

and RV D
t , computed at the end of any given day t. In our model, state variables are explicitly

filtered from realized upside and downside variances in the spirit of GARCH models. In addition,

we focus on an empirical strategy for option pricing that can be implemented without resorting to

Monte Carlo simulations. It is worth stressing the conceptual difference between this approach and

standard continuous time stochastic factor models. In this framework, there are no latent factors.

Hence, we are not filtering or estimating factors from observed option prices. Instead, we update

the factors in our model using their model-free ex-post (realized) counterparts constructed from

high-frequency historical returns on the underlying asset.

8



3.1 Key objectives

Our main objective is to build an option pricing model with two factors capturing the expected

upside variation (hu,t) and the expected downside variation (hd,t). By design, we want to have

Et

[
RV j

t+1

]
= hj,t, (5)

with j = u, d. Thus, the sum of the factors (denoted by ht) equals the expected total variation

ht ≡ Et [RVt+1] = hu,t + hd,t. (6)

We also want to embed these two factors into the log-return dynamic. Therefore, ht plays a dual

role in our return model. Specifically, we impose that ht: (1) corresponds to the expected realized

variance as in Equation 6, and (2) matches the conditional variance of t+ 1 log-returns as

V art [Rt+1] = ht. (7)

As discussed in Section (2.1), the difference between upside and downside variations is a measure

of realized skewness. This implies a tight link between the difference between factors (hu,t − hd,t)

and the conditional skewness of t+ 1 log-returns.

3.2 Asset return process

Consider the following representation of the daily log-returns

Rt+1 = Et [Rt+1] + zt+1, (8)

expressed as an expected component Et [Rt+1] and an innovation term zt+1. The expected return

is set up to satisfy the following identity:

Et [exp (Rt+1)] = exp (rf + λuhu,t + λdhd,t) , (9)

9



where rf is the risk-free rate. Equation (9) enables us to interpret λu and λd as compensations

for upside and downside volatility risk exposures, respectively. Next, we specify the conditional

distribution of the total shock zt+1.

3.2.1 Innovation decomposition

To introduce the notion of positive and negative innovations in the return dynamic, we decom-

pose zt+1 as the difference of two innovations:

zt+1 = zu,t+1 − zd,t+1. (10)

By construction, Equation (10) implies that zt+1 increases with zu,t+1 and decreases with zd,t+1. To

ensure that zu,t+1 and zd,t+1 are demeaned innovations, we will relate them to uncentered shocks

z̃u,t+1 and z̃d,t+1:

zj,t+1 = z̃j,t+1 − Et [z̃j,t+1] , for j = {u, d}. (11)

Furthermore, we impose z̃j,t+1 ≥ 0 for j = {u, d}, to ensure non-zero conditional skewness for

the log-returns. We have

V art [zu,t+1] = V art [z̃u,t+1] ≡ hu,t,

V art [zd,t+1] = V art [z̃d,t+1] ≡ hd,t,

which allows us to interpret hu,t and hd,t as stock market good and bad volatilities. Simply put,

hu,t is the variance of positive shocks to returns, whereas hd,t is the variance of negative shocks to

returns.

3.2.2 Innovation conditional distribution

Since the objective is to have closed-form option price, we opt for the noncentral chi-squared

distribution, which has been widely used in the discrete time option pricing literature (See Heston

and Nandi (2000)). Shocks to returns are

z̃j,t+1 =

√
ωj
2

(
ε

(1)
j,t+1 −

√
hj,t − ωj

2ωj

)2

, with ε
(1)
j,t+1

iid∼ N (0, 1) for j = {u, d}, (12)

10



with

E
[
ε

(1)
u,t+1ε

(1)
d,t+1

]
= 0.

By construction, we have hj,t = V art [zj,t+1]. We also have

zj,t+1
Distribution−→

ωj→0
N (0, hj,t) ,

implying that ωj drives the non-normality in the conditional distribution of zj,t+1.

The conditional skewness of log-returns is

Skewt [Rt+1] =
h
−3/2
t√

2

[
3
√
ωu (hu,t − hd,t) + 3 (

√
ωu −

√
ωd)hd,t −

(
ω3/2
u − ω3/2

d

)]
, (13)

where ht ≡ hu,t+hd,t is the total conditional variance of returns. Hence, two sources of conditional

asymmetry emerge: (1) the difference between upside and downside variance hu,t − hd,t, and (2)

the discrepancy between non-normalities in good and bad shock distributions
√
ωu −

√
ωd. Hence,

an interesting case is obtained by imposing ωu = ωd, implying that the wedge between the upside

and downside volatility, hu,t − hd,t, is the unique channel for conditional skewness in the return

dynamics. We will pay particular attention to that restriction in the empirical analysis.

3.3 Expected returns

We now discuss the specification of expected return dynamics. For equation (9) to hold, it must

be the case that

Et [Rt+1] = r̄ + (λu − ξu)hu,t + (λd − ξd)hd,t,

where

r̄ = rf +
1

2

[
ln
(
1−
√

2ωu
)

+ ln
(
1 +
√

2ωd
)
− ωu −

√
2ωu(

1−
√

2ωu
) − ωd +

√
2ωd(

1 +
√

2ωd
)] , (14)

ξu =
1

2
(
1−
√

2ωu
) , ξd =

1

2
(
1 +
√

2ωd
) . (15)

Therefore, the parameters ξu, ξd and r̄ are not estimated, but instead, simply set to their values

implied by the identities in equations (14) and (15).
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3.4 Incorporating realized upside and downside variation

Each day, realized upside and downside variations provide new information about the conditional

semi-variances, hu,t and hd,t. However, RV U
t+1 and RV D

t+1 are measured with error, and therefore,

we specify the following measurement equation:

RV j
t+1 = hj,t + z

(2)
j,t+1, (16)

where z
(2)
j,t+1 = z̃

(2)
j,t+1−Et

[
z̃

(2)
j,t+1

]
is a zero-mean innovation. By design, we have Et

[
RV j

t+1

]
= hj,t.

To obtain closed-form option price formulas, we choose the noncentral chi-squared distribution

z̃
(2)
j,t+1 = σj

(
ε

(2)
j,t+1 − γj

√
hj,t − ωj

)2
, (17)

where

ε
(2)
j,t+1

iid∼ N(0, 1) for j = {u, d},

and

E
[
ε

(2)
u,t+1ε

(2)
d,t+1

]
= 0,

E
[
ε

(1)
j,t+1ε

(2)
j,t+1

]
= ρj .

Note that equation (17) allows for a nonlinear impact of ε
(2)
j,t+1 on RV j

t+1 via γj .

3.5 Upside and downside volatility dynamics

We are now ready to specify the dynamics of the expected upside and downside realized variances.

We assume the following recursive dynamics, where new information on realized downside (or

upside) variance at time t+ 1 is used to update our t+ 2 forecast of realized downside (or upside)

variances.

hj,t+1 − ωj = ω̃j + β̃j (hj,t − ωj) + α̃j

(
RV j

t+1 − ωj
)
. (18)

This is very similar to GARCH models, with the exception that less noisy innovations RV j
t+1 − ωj

are used to update conditional variances. The specification simply implies that hu,t+1 and hd,t+1
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are both univariate AR(1) processes. Thus, RV U
t+1 and RV D

t+1 belong to the class of univariate

ARMA(1, 1) processes. Using equation (16), equation (18) can be rewritten as

hj,t+1 − ωj = $j + βj (hj,t − ωj) + αj

(
ε

(2)
j,t+1 − γj

√
hj,t − ωj

)2
, (19)

where

ω̃j = $j + αj , β̃j = βj + γ2
jαj −

αj
σj
, α̃j =

αj
σj
.

Equation (19) is similar to the conditional variance dynamics in Heston and Nandi (2000). The

main difference here is that the Gaussian shock ε
(2)
j,t+1 is not perfectly correlated to returns. We

refer to this general specification as the generalized skew affine realized variance (GSARV) model.

3.6 Conditional second moments and moment generating function

From the model above, it is straightforward to derive the following one-day-ahead conditional

second moments:

V art [Rt+1] = hu,t + hd,t, (20)

V art

[
RV j

t+1

]
= 2σ2

j

(
1 + 2γ2

j (hj,t − ωj)
)
,

Covt
(
Rt+1, RV

U
t+1

)
=
√

2ωuσuρ
2
u + 2 (hu,t − ωu) γuσuρu,

Covt
(
Rt+1, RV

D
t+1

)
= −

(√
2ωdσdρ

2
d + 2 (hd,t − ωd) γdσdρd

)
,

Covt (Rt+1, ht+1) = α̃uCovt
(
Rt+1, RV

U
t+1

)
+ α̃dCovt

(
Rt+1, RV

D
t+1

)
.

Note that the model allows for two types of “leverage” effects: one via the return covariance with

upside variation and another via the return covariance with downside variation.

Our modeling choices are mainly motivated by the need to derive option prices in closed-

form. To achieve this goal, a sufficient requirement is for the framework to be affine (See Duffie

et al., 2000). In discrete time, it is sufficient to show that the joint one-step-ahead conditional

characteristic function of returns and factors is exponentially linear in those factors (see Darolles

et al., 2006). The internal Appendix reports the expressions for the joint conditional moment-
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generating function of returns, and expected upside and downside variations.

4 Physical Estimation

Up to this point in the paper, we have laid out a general framework for incorporating upside and

downside realized variations when modeling the underlying asset dynamics. In this section we

develop a likelihood-based method that enables us to estimate the physical parameters using daily

observations on returns, as well as the good and bad realized variation measures. We also discuss

special cases of the general specification that includes the Heston and Nandi (2000) benchmark

GARCH model.

4.1 Deriving the likelihood function

In deriving the conditional quasi-likelihood function, we compute the contribution of the day t+ 1

observation vector by multiplying the marginal densities with a Gaussian copula. Formally, we can

write

ft
(
Rt+1, RV

U
t+1, RV

D
t+1

)
= fr,t (Rt+1) fU,t

(
RV U

t+1

)
fD,t

(
RV D

t+1

)
×ct

(
Fr,t (Rt+1) , FU,t

(
RV U

t+1

)
, FD,t

(
RV D

t+1

))
,

where fr,t (Rt+1), fU,t
(
RV U

t+1

)
, and fD,t

(
RV D

t+1

)
are the marginal conditional densities of returns,

upside and downside realized variance, respectively. Accordingly, Fr,t (Rt+1), FU,t
(
RV U

t+1

)
, and

FD,t
(
RV D

t+1

)
are the marginal conditional cumulative distribution function of returns, upside and

downside realized variance, while ct (ν, νU , νD) denotes the density of the Gaussian copula. To char-

acterize the randomness surrounding realized upside and downside variance measures, we employ

Gaussian densities and cumulative distribution functions. Thus,

fj,t

(
RV j

t+1

)
=

exp

(
−(RV jt+1−hj,t)

2

2V art[RV jt+1]

)
√

2πV art

[
RV j

t+1

] ,

Fj,t

(
RV j

t+1

)
= Φ

 RV j
t+1 − hj,t√

V art

[
RV j

t+1

]
 , for j = {u, d},
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where Φ(∗) is the cumulative distribution function of a standard normal, and the V art

[
RV j

t+1

]
s are

given in equation (20). Because we want to highlight the importance of hu,t−hd,t in generating non-

normalities in the conditional distribution of returns, we need the exact marginal density function.

Notice that the exact marginal density of returns, fr,t (Rt+1), is a convolution of two noncentral chi-

squared densities, which does not have known closed-form expression. Nonetheless, the conditional

characteristic function of Rt+1 is available in closed-form as

ϕr,t (ν) ≡ Et
[
eiνRt+1

]

= exp


iν (r̄ + (λu − ξu)hu,t + (λd − ξd)hd,t)

+au (iν) + bu (iν)hu,t

+ad (−iν) + bd (−iν)hd,t

 ,

where aj (ν) and bj (ν) functions are

bj (ν) =
ν2

2
(
1−

√
2ωjν

) , (21)

aj (ν) = −
√
ωj
2
− ωjbj (ν)− 1

2
ln
(
1−

√
2ωjν

)
,

and i stands for the imaginary unit. Thus, we exploit Fourier inversion formulas to compute the

quantities of interest:

Fr,t (Rt+1) =
1

2
− 1

π

∫ ∞
0

Im
[
e−iνRt+1ϕr,t (ν)

]
ν

dν,

fr,t (Rt+1) =
1

π

∫ ∞
0

Re
[
e−iνRt+1ϕr,t (ν)

]
dν.

Moreover, the copula function is computed as

ct(ν, νU , νD) =
1√
|CMt|

exp

−1

2
(ν, νU , νD)

(
CM−1

t − I3

)


ν

νU

νD


 ,
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where CMt is the conditional correlation matrix of
(
Rt+1, RV

U
t+1, RV

D
t+1

)
given by

CMt =


1 ρUt ρDt

ρUt 1 0

ρDt 0 1

 ,

with

ρjt =
Covt

(
Rt+1, RV

j
t+1

)
√
V art [Rt+1]V art

[
RV j

t+1

] , for j = {u, d},

and where Covt

(
Rt+1, RV

j
t+1

)
, V art [Rt+1], and V art

[
RV j

t+1

]
are defined in Equation (20).

Finally, the log-likelihood is calculated as

lnLP =
T−1∑
t=1

ln
(
ft
(
Rt+1, RV

U
t+1, RV

D
t+1

))
. (22)

4.2 Nested specifications

Before turning to the estimation, we discuss special cases of interest that are nested by the new

option pricing model. Below, these restricted specifications are estimated along with the full model.

4.2.1 The constrained generalized skew affine realized variance (CGSARV) model

One of the key objectives of this paper is to highlight the importance of the difference between

upside and downside variances (hu,t − hd,t) in generating the observed conditional skewness in

returns and to assess its option pricing implications. As shown above, the conditional skewness in

the GSARV stems from two wedges, ωu − ωd and hu,t − hd,t. Hence, we consider a special case

where the first channel is shut down (i.e., ω ≡ ωu = ωd), thus defining hu,t − hd,t as the unique

driver of the conditional skewness. We refer to this special case as the constrained generalized skew

affine realized variance (CGSARV) model.

4.2.2 The affine realized variance (ARV) model

If we fix ω ≡ ωu = ωd = 0 and hu,t = hd,t in the GSARV specification, we obtain
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Rt+1 = rf +

(
λ− 1

2

)
ht + zt+1,

with

zt+1 =
√
htε

(1)
t+1,

where ε
(1)
t+1 are i.i.d. N(0, 1).

Beginning with h0, we have

ht+1 = $ + βht + α
(
ε

(2)
t+1 − γ

√
ht

)2
,

RVt+1 = ht + σ

[(
ε

(2)
t+1 − γ

√
ht

)2
−
(
1 + γ2ht

)]
,

where

E
[
ε

(1)
t+1ε

(2)
t+1

]
= ρ.

This single factor specification is identical to the affine realized variance model in Christoffersen et

al. (2014).

4.2.3 The Heston and Nandi (2000) GARCH model

Canonical GARCH-type option pricing models are obtained by setting ρ = 1 in the ARV model.

Specifically, ρ = 1 implies that ε
(1)
t+1 = ε

(2)
t+1, and therefore, the realized variance motion becomes

irrelevant. We then get

ht+1 = $ + βht + α
(
ε

(2)
t+1 − γ

√
ht

)2
,

≡ $ + βht + α
(
ε

(1)
t+1 − γ

√
ht

)2
,

which is precisely the Heston and Nandi (2000) affine GARCH (1,1) model.

4.3 Parameter estimates and model properties

Maximum likelihood estimation results from historical data are given in Table 2. As outlined above,

the estimated values are the empirical proxies of the parameters governing the return process under

the physical distribution. A few remarks are in order regarding the estimation procedure. The
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parameters $ are inferred by targeting the unconditional sample variance, and therefore, they

do not have standard errors. Moreover, for two-factor models, we estimate the downside market

price λd, then back out its upside counterpart λu by exactly matching the observed average excess

returns. Thus, we report the standard errors for the estimates of λd but not for λu.

For all models, the estimates of γu and γd are positive and statistically significant, thus pointing

to the so-called leverage effect in the returns dynamics. Moreover, the persistence in the conditional

variance process is much lower for the GARCH model, compared with the other specifications that

exhibit variance persistence levels above 0.98.

The likelihood values allow us to appraise the performance of the alternative specifications under

consideration. However, a straightforward comparison of likelihoods among these models cannot

be performed because the GARCH model is only fitted to returns, whereas the ARV model is fitted

to returns and RV , and the two-factor models are fitted to returns, RVu, and RVd. We see in the

bottom panel of Table 2 that the log-likelihoods of two-factor models are many times higher than

those of single-factor models. To circumvent this challenge, we implement an additional estimation

step for all models (except for the GARCH) by optimizing the likelihood only on returns. The

second-to-last row of the log-likelihood panel gives the return-based log-likelihoods. According to

this metric, the GSARV model dominates the other specifications as it delivers the highest log-

likelihood value. To further compare the different models, the last row contains the log-likelihoods

implied for the realized variance series. Because two-factor models are optimized on returns, RVu,

and RVd, they yield slightly lower realized variance-implied log-likelihood values than the one-factor

ARV model, which is fitted to returns, and RV. Nonetheless, the GSARV model delivers the highest

realized variance-implied log-likelihood among two-factor models, further confirming the superior

performance of this specification.

We turn to Table 3 to assess the ability of the different models to forecast one-day-ahead realized

variance. Specifically, we run Mincer and Zarnowitz (1969) regressions of ex-post (observed) on ex-

ante (model-based) variance components. The corresponding estimation fit is about 52% for the

GARCH model, and above 78% for the other specifications. Moreover, the slope coefficient of the

model-implied quantities, which should be 1 for a perfect forecast, is 2.26 for the GARCH and about

1.12 for the other models. This confirms that two-factor models deliver a good fit for upside and
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downside variances. Additional empirical properties of the various specifications are investigated

in the external Appendix B.

5 Risk-Neutral Estimation

We now estimate the different models by optimizing their fit on option data. This analysis aims at

exploring the ability of each specification to properly match the risk-neutral distribution embedded

in option contracts. We start by presenting the key features of the option data panel used in our

empirical analysis, and then study the performance of the various models relying on the implied

volatility root-mean-squared-error.

5.1 Exploring option data

We use European-style options written on the S&P 500 index. The observations span the period

January 10, 1996 through August 28, 2013.3 In line with the extant literature, we only include

out-of-the-money (OTM) options with maturity ranging between 15 and 180 days. This selection

procedure is intended to guarantee that the contracts we use are liquid. We also filter out options

that violate basic no-arbitrage criteria. For each maturity quoted on Wednesdays, we select only

the six most liquid strike prices, which amounts to a data set of 21,283 option contracts. To ease

calculation and interpretation, OTM put prices are converted into corresponding in-the-money call

values, by exploiting the call-put parity relationship.

Table 4 provides a crisp description of the option data. To highlight the main characteristics

of S&P 500 index option, we sort the data by moneyness, maturity, and market volatility index

(VIX) level. Panel A of Table 4 groups the data by six moneyness buckets and shows the number

of contracts, the average option price, the average Black and Scholes (1973) implied volatility, and

the average bid-ask spread in dollars. Our measure of moneyness is based on the Black-Scholes

delta computed as

Φ

(
ln (St/X) + rfM + 1/2

(
IVMkt

)2
M/365

IVMkt
√
M/365

)
,

where Φ (∗) stands for the normal cumulative distribution function (CDF), X is the strike price, rf

is the non annualized daily risk-free rate, M is the time-to-maturity expressed in days, and IVMkt

3Data are available through OptionMetrics, which supplies data for the U.S. option markets.
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denotes the annualized implied Black-Scholes volatility computed at the market price of the option.

A few empirical regularities emerge at this point. We observe that deep OTM puts, which include

the largest number of contracts with deltas exceeding 0.7, are the most expensive. This echoes the

well-documented volatility smirk pattern in index options across moneyness.

Panel B of Table 4 sorts the data by maturity expressed in calendar days. Even though the term

structure of volatility is nearly flat on average during the sample period, we notice that options

with longer maturities are relatively more expensive.

Panel C of Table 4 classifies the data by the VIX level. It is immediately obvious that a large

portion of the selected option contracts (75%) are quoted on days with VIX levels ranging between

15 and 35%.

Overall, a typical “median” contract features a delta above 0.6 and a time-to-expiry between

30 and 90 days, and is quoted on “normal” days when the VIX lies within the [15− 25] % interval.

5.2 Fitting options

We explore the performance of the different models by relying on the implied volatility root-mean-

squared error (IVRMSE) metric. Renault (1997) advocates for using the IVRMSE as a proper model

performance comparison tool in option pricing. Basically, the IVRMSE synthesizes the discrepancy

between model-based and market-based implied volatilities. To compute the IVRMSE, we invert

the model-based option price CMod
j of each contract j using the Black-Scholes formula (BS). Thus,

the model-based implied volatility can be formally extracted according to

IVMod
j = BS−1

(
CMod
j

)
.

Applying a similar procedure to the set of observed option contracts {CMkt
j } yields market-based

implied volatilities

IVMkt
j = BS−1

(
CMkt
j

)
.

Accordingly, the implied volatility error is computed as

ej = IVMkt
j − IVMod

j .
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It follows that the IVRMSE is obtained as

IV RMSE ≡

√√√√ 1

N

N∑
j=1

e2
j ,

where N denotes the option sample size.

Finally, risk-neutral parameters are estimated by maximizing the Gaussian implied volatility

error likelihood4

lnLO ∝ −1

2

N∑
j=1

{
ln
(
IV RMSE2

)
+ e2

j/IV RMSE2
}
. (23)

Table 5 contains the results of the option-based estimation. Clearly, our option fitting strategy

yields accurate parameter estimates, as evidenced by fairly small standard errors and sizeable model

likelihoods. Because we are fitting the model only on options, the resulting estimates correspond to

risk-neutral parameters. Thus, the two market prices of risk, λu and λd, are not estimated. Note

that to ensure model consistency in the estimation step, we filter volatility on returns and RV,

while fitting option IVs. As done in the historical estimation, we estimate EQ[hj ] and then back

out the $j estimates from the theoretical unconditional risk-neutral variance formula.

The proposed GSARV model clearly outperforms the alternative specifications, as it delivers

the highest likelihood value and the smallest global IVRMSE. Specifically, the GSARV model offers

about 10% and 20% improvement respectively in terms of log-likelihood and IVRMSE over the

benchmark GARCH model.

5.3 Dissecting model fit

We now scrutinize the overall performance results reported at the bottom panel of Table 5. To this

end, we dissect the IVRMSE by moneyness, maturity and VIX levels in Table 6. We use the same

clusters as for the description of option data in Table 4.

We see that all models offer a satisfactory performance (low IVRMSEs) in matching at-the-

money options contracts. By contrast, fitting deep OTM call and put options seems more chal-

lenging. Interestingly, the ability of the various specifications to match the observed option-implied

4Below, the model optimization algorithm maximizes the joint likelihood on returns and options. Thus, to allow
for comparison, we maximize the option likelihood at this point rather than minimizing the IVRMSE.
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volatility appears consistent across the term structure of the options, as the IVRMSEs are of

comparable magnitude. Moreover, the performance of these models tends to deteriorate nearly

monotonically as a function of the VIX level. This observation suggests that the ability of the

models to generate realistic option prices weakens in highly volatile times.

Across the board, the GSARV model dominates the other models along the moneyness, maturity,

and VIX level dimensions.

6 Joint Estimation on Returns, RV U , RV D, and Options

The option-based optimization findings provide relevant information on the ability of each model

to describe the risk-neutral dynamics embedded in option contracts. Nonetheless, these results

offer a limited description of certain model features, namely, the performance of the pricing kernel.

Recall that the pricing kernel is at the heart of the valuation of contingent claims and the analysis

of market compensations of risks. Thus, we extend our investigation by jointly fitting the various

models to historical returns, upside and downside realized variances, and options data.

The optimization is performed over a convolution of the quasi log-likelihood of returns and semi-

realized variances denoted as lnLP in Equation (22), and an option-based log-likelihood component

lnLO as per Equation (23). Accordingly, our joint maximization program writes

max lnLP + lnLO. (24)

Solving the joint optimization problem should help elicit the different premia, including the total

variance risk premium, the upside variance risk premium, and the downside variance risk premium.

To this end, we need to specify the link between the physical and the risk-neutral probability

measures.
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6.1 Risk-neutralization and implied risk premia

6.1.1 Pricing kernel and risk-neutralization

We now focus on the mapping between physical and risk-neutral probability measures using an

exponential pricing kernel of the form

Mt+1 = M
(u)
t+1M

(d)
t+1, (25)

where

M
(j)
t+1 =

exp

(
ν

(1j)
1t ε

(1)
j,t+1 + ν

(1j)
2

(
ε

(1)
j,t+1

)2
+ ν

(2j)
1t ε

(2)
j,t+1 + ν

(2j)
2

(
ε

(2)
j,t+1

)2
)

Et

[
exp

(
ν

(1j)
1t ε

(1)
j,t+1 + ν

(1j)
2

(
ε

(1j)
j,t+1

)2
+ ν

(2j)
1t ε

(2j)
j,t+1 + ν

(2j)
2

(
ε

(2j)
j,t+1

)2
)] , for j = u, d.

Our pricing kernel entails that both ε
(i)
j,t+1 shocks and their squares

(
ε

(i)
j,t+1

)2
are priced. This

represents a significant departure from Christoffersen et al. (2010) where only the ε
(i)
j,t+1 disturbances

are priced. In our specification, the ν2s are key elements that drive the wedge between the one-

day-ahead conditional risk-neutral and physical variance (termed as the variance spread). The

magnitude of this variance spread may be non-trivial, as pointed out by Christoffersen et al. (2013)

in their conditional Gaussian model. In the appendix, we report explicit expressions of the pricing

kernel parameters (ν
(1j)
1t , ν

(1j)
2 , ν

(2j)
1t , and ν

(2j)
2 ) as functions of physical and risk-neutral parameters.

The derivations in the external Appendix C also show that the risk-neutral motion of the underlying

asset return is

Rt+1 = r̄Q − ξQd h
Q
dt − ξ

Q
u h

Q
ut + zQu,t+1 − z

Q
d,t+1,

zQj,t+1 = z̃Qj,t+1 − E
Q
t

[
z̃Qj,t+1

]
,

V arQt

[
zQj,t+1

]
= V arQt

[
z̃Qj,t+1

]
≡ hQj,t, for j = {u, d},
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where

r̄Q = rf +
1

2

ln

(
1 +

√
2ωQd

)
−

ωQd +
√

2ωQd(
1 +

√
2ωQd

)
+

1

2

ln

(
1−

√
2ωQu

)
− ωQu −

√
2ωQu(

1−
√

2ωQu
)
 ,

ξQd =
1

2

(
1 +

√
2ωQd

) , ξQu =
1

2
(

1−
√

2ωQu
) .

The risk-neutral innovations in returns are noncentral chi-squared, distributed as

z̃Qj,t+1 =

√
ωQj
2

ε(∗1)
j,t+1 −

√√√√hQj,t − ω
Q
j

2ωQj

2

, with ε
(∗1)
j,t+1

iid∼
Q
N (0, 1) for j = {u, d},

and EQ
[
ε

(∗1)
u,t+1ε

(∗1)
d,t+1

]
= 0.

Moreover, there is a spread between the one-day-ahead risk-neutral variances hQu,t, h
Q
d,t and their

physical counterparts hu,t, hd,t,

V SP jt ≡ hQj,t − hj,t = ϑj + (ςj − 1)hj,t, (26)

with

ςd =

√
2ωQd

(
1 +

√
2ωQd

)
√

2ωd
(
1 +
√

2ωd
) + 2

√
2ωQd

(
1 +

√
2ωQd

)
λd,

ςu =

√
2ωQu

(
1−

√
2ωQu

)
√

2ωu
(
1−
√

2ωu
) − 2

√
2ωQu

(
1−

√
2ωQu

)
λu,

and

ϑd =

√
2ωQd

(
1 +

√
2ωQd

)
ln

 1 +
√

2ωd

1 +
√

2ωQd

+

√
ωQd

(√
ωQd −

√
ωd

)
1 +
√

2ωd
,

ϑu =

√
2ωQu

(
1−

√
2ωQu

)
ln

(
1−
√

2ωu

1−
√

2ωQu

)
+

√
ωQu
(√

ωQu −
√
ωu
)

1−
√

2ωu
.

We provide some analysis of this wedge in Section 6.1.2.

The risk-neutral dynamics for upside and downside realized variances write

RV j
t+1 = hj,t + V RP jt + z

(∗2)
j,t+1,
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where

z
(∗2)
j,t+1 = z̃

(∗2)
j,t+1 − E

Q
t

[
z̃

(∗2)
j,t+1

]
z̃

(∗2)
j,t+1 = σQj

(
ε
∗(2)
j,t+1 − γ

Q
j

√
hQj,t − ω

Q
j

)2

,

ε
(∗2)
j,t+1

iid∼
Q
N (0, 1) , EQ

[
ε

(∗2)
u,t+1ε

(∗2)
d,t+1

]
= 0, and EQt

[
ε

(∗1)
j,t+1ε

(∗2)
j,t+1

]
≡ ρQj .

Moreover, there is a difference between the risk-neutral expectation of the realized variances

EQt
[
RV U

t+1

]
, EQt

[
RV D

t+1

]
and their physical counterparts hu,t, hd,t. The difference is the variance

risk premium, and is given by

V RP jt ≡ EQt

[
RV j

t+1

]
− EPt

[
RV j

t+1

]
= θj + %jhjt + σQj

(
γQj

)2
V SP jt , (27)

with

%j = σQj

(
γQj

)2
− σjγ2

j ,

θj = σQj − σj + σjγ
2
jωj − σ

Q
j

(
γQj

)2
ωQj .

It is important to point out the subtle difference between the variances spread and premium. The

two notions are clearly related, as more spread induces a premium. But there can be a premium

without spread; we will provide some analysis of these differences in Section 6.1.2.

The dynamics of the risk-neutral factor hQj,t+1 under the risk-neutral probability measure share

a similar structure with their physical counterparts hj,t+1. That is,

hQj,t+1 − ω
Q
j = $Q

j + βj

(
hQj,t − ω

Q
j

)
+ αQj

(
ε
∗(2)
j,t+1 − γ

Q
j

√
hQj,t − ω

Q
j

)2

, (28)

with $Q
j = (1− βj)

(
ϑj + ςjωj − ωQj

)
+ ςj$j .

We provide the mapping between risk-neutral parameters, physical parameters and pricing

kernel in the Appendix.
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6.1.2 Analyzing variance spread and variance risk premium drivers

The variance spread expression in equation (26) reveals three potential factors driving the wedge

between risk-neutral and physical variances: (1) the nonnormality (ωj , ω
Q
j 6= 0), (2) the distance

between asymmetries (
∥∥∥ωQj − ωj∥∥∥) and (3) the market compensations for upside and downside

variance risk exposures (λj). Importantly, our choice of a flexible stochastic discount factor induces

a spread between risk-neutral and physical variances even in the Gaussian case (ωj , ω
Q
j = 0); this is

consistent with Christoffersen et al. (2013) findings. We refer the reader to the external Appendix

C for technical details. In the non-Gaussian shock case, compensations for upside and downside

variance risk exposures (λj) affect variance spreads. Specifically, an increase in the compensation

λj increases the corresponding variance spread. When ωQj = ωj , the risk-neutral variance becomes

proportional to its historical counterpart. When ωQj 6= ωj , an increase in the gap between ωQj and

ωj induces a larger variance spread.

Option valuation models are expected to generate risk-neutral total variances that are larger

than physical total variances in order to be economically and empirically relevant. Our framework

entails that compensations for upside and downside variance exposures (λj) contribute to the

dynamics of risk-neutral variances. Thus, λd ≥ 0 and λu ≤ 0 are sufficient conditions ensuring

that risk-neutral variances are well defined (non negative). Moreover, combining these conditions

with ωQj > ωj implies that V SP jt ≥ 0. These theoretical results clearly show that the variance

spread is a key driver of the variance risk premium, with the two quantities moving in the same

direction. Looking at equation (27), one can interpret %j as a difference between the risk-neutral

and physical variance of realized variance. This difference plays a pivotal role in the determination

of the variance risk premium. Building on the intuition that investors like good uncertainty (as it

increases the potential of substantial gains) but dislike bad uncertainty (as it increases the likelihood

of severe losses), Feunou et al. (forthcoming) have documented that the premium on the downside

variance is positive
(
V RP dt > 0

)
, whereas its upside counterpart is negative (V RP ut < 0). These

empirical regularities are met in our model if %d > 0 and %u < 0, thus implying economically sound
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restrictions, i.e.,

σQd

(
γQd

)2
> σdγ

2
d ,

σQu
(
γQu
)2

< σuγ
2
u.

6.2 Empirical results

6.2.1 Model fit

Table 7 presents the estimation results from the joint likelihood maximization on returns, RV U ,

RV D, and options. Our optimization procedure achieves an accurate fit of the entire set of param-

eters associated with the different models. Again, the $ parameter is calibrated by targeting the

physical unconditional (total) variance. By contrast, the downside risk premium parameter λd is

estimated as a free parameter, while its upside counterpart λu is inferred by exactly matching the

observed (total) market price of risk.

The estimated values for λd are all positive and more than two standard errors away from 0.

Interestingly for GSARV and CGSARV models, the inferred λu values are found to be negative.

Thus, the joint estimation results for GSARV and CGSARV specifications are consistent with

the intuition that investors dislike downside uncertainty and demand a positive premium as a

compensation for bearing that risk, whereas they find upside uncertainty desirable and are willing to

pay (negative premium) for exposure to such risk. A typical investor’s asymmetric behavior towards

good versus bad uncertainty is in line with the empirical regularities documented in recent works

such as Feunou et al. (forthcoming), and Feunou et al. (2013), among others. Moreover, the joint

estimation results for GSARV and CGSARV (ω ≡ ωu = ωd) models are close, which suggests that

the wedge between upside and downside conditional volatilities (hu,t−hd,t) is the main driver of the

conditional skewness in our option valuation framework. Our findings underscore the importance

of conditional asymmetry channels in designing empirically successful option valuation models that

are able to generate distinct dynamics for market compensations of upside and downside risks.

For each specification, Table 7 also reports the corresponding joint log-likelihood value along

with its decomposition into the several components. To allow for comparison among models, we
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compute the log-likelihood component pertaining exclusively to returns. It is immediately clear

that, in contrast to the GARCH model, the estimated CGSARV model delivers the highest log-

likelihood of returns.

In terms of fitting accuracy, the joint estimation results in Table 7 show a quite impressive 30%

IVRMSE reduction for the GSARV model compared with the benchmark GARCH model. Further-

more, the global fit of the GSARV model (IVRMSE of 4.03%) reveals a sizeable 10% improvement

over Christoffersen et al.’s 2015 BPJVM (with an IVRMSE of 4.77%), which features an alter-

native decomposition of the realized variance into diffusive and discontinuous components. This

observation is further confirmed in Table 8 where the IVRMSEs reported at the bottom of Table

7 are disaggregated by intervals of moneyness, maturity, and VIX index level. It is immediately

apparent that the overall improvement in option fit for the GSARV model is not driven by any

particular subset of the data. Across the board, the GSARV specification delivers a better fit with

respect to its nested variants as well as the BPJVM of Christoffersen et al. (2015).

6.2.2 Model fit for variance risk premia

From the works of Bakshi and Madan (2000), Carr and Madan (2001), Bakshi et al. (2003),

Andersen, Bondarenko and Gonzalez-Perez (2015) we have a clear understanding of how to con-

struct nonparametric option-implied moments. The corresponding model-free physical moments

can also be obtained from high-frequency historical returns on the underlying asset, as discussed

in Andersen et al. (2001a), Andersen et al. (2003), Barndorff-Nielsen et al. (2010), and Patton and

Sheppard (2015), among others. Relying on these two strands of the literature, we compute non-

parametric term structures of total, upside, and downside variance risk premia as spreads between

risk-neutral and physical corresponding series at different maturities.

To further gauge the empirical performance of our pricing framework, we report in Table 9 the

Mincer and Zarnowitz (1969) regressions of model-free variance premium and its upside (downside)

component on their model-implied counterparts. The results clearly show that the two-factor

GSARV model delivers efficient predictions of variance risk premia at different maturities, compared

with single-factor specifications. Across maturities, the slope estimates for the GSARV model are

virtually equal to 1 with higher adjusted R-squared figures compared with one-factor models. This

evidence suggests that specifying distinct dynamics for upside and downside second-order variations
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helps significantly improve the model’s ability to track the term structures of market compensations

for total, upside and downside variance risks. Focusing on the variance risk premium components,

we see that two-factor model forecasts for upside variance risk premium are more accurate than the

model-implied series for the downside variance risk premium. Predicting the downside component

of the variance risk premium appears more challenging, especially at the short horizon, possibly

due to its high empirical variability. Ultimately, the difference in upside and downside variance

dynamics effectively induces the time variation in the conditional asymmetry and enhances the

performance of our pricing model.

7 Conclusion

This study proposes a new and flexible option pricing model that can accommodate distinct upside

and downside semi-variance dynamics in the underlying asset price process. Our approach takes

advantage of the recent developments in high-frequency finance, allowing us to disentangle the

upside from the downside quadratic variation. This decomposition offers an alternative and effective

channel for modeling the asymmetry embedded in the distribution of stock prices. An important

feature of our model is that the dynamics of upside and downside variances are governed by their

nonparametric empirical proxies. Given that these proxies are constructed in discrete time, our

model is specified within the affine discrete-time family.

From a theoretical standpoint, the affine structure of the model enables us to derive closed-

form valuation formulas nesting several option pricing specifications. This feature facilitates the

estimation procedure, allows for a direct comparison among nested models, and avoids resorting

to simulation techniques. We employ a general pricing kernel to characterize the mapping between

physical and risk-neutral motions. In addition, we provide a formal description of the key fac-

tors driving the various market risk premia. Empirically, the new specification performs well. It

dominates standard benchmark models in terms of fitting accuracy and likelihood, when fitted to

S&P 500 index options, realized upside and downside variances, and returns. Moreover, the model

implies a time-varying skewness in return, a feature that allows for delivering realistic market

compensations for upside and downside variance risks across various maturities.
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Downside Volatility,” Review of Finance, 17(1), 443–481.

Feunou, Bruno, Jahan-Parvar, Mohammad R., and Tédongap, Roméo (2016), “Which parametric
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Appendix: Moment-generating function and risk-neutral dynamic

A1-Moment-generating function

We show (see the external Appendix) that the model is affine, which implies that

Et [exp (νRt+1 + vuhu,t+1 + vdhd,t+1)] ≡ exp (Au (ν, vu)hu,t +Ad (ν, vd)hd,t +B (ν, vu, vd)) ,

where

Au (ν, v) = ψu (−ν, v) + u (λu − ξu) + vβu,

Ad (ν, v) = ψd (ν, v) + u (λd − ξd) + vβd,

B (ν, vu, vd) = ur̄ + ζu (−ν, vu) + ζd (ν, vd) + vu (ωu +$u − ωuβu)

+vd (ωd +$d − ωdβd)− ωuψu (−ν, vu)− ωdψd (ν, vd) ,

with

ζj (u, v) = −1

2
log
(

1− 2vαj +
√

2ωju
(
1− 2vαj

(
1− ρ2j

)))
,

ψj (u, v) =

1
2

(
1− 2vαj

(
1− ρ2j

))
u2 + γjvαj

(
γj + 2

(
γj

√
ωj

2
− ρj

)
u
)

1− 2vαj +
√

2ωju
(
1− 2vαj

(
1− ρ2j

)) .

A2-Mapping between risk-neutral parameters, pricing kernel parameters and
historical parameters

We have
ρQj =

ρj√
1− 2 (1− ρ2) ν

(2j)
2

√
1− 2 (1− ρ2) ν

(1j)
2

.

Define

κj1 ≡
1− 2ν

(1j)
2 − 2ν

(2j)
2 + 4

(
1− ρ2j

)
ν
(1j)
2 ν

(2j)
2

1− 2
(
1− ρ2j

)
ν
(2j)
2

,

κj2 ≡
1− 2ν

(1j)
2 − 2ν

(2j)
2 + 4

(
1− ρ2j

)
ν
(1j)
2 ν

(2j)
2

1− 2
(
1− ρ2j

)
ν
(1j)
2

.

We show that

ωQj =
ωj(
κj1
)2 , σQj =

σj

κj2
, αQj =

ςjαj

κj2
.

By denoting,

χj ≡

(
ωQj
ωj

)1/4(
σQj
σj

)1/2

, δ2j ≡

(
1− ρ2j

)
+
√(

1− ρ2j
)2

+ 4ρ2jχ
2
j

2
,

we can express the pricing kernel parameters ν
(1j)
2 and ν

(2j)
2 as a function of physical and risk-neutral parameters.

That is,

ν
(1j)
2 =

1

2
(
1− ρ2j

) (1−
σQj
σjδ2j

)
+

1

2

 σQj
σjδ2j

−
√
ωj

ωQj

 ,

ν
(2j)
2 =

1

2
(
1− ρ2j

) (1− σj

σQj
δ2j

)
.

In our implementation, we choose to parameterize the model in terms of ωQj and σQj , directly.

The price of Gaussian innovations, ν
(1j)
1t and ν

(2j)
1t are time-varying and related to both physical and risk-neutral
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parameters according to

ν
(1j)
1t = π1j

√
hj,t − ωj + πQ1j

√
hQjt − ω

Q
j ,

ν
(2j)
1t = π2j

√
hj,t − ωj + πQ2j

√
hQjt − ω

Q
j ,

with

π1j =
1

1−
(
ρQj

)2
 1√

2ωQj

− γj
ρj
δ2j

 , πQ1j =
1

1−
(
ρQj

)2
 1√

2ωQj

(
ωj

ωQj

)1/4

− γQj
ρj
δ2j

(
σQj
σj

)1/2
 ,

π2j =
1

1−
(
ρQj

)2
γj σj

σQj
−

σjδ
2
j ρj(

1− ρ2j
)
δ2jσj
√

2ωj + ρ2jσ
Q
j

√
2ωQj

 ,

πQ2j =
1

1−
(
ρQj

)2
γQj

(
σj

σQj

)1/2

−
σjδ

2
j ρj(

1− ρ2j
)
δ2jσj
√

2ωj + ρ2jσ
Q
j

√
2ωQj

(
ωj

ωQj

)1/4
 .

Given that πQ1j and πQ2j are linear in γQj , we can parameterize the model in terms of either πQ1j or γQj . We opt for the
latter. Finally, the mapping between risk-neutral and physical innovation takes the form

ε
(∗1)
j,t+1 =

√
κj1

ε(1)j,t+1 −
ν
(1j)
1t

(
1− 2

(
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)
ν
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2
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1t

κj1

(
1− 2

(
1− ρ2j

)
ν
(2j)
2

)
 ,

ε
(∗2)
j,t+1 =

√
κj2

ε(2)j,t+1 −
ν
(2j)
1t

(
1− 2

(
1− ρ2j

)
ν
(1j)
2

)
+ ρjν

(1j)
1t

κj2

(
1− 2

(
1− ρ2j

)
ν
(1j)
2

)
 .
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Figure 1: Daily Returns and Realized Variances
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Graph E. Di,erence Between Upside and Downside Realized Volatilities

These figures present the daily returns on S&P 500 index, Rt (Graph A), the daily realized volatilities,
√
RVt (Graph C),

the daily upside realized volatilities,
√
RV Ut (Graph B), the daily downside realized volatilities,

√
RV Dt (Graph D), and the

difference between the daily upside and downside realized volatilities,
√
RV Ut −

√
RV Dt (Graph E). Daily realized volatility

quantities are computed from five-minute squared returns, using a scaled RV estimator. The sample starts from January 10,

1990 and ends on August 28, 2013.
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Table 1: Summary Statistics of Historical Series

Mean (%) Median (%) Std. Dev. (%) Skewness Kurtosis AR(1)

Return 6.43 13.74 18.49 -0.22 11.41 -0.06
Volatility 15.32 12.66 10.34 3.25 23.17 0.81
Upside Volatility 10.69 8.84 7.50 3.45 25.80 0.71
Downside Volatility 10.51 8.52 7.79 3.16 21.18 0.70

This table presents the summary statistics for the studied series. Mean, median, and standard deviation values are annualized
and in percentages. AR(1) describes first autocorrelation coefficient values. The sample starts from January 10, 1990 and ends
on August 28, 2013.
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Table 2: Estimation on Historical Returns and Realized Variance Components

One-Factor Models Two-Factor Models
GARCH ARV CGSARV GSARV

Parameters Est SE Est SE Est SE Est SE
λu 1.37E+00 1.37E+00 2.75E+00 2.75E+00
$u 2.80E-13 1.51E-12 6.70E-09 4.90E-08
ωu 2.39E-07 4.51E-08 9.71E-08 3.31E-08
αu 4.76E-06 3.12E-07 2.35E-06 6.60E-08 9.01E-07 1.27E-08 9.49E-07 6.61E-07
βu 8.22E-01 1.25E-02 1.91E-08 2.41E-02 1.57E-05 4.08E-07 1.53E-02 6.73E-01
γu 1.73E+02 1.17E+01 6.47E+02 1.62E+01 1.05E+03 7.44E+00 1.01E+03 7.02E+02
σu 6.33E-06 1.57E-07 3.49E-06 2.71E-08 3.53E-06 2.44E-06
ρu 9.27E-02 8.28E-03 5.88E-01 1.13E-02 5.94E-01 1.21E-02
λd 1.93E-08 5.19E+00 4.66E-11 5.34E+00
$d 9.64E-09 7.32E-09
ωd 2.39E-07 4.51E-08 7.39E-06 7.73E-07
αd 8.51E-07 1.76E-08 9.59E-07 6.15E-07
βd 9.56E-06 4.45E-08 4.34E-02 6.06E-01
γd 1.08E+03 1.11E+01 9.90E+02 6.37E+02
σd 3.44E-06 4.02E-08 4.06E-06 2.61E-06
ρd 7.59E-01 7.33E-03 7.59E-01 1.00E-02

E [hu] 6.77E-05 6.77E-05
E [hd] 6.79E-05 6.79E-05
E [h] = E [hu + hd] 1.36E-04 1.36E-04 1.36E-04 1.36E-04

Model Properties
Avg. Upside Volatility 11.46 11.46
Avg. Downside Volatility 11.40 11.46
Avg. Volatility 16.58 16.58 16.21 16.25

Variance Persistence
From RVu 0.9865 0.9852
From RVd 0.9873 0.9840
From RV 0.9827
From Returns 0.9649

Log Likelihoods
Returns, RVu, and RVd 120,683 121,036
Returns and RV 66,565
Marginalized on Returns 19,191 19,237 19,265
Maximized on Returns 19,035 19,213 19,240 19,305
Implied for RV 47,321 47,015 47,221

This table shows maximum likelihood estimation results for six different models. We use daily historical returns, upside, and
downside realized variances for the S&P 500 index from January 10, 1990 through August 28, 2013. We report the estimated
parameters (Est) with their corresponding standard errors (SE). For each model, we estimate the unconditional variance, then
target the fitted value to back out the $ parameter, by exploiting the theoretical link between the former and the latter.
The parameter λu is also inferred from the estimated value of λd, by exactly matching the observed (total) market price of
risk. To allow for comparison among models, the last row gives the log likelihoods implied for the realized variances while the
second-to-last row indicates log likelihood values when all models are estimated on returns only. The third-to-last row shows the
log likelihoods when one-factor ARV and SARV models are estimated on returns and realized variances. The fourth-to-last row
reports log likelihood values when two-factor GARV, CGSARV, and GSARV models are estimated on returns, upside realized
variances, and downside realized variances.
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Table 3: Regressions of Model-Free on Model-Implied Variances

One-Factor Models Two-Factor Models
GARCH ARV CGSARV GSARV

Parameters Est SE Est SE Est SE Est SE

Variance
Constant -1.43E-04 4.41E-06 -1.63E-05 1.79E-06 -1.71E-05 2.09E-06 -1.70E-05 2.09E-06
Slope 2.26 0.03 1.12 0.01 1.13 0.01 1.12 0.01
R2 (%) 52.24 84.11 78.60 78.57

Upside Variance
Constant -9.72E-06 1.30E-06 -9.74E-06 1.30E-06
Slope 1.14 0.01 1.14 0.01
R2 (%) 71.26 71.46

Downside Variance
Constant -1.06E-05 1.20E-06 -1.06E-05 1.20E-06
Slope 1.16 0.01 1.16 0.01
R2 (%) 75.21 75.00

This table shows the estimated coefficients (Est) and the standard errors (SE) of the regression of model-free total (upside and
downside) realized variance on the corresponding model-predicted total (upside and downside) variance from each of the six
specifications in turn. We use the parameter estimates in Table 2 to generate model forecasts of the conditional variance. The
sample period spans January 10, 1990 through August 28, 2013.
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Table 4: S&P 500 Index Option Data
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Number of contracts 3,788 1,391 1,781 2,846 2,746 8,731 21,283
Average price 7.85 20.94 32.28 45.30 65.93 132.41 74.35
Average implied volatility 16.72 18.40 19.31 20.40 21.71 25.09 21.62
Average bid-ask spread 1.046 1.674 1.955 2.018 1.834 1.228 1.470
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Panel B: By Maturity

Number of contracts 2,725 6,480 5,053 2,869 1,974 2,182 21,283
Average price 41.26 61.01 76.44 92.30 97.88 105.59 74.35
Average implied volatility 20.21 21.28 21.73 22.94 22.08 21.95 21.62
Average bid-ask spread 0.820 1.231 1.578 1.872 1.800 1.910 1.470
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Panel C: By VIX Level

Number of contracts 3,962 6,133 5,996 2,456 1,240 1,496 21,283
Average price 57.95 66.90 80.75 85.77 85.33 94.86 74.35
Average implied volatility 13.61 18.04 22.45 26.24 30.22 39.42 21.62
Average bid-ask spread 1.055 1.301 1.446 1.704 1.811 2.683 1.470

This table presents the characteristics of S&P 500 index option data by moneyness, maturity, and VIX level. We use Wednesday
closing out-of-the-money (OTM) call and put contracts from OptionMetrics for the period starting from January 10, 1996 and
ending on August 28, 2013. The moneyness is measured by the Black-Scholes delta. DTM denotes the number of calendar days
to maturity. The average price is reported in dollars and the average implied volatility is expressed in percentages.
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Table 5: Estimation on Options

One-Factor Models Two-Factor Models
GARCH ARV CGSARV GSARV

Parameters Est SE Est SE Est SE Est SE
$u 8.15E-21 8.57E-09 3.91E-20 3.24E-20
ωu 9.62E-06 7.42E-07 9.03E-08 4.60E-07
αu 8.17E-07 1.04E-08 7.88E-07 2.99E-08 1.67E-08 3.55E-09 1.22E-08 2.28E-09
βu 8.89E-01 1.72E-03 2.62E-02 5.39E-04 1.03E-11 1.62E-04 6.10E-13 1.62E-04
γu 3.57E+02 4.20E+00 1.11E+03 2.08E+01 7.72E+03 1.45E+02 9.03E+03 8.05E+02
σu 4.30E-05 1.61E-06 9.70E-06 1.74E-06 5.82E-06 1.13E-06
ρu 4.64E-01 7.84E-03 9.88E-01 4.66E-07 9.88E-01 4.66E-07
$d 4.38E-08 1.09E-17
ωd 9.62E-06 5.01E-07 2.93E-05 4.92E-07
αd 4.56E-07 1.59E-27 5.64E-07 2.94E-27
βd 5.44E-11 7.42E-07 2.63E-11 4.60E-07
γd 1.48E+03 1.27E-08 1.33E+03 1.25E-08
σd 1.03E-05 1.80E+01 1.20E-05 1.04E+01
ρd 9.99E-01 2.69E-08 9.99E-01 2.69E-08

EQ [hu] 1.40E-05 5.24E-07 3.13E-06 5.36E-07
EQ [hd] 1.16E-04 2.67E-07 1.40E-04 2.13E-07
EQ [h] = EQ [hu + hd] 1.11E-04 4.91E-07 8.27E-05 6.21E-07 1.30E-04 1.44E-04

Model Properties
Log Likelihoods 37,615 38,873 41,041 41,236
Avg. Upside Model IV 9.31 8.47
Avg. Downside Model IV 13.76 14.00
Avg. Model IV 16.62 17.76 16.73 16.45

Variance Persistence
From RVu 0.9962 0.9960
From RVd 0.9953 0.9949
From RV 0.9926 0.9904

Option Errors
IVRMSE 4.816 4.195 3.865 3.862

Ratio to GARCH 1.000 0.871 0.803 0.802

This table shows estimation results for six different models. We use Wednesday closing out-of-the-money (OTM) call and put
contracts from OptionMetrics for the period starting from January 10, 1996 and ending on August 28, 2013. We report the
estimated parameters (Est) along with their corresponding standard errors (SE). For each model, we estimate the unconditional
variance, then target the fitted value to back out the $ parameter, by exploiting the theoretical link between the former and the
latter. The second-to-last row shows the implied volatility root mean squared errors (IVRMSEs) of all models. For comparison,
the last row reports the IVRMSE ratio of each specification to the benchmark GARCH model.
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Table 6: IVRMSE Option Error by Moneyness, Maturity, and VIX
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Model
GARCH 4.497 3.381 3.396 3.693 4.202 5.816
ARV 4.427 3.124 3.220 3.288 3.687 4.807
CGSARV 3.892 2.775 2.913 3.036 3.365 4.518
GSARV 3.985 2.757 2.910 3.034 3.375 4.490
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Panel B: IVRMSE By Maturity
Model
GARCH 4.833 4.888 4.647 4.644 5.218 4.806
ARV 4.125 4.068 3.944 4.058 4.880 4.699
CGSARV 3.793 3.916 3.706 3.657 4.300 3.984
GSARV 3.736 3.953 3.710 3.677 4.293 3.947
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Panel C: IVRMSE By VIX Level
Model
GARCH 3.233 3.089 5.020 5.921 6.034 8.629
ARV 2.950 2.469 4.245 5.465 6.050 7.128
CGSARV 2.598 2.369 3.935 5.126 5.636 6.310
GSARV 2.620 2.428 3.954 4.963 5.694 6.341

This table presents the implied volatility root mean squared error (IVRMSE) of the six models for contracts sorted by moneyness,
maturity, and VIX level. We use the parameter values estimated in Table 5 to fit our six models to S&P 500 index option
contracts from OptionMetrics. The sample starts from January 10, 1996 and ends on August 28, 2013. The first panel (Panel
A) reports IVRMSE for contracts sorted by moneyness defined using the BlackScholes delta. The second (Panel B) reports
IVRMSE for contracts sorted by days to maturity (DTM). The third panel (Panel C) reports the IVRMSE for contract sorted
by the VIX level on the day corresponding to the option quote. The IVRMSE is expressed in percentages.
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Table 7: Estimation on Historical Returns, Realized Variance Components, and Options

One-Factor Models Two-Factor Models
GARCH ARV CGSARV GSARV

Parameters Est SE Est SE Est SE Est SE
λu 1.40E+01 1.51E+00 -6.67E-06 -5.70E-08
$u 1.64E-08 7.00E-19 0.00E+00 0.00E+00
ωu 1.45E-06 1.04E-08 1.44E-06 2.61E-09
αu 9.01E-07 1.86E-08 8.79E-08 6.93E-10 8.11E-07 3.01E-09 7.99E-07 3.23E-10
βu 9.88E-01 6.09E-04 2.41E-01 2.31E-03 1.11E-16 4.22E-13 0.00E+00 1.72E-14
γu 6.22E+01 5.51E+00 2.94E+03 1.41E+01 1.10E+03 1.97E+00 1.11E+03 2.16E-01
σu 1.84E-06 8.03E-09 3.17E-06 6.95E-09 3.12E-06 4.77E-09
ρu 1.31E-01 2.28E-03 4.39E-01 4.40E-03 4.38E-01 4.85E-03
λd 3.01E+00 1.65E-08 3.01E+00 1.04E-06
$d 2.38E-14 7.41E-10
ωd 1.45E-06 1.04E-08 1.46E-06 2.37E-09
αd 4.93E-08 2.05E-10 5.06E-08 2.87E-10
βd 0.00E+00 1.60E-13 2.22E-16 4.39E-12
γd 4.50E+03 8.98E+00 4.44E+03 1.21E+01
σd 1.07E-06 2.31E-09 1.10E-06 3.51E-09
ρd 7.80E-01 5.41E-03 7.89E-01 4.64E-03

Pricing Kernel Parameters
κu1 1.05E+00 3.36E-03 1.57E+00 4.50E-03 6.10E+04 1.07E+03 6.18E+04 1.08E+03
κu2 3.60E-02 3.34E-04 3.91E-06 6.88E-08 3.73E-06 6.54E-08

γQu 8.00E+01 6.96E+02 3.13E+00 5.38E+02 9.83E+00 5.13E+02 9.84E+00
κu1 9.35E-01 3.27E-03 9.37E-01 3.30E-03
κu2 1.30E-01 1.64E-03 1.34E-01 1.71E-03

γQu 1.50E+03 1.06E+01 1.57E+03 1.06E+01

Model Properties
Avg. Physical Volatility 16.58 16.58 16.21 16.21
Avg. Model IV 17.32 14.99 14.23 14.20

Variance Persistence
From RVu 0.9889 0.9853
From RVd 0.9843 0.9867
From RV 0.9835
From Returns 0.9893

Log Likelihoods
Returns, RVu, RVd, and Options 163,429 163,432
Returns, RV , and Options 106,391
Returns and Options 52,770 59,294 61,070 61,098
Returns 19,019 19,680 19,761 19,785

Option Errors
IVRMSE 5.740 4.243 4.031 4.031

Ratio to GARCH 1.000 0.739 0.702 0.702

This table shows the joint maximum likelihood estimation results for six different models. We use daily historical returns,
upside/downside realized variances, and options on S&P 500 index from January 10, 1996 through August 28, 2013. We report
the estimated parameters (Est) with their corresponding standard errors (SE). For each model, we use physical unconditional
variance targeting to back out the $ parameter. The parameter λu is also inferred from the estimated value of λd, by exactly
matching the observed (total) market price of risk. We also present the joint log likelihood value along with its decomposition
into the several components. The second-to-last row shows the implied volatility root mean squared errors (IVRMSEs in
percentages) of all models. For comparison, the last row reports the IVRMSE ratio of each specification to the benchmark
GARCH model.
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Table 8: Joint Estimation IVRMSE Option Error by Moneyness, Maturity, and VIX
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Panel A: IVRMSE By Moneyness
Model
GARCH 5.338 4.001 3.823 3.896 4.228 8.112
ARV 4.530 3.214 3.321 3.422 3.703 4.697
CGSARV 4.355 3.002 3.032 3.110 3.347 4.645
GSARV 4.358 3.004 3.033 3.111 3.347 4.643

BPJVM 4.775 3.150 2.825 2.956 3.319 6.821
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Panel B: IVRMSE By Maturity
Model
GARCH 5.259 5.700 5.640 5.852 6.497 5.834
ARV 4.514 4.206 4.029 3.938 4.486 4.157
CGSARV 4.433 4.113 3.801 3.683 4.314 3.950
GSARV 4.428 4.113 3.803 3.685 4.314 3.950

BPJVM 4.404 4.731 4.739 4.555 5.535 4.948
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Panel C: IVRMSE By VIX Level
Model
GARCH 4.310 3.419 5.499 6.785 6.961 11.639
ARV 3.032 2.576 4.248 5.528 6.144 6.643
CGSARV 2.794 2.433 4.158 5.489 5.878 6.234
GSARV 2.796 2.431 4.157 5.488 5.882 6.235

BPJVM 3.335 3.202 5.358 5.868 5.888 7.231

This table presents the implied volatility root mean squared error (IVRMSE) of the six models for contracts sorted by moneyness,
maturity, and VIX level. We use the parameter values estimated in Table 7 to fit our six models to S&P 500 index option
contracts from OptionMetrics. The sample starts from January 10, 1996 and ends on August 28, 2013. The first panel (Panel
A) reports IVRMSE for contracts sorted by moneyness defined using the Black-Scholes delta. The second (Panel B) reports
IVRMSE for contracts sorted by days to maturity (DTM). The third panel (Panel C) reports the IVRMSE for contracts sorted
by the VIX level on the day corresponding to the option quote. The IVRMSE is expressed in percentages. BPJVM denotes
the bipower jump variation option pricing model of Christoffersen et al. (2015).
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Table 9: Regressions of Model-Free on Model-Implied Variance Risk Premia

One-Factor Models Two-Factor Models
GARCH ARV CGSARV GSARV

Parameters Est SE Est SE Est SE Est SE

V RP

1-Month
Constant 9.20E-04 9.13E-04 -7.40E-03 6.94E-04 -8.14E-03 5.48E-04 -3.74E-03 5.44E-04
Slope -0.00 0.00 0.79 0.04 1.00 0.03 1.00 0.03
R2 (%) 17.93 36.84 60.63 60.62

3-Month
Constant 4.44E-03 7.64E-04 6.09E-03 6.24E-04 -5.47E-03 8.20E-04 -2.83E-03 7.11E-04
Slope 0.00 0.00 0.09 0.01 1.00 0.06 1.00 0.06
R2 (%) 0.47 4.61 27.76 27.84

6-Month
Constant 5.57E-03 8.41E-04 1.07E-02 7.09E-04 -3.91E-03 9.82E-04 -3.74E-03 9.74E-04
Slope 0.00 0.00 -0.01 0.01 1.00 0.05 1.00 0.05
R2 (%) 10.94 0.00 30.27 30.30

V RP u

1-Month
Constant 1.24E-03 5.22E-04 1.44E-03 5.18E-04
Slope 1.07 0.03 1.07 0.03
R2 (%) 61.54 67.54

3-Month
Constant -3.23E-04 3.47E-04 -4.11E-04 3.45E-04
Slope 0.93 0.03 0.93 0.03
R2 (%) 55.57 59.08

6-Month
Constant -1.24E-03 3.12E-04 -1.44E-03 3.11E-04
Slope 1.07 0.05 1.07 0.05
R2 (%) 37.42 39.75

V RP d

1-Month
Constant 8.54E-03 1.44E-03 8.54E-03 1.05E-03
Slope 1.46 0.15 1.46 0.02
R2 (%) 12.05 12.05

3-Month
Constant 1.30E-02 1.84E-03 1.30E-02 1.84E-03
Slope 1.46 0.18 1.46 0.18
R2 (%) 12.17 12.17

6-Month
Constant 1.32E-02 2.10E-03 1.32E-02 2.10E-03
Slope 0.54 0.04 0.54 0.04
R2 (%) 14.27 14.27

This table shows the estimated coefficients (Est) and the standard errors (SE) of the regressions of model-free variance risk
premium (upside, downside variance risk premium) on corresponding model-predicted values at various maturities (1-, 3-, and
6-month) from each of the six specifications in turn. We use the parameter estimates in Table 7 to generate model forecasts.
The sample period spans January 10, 1990 through August 28, 2013.
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