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Abstract 

This paper provides a novel methodology for estimating option pricing models based on 
risk-neutral moments. We synthesize the distribution extracted from a panel of option 
prices and exploit linear relationships between risk-neutral cumulants and latent factors 
within the continuous time affine stochastic volatility framework. We find that fitting the 
Andersen, Fusari, and Todorov (2015b) option valuation model to risk-neutral moments 
captures the bulk of the information in option prices. Our estimation strategy is effective, 
easy to implement, and robust, as it allows for a direct linear filtering of the latent factors 
and a quasi-maximum likelihood estimation of model parameters. From a practical 
perspective, employing risk-neutral moments instead of option prices also helps 
circumvent several sources of numerical errors and substantially lessens the 
computational burden inherent in working with a large panel of option contracts. 

Bank topics: Asset pricing; Econometric and statistical methods 
JEL code: G12 
 

Résumé 

Dans cette étude, nous proposons une méthodologie nouvelle pour estimer les modèles 
d’évaluation d’options, fondée sur les moments neutres à l’égard du risque. Nous 
synthétisons la distribution extraite de notre échantillon de prix d’options et exploitons 
les relations linéaires qui existent entre les cumulants neutres à l’égard du risque et les 
variables latentes dans le cadre d’un modèle affine à volatilité stochastique en temps 
continu. Nous établissons que l’ajustement du modèle d’évaluation d’options 
d’Andersen, Fusari et Todorov (2015b) aux moments neutres à l’égard du risque permet 
de saisir le gros de l’information véhiculée par les prix des options. Nous jugeons notre 
stratégie d’estimation à la fois efficace, facile à mettre en œuvre et robuste, puisqu’elle 
autorise un filtrage linéaire direct des variables latentes et une estimation des paramètres 
des modèles par la méthode du quasi-maximum de vraisemblance. Du point de vue 
pratique, le recours aux moments neutres à l’égard du risque, au lieu des prix des options, 
permet d’éviter plusieurs sources d’erreurs numériques et réduit substantiellement la 
masse de calculs à effectuer pour traiter un vaste échantillon d’options. 

Sujets :  Évaluation des actifs ; Méthodes économétriques et statistiques     
Code JEL : G12 
 

 



 

Non-Technical Summary 

Option prices are routinely used to infer the distribution of future movements in their underlying 
asset prices. For example, financial econometricians use option prices to precisely evaluate the 
variance, the skewness, and the kurtosis of the aforementioned distribution. 
 
However, academics and practitioners do not use such sophisticated option pricing models 
because of estimation challenges. These hurdles are (1) the computational burden inherent in 
working with a large panel of option contracts, (2) the numerical approximations of ordinary 
differential equations to compute the characteristic function, (3) the numerical integrations of the 
characteristic function to compute option prices, and (4) the nonlinear filtering of the latent state 
variables from option prices.   
 
This paper proposes to estimate these models using the forward-looking variance, skewness, and 
kurtosis instead of raw option prices data. These forward-looking moments can be thought of as 
portfolios of options contracts, along the strike dimensions. The methodology used to compute 
them is similar to the VIX methodology and is discussed extensively in the literature. 
 
Our proposal is effective, easy to implement, and robust, because it allows us to infer not only 
model parameters, but unobserved factors as well. From a practical perspective, employing the 
forward-looking variance, skewness, and kurtosis instead of option prices also helps circumvent 
several sources of numerical errors and substantially lessens the computational burden inherent 
in working with a large panel of option contracts. 



1 Introduction

Option prices are of importance to investment decisions, as they provides useful forward-looking in-

formation on market conditions. Thus, a large body of the asset pricing literature aims at designing

valuation models that can accurately fit the observed option prices. Most state-of-the-art option

pricing specifications account for the salient empirical regularities of the underlying distribution –

such as volatility randomness and persistence, as well as substantial conditional tail thickness – in

the specification of stochastic volatility dynamics and (time-varying intensity) jump components.

However, the implementation and estimation of continuous time jump-diffusion models is challeng-

ing because of the econometric and computational complexity involved when using available option

prices over long periods of time. Simply put, the main challenge in stochastic volatility model

estimation is that latent state variables must be inferred along with model parameters from asset

prices. Keep in mind that, as Bates (2006) points out, the relationship between option prices and

latent state variables is highly nonlinear. One may argue that the solution to this problem is simple.

One could ignore some data, for instance by focusing on a subset of contracts (at-the-money or

Wednesday options). Clearly, this choice is inefficient from a statistical perspective. Alternatively,

one could re-estimate the model using shorter samples. In the limit, one could re-estimate the

model every day, as in Bakshi et al. (1997). Because these models are genuinely dynamic, this ap-

proach is also not optimal. The estimation challenges of stochastic volatility models might explain

why generalized autoregressive conditional heteroskedasticity (GARCH)-type models remain very

popular in option pricing.

This article proposes a new and generic estimation approach that uncovers the latent state

variables (unobserved factors) by synthesizing the risk-neutral distribution extracted from a large

panel of option prices spanning several dates, maturities, and moneyness. Bakshi and Madan (2000)

and Bakshi et al. (2003) discuss how to build conditional risk-neutral moments from option prices

without resorting to any parametric assumption. Model-free risk-neutral moments can be used to

identify latent factors, and thus circumvent one of the major challenges in estimating stochastic

volatility models. Indeed, using option prices for stochastic volatility model estimation usually

involves Fourier transform inversions that entail high-dimensional numerical integrations, especially

in the presence of several unknown model parameters and latent factors. To estimate continuous

time affine-stochastic volatility models, we use risk-neutral moments (instead of option prices) and

exploit the linear function linking any conditional cumulant to the latent factors within the affine
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family.1 The affine relationship between cumulants and factors enables us to extract the unobserved

state variables and estimate the model parameters using a slightly modified version of the linear

Kalman filter. Let us stress that it is the cumulants (not the moments) that are linearly related

to the latent factors in affine models. Interestingly, cumulants can be easily expressed in terms of

moments. Therefore, we will use the terms “cumulants” and “moments” whenever is appropriate.2

Ultimately, we can undo the nonlinearities between option prices and factors by transforming option

prices into risk-neutral cumulants. Moreover, employing option-implied cumulants instead of option

prices mitigates the difficulty inherent in working with a large number of option contracts for the

estimation. Namely, instead of using 570,108 option contracts, we “aggregate” them into 73,752

risk-neutral cumulants. Our approach bears some resemblance to the estimation of affine term

structure of interest rates models, where bond yields are linearly related to the unobserved factors.

A thorough review of the affine term structure framework can be found in Singleton (2006), and

Joslin et al. (2011).

Our main contribution is to establish that, for the estimation of option pricing models, fitting

risk-neutral (second, third, and fourth) cumulants overcomes the nonlinearities and subsumes a

sizeable fraction of the information content of option prices. Using the Andersen et al. (2015b)

(henceforth, AFT) model, we show that the risk-neutral moment-based estimation of stochastic

jump-diffusion specifications within the affine-Q family is effective, simple, and provides robust

results. As in the case of most state-of-the-art multi-factor pricing models, the ordinary differential

equations satisfied by the factor loadings (functionals of the model’s primitive parameters) of the

conditional characteristic function do not admit explicit analytical solutions. Interestingly, we have

computed their derivatives (cumulants) in explicit closed-form. This observation further under-

scores a key implementation advantage that our risk-neutral moment-based estimation approach

offers.

Our work is related to a growing literature that relies on various observable quantities to fit

continuous-time option pricing models. Recent studies by Duan and Yeh (2010) and Kaek and

Alexander (2012), use the VIX index to uncover the unobserved variance path before proceeding to

the estimation of option pricing models. However, in the presence of jumps in the underlying return

1The stochastic volatility family considered is affine under the risk-neutral probability distribution. This as-
sumption is needed to derive the analytical expressions of risk-neutral cumulants in closed-form. Nonetheless, this
assumption is not very restrictive because the corresponding processes may be non-affine under the physical proba-
bility distribution.

2The empirical behavior of option-implied moments (rather than cumulants) have been extensively studied in the
literature on derivatives.
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process, the squared VIX index is a biased proxy for the risk-neutral expectation of the quadratic

variation of log returns: see, e.g., the discussion in Carr et al. (2012). As in Bakshi and Madan

(2000) and Chang et al. (2012), our construction of nonparametric risk-neutral moments minimizes

jump approximation and discretization errors. Another line of research fits option models after

extracting the latent spot variance from observed variance swap rates, as implemented in Egloff et

al. (2010), Amengual and Xiu (2015), and Aı̈t-Sahalia et al. (2015). These studies focus on fitting

variance swap prices, but do not assess the option pricing accuracy. Instead, we evaluate the option

fitting performance. In addition and perhaps more importantly, we go beyond the second-order

risk-neutral moment and fit model-implied to observed (nonparametric) third- and fourth-order

risk-neutral moments at different maturities.

Regarding the estimation strategies of stochastic volatility models, several approaches have

been proposed. Following Bakshi et al. (1997), Bates (2000), and Huang and Wu (2004) use

a two-step scheme that filters the unobserved factors and estimates the structural parameters,

iteratively. Christoffersen et al. (2009), and Johannes et al. (2009) implement improved variants

of this particle-filtering algorithm for general specifications of jump-diffusion processes. A similar

estimation methodology is adopted by Jones (2003) and Eraker (2004) within a Bayesian framework.

Carr and Wu (2007) opt for a Kalman filter approach. Alternatively, stochastic volatility models

can be estimated by the efficient method of moments, as pointed out by Gallant and Tauchen

(1996), Andersen et al. (2002), and Chernov and Ghysels (2000). Gagliardini et al. (2011) develop

a test strategy based on extended method of moments. Pan (2002) runs a generalized method of

moment estimation, while Bates (2006) uses a maximum likelihood methodology to fit latent affine

processes. Feunou and Tédongap (2012) employ a GARCH approximation of stochastic volatility

dynamics. In a recent study, Andersen et al. (2015a) add a penalization term to Bates’ (2000)

objective function to estimate risk-neutral parameters and latent factors. This penalization term

captures the gap between observed and model-implied spot variance, and is designed to discipline

the estimated factors. Moreover, Andersen et al. (2015a) provide a strong theoretical framework for

conducting inference. Within the affine framework, although option prices are nonlinear function

of factors, there exist portfolios of these options contracts weighted across moneyness (risk-neutral

moments) that enable us to undo the nonlinearity and apply a modified linear Kalman filtering

technique for the estimation. Note that the objective of our study is not to propose another option

pricing model. We focus on providing a new methodology for estimating affine option pricing

models by fitting the observed risk-neutral cumulants. To the best of our knowledge, we are the
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first to investigate the joint fitting of observed higher-order (second, third, and fourth) risk-neutral

cumulants across different maturities.

The remainder of the paper is organized as follows. Section 2 presents the general affine-

Q class of stochastic volatility models, reviews the estimation challenges, and outlines the core

concept of the risk-neutral moment-based methodology. Section 3 discusses the proposed risk-

neutral moment-based estimation strategy. Section 4 implements the risk-neutral moment-based

estimation approach for the AFT model. Section 5 describes the data and the computation of

nonparametric risk-neutral quantities, contrasts the performance of the moment-based estimation

method with that of the AFT estimation approach in delivering realistic option prices and risk-

neutral quantities, and assesses the implied risk premia. Section 6 concludes.

2 General affine-Q framework

Consider the time t price St of a security, and define the log-price process as {yt = log(St)}t≥0.

The information available up to the current time t is characterized by a set of progressive filters

(Ft)t≥0. Let F be an N × 1 vector of factors governing the distribution of y. We posit that the

discount rate function is affine in the factors, and given by

Rt = rf + ρ′rFt,

where rf is the log risk-free rate and ρr is an N × 1 vector of factor loadings.

For a future payoff date T ≥ t and u ∈ C, models under consideration are those for which the

following transform function

ψ (u; yt, Ft, T, rf , ρr) ≡ EQt
[
exp

(
−
∫ T

t
Rsds

)
euyT

]

exists and is exponential affine in F , with EQt denoting the risk-neutral expectation conditioned on

Ft. Following Duffie et al. (2000) and Duffie et al. (2003), we assume that all technical regularity

conditions are satisfied so that the expectation is well defined.3

3This set of assumptions is discussed on page 1351 in Duffie et al. (2000).
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By setting τ = T − t, the conditional characteristic function takes the form4

ψ (u; yt, Ft, T, rf , ρr) = exp
(
uyt + α (u; τ, rf , ρr) + β (u; τ, rf , ρr)

′ Ft
)
, (1)

where, in continuous time, α (•) and β (•) are solutions to ordinary differential equations (ODEs).

We refer the reader to Duffie et al. (2000) and Duffie et al. (2003) for general expressions of these

ODEs.5

In some special cases, the explicit solutions to these ODEs exist. Thus, the analytical expressions

of α (•) and β (•) are known in closed-form, as in Heston (1993), and Huang and Wu (2004). In

other realistic cases, the ODEs must be solved numerically, in particular for state-of-the-art models

featuring self-exciting jumps as in the AFT model, among others. Even though a few rich option

pricing specifications have been recently proposed in the literature, our empirical study focuses

on the AFT model for the sake of conciseness. The three-factor AFT model provides a realistic

framework for option contract valuation.

2.1 Standard option pricing and estimation

2.1.1 Option valuation

The extant option pricing literature relies on contract values to back out model parameters and

factors. For affine models, the general pricing formula of a security that pays eayT at time T = t+τ

when the event byT ≤ x occurs, with any a, b ∈ R, is given by (see Proposition 2.2 in Duffie et al.

(2000))

Ga,b (x, yt, Ft, T ) = EQt

[
exp

(
−
∫ T

t
Rsds

)
eayT1byT≤x

]
, (2)

=
ψ (a; yt, Ft, T, rf , ρr)

2
− 1

π

∫ ∞
0

=
[
ψ (a+ iνb; yt, Ft, T, rf , ρr) e

−iνx]
ν

dν,

where =(u) returns the imaginary part of u ∈ C. Consequently, a European call option with payoff

(eyT − ex)+ is priced (see Equation 1.6 in Duffie et al. (2000)) at

C (x, yt, Ft, τ) = G1,−1 (−x, yt, Ft, T )− exG0,−1 (−x, yt, Ft, T ) , (3)

4Formally, ψ gives the conditional characteristic function when the discount rate Rt = 0.
5In discrete time, α (•) and β (•) are solutions to recursive finite difference equations, as studied in Darolles et al.

(2006).
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where X = ex gives the strike price. A few important remarks arise from the pricing rules in

Equations 2 and 3. Namely, there are at least three potential sources of numerical errors that stand

as challenges from a practical implementation standpoint.

First, both the integral and integrand (ψ) in the pricing relation must be approximated nu-

merically. This entails a high-dimensional numerical integration, especially when there is a large

number of factors. The numerical challenge becomes more critical in estimation settings, where

parameter values are not fixed but must be inferred along with factor estimates.

Second, the highly nonlinear link between option prices and factors precludes the use of standard

linear filters and often requires complex filtering techniques, such as the square-root unscented

Kalman filter (Van der Merwe and Wan (2001)).

Third, as mentioned in the introduction, the sheer size of a typical option price panel adds

to the complexity of option pricing model estimation. The observed values of option contracts

written on a given underlying asset form a panel along the time dimension (observation date), the

maturity dimension (tenor), and the cross-section dimension (moneyness). The option panel in

this study contains a large number of records (570,108) along those three dimensions. Note that to

circumvent the computational burden, some estimation procedures select a subset of options, such

as at-the-money or Wednesday contracts.

2.1.2 Andersen et al. (2015a) estimation

We outline the Andersen et al. (2015a) estimation procedure that is used as a reference point

for the proposed risk-neutral moment-based estimation strategy. On a given day t = 1, ..., T in a

typical option panel, we observe Nt contract values for various strike prices and maturities. As is

standard in the literature on derivatives, we rely on the vega-weighted root mean squared error

VWRMSEt ≡

√√√√ 1

Nt

Nt∑
j=1

((
CMkt
j − CMod

j

)
/BSVMkt

j

)2
,

where CMkt
j is the jth option contract value observed on the market, CMod

j is the corresponding

model-implied price, and BSVMkt
j is the observed Black-Scholes vega of the option. Note that the

VWRMSE is a computationally cheaper alternative to the implied volatility root mean squared

error.6

6The implied volatility root mean squared error IV RMSEt ≡
√

1
Nt

∑Nt
j=1

(
IVMkt

j − IVMod
j

)2
measures the wedge

between the observed or market-based implied volatility IVMkt
j = BS−1

(
CMkt
j

)
and the model-based implied volatil-
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The optimization is performed according to

(
{F̂t}t=1,...,T , θ̂

)
= arg min
{Ft}t=1,...,T ,θ∈Θ

T∑
t=1

{
VWRMSE2

t + ωn

(√
V̂nt −

√
Vt
)2
}
, (4)

where ωn is a nonnegative penalization coefficient, Vt is the spot volatility, and V̂nt is a nonparametric

high-frequency estimator of spot volatility computed using a fine grid of n records within a unit

interval of time. While the spot volatility Vt is affine the factors, the pricing error in the VWRMSE

is not. The objective function in Equation 4 incorporates a penalizing term to ensure that the

model-implied spot volatility aligns well with its model-free high-frequency estimate. Following

AFT, we set ωn = 0.05 and construct a consistent estimator of the spot variance at the end of each

trading day, using a one-minute grid of the underlying returns, as

V̂t =
n

mn

n∑
i=n−mn+1

(
yt+i/n − yt+(i−1)/n

)2
1
(
|yt+i/n − yt+(i−1)/n| ≤ δn−$

)
. (5)

Over 6.5 hours in a typical trading day, a one-minute grid contains about n = 390 observations,

and the value of mn corresponds to a fraction (3/4) of n. The remaining tuning parameters are

set as follows: $ = 0.49 and δ =
√
BVt−1 ∧RVt−1, where BVt−1 and RVt−1 are high-frequency

bi-power variation and realized volatility estimators.

As we deal with a large panel of option data (570,108 contracts recorded over 3,073 days),

we implement an iterative two-step procedure for the AFT estimation. Namely, parameters and

unobservable latent factors are sequentially estimated. In the first step, for a given set of structural

parameters, and on each observation date t, we minimize the pricing errors (the term in the curly

brackets in Equation 4) to get estimates of latent factors. In the second step, given the set of

latent factors estimated from the first step for all dates t = 1, ..., T , we solve one aggregate sum of

squared pricing errors optimization problem to get a new estimation of the model parameters. The

procedure iterates between these two steps until the reduction in the overall objective in the second

step becomes marginal (convergence). The outlined challenges motivate our alternative estimation

methodology, which synthesizes 570,108 raw option prices into 73,752 risk-neutral cumulants, and

use them to fit affine option models.

ity IVMod
j = BS−1

(
CMod
j

)
, where BS−1 stands for the inverse of the Black-Scholes formula. Renault (1997) argues

for using the IVRMSE as a performance metric in the appraisal of option pricing models. However, given the large
number of contracts (570,108) that we consider, a direct computation of the IVRMSE is costly because each option
must be inverted to obtain the corresponding implied volatility. To circumvent this computational challenge, we opt
for the VWRMSE.
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2.2 Our approach: pricing with a portfolio of options

We conjecture that the risk-neutral variance, skewness, and kurtosis summarize most of the in-

formation embedded in option prices. Specifically, risk-neutral moments are weighted portfolios

of options. In fact, any twice-continuously differentiable payoff with bounded expectation can be

spanned (Bakshi and Madan (2000)) according to the formula

G[S] = G[S] + (S − S)GS [S] +

∫ ∞
S
GSS [X](S −X)+dX

+

∫ S

0
GSS [X](X − S)+dX, (6)

which corresponds to positions in the slope (first derivative GS [•] evaluated at some S) and the

curvature (second derivative GSS [•] evaluated at the strike price X) of the payoff function. Thus,

the price of a contingent claim is computed as

EQt {e−rτG[S]} = e−rf τ (G[S]− SGS [S]) + GS [S]St +

∫ ∞
S
GSS [X]C(t, τ ;X)dX

+

∫ S

0
GSS [X]P (t, τ ;X)dX, (7)

reflecting the value of a weighted portfolio that includes risk-free bonds, the underlying asset, and

out-of-the-money (OTM) calls and puts. The log-return on the underlying asset value (S = ey)

between time t and t + τ is denoted by rt,τ = yt+τ − yt. Accordingly, higher-order model-free or

observed risk-neutral moments are constructed with a payoff function G[S] = rnt,τ describing power

(n = 2-quadratic, 3-cubic, and 4-quartic) contracts.7 Given that cumulants are related to the

expected payoff of power contracts χn ≡ EQt
[
rnt,τ
]
, with


CUM

(2)Q
t,τ = χ2 − χ2

1,

CUM
(3)Q
t,τ = χ3 − 3χ2χ1 + 2χ3

1,

CUM
(4)Q
t,τ = χ4 − 4χ3χ1 − 3χ2

2 + 12χ2χ
2
1 − 6χ4

1,

(8)

they can be assessed in the data using weighted portfolios of OTM options, as in Equation 7.

Moreover, the model-implied formulas for all existing model-implied risk-neutral moments –

expressed as functions of the model’s primitive parameters – can be obtained by deriving the

7An important caveat is that the moment-replicating portfolios require an infinite range of strikes to be observed,
and hence, truncation of this infinite range of strikes can lead to serious biases in the estimates of risk-neutral
moments. Moreover, long-maturity risk-neutral moments require the use of illiquid long-dated options.
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characteristic function ψt (u;T, 0, 0). The nth derivative of the log characteristic function (also

known as cumulant) is computed as

CUM
(n)Q
t,τ ≡ ∂n lnψt (u;T, 0, 0)

(∂u)n

∣∣∣∣
u=0

,

=
∂nα (u; τ, 0, 0)

(∂u)n

∣∣∣∣
u=0

+
∂nβ (u; τ, 0, 0)

(∂u)n

∣∣∣∣
u=0

Ft,

≡ A(n)
τ +B(n)

τ Ft.

(9)

For n ∈ O = {2, 3, 4}, the second (resp. third and fourth) cumulant corresponds to the second

(resp. third and fourth) derivative of the log characteristic function with respect to u, evaluated at

u = 0.

The linear relationship in Equation 9 is central to our estimation methodology. It offers an

analytical mapping between any given observed nth-order cumulant and latent factors, weighted by

functionals of the model’s primitive parameters. To estimate affine-Q models, we exploit Equation

9 instead of the option pricing Equation 2 of Duffie et al. (2000). Our approach is appealing,

because it avoids the costly numerical task of approximating high-dimensional integrals. It also

helps circumvent the challenge of working with a large option panel, as prices are “aggregated” in

informative portfolios (or risk-neutral moments). Furthermore, by taking advantage of the linear

link between cumulants and factors, a straightforward linear filtering technique can be applied to

obtain parameter and factor estimates.

As alluded to above, A
(n)
τ and B

(n)
τ in Equation 9 are functions of model parameters, cumulant

orders (n), and maturities (τ). To provide a precise illustration of these functionals, let us consider

the widely used Heston (1993) model. This single-factor model is given by

dSt
St

= rdt+
√
VtdW

Q
t ,

dVt = (a− bVt) dt+ σ
√
VtdB

Q
t ,

where
(
WQ
t , B

Q
t

)
is a two-dimensional Brownian motion with corr

(
WQ
t , B

Q
t

)
= ρ.

Appendix A gives the explicit expressions of the location A
(n)
τ and slope B

(n)
τ coefficients in

the factor representation of cumulants. It is worth mentioning that these formulas not only link

cumulants to model parameters and factors, but also highlight the importance of higher-order

cumulants in identifying key model parameters. For instance, the leverage effect is known to drive

9



the asymmetry as well as the fat-tailedness of the conditional return distribution. To illustrate the

distinct implications of leverage, we plot the factor location and slope coefficients of each cumulant

against ρ, using a fine grid of values ranging from −1 to 1. As in Heston (1993), the remaining

model parameter values are set to a = 0.02, b = 2, σ = 0.1, and τ = 0.5. Figure 1 shows that the

leverage effect (ρ < 0) linearly increases the factor loading for the variance, whereas it decreases

that of the third cumulant. For the fourth cumulant, we see a parabolic increase in the factor

coefficients as ρ moves away from 0 toward −1 or 1. These observations are consistent with well-

established empirical facts and suggest that, beyond the variance, the third and fourth cumulants

contain relevant information that is useful in estimating the leverage effect with actual data.

We now present our estimation methodology that fits the parameters and the factors of affine-Q

models using risk-neutral moments.

3 Estimation and inference

3.1 The affine-Q moment-based estimation strategy

We focus on the estimation of affine jump-diffusion pricing models. Our approach borrows from

the affine term structure of the interest rate literature. The intuition is simple: since cumulants

are linear in the factors, we can use them as observed quantities to pin down model parameters

and reveal unobserved factors. Thus, we circumvent a major challenge in estimating latent factor

models.

Given that our framework is affine, the linear Kalman filter appears as a natural estimation

technique. The affine-Q models can be easily cast in a (linear) state-space form where the mea-

surement equations relate the observed or model-free risk-neutral cumulants to the latent factors

(state variables), and the transition equations describe the dynamic of these factors.

Assume that on each day we observe risk-neutral cumulants computed at J different maturi-

ties. These risk-neutral cumulants are linearly linked to the state vector within the affine jump-

diffusion family. Obviously, the number of nth-order risk-neutral cumulants observed on a given

day is often far greater than the dimension of the latent factor (J >> N). For instance, in the

Heston (1993) model, the state vector simply contains the stochastic diffusion (N = 1). For a

given day t, let’s stack together the nth-order risk-neutral cumulant observed at distinct matu-

rities in a vector denoted by CUM
(n)Q
t = (CUM

(n)Q
t,τ1

, ..., CUM
(n)Q
t,τJ

)′, where n ∈ O = {2, 3, 4}

10



and card(O) = 3. Let’s further stack the second, third, and fourth cumulant vectors in CUMQ
t =

(CUM
(2)Q
t , CUM

(3)Q
t , CUM

(4)Q
t )′ to build a 3J×1 vector. This implies the following measurement

equation

CUMQ
t = Γ0 + Γ1Ft + Ω1/2ϑt, (10)

where the dimension of the unobserved state vector Ft is N ×1. Notably, Γ0 and Γ1 are 3J ×1 and

3J ×N matrices of coefficients, whose analytical expressions depend on A(n) and B(n) in Equation

9. The last term in Equation 10 is a vector of observation errors, where Ω is a 3J × 3J diagonal

covariance matrix, and ϑt denotes a N × 1 vector of independent and identically distributed (i.i.d.)

standard Gaussian disturbances. The state propagation relation comes from the discretization of

the Euler equation and writes

Ft+1 = Φ0 + Φ1Ft + Σ (Ft)
1/2 ξt+1, (11)

where Σ (Ft) ≡ V art (Ft+1), the conditional covariance matrix of Ft+1, is a known affine function of

Ft. In the state dynamics, Φ0 and Φ1 are N × 1 and N ×N matrices of coefficients. The transition

equation noise ξt+1 is a N × 1 zero-mean normalized martingale difference vector that is assumed

to be independent from ϑt.

It is important to stress that, while the measurement relation in Equation 10 reflects the risk-

neutral distribution (and thus depends exclusively on risk-neutral parameters), the state vector

dynamics in Equation 11 should be specified under the physical probability measure. Therefore,

some parameters should be shifted to reflect risk premia.8 Thus, our state-space representation

allows for the identification of risk-neutral and risk-premium parameters. In this regard, our risk-

neutral moment-based estimation approach differs fundamentally from those implemented by Bates

(2000) and by AFT, which only identify risk-neutral parameters. Nonetheless, since the risk-neutral

parameters estimation is the focus of this paper, we assume zero risk-premium from now on, and

defer risk-premium parameters estimation to Section 5.3.

Note that the Kalman filter is not optimal in this case, given that the conditional covariance

V art (Ft+1) depends on the latent vector Ft, and thus, is intrinsically unknown. To circumvent this

challenge, we employ a slightly modified version of the standard Kalman filter, where Σ
(
Ft|t
)

is

used as an estimate of Σ (Ft) at iteration t + 1. The properties and performance of this modified

Kalman filter algorithm are discussed in Monfort et al. (2017), among others.

8This is also done in the Affine term structure literature.
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The system (10)-(11) gives the state-space representation of our affine-Q framework. The

marginal moments (mean and variance) of the latent vector are used to initialize the filter, by

setting F0|0 = E (Ft) and P0|0 = V ar (Ft). Now, consider that Ft|t and Pt|t are available at a

generic iteration t. Then, the filter proceeds recursively through the forecasting step



Ft+1|t = Φ0 + Φ1Ft|t

Pt+1|t = Φ1Pt|tΦ
′
1 + Σ

(
Ft|t
)

CUMQ
t+1|t = Γ0 + Γ1Ft+1|t

Mt+1|t = Γ1Pt+1|tΓ
′
1 + Ω,

(12)

and the updating step

 Ft+1|t+1 =
[
Ft+1|t + Pt+1|tΓ

′
1M
−1
t+1|t

(
CUMQ

t+1 − CUM
Q
t+1|t

)]
+
,

Pt+1|t+1 = Pt+1|t − Pt+1|tΓ
′
1M
−1
t+1|tΓ1Pt+1|t,

(13)

where [F ]+ returns a vector whose ith element is max (Fi, 0). This additional condition ensures

that latent factor estimates remain positive for all iterations, a crucial property for stochastic

volatility factors that cannot assume negative values.9 Finally, one can construct a Gaussian quasi

log-likelihood

−1

2

T∑
t=1

[
ln
(

(2π)
3J

det
(
Mt|t−1

))
+
(
CUMQ

t − CUM
Q
t|t−1

)′
M−1
t|t−1

(
CUMQ

t − CUM
Q
t|t−1

)]
, (14)

and maximize it over the model parameter set.

3.2 Inference

We carry out the estimation by quasi-maximum likelihood (QML), where an approximated log-

likelihood function is built within a modified version of the Kalman filter. The slight departure

from a standard Kalman filter algorithm stems from the fact that the covariance matrix Σ (Ft)

depends on the latent vector of factors Ft, and is estimated by Σ
(
Ft|t
)
. Moreover, the distribution

of the measurement error vector ϑt is assumed to be i.i.d. Gaussian. Note that an alternative

positive distribution – such as the Gamma law – may be considered, especially for the observation

equation of the second cumulant (variance). The finite sample properties of the modified Kalman

9Latent factors are often persistent, and therefore the algorithm tends to yield null filtered values that are clustered.
This may be at odds with standard distributional assumptions that usually preclude strictly positive model-implied
probabilities of staying at the same value for consecutive periods.
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filter have been studied for multi-factor affine term structure interest rate models by De Jong (2000)

and Kim and Singleton (2012), among others. Their Monte Carlo experiments suggest that the

estimated model parameters and factors are well behaved. We refer the readers to Monfort et al.

(2017) for further details on the inference.

4 Illustrative example: the Andersen et al. (2015b) model

To provide a practical illustration, we use our methodology to estimate the AFT model. This is

a state-of-the-art option valuation framework that has been shown to successfully match several

salient features of option panels.

4.1 The specification

In the three-factor jump-diffusive stochastic volatility model of Andersen et al. (2015b), the under-

lying asset price evolves according to the following general dynamics (under Q):

dXt

Xt−
= (rt − δt) dt+

√
V1tdW

Q
1t +

√
V2tdW

Q
2t + η

√
V3tdW

Q
3t +

∫
R2

(ex − 1) µ̃ (dt, dx, dy) ,(15)

dV1t = κ1 (v̄1 − V1t) dt+ σ1

√
V1tdB

Q
1t + µ1

∫
R2

x21{x<0}µ (dt, dx, dy) , (16)

dV2t = κ2 (v̄2 − V2t) dt+ σ2

√
V2tdB

Q
2t, (17)

dV3t = −κ3V3tdt+ µ3

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]
µ (dt, dx, dy) , (18)

where
(
WQ

1t ,W
Q
2t ,W

Q
3t , B

Q
1t, B

Q
2t

)
is a five-dimensional Brownian motion with corr

(
WQ

1t , B
Q
1t

)
= ρ1

and corr
(
WQ

2t , B
Q
2t

)
= ρ2, while the remaining Brownian motions are mutually independent. The

risk-neutral compensator for the jump measure µ is

νQt (dx, dy) =
{(
c−1{x<0}λ−e

−λ−|x| + c+1{x>0}λ+e
−λ+|x|

)
1{y=0} + c−1{x=0,y<0}λ−e

−λ−|y|
}
dx⊗ dy,

c− = c−0 + c−1 V1t− + c−2 V2t− + c−3 V3t−, c+ = c+0 + c+1 V1t− + c+2 V2t− + c+3 V3t−.

The AFT model clearly extends several existing one- and two-factor specifications.10 Namely, it

allows the jump tail intensity to be governed by a third factor that is distinct from – though possibly

related to – market volatility. This realistic feature plays a pivotal role in explaining the observed

asymmetric behavior of the priced right-versus-left jump tail risk, with the latter displaying more

pronounced and persistent dynamics.

10The model discussed in Andersen et al. (2015a) is obtained by setting η = 0.
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4.2 The conditional characteristic function

The conditional characteristic function, which provides a complete description of an asset’s distri-

bution, is very useful for the modeling and estimation of contingent claims written on that asset.

It also provides a way to compute the analytical expressions of risk-neutral cumulants. Duffie

et al. (2000) and Duffie et al. (2003) present a meticulous discussion on a wide range of valua-

tion and econometric applications with conditional characteristic functions in the context of affine

jump-diffusion processes.

We start from the log-price process {yt}t≥0 in the AFT model. The conditional characteristic

function formula is

EQt

[
eu(yt+τ−yt)

]
= exp {α (u, τ) + β1 (u, τ)V1t + β2 (u, τ)V2t + β3 (u, τ)V3t} , (19)

where T = t+ τ is the expiration date, u is a complex number, and the functions α (u, τ), β1 (u, τ),

β2 (u, τ), and β3 (u, τ) are solutions to the following ODEs:

∂α (u, τ)

∂τ
= u

[
r − δ − c−0 (Θnc (u, 0, 0)− 1)− c+

0 (Θp (u)− 1)
]

+ β1κ1v̄1 + β2κ2v̄2

+c−0 (Θnc (u, β1, β3)− 1) + c−0
(
Θni (β3)− 1

)
+ c+

0 (Θp (u)− 1) , (20)

∂β1 (u, τ)

∂τ
= u

[
−1

2
− c−1 (Θnc (u, 0, 0)− 1)− c+

1 (Θp (u)− 1)

]
− β1κ1 +

1

2
u2 +

1

2
σ2

1β
2
1 + β1uσ1ρ1

+c−1 (Θnc (u, β1, β3)− 1) + c−1
(
Θni (β3)− 1

)
+ c+

1 (Θp (u)− 1) , (21)

∂β2 (u, τ)

∂τ
= u

[
−1

2
− c−2 (Θnc (u, 0, 0)− 1)− c+

2 (Θp (u)− 1)

]
− β2κ2 +

1

2
u2 +

1

2
σ2

2β
2
2 + β2uσ2ρ2

+c−2 (Θnc (u, β1, β3)− 1) + c−2
(
Θni (β3)− 1

)
+ c+

2 (Θp (u)− 1) , (22)

∂β3 (u, τ)

∂τ
= u

[
−1

2
η2 − c−3 (Θnc (u, 0, 0)− 1)− c+

3 (Θp (u)− 1)

]
− β3κ3 +

1

2
u2η2

+c−3 (Θnc (u, β1, β3)− 1) + c−3
(
Θni (β3)− 1

)
+ c+

3 (Θp (u)− 1) , (23)

with

Θnc (q0, q1, q3) =

∫ 0

−∞
eq0z+q1µ1z2+q3(1−ρ3)µ3z2

λ−e
λ−zdz, (24)

Θni (q3) =

∫ 0

−∞
eq3ρ3µ3z2

λ−e
λ−zdz, (25)

Θp (q0) =

∫ +∞

0
eq0zλ+e

−λ+zdz. (26)
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At this point, a few important comments are in order. The ODEs 20 to 23 cannot be solved

analytically. Alternatively, a numerical resolution involves several challenges and sources of er-

rors, including – but not limited to – discrete approximations of differences and high-dimensional

numerical integrals. Hence, option valuation methods that rely on resolving these ODEs are com-

putationally challenging.

Duffie et al. (2000) provide additional insights on the challenges that arise when solving these

ODEs (see Equations 2.5 and 2.6 in Duffie et al. (2000) and discussion thereafter, page 1351).

Simply put, in the case of pure diffusion (no jump) processes, explicit solutions to the ODEs of the

conditional characteristic function can be derived. In the presence of jumps, finding closed-form

solutions depends on the nature of the jump. Thus, selecting a jump distribution with an explicitly

known or tractable jump transform has a practical advantage. For other process specifications,

featuring, for instance, self-exciting jumps, the analytical solutions to these ODEs are either more

involved or not available.

4.3 The conditional risk-neutral cumulant

In contrast to estimation methods that “directly” solve the ODEs of conditional characteristic

function, implementing our risk-neutral moment approach does not require solving for α (u, τ)

and βi (u, τ) in the conditional characteristic function, but rather entails computing ∂nα(0,τ)
∂un ≡

∂nα(u,τ)
∂un

∣∣∣
u=0

, and ∂nβi(0,τ)
∂un ≡ ∂nβi(u,τ)

∂un

∣∣∣
u=0

, for i = 1, 2, 3, and n = 2, 3, 4. For the AFT model,

we show that the partial derivatives ∂nα(0,τ)
∂un ≡ ∂nα(u,τ)

∂un

∣∣∣
u=0

, and ∂nβi(0,τ)
∂un ≡ ∂nβi(u,τ)

∂un

∣∣∣
u=0

, for

i = 1, 2, 3, and n = 2, 3, 4, are explicit solutions to other ODEs given in Appendix B. The online

Appendix collects the formal derivation steps to solve these ODEs analytically.

Proposition 1 We establish that although the conditional characteristic function in the AFT model

is not available in closed-form, its nth-order derivative with respect to u, evaluated at 0, which gives

the nth-order risk-neural cumulant, has a closed-form solution.

This highlights one of the main advantages of our risk-neutral moment-based estimation approach,

especially when dealing with rich multi-factor pricing models. To better understand the result in

Proposition 1, it is useful to notice that the coefficients α (u, τ) and βi (u, τ) associated with the

conditional characteristic function have an extra argument (u), which complicates the resolution of

their ODEs. Interestingly, (1) u is set to 0 when solving for the ODEs of the risk-neutral moments,
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and (2) at u = 0, the coefficients α (u, τ) and βi (u, τ) in the characteristic function are also null.

These properties allow us to derive a closed-form analytical solution for the ODEs of the risk-neutral

moments.

To deepen our understanding of the AFT model, we illustrate the impacts of different sources of

leverage on the weighting coefficients (loadings) of the factors governing the risk-neutral cumulants.

In Figure 2, we observe that the leverage effect originating from the first volatility factor (ρ1 < 0)

increases monotonically the factor loadings of the second cumulant, yet reduces that of the third

cumulant. The implication of a negative ρ1 < 0 value for the fourth cumulant is broadly positive

with a mix of left-skewed parabolic and linear effects. Thus, the information content of the second,

third and fourth cumulants is useful to pin down the empirical value of ρ1. Moreover, Figure 3

reveals that, while the leverage effect induced by the second volatility factor (ρ2 < 0) has virtually

no impact on the second and third cumulant, it produces a complementary effect on the fourth

cumulant. This suggests that the fourth cumulant plays a key role in the identification of ρ2.

4.4 Generalization of Proposition 1

Our analytical resolution of the ODEs for the risk-neutral moments is not specific to the AFT

model. We now present the general expressions of the risk-neutral moments ODEs for a generic

N -factor affine model, nesting the AFT specification.

Proposition 2 Let β = (βj (u, τ))′j=1,..N denote a vector of the slope functionals associated with

the characteristic function. We derive a closed-form solution for the following general risk-neutral

moments ODEs:

∂
[
∂nα
∂un (0, τ)

]
∂τ

= α(n) (τ) +A′α
∂nβ

∂un
(0, τ) ,

∂
[
∂nβ
∂un (0, τ)

]
∂τ

= B(n) (τ) +A
∂nβ

∂un
(0, τ) ,

where α(n) (τ) and B(n) (τ), for n = 2, 3, 4, are given in Appendix C.

The online Appendix provides a general characterization of the solution for these risk-neutral

moments ODEs. Note that the steps for solving these general ODEs are exactly similar to the AFT

model case.

The risk-neutral moments ODEs in Duffie et al. (2000) can be cast within the general ODEs

described in Proposition 2. Hence, closed-form expressions for risk-neutral moments can be found
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in the affine family described in Duffie et al. (2000). Furthermore, the results in Proposition 2 go

far beyond the affine class of models discussed in Duffie et al. (2000), since the AFT model is not

nested within the Duffie et al. (2000) framework.

4.5 The discretized space-state system

To estimate the AFT model, we derive its discretized state-space representation and use the modi-

fied Kalman filter described earlier. Note that the measurement equation is the same as in Equation

10, and therefore is skipped here to save space. We show in Appendix D (along with other technical

details) that the transition equations for the three factors in the AFT model can be stated as

Vt+1 = Φ0 + Φ1Vt + εt+1, (27)

where

Φ0 ≡ ∆t


κ1v̄1 + µ1λ̄−c

−
0

κ2v̄2

µ3λ̄−c
−
0

 , Φ1 ≡ I3 +K1, K1 = ∆t


−κ1 + µ1λ̄−c

−
1 µ1λ̄−c

−
2 µ1λ̄−c

−
3

0 −κ2 0

µ3λ̄−c
−
1 µ3λ̄−c

−
2 −κ3 + µ3λ̄−c

−
3

 ,

I3 is a 3 × 3 identity matrix, λ̄− = 2/λ2
−, and ∆t is set to 1/252 to reflect a daily time step. In

the AFT model, the latent factor Ft+1 is a 3 × 1 vector denoted by Vt+1 ≡ (V1t+1, V2t+1, V3t+1)′.

Moreover, the transition noise is εt+1 ≡ (ε1t+1, ε2t+1, ε3t+1)′, with a conditional covariance matrix

Σ (Vt) ≡ V art (εt+1) = ∆t


σ2

1V1t + µ2
1λ
∗
−c
−
t 0 µ1µ3 (1− ρ3)λ∗−c

−
t

0 σ2
2V2t 0

µ1µ3 (1− ρ3)λ∗−c
−
t 0 µ2

3

[
(1− ρ3)2 + ρ2

3

]
λ∗−c

−
t

 , (28)

where λ∗− = 24/λ4
−. It is immediately apparent that εt+1 = Σ (Vt)

1/2 ξt+1, where ξt+1 is the

zero-mean standardized noise in Equation 11.

The initial filtering conditions are given by the unconditional moments of Vt. Namely, we

set V0|0 = −K−1
1 Φ0, and vec

(
P0|0

)
= (I9 − Φ1 ⊗ Φ1)−1 vec

(
Σ
(
V0|0

))
, where I9 is a 9 × 9 identity

matrix, and ⊗ is the Kronecker product. The filtering recursions and the quasi-maximum likelihood

optimization are then performed to obtain factor and parameter estimates.
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5 Empirical analysis

5.1 Option-implied risk-neutral moments

Our empirical analysis hinges on the construction of model-free risk-neutral cumulants for various

maturities. We extract risk-neutral second, third, and fourth cumulants from a panel of European

options written on the S&P500 index. The daily observations span the period September 03,

1996, through December 30, 2011, and are retrieved from OptionMetrics, a data supplier for the

US option markets. Our full sample includes 3,073 trading days.11 A detailed description of the

option contracts used to construct the risk-neutral cumulants is provided in the online Appendix,

which also documents a rich set of cross-maturity linear dependencies and commonalities among

risk-neutral cumulants. Moreover, the online Appendix outlines a two-step principal component

analysis (PCA) procedure that allows us to reduce the dimension of risk-neutral cumulants observed

at different maturities.

In our empirical analysis, we employ the second, third, and fourth risk-neutral cumulants ob-

served for J = 8 different maturities corresponding to 1, 2, 3, 6, 9, 12, 18, 24 months. Thus, on

each observation day t, we have 3J = 24 observations of risk-neutral moments.

To provide numbers with comparable magnitude, we report descriptive statistics for risk-neutral

moments (volatility, skewness, and kurtosis) rather than second, third, and fourth cumulants.

Figure 4 displays some time series properties of the risk-neutral volatility, skewness, and kurtosis

for 1-month, 6-month, and 12-month maturities. A few remarks emerge when looking at the

dynamics of risk-neutral moments over our sample period, which starts on September 03, 1996,

and ends on December 30, 2011. First, risk-neutral volatilities are high during the 1997-2003

portion of the sample, as documented in Bollerslev et al. (2009). They are markedly higher from

2008 to 2011. The distinct spikes in volatilities (up to 70%) at the end of the sample (2008-2011)

can be related to the substantial uncertainty anticipated by investors during the Great Recession.

Second, the option-implied skewness is negative and decreases over the post-2008 period. This

empirical evidence echoes market concerns of negative investment prospects in the wake of financial

meltdowns. Drawing on a similar intuition, recent studies by Kozhan et al. (2014) and Feunou et al.

(forthcoming) highlight the ability of skewness risk measures to attract premia.12 Third, the risk-

11In their empirical study, AFT use Wednesday option contracts from January 01, 1996, to July 21, 2010, which
yields 760 daily observations.

12Amaya et al. (2015) use alternative measures of realized skewness to successfully predict the cross-section of
weekly returns.
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neutral kurtosis takes positive values and increases over the last portion of the sample, when the

likelihood of tail events becomes higher. The observed patterns remain robust through maturities,

even though longer tenors tend to exhibit less fluctuation.

The descriptive values presented in Table 1 support all the empirical regularities discussed

above. In Panel A of Table 1, we report for each maturity (1 to 24 months) the mean, the standard

deviation, and the first-lagged autocorrelation of observed risk-neutral volatility series. The average

risk-neutral volatility increases almost monotonically from 17.68% at 1-month maturity to 20.95%

at 24-month maturity. As the maturity increases, option-implied volatilities become less dispersed.

As expected, risk-neutral volatilities are highly persistent. First-order autocorrelations are strong

and remain above 0.95 for all maturities. Detailed discussions on the memory patterns of the risk-

neutral volatility can be found in Britten-Jones and Neuberger (2000) and Bollerslev et al. (2012),

among others. Panel B shows the summary statistics for the third risk-neutral moment. The time

series of option-implied skewness are negative on average (-1.85 to -1.62) and appear less dispersed

at medium maturities (6 to 12 months). It emerges from Panel C that risk-neutral kurtosis values

are positive on average, ranging between 6.15 and 8.07. Finally, risk-neutral skewness and kurtosis

appear less persistent as compared to the option-implied volatility.

5.2 Model fit analysis

We explore the performance of the proposed risk-neutral moment-based estimation method as com-

pared to the AFT estimation approach along several dimensions. First, we compare the parameter

estimates and the filtered factors from both estimation strategies. We also briefly discuss the com-

putation time efficiency of our moment-based estimation methodology vis-à-vis the AFT estimation

approach for a large panel of options. Second, we assess how well the model-implied risk-neutral

volatility, skewness, and kurtosis replicate their model-free counterparts. In our performance anal-

ysis, we use risk-neutral moments (volatility, skewness, and kurtosis) instead of cumulants to ease

comparability with similar quantities in the literature. Third, we appraise whether the moment-

based estimation results induce realistic option prices.

5.2.1 Parameter estimates, filtered factors, and implied moments

The fitted parameters from the risk-neutral moment-based and the AFT estimation approaches

are reported in Table 2. Interestingly, we see that both approaches yield similar estimated parameter

values for the AFT model. The parameters are also fitted with good accuracy, as evidenced by small
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standard errors. Moreover, the estimated figures are economically sensible, with the expected signs

and magnitudes. Note that, in our empirical investigation, some estimated parameter values may

differ from those reported in AFT. Indeed, our panel includes option contracts recorded on every

trading day (3,073 days from September 03, 1996, to December 30, 2011), whereas AFT’s panel

includes options sampled every Wednesday (760 days over January 01, 1996, to July 21, 2010).

Looking at the dynamics of the latent factors from both estimation strategies displayed in Figure

5, we notice that they evolve similarly over the observation window, spiking in the late 1990s,

and markedly so during the 2009-2010 crisis period. The filtered factor series remain positive,

consistent with the theoretical predictions. This observation further reflects a good performance of

our moment-based estimation strategy.

As we run our estimation for all (570,108) contracts in our option panel, the computational

time is an important aspect of the estimation efficiency. The risk-neutral moment-based estima-

tion clearly dominates the AFT estimation approach in this regard. Namely, the moment-based

estimation takes only 3 minutes to converge, whereas the AFT estimation runs for several days.

We now assess the ability of the moment-based estimation strategy to generate realistic model-

implied risk-neutral moments. To this end, we turn to Figure 6 that shows the observed series

along with the AFT estimation and the moment-based estimation implied risk-neutral volatility,

skewness, and kurtosis. The observed series are constructed from the nonparametric procedure in

Equation 8. The fitted parameter values in the second column of Table 2 are used to generate

the risk-neutral series from the moment-based estimation. The corresponding series from the AFT

estimation are constructed using the values in the fourth column of Table 2. Qualitatively, we

see that the moment-based estimation approach implies risk-neutral moment paths that track well

those from the AFT estimation strategy as well as their nonparametric counterparts.

In a nutshell, the aforementioned empirical observations suggest that the risk-neutral moment-

based estimation approach is rather fast, is easy to implement, and delivers accurate parameter

and factor estimates.

5.2.2 Matching the option prices

We now gauge the ability of the risk-neutral moment-based estimation approach to yield empir-

ically grounded prices. We compute the ratio of AFT estimation to risk-neutral moment-based

estimation VWRMSEs. A ratio exceeding (resp. below) 1 will indicate that the risk-neutral
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moment-based estimation approach yields a smaller (rep. larger) error on average, and thus, tends

to outperform (resp. underperform) the AFT estimation in matching the observed option values.

Table 3 gives the pricing errors, “disaggregated” by moneyness and maturity. Overall, the

model fit generates a VWRMSE of 3.65% for the risk-neutral moment-based estimation, a pricing

error which is fairly close to that of the AFT estimation (3.09%). Across the board, the VWRMSE

ratio between the two estimation approaches is above 0.75, and often close to 1. Thus, the risk-

neutral moment-based estimation strategy delivers realistic option values as compared to the AFT

estimation.

5.3 Risk premia

In this section, we assess the risk premia implied by our risk-neutral moment-based estimation

approach. To this end, we now cast the factor dynamics under the physical probability measure.

From an implementation perspective, this is done by allowing for “free” or shifted physical drift

parameters κP1 , v̄P1 , κP2 , and v̄P2 in the expressions of Φ0 and Φ1 in Equation 27. The physical

parameters, which are distinct from their risk-neutral counterparts κQ1 , v̄Q1 , κQ2 , and v̄Q2 appearing

in the measurement Equation 10 of risk-neutral cumulants, are additional parameters that can be

easily estimated in our framework. These two sets of parameters induce wedges between risk-neutral

and physical quantities, thus reflecting risk premia. As pointed out by Andersen et al. (2015b),

common structure-preserving transformations restrict other model parameters such as σ1, σ2, η,

ρ1, ρ2, ρ3, µ1, and κ3 to be identical under both physical and risk-neutral probability measures.13

Table 4 shows that the drift parameters are estimated with accuracy, as the fitted values are all

significant at 10% level. Moreover, Figure 7 displays the paths of implied risk-neutral (solid lines)

and physical (dashed lines) moments. The shaded areas between the risk-neutral and physical series

reflect the corresponding premia. We observe that the implied variance risk premium (defined as

the risk-neutral minus the physical series) is mostly positive, consistent with the empirical evidence

documented, for instance, in Bollerslev et al. (2009). By contrast, the model-implied skewness risk

premium is mostly negative and in line with the results in Feunou et al. (forthcoming) and Kozhan

et al. (2014), among others. Finally, the evidence for the model-implied kurtosis risk premium is

mixed, probably due to sampling variation.

13To ensure tractability, it is often assumed that the model class is identical and affine under both measures, a
feature referred to as structure-preserving transformations.
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6 Conclusion

We propose a new method to identify the latent factors and estimate parameters of affine continu-

ous time stochastic volatility models. This procedure “collapses” raw option prices into risk-neutral

cumulants, and then uses these conditional cumulants – instead of option prices – in the fitting step.

The adopted approach can be viewed as a portfolio-based estimation strategy where the compu-

tation of risk-neutral cumulants amounts to constructing portfolios of European option contracts,

weighted across moneyness.

The proposed methodology is well capable of handling a large data set of options without any

discretionary selection of observations. It also helps circumvent several sources of errors rooted in

the numerical approximations of the characteristic function and its transform inversion. Moreover,

the affine mapping between each cumulant and the latent factors allows for a straightforward

implementation of a linear Kalman filtering algorithm. Using the AFT model, we show that our

risk-neutral moment-based estimation approach generates parameter estimates, filtered factors,

risk-neutral moments, and option pricing errors that are similar to those obtained from the AFT

estimation method. Interestingly, the proposed risk-neutral moment-based estimation strategy is

effective, easy to implement, and robust, as compared to the AFT estimation approach.
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Feunou, Bruno, and Tédongap, Roméo (2012), “A stochastic volatility model with conditional
skewness,” Journal of Business and Economic Statistics, 30(4), 576–591.

Feunou, Bruno, Jahan-Parvar, Mohammad R., and Okou, Cédric (forthcoming), “Downside vari-
ance risk premium,” Journal of Financial Econometrics.

Gagliardini, Patrick, Gourieroux, Christian, and Renault, Eric (2011), “Efficient derivative pricing
by the extended method of moments,” Econometrica, 79, 1181–1232.

Gallant, Ronald, and Tauchen, George (1996), “Which moments to match?” Econometric Theory,
12(4), 657–681.

Heston, Steven (1993), “A closed-form solution for options with stochastic volatility with applica-
tions to bond and currency options,” Review of Financial Studies, 6(2), 327–343.

Huang, Jing-Zhi, and Wu, Liuren (2004), “Specification analysis of option pricing models based on
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Appendices

Appendix A: Expressions of location and slope coefficients of cumulants for the
Heston (1993) model

We present the expressions of the location A
(n)
τ and slope B

(n)
τ coefficients in the factor representation of

the nth-order cumulant (CUM
(n)
τ , n = 2, 3, 4) in Equation 9 at a given maturity τ = T − t for the Heston

(1993) model.

Second Cumulant (n = 2) We have

A(2)
τ =

(
−8 b2ρ σ τ ebτ − 8 b2ρ σ τ e2 bτ + 8 b3τ e2 bτ + 4 bσ2τ ebτ + 2 bσ2τ e2 bτ

−16 bρ σ ebτ + 16 bρ σ e2 bτ + 8 b2ebτ − 8 b2e2 bτ + 4σ2ebτ − 5σ2e2 bτ + σ2

)
ae−2 bτ

8b4
,

and

B(2)
τ =

(
4 b2ρ σ τ ebτ − 2 bσ2τ ebτ + 4 bρ σ ebτ − 4 bρ σ e2 bτ − 4 b2ebτ + 4 b2e2 bτ + σ2e2 bτ − σ2

)
e−2 bτ

4b3
.

Third Cumulant (n = 3) We have

A(3)
τ = −3/2

aσ e−3 bτ

b6


−1/2

(
−1/12σ2 +

(
(bτ + 2) bρ σ − b2 + (−1/2 bτ − 1/2)σ2

)
ebτ
)
σ

+

(
−2 (bτ + 2) b3ρ− (bτ + 2)

2
bρ σ2+(

b2ρ2τ2 + 6 ρ2 +
(
4 ρ2τ + 2 τ

)
b+ 2

)
b2σ +

(
1/4 b2τ2 + 3/4 bτ + 5/8

)
σ3

)
e2 bτ

+

(
−2 (bτ − 2) b3ρ+ 2

((
ρ2 + 1/2

)
bτ − 3 ρ2 − 5/4

)
b2σ

+
(
1/4 bτ − 11

12

)
σ3 +

(
−3/2 b2ρ τ + 5 bρ

)
σ2

)
e3 bτ

,
and

B(3)
τ = 3/2

σ e−3 bτ

b5


−
(
−1/8σ2 +

(
(bτ + 3/2) bρ σ − b2 + (−1/2 bτ − 1/4)σ2

)
ebτ
)
σ

+

 − (bτ + 2) b2ρ σ2τ − 2 (bτ + 1) b3ρ
+
(
b2ρ2τ2 + 2 ρ2 +

(
2 ρ2τ + 2 τ

)
b
)
b2σ

+
(
1/4 b2τ2 + 1/4 bτ − 1/8

)
σ3

 e2 bτ

+2 (bρ− σ/2)
(
−bρ σ + b2 + 1/4σ2

)
e3 bτ

 .

Fourth Cumulant (n = 4) We have

A(4)
τ = 12

aσ2e−4 bτ

b8



−1/16
(
−1/16σ2 +

(
(ρ σ τ − 1) b2 − 1/2σ2 +

(
−1/2σ2τ + 2 ρ σ

)
b
)

ebτ
)
σ2

+

( (
1/4 ρ2σ2τ2 − 1/2 ρ σ τ + 1/8

)
b4 +

(
−1/4 ρ σ2τ2 +

(
ρ2 + 3/8

)
σ τ − ρ

)
b3σ

+5/4
(
1/20σ2τ2 − 7 ρ σ τ

10 + ρ2 + 3/10
)
b2σ2 − 3/4

(
− 5σ τ

24 + ρ
)
bσ3 + 7σ4

64

)
e2 bτ

+


−1/6 (ρ σ τ − 3) b6ρ2τ2 −

(
−1/4 ρ2σ2τ2 +

(
ρ2 + 1

)
ρ σ τ − 2 ρ2 − 1/2

)
b5τ

+
(
−1/8 ρ σ3τ3 + 7/4

(
ρ2 + 3/14

)
σ2τ2 + 3 ρ2 +

(
−3 ρ3τ − 4 ρ τ

)
σ + 1/2

)
b4

−4
(
−σ

3τ3

192 + 7 ρ σ2τ2

32 + ρ3 + ρ+
(
−5/4 ρ2τ − 9 τ

32

)
σ
)
b3σ

+5
(
1/40σ2τ2 − 7 ρ σ τ

16 + ρ2 + 3/16
)
b2σ2 − 15 bσ3

8

(
− 3σ τ

20 + ρ
)

+ 7σ4

32

 e3 bτ

+


(
ρ2 + 1/4

)
b5τ +

(
−
(
ρ2 + 3/2

)
ρ σ τ − 3 ρ2 − 5/8

)
b4

+4
(
ρ3 + 5/4 ρ+

(
3/8 ρ2τ + 3 τ

32

)
σ
)
b3σ

− 25 b2σ2

4

(
1/10 ρ σ τ + ρ2 + 11

50

)
− 93σ4

256 +
(

5σ4τ
64 + 11/4 ρ σ3

)
b

 e4 bτ



,

and
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B(4)
τ = 2

σ2e−4 bτ

b7



(−3/4σ2+9 ((ρ σ τ−1)b2−1/3σ2+(−1/2σ2τ+5/3 ρ σ)b)ebτ)σ2

8

+


−3/8σ4 +

(
−3 ρ2σ2τ2 + 6 ρ σ τ − 3/2

)
b4

−9
(
−1/3 ρ σ2τ2 +

(
ρ2 + 1/2

)
σ τ − ρ

)
b3σ

−9
(
1/12σ2τ2 − 5/6 ρ σ τ + ρ2 + 1/4

)
b2σ2

+
(
− 9σ4τ

8 + 15 ρ σ3

4

)
b

 e2 bτ

+


3/8σ4 +

(
ρ3σ τ3 − 3 ρ2τ2

)
b6

+3
(
−1/2 ρ2σ2τ2 +

(
ρ2 + 2

)
ρ σ τ − 2 ρ2 − 1

)
b5τ

+
(
3/4 ρ σ3τ3 − 6

(
ρ2 + 3/8

)
σ2τ2 + 6

(
ρ2 + 2

)
ρ σ τ − 6 ρ2

)
b4

+
(
−1/8σ4τ3 + 3 ρ σ3τ2 + 6 ρ3σ +

(
−9 ρ2τ − 9/4 τ

)
σ2
)
b3

+
(
−3/8σ4τ2 + 21 ρ σ3τ

8 + 9σ2

8

)
b2 − (3/2σ τ+15 ρ)bσ3

8

 e3 bτ

+6
(
−5/4 bρ σ +

(
ρ2 + 1/4

)
b2 + 5σ2

16

) (
−bρ σ + b2 + 1/4σ2

)
e4 bτ



.
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Appendix B: ODEs for cumulants in the AFT model

As stated in Equation 9, the nth-order conditional cumulant corresponds to the nth-order partial derivative
with respect to u ∈ C, evaluated at u = 0, of the conditional log characteristic function. In the Andersen et
al. (2015b) model, the conditional log characteristic function writes

lnEQt

[
eu(yt+τ−yt)

]
= α (u, τ) + β1 (u, τ)V1t + β2 (u, τ)V2t + β3 (u, τ)V3t,

where the functions α (u, τ) , β1 (u, τ) , β2 (u, τ) , and β3 (u, τ) are the solutions to the following ODEs:

∂α (u, τ)

∂τ
= u

[
r − δ − c−0 (Θnc (u, 0, 0)− 1)− c+0 (Θp (u)− 1)

]
+ β1κ1v̄1 + β2κ2v̄2

+c−0 (Θnc (u, β1, β3)− 1) + c−0
(
Θni (β3)− 1

)
+ c+0 (Θp (u)− 1) ,

∂β1 (u, τ)

∂τ
= u

[
−1

2
− c−1 (Θnc (u, 0, 0)− 1)− c+1 (Θp (u)− 1)

]
− β1κ1 +

1

2
u2 +

1

2
σ2

1β
2
1 + β1uσ1ρ1

+c−1 (Θnc (u, β1, β3)− 1) + c−1
(
Θni (β3)− 1

)
+ c+1 (Θp (u)− 1) ,

∂β2 (u, τ)

∂τ
= u

[
−1

2
− c−2 (Θnc (u, 0, 0)− 1)− c+2 (Θp (u)− 1)

]
− β2κ2 +

1

2
u2 +

1

2
σ2

2β
2
2 + β2uσ2ρ2

+c−2 (Θnc (u, β1, β3)− 1) + c−2
(
Θni (β3)− 1

)
+ c+2 (Θp (u)− 1) ,

∂β3 (u, τ)

∂τ
= u

[
−1

2
η2 − c−3 (Θnc (u, 0, 0)− 1)− c+3 (Θp (u)− 1)

]
− β3κ3 +

1

2
u2η2

+c−3 (Θnc (u, β1, β3)− 1) + c−3
(
Θni (β3)− 1

)
+ c+3 (Θp (u)− 1) ,

with

Θnc (q0, q1, q3) =

∫ 0

−∞
eq0z+q1µ1z

2+q3(1−ρ3)µ3z
2

λ−e
λ−zdz,

Θni (q3) =

∫ 0

−∞
eq3ρ3µ3z

2

λ−e
λ−zdz,

Θp (q0) =

∫ +∞

0

eq0zλ+e
−λ+zdz.

Therefore, we need to compute the partial derivatives with respect to u ∈ C of the functions α (u, τ), β1 (u, τ),
β2 (u, τ), and β3 (u, τ). Note that the computation of these partial derivatives is not straightforward and
requires solving a system of ODEs. We stack the slope functionals in a single vector β = (β1, β3, β2)

′
to

allow for a compact treatment.

Appendix B-1: First cumulant

We show that the factor loading vector for the first cumulant is the solution of the following ODE:

∂
[
∂β
∂u (0, τ)

]
∂τ

= B +A
∂β

∂u
(0, τ) , (29)
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with

B =

 − 1
2 + c−1

∂Θnc

∂q0
(0) + c+1

∂Θp

∂q0
(0)

− 1
2η

2 + c−3
∂Θnc

∂q0
(0) + c+3

∂Θp

∂q0
(0)

− 1
2 + c−2

∂Θnc

∂q0
(0) + c+2

∂Θp

∂q0
(0)

 ,

A =

 −κ1 + c−1
∂Θnc

∂q1
(0) c−1

∂Θnc

∂q3
(0) + c−1

∂Θni

∂q3
(0) 0

c−3
∂Θnc

∂q1
(0) −κ3 + c−3

∂Θnc

∂q3
(0) + c−3

∂Θni

∂q3
(0) 0

c−2
∂Θnc

∂q1
(0) c−2

∂Θnc

∂q3
(0) + c−2

∂Θni

∂q3
(0) −κ2

 .
Hence,

∂β

∂u
(0, τ) = eτA

(∫ τ

0

e−sAds

)
B =

(
eτA − I

)
A−1B. (30)

Appendix B-2: Second cumulant

We prove that the factor loading vector for the second cumulant is the solution of the following ODE:

∂
[
∂2β
∂u2 (0, τ)

]
∂τ

= B(2) (τ) +A
∂2β

∂u2
(0, τ) , (31)

with

B(2) (τ) =
(
B

(2)
1 (τ) , B

(2)
3 (τ) , B

(2)
2 (τ)

)′
,

B
(2)
j (τ) = B

(2)
j,c +B

(2)′
j,s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
B

(2)
j,q

∂β

∂u
(0, τ) , for j = 1, 2, 3.

Specifically, 
B

(2)
1,c = 1 + c−1

∂2Θnc

∂q20
(0) + c+1

∂2Θp

∂q20
(0)− 2c−1

∂Θnc

∂q0
(0)− 2c+1

∂Θp

∂q0
(0)

B
(2)
3,c = c−3

∂2Θnc

∂q20
(0) + c+3

∂2Θp

∂q20
(0)− 2c−3

∂Θnc

∂q0
(0)− 2c+3

∂Θp

∂q0
(0)

B
(2)
2,c = 1 + c−2

∂2Θnc

∂q20
(0) + c+2

∂2Θp

∂q20
(0)− 2c−2

∂Θnc

∂q0
(0)− 2c+2

∂Θp

∂q0
(0) ,

B
(2)
1,s =

[
2σ1ρ1 + 2c−1

∂2Θnc

∂q0∂q1
(0) 2c−1

∂2Θnc

∂q0∂q3
(0) 0

]′
,

B
(2)
3,s =

[
2c−3

∂2Θnc

∂q0∂q1
(0) 2c−3

∂2Θnc

∂q0∂q3
(0) 0

]′
,

B
(2)
2,s =

[
2c−2

∂2Θnc

∂q0∂q1
(0) 2c−2

∂2Θnc

∂q0∂q3
(0) 2σ2ρ2

]′
,

B
(2)
1,q =

 σ2
1 + c−1

∂2Θnc

∂q21
(0) c−1

∂2Θnc

∂q1∂q3
(0) 0

c−1
∂2Θnc

∂q1∂q3
(0) c−1

∂2Θnc

∂q23
(0) + c−1

∂2Θni

∂q23
(0) 0

0 0 0

 ,

B
(2)
3,q =

 c−3
∂2Θnc

∂q21
(0) c−3

∂2Θnc

∂q1∂q3
(0) 0

c−3
∂2Θnc

∂q1∂q3
(0) c−3

∂2Θnc

∂q23
(0) + c−3

∂2Θni

∂q23
(0) 0

0 0 0

 ,

B
(2)
2,q =

 c−2
∂2Θnc

∂q21
(0) c−2

∂2Θnc

∂q1∂q3
(0) 0

c−2
∂2Θnc

∂q1∂q3
(0) c−2

∂2Θnc

∂q23
(0) + c−2

∂2Θni

∂q23
(0) 0

0 0 σ2
2

 .
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Denote
C0 = A−1B, ϕjc = B

(2)
j,c −B

(2)′
j,s C0 + C ′0B

(2)
j,qC0, ϕjs = B

(2)
j,s − 2B

(2)
j,qC0.

We can then write

B
(2)
j (τ) = ϕjc + ϕ′jse

τAC0 + C ′0e
τA′B

(2)
j,q e

τAC0, for j = 1, 2, 3.

In addition, we prove that

∂
[
∂2α
∂u2 (0, τ)

]
∂τ

= α(2) (τ) +A′α
∂2β

∂u2
(0, τ) , (32)

with

α(2) (τ) = α(2)
c + α(2)′

s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
α(2)
q

∂β

∂u
(0, τ) ,

= α(2)
c − α(2)′

s C0 + C ′0α
(2)
q C0 +

(
α(2)
s − 2α(2)

q C0

)′
eτAC0 + C ′0e

τA′α(2)
q eτAC0,

≡ ϕ0c + ϕ′0se
τAC0 + C ′0e

τA′α(2)
q eτAC0,

and

Aα =
[
κ1v̄1 + c−0

∂Θnc

∂q1
(0) c−0

(
∂Θnc

∂q3
(0) + ∂Θni

∂q3
(0)
)

κ2v̄2

]′
,

α(2)
c = c−0

∂2Θnc

∂q2
0

(0) + c+0
∂2Θp

∂q2
0

(0)− 2c−0
∂Θnc

∂q0
(0)− 2c+0

∂Θp

∂q0
(0) ,

α(2)
s =

[
2c−0

∂2Θnc

∂q0∂q1
(0) 2c−0

∂2Θnc

∂q0∂q3
(0) 0

]′
,

α(2)
q =

 c−0
∂2Θnc

∂q21
(0) c−0

∂2Θnc

∂q1∂q3
(0) 0

c−0
∂2Θnc

∂q1∂q3
(0) c−0

∂2Θnc

∂q23
(0) + c−0

∂2Θni

∂q23
(0) 0

0 0 0

 .
Hence,

∂2α

∂u2
(0, τ) =

∫ τ

0

(
α(2) (s) +A′α

∂2β

∂u2
(0, s)

)
ds,

=

∫ τ

0

α(2) (s) ds+A′α

∫ τ

0

∂2β

∂u2
(0, s) ds. (33)

Appendix B-3: Third cumulant

Using similar strategy, we demonstrate that the factor loading vector for the third cumulant is the
solution of the following ODE:

∂
[
∂3β
∂u3 (0, τ)

]
∂τ

= B(3) (τ) +A
∂3β

∂u3
(0, τ) (34)

with

B(3) (τ) =
(
B

(3)
1 (τ) , B

(3)
3 (τ) , B

(3)
2 (τ)

)′
,
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B
(3)
j (τ) = B

(3)
j,c +B

(3)′
j,s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
B

(3)
j,q (τ)

∂β

∂u
(0, τ) +B

(3)
j,h (τ)

′ ∂
2β

∂u2
(0, τ) ,

B
(3)
j,q (τ) = Bjqc +Bjqs (τ) , Bjqs (τ) =

 B
(1)′
jqs

∂β
∂u (0, τ) 0 0

0 B
(3)′
jqs

∂β
∂u (0, τ) 0

0 0 B
(2)′
jqs

∂β
∂u (0, τ)


B

(3)
j,h (τ) = Bjhc +Bjhs

∂β

∂u
(0, τ) , for j = 1, 2, 3.

Moreover,

B
(2)′
jqs =

[
0 0 0

]
,

B
(3)
1,c = c−1

∂3Θnc

∂q30
(0) + c+1

∂3Θp

∂q30
(0)− 3c−1

∂2Θnc

∂q20
(0)− 3c+1

∂2Θp

∂q20
(0)

B
(3)
3,c = c−3

∂3Θnc

∂q30
(0) + c+3

∂3Θp

∂q30
(0)− 3c−3

∂2Θnc

∂q20
(0)− 3c+3

∂2Θp

∂q20
(0)

B
(3)
2,c = c−2

∂3Θnc

∂q30
(0) + c+2

∂3Θp

∂q30
(0)− 3c−2

∂2Θnc

∂q20
(0)− 3c+2

∂2Θp

∂q20
(0) ,

B
(3)
1,s =

[
3c−1

∂3Θnc

∂q20∂q1
(0) 3c−1

∂3Θnc

∂q20∂q3
(0) 0

]′
,

B
(3)
3,s =

[
3c−3

∂3Θnc

∂q20∂q1
(0) 3c−3

∂3Θnc

∂q20∂q3
(0) 0

]′
,

B
(3)
2,s =

[
3c−2

∂3Θnc

∂q20∂q1
(0) 3c−2

∂3Θnc

∂q20∂q3
(0) 0

]′
,

B1qc =

 3c−1
∂3Θnc

∂q0∂q21
(0) 3c−1

∂3Θnc

∂q0∂q1∂q3
(0) 0

3c−1
∂3Θnc

∂q0∂q1∂q3
(0) 3c−1

∂3Θnc

∂q0∂q23
(0) 0

0 0 0

 ,

B3qc =

 3c−3
∂3Θnc

∂q0∂q21
(0) 3c−3

∂3Θnc

∂q0∂q1∂q3
(0) 0

3c−3
∂3Θnc

∂q0∂q1∂q3
(0) 3c−3

∂3Θnc

∂q0∂q23
(0) + c−3

∂3Θni

∂q33
(0) 0

0 0 0

 ,

B2qc =

 3c−2
∂3Θnc

∂q0∂q21
(0) 3c−2

∂3Θnc

∂q0∂q1∂q3
(0) 0

3c−2
∂3Θnc

∂q0∂q1∂q3
(0) 3c−2

∂3Θnc

∂q0∂q23
(0) 0

0 0 0

 ,

B
(1)
1qs =

[
c−1

∂3Θnc

∂q31
(0) 3c−1

∂3Θnc

∂q21∂q3
(0) 0

]′
,

B
(3)
1qs =

[
3c−1

∂3Θnc

∂q1∂q23
(0) c−1

(
∂3Θnc

∂q33
(0) + ∂3Θni

∂q33
(0)
)

0
]′
,

B
(1)
3qs =

[
c−3

∂3Θnc

∂q31
(0) 3c−3

∂3Θnc

∂q21∂q3
(0) 0

]′
,

B
(3)
3qs =

[
3c−3

∂3Θnc

∂q1∂q23
(0) c−3

∂3Θnc

∂q33
(0) 0

]′
,

B
(1)
2qs =

[
c−2

∂3Θnc

∂q31
(0) 3c−2

∂3Θnc

∂q21∂q3
(0) 0

]′
,

B
(3)
2qs =

[
3c−2

∂3Θnc

∂q1∂q23
(0) c−2

(
∂3Θnc

∂q33
(0) + ∂3Θni

∂q33
(0)
)

0
]′
.
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We also have

B1hc =

 3σ1ρ1 + 3c−1
∂2Θnc

∂q0∂q1
(0)

3c−1
∂2Θnc

∂q0∂q3
(0)

0

 , B3hc =

 3c−3
∂2Θnc

∂q0∂q1
(0)

3c−3
∂2Θnc

∂q0∂q3
(0) + c−3

∂2Θni

∂q23
(0)

0

 , B2hc =

 3c−2
∂2Θnc

∂q0∂q1
(0)

3c−2
∂2Θnc

∂q0∂q3
(0)

3σ2ρ2



B1hs =

 3σ2
1 + 3c−1

∂2Θnc

∂q21
(0) 3c−1

∂2Θnc

∂q1∂q3
(0) 0

3c−1
∂2Θnc

∂q1∂q3
(0) 3c−1

(
∂2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 0

 ,

B3hs =

 3c−3
∂2Θnc

∂q21
(0) 3c−3

∂2Θnc

∂q1∂q3
(0) 0

3c−3
∂2Θnc

∂q1∂q3
(0) c−3

(
3∂

2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 0

 ,

B2hs =

 3c−2
∂2Θnc

∂q21
(0) 3c−2

∂2Θnc

∂q1∂q3
(0) 0

3c−2
∂2Θnc

∂q1∂q3
(0) 3c−2

(
∂2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 3σ2
2

 .
We further establish that

∂
[
∂3α
∂u3 (0, τ)

]
∂τ

= α(3) (τ) +A′α
∂2β

∂u2
(0, τ) , (35)

with

α(3) (τ) = α(3)
c + α(3)′

s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
α(3)
q (τ)

∂β

∂u
(0, τ) + α

(3)
h (τ)

′ ∂
2β

∂u2
(0, τ) ,

α(3)
q (τ) = αqc + αqs (τ) , αqs (τ) =

 α
(1)′
qs

∂β
∂u (0, τ) 0 0

0 α
(3)′
qs

∂β
∂u (0, τ) 0

0 0 α
(2)′
qs

∂β
∂u (0, τ)

 ,
α

(3)
h (τ) = αhc + αhs

∂β

∂u
(0, τ) , for j = 1, 2, 3,

and
α(2)′
qs =

[
0 0 0

]
,

α(3)
c = c−0

∂3Θnc

∂q3
0

(0) + c+0
∂3Θp

∂q3
0

(0)− 3c−0
∂2Θnc

∂q2
0

(0)− 3c+0
∂2Θp

∂q2
0

(0) ,

α(3)
s =

[
3c−0

∂3Θnc

∂q20∂q1
(0) 3c−0

∂3Θnc

∂q20∂q3
(0) 0

]′
,

αqc =

 3c−0
∂3Θnc

∂q0∂q21
(0) 3c−0

∂3Θnc

∂q0∂q1∂q3
(0) 0

3c−0
∂3Θnc

∂q0∂q1∂q3
(0) 3c−0

∂3Θnc

∂q0∂q23
(0) 0

0 0 0

 ,

α(1)
qs =

[
c−0

∂3Θnc

∂q31
(0) 3c−0

∂3Θnc

∂q21∂q3
(0) 0

]′
, α(3)

qs =
[

3c−0
∂3Θnc

∂q1∂q23
(0) c−0

(
∂3Θnc

∂q33
(0) + ∂3Θni

∂q33
(0)
)

0
]′
,
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αhc =

 3c−0
∂2Θnc

∂q0∂q1
(0)

3c−0
∂2Θnc

∂q0∂q3
(0)

0

 ,

αhs =

 3c−0
∂2Θnc

∂q21
(0) 3c−0

∂2Θnc

∂q1∂q3
(0) 0

3c−0
∂2Θnc

∂q1∂q3
(0) 3c−0

(
∂2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 0

 .
Hence,

∂3α

∂u3
(0, τ) =

∫ τ

0

(
α(3) (s) +A′α

∂3β

∂u3
(0, s)

)
ds

=

∫ τ

0

α(3) (s) ds+A′α

∫ τ

0

∂3β

∂u3
(0, s) ds. (36)

Appendix B-4: Fourth cumulant

Similarly, the factor loading vector for the fourth cumulant is the solution of the following ODE:

∂
[
∂4β
∂u4 (0, τ)

]
∂τ

= B(4) (τ) +A
∂4β

∂u4
(0, τ) (37)

with

B(4) (τ) =
(
B

(4)
1 (τ) , B

(4)
3 (τ) , B

(4)
2 (τ)

)′
,

B
(4)
j (τ) = B

(4)
j,c +B

(4)′
j,s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
B

(4)
j,q (τ)

∂β

∂u
(0, τ)

+B
(4)
j,h (τ)

′ ∂
2β

∂u2
(0, τ) +

∂2β

∂u2
(0, τ)

′
B

(4)
jhq

∂2β

∂u2
(0, τ) +B

(4)
j,l (τ)

′ ∂
3β

∂u3
(0, τ) ,

B
(4)
j,q (τ) = B

(4)
jqc +B

(4)
jqs (τ) ,

B
(4)
jqs (τ) =


B

(4,1)′
jqs

∂β
∂u (0, τ) + ∂β

∂u (0, τ)
′
B

(4,1)
jqq

∂β
∂u (0, τ)

+B
(4,1)′
jqsh

∂2β
∂u2 (0, τ)

B
(4,1,2)′
jqsh

∂2β
∂u2 (0, τ) 0

B
(4,1,2)′
jqsh

∂2β
∂u2 (0, τ)

B
(4,3)′
jqs

∂β
∂u (0, τ) + ∂β

∂u (0, τ)
′
B

(4,3)
jqq

∂β
∂u (0, τ)

+B
(4,3)′
jqsh

∂2β
∂u2 (0, τ)

0

0 0 0


B

(4)
jk (τ) = B

(4)
jkc +B

(4)
jks

∂β

∂u
(0, τ) for j = 1, 2, 3, and k = h, l.

Moreover,

B
(4,2)′
jqs = B

(4,2)′
jqsh =

[
0 0 0

]
,

B
(4)
jc = c−j

∂4Θnc

∂q4
0

(0) + c+j
∂4Θp

∂q4
0

(0)− 4c−j
∂3Θnc

∂q3
0

(0)− 4c+j
∂3Θp

∂q3
0

(0) ,

B
(4)
j,s =

[
4c−j

∂4Θnc

∂q30∂q1
(0) 4c−j

∂4Θnc

∂q30∂q3
(0) 0

]′
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B
(4)
jqc =

 6c−j
∂4Θnc

∂q20∂q
2
1

(0) 6c−j
∂4Θnc

∂q20∂q1∂q3
(0) 0

6c−j
∂4Θnc

∂q20∂q1∂q3
(0) 6c−j

∂4Θnc

∂q20∂q
2
3

(0) 0

0 0 0

 , j = 1, 2, 3,

B
(4,1)
1qs =

[
4c−1

∂4Θnc

∂q0∂q31
(0) 12c−1

∂4Θnc

∂q0∂q21∂q3
(0) 0

]′
, B

(4,3)
1qs =

[
12c−1

∂4Θnc

∂q0∂q1∂q23
(0) 4c−1

∂4Θnc

∂q0∂q33
(0) 0

]′
,

B
(4,1)
3qs =

[
4c−3

∂4Θnc

∂q0∂q31
(0) 12c−3

∂4Θnc

∂q0∂q21∂q3
(0) 0

]′
, B

(4,3)
3qs =

[
12c−3

∂4Θnc

∂q0∂q1∂q23
(0) 4c−3

∂4Θnc

∂q0∂q33
(0) + c−3

∂4Θni

∂q43
(0) 0

]′
,

B
(4,1)
2qs =

[
4c−2

∂4Θnc

∂q0∂q31
(0) 12c−2

∂4Θnc

∂q0∂q21∂q3
(0) 0

]′
, B

(4,3)
2qs =

[
12c−2

∂4Θnc

∂q0∂q1∂q23
(0) 4c−2

∂4Θnc

∂q0∂q33
(0) 0

]′
,

B
(4,1)
1qq =

 c−1
∂4Θnc

∂q41
(0) 2c−1

∂4Θnc

∂q31∂q3
(0) 0

2c−1
∂4Θnc

∂q31∂q3
(0) 3c−1

∂4Θnc

∂q21∂q
2
3

(0) 0

0 0 0

 , B
(4,3)
1qq =

 3c−1
∂4Θnc

∂q21∂q
2
3

(0) 2c−1
∂4Θnc

∂q1∂q33
(0) 0

2c−1
∂4Θnc

∂q1∂q33
(0) c−1

(
∂4Θnc

∂q43
(0) + ∂4Θni

∂q43
(0)
)

0

0 0 0

 ,

B
(4,1)
3qq =

 c−3
∂4Θnc

∂q41
(0) 2c−3

∂4Θnc

∂q31∂q3
(0) 0

2c−3
∂4Θnc

∂q31∂q3
(0) 3c−3

∂4Θnc

∂q21∂q
2
3

(0) 0

0 0 0

 , B
(4,3)
1qq =

 3c−3
∂4Θnc

∂q21∂q
2
3

(0) 2c−3
∂4Θnc

∂q1∂q33
(0) 0

2c−3
∂4Θnc

∂q1∂q33
(0) c−3

∂4Θnc

∂q43
(0) 0

0 0 0

 ,

B
(4,1)
2qq =

 c−2
∂4Θnc

∂q41
(0) 2c−2

∂4Θnc

∂q31∂q3
(0) 0

2c−2
∂4Θnc

∂q31∂q3
(0) 3c−2

∂4Θnc

∂q21∂q
2
3

(0) 0

0 0 0

 , B
(4,3)
2qq =

 3c−2
∂4Θnc

∂q21∂q
2
3

(0) 2c−2
∂4Θnc

∂q1∂q33
(0) 0

2c−2
∂4Θnc

∂q1∂q33
(0) c−2

(
∂4Θnc

∂q43
(0) + ∂4Θni

∂q43
(0)
)

0

0 0 0

 ,

B
(4,1)
1qsh =

[
6c−1

∂3Θnc

∂q31
(0) 6c−1

∂3Θnc

∂q21∂q3
(0) 0

]′
, B

(4,3)
1qsh =

[
6c−1

∂3Θnc

∂q1∂q23
(0) 6c−1

∂3Θnc

∂q33
(0) + 6c−1

∂3Θni

∂q33
(0) 0

]′
,

B
(4,1)
3qsh =

[
6c−3

∂3Θnc

∂q31
(0) 6c−3

∂3Θnc

∂q21∂q3
(0) 0

]′
, B

(4,3)
3qsh =

[
6c−3

∂3Θnc

∂q1∂q23
(0) 6c−3

∂3Θnc

∂q33
(0) + c−3

∂3Θni

∂q33
(0) 0

]′
,

B
(4,1)
2qsh =

[
6c−2

∂3Θnc

∂q31
(0) 6c−2

∂3Θnc

∂q21∂q3
(0) 0

]′
, B

(4,3)
2qsh =

[
6c−2

∂3Θnc

∂q1∂q23
(0) 6c−2

∂3Θnc

∂q33
(0) + 6c−2

∂3Θni

∂q33
(0) 0

]′
,

B
(4,1,2)′
jqsh =

[
6c−j

∂3Θnc

∂q21∂q3
(0) 6c−j

∂3Θnc

∂q1∂q23
(0) 0

]′
,

B
(4)
jhc =

 6c−j
∂3Θnc

∂q20∂q1
(0)

6c−j
∂3Θnc

∂q20∂q3
(0)

0

 ,
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B
(4)
1hs =

 12c−1
∂3Θnc

∂q0∂q21
(0) 12c−1

∂3Θnc

∂q0∂q1∂q3
(0) 0

12c−1
∂3Θnc

∂q0∂q1∂q3
(0) 12c−1

∂3Θnc

∂q0∂q23
(0) 0

0 0 0

 ,

B
(4)
3hs =

 12c−3
∂3Θnc

∂q0∂q21
(0) 12c−3

∂3Θnc

∂q0∂q1∂q3
(0) 0

12c−3
∂3Θnc

∂q0∂q1∂q3
(0) 12c−3

∂3Θnc

∂q0∂q23
(0) + 3c−3

∂3Θni

∂q33
(0) 0

0 0 0

 ,

B
(4)
2hs =

 12c−2
∂3Θnc

∂q0∂q21
(0) 12c−2

∂3Θnc

∂q0∂q1∂q3
(0) 0

12c−2
∂3Θnc

∂q0∂q1∂q3
(0) 12c−2

∂3Θnc

∂q0∂q23
(0) 0

0 0 0

 ,

B
(4)
1lc =

 4σ1ρ1 + 4c−1
∂2Θnc

∂q0∂q1
(0)

4c−1
∂2Θnc

∂q0∂q3
(0)

0

 , B
(4)
3lc =

 4c−3
∂2Θnc

∂q0∂q1
(0)

4c−3
∂2Θnc

∂q0∂q3
(0) + c−3

∂2Θni

∂q23
(0)

0

 , B
(4)
2lc =

 4c−2
∂2Θnc

∂q0∂q1
(0)

4c−2
∂2Θnc

∂q0∂q3
(0)

4σ2ρ2

 ,

B
(4)
1ls =

 4σ2
1 + 4c−1

∂2Θnc

∂q21
(0) 4c−1

∂2Θnc

∂q1∂q3
(0) 0

4c−1
∂2Θnc

∂q1∂q3
(0) 4c−1

(
∂2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 0

 ,

B
(4)
3ls =

 4c−3
∂2Θnc

∂q21
(0) 4c−3

∂2Θnc

∂q1∂q3
(0) 0

4c−3
∂2Θnc

∂q1∂q3
(0) 4c−3

∂2Θnc

∂q23
(0) + 2c−3

∂2Θni

∂q23
(0) 0

0 0 0

 ,

B
(4)
2ls =

 4c−2
∂2Θnc

∂q21
(0) 4c−2

∂2Θnc

∂q1∂q3
(0) 0

4c−2
∂2Θnc

∂q1∂q3
(0) 4c−2

(
∂2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 4σ2
2

 ,

B
(4)
1hq =

 3σ2
1 + 3c−1

∂2Θnc

∂q21
(0) 3c−1

∂2Θnc

∂q1∂q3
(0) 0

3c−1
∂2Θnc

∂q1∂q3
(0) 3c−1

(
∂2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 0

 ,

B
(4)
3hq =

 3c−3
∂2Θnc

∂q21
(0) 3c−3

∂2Θnc

∂q1∂q3
(0) 0

3c−3
∂2Θnc

∂q1∂q3
(0) 3c−3

∂2Θnc

∂q23
(0) + c−3

∂2Θni

∂q23
(0) 0

0 0 0

 ,

B
(4)
2hq =

 3c−2
∂2Θnc

∂q21
(0) 3c−2

∂2Θnc

∂q1∂q3
(0) 0

3c−2
∂2Θnc

∂q1∂q3
(0) 3c−2

(
∂2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 3σ2
2

 .
Hence,

∂4β

∂u4
(0, τ) = eτA

(∫ τ

0

e−sAB(4) (s) ds

)
. (38)
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We further prove that

∂
[
∂4α
∂u4 (0, τ)

]
∂τ

= α(4) (τ) +A′α
∂4β

∂u4
(0, τ) , (39)

with

α(4) (τ) = α(4)
c + α(4)′

s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
α(4)
q (τ)

∂β

∂u
(0, τ)

+α
(4)
h (τ)

′ ∂
2β

∂u2
(0, τ) +

∂2β

∂u2
(0, τ)

′
α

(4)
hq

∂2β

∂u2
(0, τ) + α

(4)
l (τ)

′ ∂
3β

∂u3
(0, τ) ,

α(4)
q (τ) = α(4)

qc + α(4)
qs (τ) ,

α(4)
qs (τ) =


α

(4,1)′
qs

∂β
∂u (0, τ) + ∂β

∂u (0, τ)
′
α

(4,1)
qq

∂β
∂u (0, τ)

+α
(4,1)′
qsh

∂2β
∂u2 (0, τ)

α
(4,1,2)′
qsh

∂2β
∂u2 (0, τ) 0

α
(4,1,2)′
qsh

∂2β
∂u2 (0, τ)

α
(4,3)′
qs

∂β
∂u (0, τ) + ∂β

∂u (0, τ)
′
α

(4,3)
qq

∂β
∂u (0, τ)

+α
(4,3)′
qsh

∂2β
∂u2 (0, τ)

0

0 0 0

 ,

α
(4)
k (τ) = α

(4)
kc + α

(4)
ks

∂β

∂u
(0, τ) for j = 1, 2, 3, and k = h, l.

We also define

α(4)
c = c−0

∂4Θnc

∂q4
0

(0) + c+0
∂4Θp

∂q4
0

(0)− 4c−0
∂3Θnc

∂q3
0

(0)− 4c+0
∂3Θp

∂q3
0

(0) ,

α(4)
s =

[
4c−0

∂4Θnc

∂q30∂q1
(0) 4c−0

∂4Θnc

∂q30∂q3
(0) 0

]′
,

α(4)
qc =

 6c−0
∂4Θnc

∂q20∂q
2
1

(0) 6c−0
∂4Θnc

∂q20∂q1∂q3
(0) 0

6c−0
∂4Θnc

∂q20∂q1∂q3
(0) 6c−0

∂4Θnc

∂q20∂q
2
3

(0) 0

0 0 0

 ,

α(4,1)
qs =

[
4c−0

∂4Θnc

∂q0∂q31
(0) 12c−0

∂4Θnc

∂q0∂q21∂q3
(0) 0

]′
, α(4,3)

qs =
[

12c−0
∂4Θnc

∂q0∂q1∂q23
(0) 4c−0

∂4Θnc

∂q0∂q33
(0) 0

]′
,
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α(4,1)
qq =

 c−0
∂4Θnc

∂q41
(0) 2c−0

∂4Θnc

∂q31∂q3
(0) 0

2c−0
∂4Θnc

∂q31∂q3
(0) 3c−0

∂4Θnc

∂q21∂q
2
3

(0) 0

0 0 0

 , α(4,3)
qq =

 3c−0
∂4Θnc

∂q21∂q
2
3

(0) 2c−0
∂4Θnc

∂q1∂q33
(0) 0

2c−0
∂4Θnc

∂q1∂q33
(0) c−0

(
∂4Θnc

∂q43
(0) + ∂4Θni

∂q43
(0)
)

0

0 0 0

 ,

α(4,1)
qq =

 c−0
∂4Θnc

∂q41
(0) 2c−0

∂4Θnc

∂q31∂q3
(0) 0

2c−0
∂4Θnc

∂q31∂q3
(0) 3c−0

∂4Θnc

∂q21∂q
2
3

(0) 0

0 0 0

 , α(4,3)
qq =

 3c−0
∂4Θnc

∂q21∂q
2
3

(0) 2c−0
∂4Θnc

∂q1∂q33
(0) 0

2c−0
∂4Θnc

∂q1∂q33
(0) c−0

∂4Θnc

∂q43
(0) 0

0 0 0

 ,

α(4,1)
qq =

 c−0
∂4Θnc

∂q41
(0) 2c−0

∂4Θnc

∂q31∂q3
(0) 0

2c−0
∂4Θnc

∂q31∂q3
(0) 3c−0

∂4Θnc

∂q21∂q
2
3

(0) 0

0 0 0

 , α(4,3)
qq =

 3c−0
∂4Θnc

∂q21∂q
2
3

(0) 2c−0
∂4Θnc

∂q1∂q33
(0) 0

2c−0
∂4Θnc

∂q1∂q33
(0) c−0

(
∂4Θnc

∂q43
(0) + ∂4Θni

∂q43
(0)
)

0

0 0 0

 ,

α
(4,1)
qsh =

[
6c−0

∂3Θnc

∂q31
(0) 6c−0

∂3Θnc

∂q21∂q3
(0) 0

]′
, α

(4,3)
qsh =

[
6c−0

∂3Θnc

∂q1∂q23
(0) 6c−0

∂3Θnc

∂q33
(0) + 6c−0

∂3Θni

∂q33
(0) 0

]′
,

α
(4,1,2)′
qsh =

[
6c−0

∂3Θnc

∂q21∂q3
(0) 6c−0

∂3Θnc

∂q1∂q23
(0) 0

]′
,

α
(4)
hc =

 6c−0
∂3Θnc

∂q20∂q1
(0)

6c−0
∂3Θnc

∂q20∂q3
(0)

0

 ,

α
(4)
hs =

 12c−0
∂3Θnc

∂q0∂q21
(0) 12c−0

∂3Θnc

∂q0∂q1∂q3
(0) 0

12c−0
∂3Θnc

∂q0∂q1∂q3
(0) 12c−0

∂3Θnc

∂q0∂q23
(0) 0

0 0 0

 ,

α
(4)
lc =

 4c−0
∂2Θnc

∂q0∂q1
(0)

4c−0
∂2Θnc

∂q0∂q3
(0)

0

 ,

α
(4)
ls =

 4c−0
∂2Θnc

∂q21
(0) 4c−0

∂2Θnc

∂q1∂q3
(0) 0

4c−0
∂2Θnc

∂q1∂q3
(0) 4c−0

(
∂2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 0

 ,

α
(4)
hq =

 3c−0
∂2Θnc

∂q21
(0) 3c−0

∂2Θnc

∂q1∂q3
(0) 0

3c−0
∂2Θnc

∂q1∂q3
(0) 3c−0

(
∂2Θnc

∂q23
(0) + ∂2Θni

∂q23
(0)
)

0

0 0 0

 ,
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Hence,

∂4α

∂u4
(0, τ) =

∫ τ

0

(
α(4) (s) +A′α

∂4β

∂u4
(0, s)

)
ds

=

∫ τ

0

α(4) (s) ds+A′α

∫ τ

0

∂4β

∂u4
(0, s) ds. (40)
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Appendix C: General risk-neutral moments ODEs

We provide the general expressions of α(n) (τ) and B(n) (τ) =
(
B

(n)
j (τ)

)
j=1,..N

in the ODEs for risk-neutral

moments. We have

B
(2)
j (τ) = B

(2)
j,c +B

(2)′
j,s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
B

(2)
j,q

∂β

∂u
(0, τ) ,

α(2) (τ) = α(2)
c + α(2)′

s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
α(2)
q

∂β

∂u
(0, τ) .

Moreover,

B
(3)
j (τ) = B

(3)
j,c +B

(3)′
j,s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
B

(3)
j,q (τ)

∂β

∂u
(0, τ) +B

(3)
j,h (τ)

′ ∂
2β

∂u2
(0, τ) ,

B
(3)
j,q (τ) = Bjqc +Bjqs (τ) , Bjqs (τ) = diag

(
B

(i)′
jqs

∂β

∂u
(0, τ) , i = 1, ..., N

)
,

B
(3)
j,h (τ) = Bjhc +Bjhs

∂β

∂u
(0, τ) ,

α(3) (τ) = α(3)
c + α(3)′

s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)′ α(3)

q (τ)
∂β

∂u
(0, τ) + α

(3)
h (τ)′

∂2β

∂u2
(0, τ) ,

α(3)
q (τ) = αqc + αqs (τ) , with αqs (τ) = diag

(
α(i)′
qs

∂β

∂u
(0, τ) , i = 1, ..., N

)
,

α
(3)
h (τ) = αhc + αhs

∂β

∂u
(0, τ) .

In addition,

B
(4)
j (τ) = B

(4)
j,c +B

(4)′
j,s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)′B

(4)
j,q (τ)

∂β

∂u
(0, τ)

+B
(4)
j,h (τ)′

∂2β

∂u2
(0, τ) +

∂2β

∂u2
(0, τ)′B

(4)
jhq

∂2β

∂u2
(0, τ) +B

(4)
j,l (τ)′

∂3β

∂u3
(0, τ) ,

B
(4)
j,q (τ) = B

(4)
jqc +B

(4)
jqs (τ) , with

B
(4)
jqs (τ) = diag

(
B

(4,i)′
jqs

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
B

(4,i)
jqq

∂β

∂u
(0, τ) , i = 1, ..., N

)
+

(
B

(4,i,k)′
jqsh

∂2β

∂u2
(0, τ)

)
i,k=1,...,N

,

B
(4)
jk (τ) = B

(4)
jkc +B

(4)
jks

∂β

∂u
(0, τ) , for j = 1, ..., N, k = h, l

α(4) (τ) = α(4)
c + α(4)′

s

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)′ α(4)

q (τ)
∂β

∂u
(0, τ)

+α
(4)
h (τ)′

∂2β

∂u2
(0, τ) +

∂2β

∂u2
(0, τ)′ α

(4)
hq

∂2β

∂u2
(0, τ) + α

(4)
l (τ)′

∂3β

∂u3
(0, τ) ,

α(4)
q (τ) = α(4)

qc + α(4)
qs (τ) , with
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α(4)
qs (τ) = diag

(
α(4,i)′
qs

∂β

∂u
(0, τ) +

∂β

∂u
(0, τ)

′
α(4,i)
qq

∂β

∂u
(0, τ) , i = 1, ..., N

)
+

(
α

(4,i,k)′
qsh

∂2β

∂u2
(0, τ)

)
i,k=1,...,N

,

whereB
(2)
j,q , α

(2)
q , Bjhc, αqc, B

(4)
jqc, B

(4)
jhq, α

(4)
qc and α

(4)
hq are symmatric matrices and B

(4,i,k)
jqsh = B

(4,k,i)
jqsh , α

(4,i,k)
qsh =

α
(4,k,i)
qsh .
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Appendix D: Details on the AFT model estimation

Appendix D-1: Discretizing the stochastic jump-diffusion motion

Starting from the underlying price dynamics in Andersen et al. (2015b) model, we compute the quadratic

variation of V J1t ≡
∫ t

0

∫
R2 x

21{x<0}µ (dt, dx, dy) and V J3t ≡
∫ t

0

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]
µ (dt, dx, dy), as

well as their covariation. We have[
V J1 , V

J
1

]
t

=

∫ t

0

∫
R2

x41{x<0}µ (dt, dx, dy) ,
[
V J3 , V

J
3

]
t

=

∫ t

0

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]2
µ (dt, dx, dy) ,

[
V J1 , V

J
3

]
t

=

∫ t

0

∫
R2

x2
[
(1− ρ3)x21{x<0} + ρ3y

2
]

1{x<0}µ (dt, dx, dy) .

We also have the corresponding risk-neutral expectations

EQ
[
V J1 , V

J
1

]
t

=

∫ t

0

∫
R2

x41{x<0}ν
Q
t (dx, dy) dt, EQ

[
V J3 , V

J
3

]
t

=

∫ t

0

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]2
νQt (dx, dy) dt,

EQ
[
V J1 , V

J
3

]
t

=

∫ t

0

∫
R2

x2
[
(1− ρ3)x21{x<0} + ρ3y

2
]

1{x<0}ν
Q
t (dx, dy) dt.

Thus, the instantaneous variance and covariance of V J1t and V J3t can be computed as

(
σJ1t
)2

=

∫
R2

x41{x<0}ν
Q
t (dx, dy) ,(

σJ3t
)2

=

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]2
νQt (dx, dy) ,

σJ13t =

∫
R2

x2
[
(1− ρ3)x21{x<0} + ρ3y

2
]

1{x<0}ν
Q
t (dx, dy) .

Formally, the instantaneous variance is(
σJ1t
)2

=

∫
R2

x41{x<0}ν
Q
t (dx, dy) ,

= c−
∫
R2

1{x<0,y=0}x
4λ−e

−λ−|x|dx⊗ dy,

= c−
∫ 0

−∞
x4λ−e

−λ−|x|dx ≡ λ∗−c−t , (41)

with

λ∗− =

∫ 0

−∞
x4λ−e

−λ−|x|dx =
24

λ4
−
.

Similarly,(
σJ3t
)2

=

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]2
νQt (dx, dy) ,

=

∫
R2

[
(1− ρ3)

2
x41{x<0} + ρ2

3y
4 + 2ρ3 (1− ρ3)x2y21{x<0}

]
νQt (dx, dy) ,

=

∫
R2

[(
(1− ρ3)

2
x4 + 2ρ3 (1− ρ3)x2y2

)
1{x<0}ν

Q
t (dx, dy) + ρ2

3y
4νQt (dx, dy)

]
,

=

∫
R2

(
(1− ρ3)

2
x4 + 2ρ3 (1− ρ3)x2y2

)
1{x<0}ν

Q
t (dx, dy) +

∫
R2

ρ2
3y

4νQt (dx, dy) .
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Note that (
(1− ρ3)

2
x4 + 2ρ3 (1− ρ3)x2y2

)
1{x<0}ν

Q
t (dx, dy)

= c−
(

(1− ρ3)
2
x4 + 2ρ3 (1− ρ3)x2y2

)
λ−e

−λ−|x|1{x<0,y=0}dx⊗ dy,

and ∫
R2

(
(1− ρ3)

2
x4 + 2ρ3 (1− ρ3)x2y2

)
1{x<0}ν

Q
t (dx, dy)

= c− (1− ρ3)
2
∫ 0

−∞
x4λ−e

−λ−|x|dx = (1− ρ3)
2
λ∗−c

−
t .

Moreover,

ρ2
3y

4νQt (dx, dy) = ρ2
3y

4
{(
c−1{x<0}λ−e

−λ−|x| + c+1{x>0}λ+e
−λ+|x|

)
1{y=0} + c−1{x=0,y<0}λ−e

−λ−|y|
}
dx⊗dy,

and ∫
R2

ρ2
3y

4νQt (dx, dy) = ρ2
3

[∫ 0

−∞
y4λ−e

−λ−|y|dy

]
c−t = ρ2

3λ
∗
−c
−
t .

This yields (
σJ3t
)2

=
[
(1− ρ3)

2
+ ρ2

3

]
λ∗−c

−
t . (42)

For the instantaneous covariance, we have

σJ13t =

∫
R2

x2
[
(1− ρ3)x21{x<0} + ρ3y

2
]

1{x<0}ν
Q
t (dx, dy) ,

= (1− ρ3)

∫
R2

x41{x<0}ν
Q
t (dx, dy) + ρ3

∫
R2

x2y21{x<0}ν
Q
t (dx, dy) ,

= (1− ρ3)
(
σJ1t
)2
. (43)

Turning to the risk-neutral expectations, we get

EQ
[
µ1

∫
R2

x21{x<0}µ (dt, dx, dy)

]
= µ1

(∫
R2

x21{x<0}ν
Q
t (dx, dy)

)
dt,

= µ1dt

(∫ 0

−∞
x2λ−e

−λ−|x|dx

)
c−t ,

≡ µ1dtλ̄−c
−
t ,

with

λ̄− =

∫ 0

−∞
x2λ−e

−λ−|x|dx =
2

λ2
−
.
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In the same way, we obtain

EQ
[
µ3

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]
µ (dt, dx, dy)

]
= µ3dt

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]
νQt (dx, dy) ,

= µ3dt

∫
R2

[
(1− ρ3)x21{x<0} + ρ3y

2
]{ (

c−1{x<0}λ−e
−λ−|x| + c+1{x>0}λ+e

−λ+|x|
)

1{y=0}
+c−1{x=0,y<0}λ−e

−λ−|y|

}
dx⊗ dy,

= µ3 (1− ρ3) dt

(∫ 0

−∞
x2λ−e

−λ−|x|dx

)
c−t + µ3ρ3dt

(∫ 0

−∞
y2λ−e

−λ−|y|dy

)
c−t ,

= µ3dt

(∫ 0

−∞
x2λ−e

−λ−|x|dx

)
c−t = µ3dtλ̄−c

−
t . (44)

The resulting discretized transition equations can be written as

V1t+1 − V1t = κ1 (v̄1 − V1t) ∆t+ µ1λ̄−c
−
t ∆t+ ε1t+1, (45)

V2t+1 − V2t = κ2 (v̄2 − V2t) ∆t+ ε2t+1, (46)

V3t+1 − V3t = −κ3V3t∆t+ µ3λ̄−c
−
t ∆t+ ε3t+1, (47)

or in a compact form as
Vt+1 = Φ0 + Φ1Vt + εt+1,

with

Φ0 ≡ ∆t

 κ1v̄1 + µ1λ̄−c
−
0

κ2v̄2

µ3λ̄−c
−
0

 , Φ1 ≡ I3 +K1, K1 = ∆t

 −κ1 + µ1λ̄−c
−
1 µ1λ̄−c

−
2 µ1λ̄−c

−
3

0 −κ2 0
µ3λ̄−c

−
1 µ3λ̄−c

−
2 −κ3 + µ3λ̄−c

−
3

 .
Specifically, I3 is a 3×3 identity matrix, Vt+1 ≡ (V1t+1, V2t+1, V3t+1)′, and εt+1 ≡ (ε1t+1, ε2t+1, ε3t+1)′.
The covariance matrix of the noise term is

V art (εt+1) = ∆t

 σ2
1V1t + µ2

1λ
∗
−c
−
t 0 µ1µ3 (1− ρ3)λ∗−c

−
t

0 σ2
2V2t 0

µ1µ3 (1− ρ3)λ∗−c
−
t 0 µ2

3

[
(1− ρ3)2 + ρ2

3

]
λ∗−c

−
t

 .
At the daily frequency, the discrete time step is ∆t = 1/252. Combining the state transition equa-
tion with the risk-neutral cumulant measurement equation (outlined in the main text) allows to
estimate the factors along with the parameters of the model using the modified Kalman filter algo-
rithm. The initial conditions are V0|0 = −K−1

1 Φ0, and vec
(
P0|0

)
= (I9 − Φ1 ⊗ Φ1)−1 vec

(
Σ
(
V0|0

))
,

where ⊗ denotes the Kronecker product.

Appendix D-2: Parameter constraints

Our goal here is to check whether, beyond the parameter restrictions imposed by Andersen et al.
(2015b), additional constraints are required in our estimation procedure to guarantee admissibility
of the three latent factors and covariance stationarity.

Diagonalization The implementation of the risk-neutral moment-based estimation for the three-
factor AFT model was done under the condition that the matrix K1 is diagonalizable. This is
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equivalent to ensuring that the block triangular matrix

Ks
1 = ∆t

 −κ1 + µ1λ̄−c
−
1 µ3λ̄−c

−
1 0

µ1λ̄−c
−
3 −κ3 + µ3λ̄−c

−
3 0

µ1λ̄−c
−
2 µ3λ̄−c

−
2 −κ2

 (48)

is diagonalizable. Note that Ks
1 is obtained from K1 by (i) permuting the second and third columns,

(ii) then permuting the second and third rows, (iii) and finally transposing the resulting matrix.
Recall that λ̄− = 2/λ2

−. Thus, verifying if K1 is diagonalizable, boils down to checking if

Â =

[
−κ1 + 2

λ2
−
µ1c
−
1

2
λ2
−
µ3c
−
1

2
λ2
−
µ1c
−
3 −κ3 + 2

λ2
−
µ3c
−
3

]
, (49)

the upper left block in Ks
1 , is diagonalizable. By computing

det
(
Â− λI2

)
=

(
−κ1 +

2

λ2
−
µ1c
−
1 − λ

)(
−κ3 +

2

λ2
−
µ3c
−
3 − λ

)
− 2

λ2
−
µ1c
−
3

2

λ2
−
µ3c
−
1 ,

=

(
λ+ κ1 −

2

λ2
−
µ1c
−
1

)(
λ+ κ3 −

2

λ2
−
µ3c
−
3

)
− 2

λ2
−

2

λ2
−
µ3c
−
1 µ1c

−
3 ,

= λ2 −
(
−κ1 +

2

λ2
−
µ1c
−
1 − κ3 +

2

λ2
−
µ3c
−
3

)
λ+

(
−κ1 +

2

λ2
−
µ1c
−
1

)(
−κ3 +

2

λ2
−
µ3c
−
3

)
− 4

λ4
−
µ3c
−
1 µ1c

−
3 ,

we see that a sufficient condition for diagonalization is(
−κ1 +

2

λ2
−
µ1c
−
1 − κ3 +

2

λ2
−
µ3c
−
3

)2

−4

((
−κ1 +

2

λ2
−
µ1c
−
1

)(
−κ3 +

2

λ2
−
µ3c
−
3

)
− 4

λ4
−
µ3c
−
1 µ1c

−
3

)
> 0.

This implies that (
−κ1 +

2

λ2
−
µ1c
−
1 + κ3 −

2

λ2
−
µ3c
−
3

)2

+
16

λ4
−
µ3c
−
1 µ1c

−
3 > 0, (50)

which is always true. The corresponding eigenvalues are

λ1 =

(
−κ1 + λ̄−µ1c

−
1 − κ3 + λ̄−µ3c

−
3

)
+
√(
−κ1 + λ̄−µ1c

−
1 + κ3 − λ̄−µ3c

−
3

)2
+ 4

(
λ̄2
−µ3c

−
1 µ1c

−
3

)
2

, (51)

λ2 =

(
−κ1 + λ̄−µ1c

−
1 − κ3 + λ̄−µ3c

−
3

)
−
√(
−κ1 + λ̄−µ1c

−
1 + κ3 − λ̄−µ3c

−
3

)2
+ 4

(
λ̄2
−µ3c

−
1 µ1c

−
3

)
2

. (52)

For a given eigenvalue λ ∈ {λ1, λ2}, solving for the corresponding eigenvector P̂ =
[
P̂1 P̂2

]′
in

ÂP̂ = λP̂ ,

or equivalently in { (
−κ1 + λ̄−µ1c

−
1 − λ

)
P̂1 + λ̄−µ3c

−
1 P̂2 = 0,

λ̄−µ1c
−
3 P̂1 +

(
−κ3 + λ̄−µ3c

−
3 − λ

)
P̂2 = 0,
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yields

P̂2 =

(
λ+ κ1 − λ̄−µ1c

−
1

)
λ̄−µ3c

−
1

P̂1. (53)

Hence, an eigenvector associated with λ ∈ {λ1, λ2} is(
λ̄−µ3c

−
1

λ+ κ1 − λ̄−µ1c
−
1

)
. (54)

This confirms that the matrix K1 is diagonalizable.

Stationarity To ensure covariance stationarity in the AFT model, the eigenvalues of K1 should
be between −2 and 0. Thus,

det (K1 − λI3) = (∆t)3 det

 −κ1 + µ1λ̄−c
−
1 − λ

∆t µ1λ̄−c
−
2 µ1λ̄−c

−
3

0 −κ2 − λ
∆t 0

µ3λ̄−c
−
1 µ3λ̄−c

−
2 −κ3 + µ3λ̄−c

−
3 − λ

∆t

 . (55)

For the eigenvalue λ to be between −2 and 0, it must be the case that

−2 < λ < 0 ⇐⇒ − 2

∆t
<

λ

∆t
< 0

⇐⇒ − 2

∆t
< λ̂ < 0,

where λ̂ = λ/∆t. Next, the determinant is computed as

det

 −κ1 + µ1λ̄−c
−
1 − λ̂ µ1λ̄−c

−
2 µ1λ̄−c

−
3

0 −κ2 − λ̂ 0

µ3λ̄−c
−
1 µ3λ̄−c

−
2 −κ3 + µ3λ̄−c

−
3 − λ̂


=

(
−κ1 + µ1λ̄−c

−
1 − λ̂

)(
−κ2 − λ̂

)(
−κ3 + µ3λ̄−c

−
3 − λ̂

)
− µ1λ̄−c

−
3

(
−κ2 − λ̂

)
µ3λ̄−c

−
1 ,

=
(
−κ2 − λ̂

)((
−κ1 + µ1λ̄−c

−
1 − λ̂

)(
−κ3 + µ3λ̄−c

−
3 − λ̂

)
− µ1λ̄−c

−
3 µ3λ̄−c

−
1

)
,

=
(
−κ2 − λ̂

)(
λ̂2 −

(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
λ̂+

(
−κ1 + µ1λ̄−c

−
1

) (
−κ3 + µ3λ̄−c

−
3

)
− µ1λ̄−c

−
3 µ3λ̄−c

−
1

)
,

=
(
−κ2 − λ̂

)(
λ̂2 −

(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
λ̂+ κ1κ3 − κ1µ3λ̄−c

−
3 − κ3µ1λ̄−c

−
1

)
. (56)

The discriminant of this second-order polynomial in λ̂ is

∆ =
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)2 − 4
(
κ1κ3 − κ1µ3λ̄−c

−
3 − κ3µ1λ̄−c

−
1

)
,

=
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)2 − 4
((
−κ1 + µ1λ̄−c

−
1

) (
−κ3 + µ3λ̄−c

−
3

)
− µ1λ̄−c

−
3 µ3λ̄−c

−
1

)
,

=
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)2 − 4
(
−κ1 + µ1λ̄−c

−
1

) (
−κ3 + µ3λ̄−c

−
3

)
+ 4µ1λ̄−c

−
3 µ3λ̄−c

−
1 ,

=
(
−κ1 + µ1λ̄−c

−
1 + κ3 − µ3λ̄−c

−
3

)2
+ 4µ1λ̄−c

−
3 µ3λ̄−c

−
1 > 0, (57)

and the roots are

λ̂1 =

(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
−
√(
−κ1 + µ1λ̄−c

−
1 + κ3 − µ3λ̄−c

−
3

)2
+ 4µ1λ̄−c

−
3 µ3λ̄−c

−
1

2
, (58)

λ̂2 =

(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
+
√(
−κ1 + µ1λ̄−c

−
1 + κ3 − µ3λ̄−c

−
3

)2
+ 4µ1λ̄−c

−
3 µ3λ̄−c

−
1

2
. (59)
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The stationarity condition translates into the following constraints:
− 2

∆t < −κ2 < 0,

− 2
∆t < λ̂1 < 0,

− 2
∆t < λ̂2 < 0.

(60)

Hence,

0 < κ2 <
2

∆t
, (61)

and  −
2

∆t <
(−κ1+µ1λ̄−c

−
1 −κ3+µ3λ̄−c

−
3 )−

√
(−κ1+µ1λ̄−c

−
1 +κ3−µ3λ̄−c

−
3 )

2
+4µ1λ̄−c

−
3 µ3λ̄−c

−
1

2 < 0,

− 2
∆t <

(−κ1+µ1λ̄−c
−
1 −κ3+µ3λ̄−c

−
3 )+

√
(−κ1+µ1λ̄−c

−
1 +κ3−µ3λ̄−c

−
3 )

2
+4µ1λ̄−c

−
3 µ3λ̄−c

−
1

2 < 0.

(62)

Alternatively, one can consider the following set of inequalities: 0 <

√
(−κ1+µ1λ̄−c

−
1 +κ3−µ3λ̄−c

−
3 )

2
+4µ1λ̄−c

−
3 µ3λ̄−c

−
1 −(−κ1+µ1λ̄−c

−
1 −κ3+µ3λ̄−c

−
3 )

2 < 2
∆t ,

0 <
−(−κ1+µ1λ̄−c

−
1 −κ3+µ3λ̄−c

−
3 )−

√
(−κ1+µ1λ̄−c

−
1 +κ3−µ3λ̄−c

−
3 )

2
+4µ1λ̄−c

−
3 µ3λ̄−c

−
1

2 < 2
∆t ,

which entails (
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
<√(

−κ1 + µ1λ̄−c
−
1 + κ3 − µ3λ̄−c

−
3

)2
+ 4µ1λ̄−c

−
3 µ3λ̄−c

−
1

< 4
∆t +

(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
,

and
− 4

∆t −
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
<

√(
−κ1 + µ1λ̄−c

−
1 + κ3 − µ3λ̄−c

−
3

)2
+ 4µ1λ̄−c

−
3 µ3λ̄−c

−
1

< −
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
.

(63)

If
4

∆t
+ 2

(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
> 0, (64)

then
4

∆t
+
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
> −

(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
,

and

− 4

∆t
−
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
<
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
,

which further implies (
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
<

√(
−κ1 + µ1λ̄−c

−
1 + κ3 − µ3λ̄−c

−
3

)2
+ 4µ1λ̄−c

−
3 µ3λ̄−c

−
1

< −
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
. (65)

It follows that
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
< 0 and(

−κ1 + µ1λ̄−c
−
1 + κ3 − µ3λ̄−c

−
3

)2
+ 4µ1λ̄−c

−
3 µ3λ̄−c

−
1 <

(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)2
.
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Hence,
4µ1λ̄−c

−
3 µ3λ̄−c

−
1 < 4

(
−κ1 + µ1λ̄−c

−
1

) (
−κ3 + µ3λ̄−c

−
3

)
, (66)

and
µ3λ̄−c

−
3 κ1

κ1 − µ1λ̄−c
−
1

< κ3. (67)

It must also be the case that
κ1 − µ1λ̄−c

−
1 > 0, (68)

or equivalently
µ1λ̄−c

−
1 < κ1.

We now verify whether the condition
(
−κ1 + µ1λ̄−c

−
1 − κ3 + µ3λ̄−c

−
3

)
< 0 is met. We have

−κ1 + µ1λ̄−c
−
1 − κ3 + µ3λ̄−c

−
3

< −κ1 + µ1λ̄−c
−
1 −

µ3λ̄−c
−
3 κ1

κ1 − µ1λ̄−c
−
1

+ µ3λ̄−c
−
3

= −κ1 + µ1λ̄−c
−
1 − µ3λ̄−c

−
3

(
µ1λ̄−c

−
1

κ1 − µ1λ̄−c
−
1

)
< 0. (69)

Therefore, the conditions for the covariance stationarity are

0 < κ2 <
2

∆t
, (70)

µ1λ̄−c
−
1 < κ1, (71)

µ3λ̄−c
−
3 κ1

κ1 − µ1λ̄−c
−
1

< κ3, (72)

where

λ̄− =

∫ 0

−∞
x2λ−e

−λ−|x|dx =
2

λ2
−
.

Interestingly, these stationarity conditions boil down to the following inequalities:

0 < κ2, (73)

2µ1c
−
1

λ2
−

< κ1, (74)

2µ3c
−
3 κ1

κ1λ2
− − 2µ1c

−
1

< κ3, (75)

which matches exactly the restrictions derived by Andersen et al. (2015a) in their footnote 37
(except the typo for κ2).

Positivity We impose the classic feller condition

σ2
1 ≤ 2κ1v̄1, σ2

2 ≤ 2κ2v̄2. (76)
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It is convenient to ensure that all element of V0|0 = −K−1
1 Φ0 are positive, where

Φ0 ≡ ∆t

 κ1v̄1 + µ1λ̄−c
−
0

κ2v̄2

µ3λ̄−c
−
0

 , K1 = ∆t

 −κ1 + µ1λ̄−c
−
1 µ1λ̄−c

−
2 µ1λ̄−c

−
3

0 −κ2 0
µ3λ̄−c

−
1 µ3λ̄−c

−
2 −κ3 + µ3λ̄−c

−
3

 .
Because Φ0 > 0, the sign of V0|0 is determined by the sign of −K−1

1 . We observe that

det (K1) = −κ2

(
−κ1 + µ1λ̄−c

−
1

) (
−κ3 + µ3λ̄−c

−
3

)
+ κ2µ3λ̄−c

−
1 µ1λ̄−c

−
3 ,

= κ2

(
µ3λ̄−c

−
1 µ1λ̄−c

−
3 −

(
κ1 − µ1λ̄−c

−
1

) (
κ3 − µ3λ̄−c

−
3

))
,

= κ2

(
−κ3

(
κ1 − µ1λ̄−c

−
1

)
+ κ1µ3λ̄−c

−
3

)
,

= −κ2

(
κ1 − µ1λ̄−c

−
1

)(
κ3 −

κ1µ3λ̄−c
−
3(

κ1 − µ1λ̄−c
−
1

)) < 0, (77)

given the stationarity conditions. It follows that

K−1
1 =

1

det (K1)

 −κ2

(
−κ3 + µ3λ̄−c

−
3

)
µ1λ̄−c

−
3 µ3λ̄−c

−
2 − µ1λ̄−c

−
2

(
−κ3 + µ3λ̄−c

−
3

)
κ2µ1λ̄−c

−
3

0
(
−κ1 + µ1λ̄−c

−
1

) (
−κ3 + µ3λ̄−c

−
3

)
− µ1λ̄−c

−
3 µ3λ̄−c

−
1 0

κ2µ3λ̄−c
−
1 µ3λ̄−c

−
1 µ1λ̄−c

−
2 − µ3λ̄−c

−
2

(
−κ1 + µ1λ̄−c

−
1

)
−κ2

(
−κ1 + µ1λ̄−c

−
1

)
 ,

which simplifies to

K−1
1 =

1

det (K1)

 κ2

(
κ3 − µ3λ̄−c

−
3

)
µ1λ̄−c

−
2 κ3 κ2µ1λ̄−c

−
3

0 κ3

(
κ1 − µ1λ̄−c

−
1

)
− κ1µ3λ̄−c

−
3 0

κ2µ3λ̄−c
−
1 κ1µ3λ̄−c

−
2 κ2

(
κ1 − µ1λ̄−c

−
1

)
 . (78)

Given that

κ3 >
κ1µ3λ̄−c

−
3(

κ1 − µ1λ̄−c
−
1

) > κ1µ3λ̄−c
−
3

κ1
= µ3λ̄−c

−
3 , (79)

we conclude that all the element of K−1
1 are negative, and therefore, V0|0 is always positive.
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Table 1: Descriptive statistics for risk-neutral moments

This table reports descriptive statistics for risk-neutral volatility (Panel A), skewness (Panel B), and kurtosis (Panel C). Values

are expressed in annualized percentage whenever appropriate. The maturity is denoted by τ expressed in months.

τ =1 2 3 6 9 12 18 24

Panel A: Volatility

Mean (%) 17.6814 18.8382 19.3424 19.9914 20.2686 20.3300 20.5658 20.9558
Std. Dev. (%) 7.5245 7.3475 7.1219 6.6033 6.3637 6.1460 6.0002 6.1472
AR(1) 0.9593 0.9777 0.9830 0.9867 0.9889 0.9862 0.9779 0.9593

Panel B: Skewness

Mean -1.7943 -1.8596 -1.7729 -1.7245 -1.6876 -1.6272 -1.6234 -1.6812
Std. Dev. 0.4936 0.4656 0.4490 0.3723 0.3529 0.3689 0.4320 0.5162
AR(1) 0.6986 0.9024 0.9065 0.8471 0.8270 0.7800 0.7582 0.6365

Panel C: Kurtosis

Mean 7.4063 8.0706 7.6644 7.2955 6.8489 6.3382 6.1461 6.2482
Std. Dev. 2.8463 2.4007 2.1553 1.9084 1.8533 1.8372 2.1256 2.3903
AR(1) 0.6755 0.8225 0.7890 0.7387 0.7376 0.6888 0.6864 0.5452
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Table 2: Parameter estimates for the AFT model

This table reports the parameter estimates with the corresponding standard errors (Std. Err.) for the AFT model, using

risk-neutral moment-based and Andersen et al. (2015a) estimation approaches. The parameter values for c−0 , c+3 , and η are set

to 0, as in Andersen et al. (2015a).

Moment-based AFT Estimation
Parameter Estimate Std. Err. Estimate Std. Err.

ρ1 -0.9730 0.3485 -0.9860 0.0027
v̄1 0.0178 0.0114 0.0145 0.0055
κ1 1.2113 0.0155 1.9803 0.0577
σ1 0.1607 0.0350 0.2350 0.0145
ρ2 -0.6869 1.8001E-06 -0.8686 1.4430E-06
v̄2 0.0640 0.0119 0.0285 0.0034
κ2 1.1045 0.0098 1.1382 0.0507
σ2 0.3558 0.0392 0.2436 0.0161
µ3 1.1059 0.5687 0.5934 0.2693
κ3 0.2633 0.0204 0.2244 0.0138
ρ3 0.0005 0.0001 0.0004 1.1527E-05
c+0 2.3511 0.6336 1.7923 0.6575
c−1 10.0826 1.2052 22.8678 5.4523
c+1 106.2423 22.2951 173.1724 53.4154
c−2 1.4435 0.2630 1.2769 0.1539
c+2 72.2156 0.0005 56.3836 0.0004
c−3 66.4210 15.7729 72.0413 20.8272
λ− 34.8709 9.4756 38.4586 7.8451
λ+ 132.7487 21.0389 156.7260 45.3644
µ1 7.4634 4.7926 11.7914 4.4047
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Table 3: Vega-weighted root mean square errors for the AFT model-implied option
prices

This table presents vega-weighted root mean square errors (VWRMSE in percentages) for the AFT model-implied option prices

sorted by moneyness and maturity. The moneyness denoted X/S is measured by the ratio of the strike price (X = ex) to the

underlying asset value (S). DTM denotes the number of calendar days to maturity and we include options with maturities of 1

month to 2 years. VWRMSEs are present for both risk-neutral moment-based (1) and Andersen et al. (2015a) (2) estimation

approaches. The ratio of VWRMSEs between these two estimation approaches is also given below. A ratio (2)/(1) greater

than 1 indicates that the risk-neutral moment-based estimation approach outperforms the Andersen et al. (2015a) estimation

method in matching the observed option values.

Panel A: VWRMSE By Moneyness

Estimation X/S<0.97 0.97<X/S<0.99 0.99<X/S<1.01 1.01<X/S<1.03 1.03<X/S<1.05 X/S>1.05 All

Moment-based (1) 5.2133 0.9555 0.9000 0.7625 0.5995 2.6720 3.6469
AFT estimation (2) 4.0184 0.9289 0.8484 0.7001 0.6803 3.5266 3.0868
Ratio (2)/(1) 0.7708 0.9722 0.9426 0.9182 1.1348 1.3198 0.8464

Panel B: VWRMSE By Maturity

DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150 All

Moment-based (1) 1.4991 2.0397 2.3130 2.6891 3.1784 6.6370 3.6469
AFT estimation (2) 1.4206 1.9032 2.1382 2.6365 3.1948 5.3470 3.0868
Ratio (2)/(1) 0.9476 0.9331 0.9244 0.9804 1.0052 0.8056 0.8464
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Table 4: Shifts in Drift Parameter estimates for the AFT model

This table reports the drift parameter estimates with the corresponding standard errors (Std. Err.) for the AFT model, under

risk-neutral (Q) and physical (P) measures. The parameters are obtained from the risk-neutral moment-based estimation. Note

that common structure preserving transformations restrict other model parameters such as σ1, σ2, η, ρ1, ρ2, ρ3, µ1, and κ3 to

be identical under both physical and risk-neutral probability measures.

Risk-Neutral (Q) Physical (P )
Parameter Estimate Std. Err. Parameter Estimate Std. Err.

v̄Q1 0.0178 0.0114 v̄P1 0.0309 0.0086

κQ1 1.2113 0.0155 κP1 0.9713 0.0195

v̄Q2 0.0640 0.0119 v̄P2 0.0323 0.0215

κQ2 1.1045 0.0098 κP2 2.0624 1.3976
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Figure 1: Factor representation of cumulants and leverage in the Heston (1993) model

These graphs plot the location A
(n)
τ and slope B

(n)
τ coefficients in the factor representation of cumulants (CUM

(n)
τ , n = 2, 3, 4)

against different values of leverage (ρ ∈ [−1, 1]) in the Heston (1993) model. The other model parameter values are a = 0.02,

b = 2, σ = 0.1, and τ = 0.5.
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Figure 2: Factor representation of cumulants and first volatility factor leverage in the AFT model

These graphs plot the location A
(n)
τ and slope B

(n)
τ coefficients in the factor representation of cumulants (CUM

(n)
τ , n = 2, 3, 4)

against different values of leverage from the first volatility factor (ρ1 ∈ [−1, 1]) in the Andersen et al. (2015a) estimation

framework. The other model parameter values are v̄1 = 0.0084, κ1 = 9.7196, σ1 = 0.3924, µ1 = 13.4143, ρ2 = −0.8707,

v̄2 = 0.0391, κ2 = 0.1680, σ2 = 0.1078, µ3 = 0.9238, κ3 = 0.5967, ρ3 = 0.0005, c−0 = 0, c+0 = 1.5713, c−1 = 25.3536,

c+1 = 92.4094, c−2 = 0.8802, c+2 = 72.5628, c−3 = 41.4017, c+3 = 0, λ− = 18.7455, λ+ = 58.2399, µ1 = 13.4143, η = 0, and

τ = 0.5.
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Figure 3: Factor representation of cumulants and second volatility factor leverage in the AFT model

These graphs plot the location A
(n)
τ and slope B

(n)
τ coefficients in the factor representation of cumulants (CUM

(n)
τ , n = 2, 3, 4)

against different values of leverage from the second volatility factor (ρ2 ∈ [−1, 1]) in the Andersen et al. (2015a) estimation

framework. The other model parameter values are ρ1 = −0.9818, v̄1 = 0.0084, κ1 = 9.7196, σ1 = 0.3924, v̄2 = 0.0391,

κ2 = 0.1680, σ2 = 0.1078, µ3 = 0.9238, κ3 = 0.5967, ρ3 = 0.0005, c−0 = 0, c+0 = 1.5713, c−1 = 25.3536, c+1 = 92.4094,

c−2 = 0.8802, c+2 = 72.5628, c−3 = 41.4017, c+3 = 0, λ− = 18.7455, λ+ = 58.2399, µ1 = 13.4143, η = 0, and τ = 0.5.
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Figure 4: Observed risk-neutral moment dynamics

This graph displays the time series of observed risk-neutral volatility (left column), skewness (middle column), and kurtosis

(right column) for 1-month (top row), 6-month (middle row), and 12-month (bottom row) maturities from September 03, 1996,

to December 30, 2011.
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Figure 5: Model-implied factors

This graph shows the time series of AFT model-implied factors from September 03, 1996, to December 30, 2011. The factors

are filtered using the Andersen et al. (2015a) (solid lines) and the moment-based (dotted lines) estimation approaches.
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Figure 6: Model-implied risk-neutral moments

This graph plots the time series of AFT model-implied risk-neutral volatility (top), skewness (middle), and kurtosis (bottom)

for 6-month maturity from September 03, 1996, to December 30, 2011. The observed series are constructed using the model-free

procedure in Equation 8. We use the fitted parameter values in the second column of Table 2 to generate the implied series

from the moment-based estimation approach. We use the fitted parameter values in the fourth column of Table 2 to generate

the implied series from the Andersen et al. (2015a) estimation approach.
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Figure 7: Model-implied moment risk premia

This graph displays the paths of the AFT model-implied risk-neutral (solid lines) and physical (dashed lines) variance (top),

skewness (middle), and kurtosis (bottom) constructed from the moment-based estimation approach from September 03, 1996,

to December 30, 2011. The shaded areas represent the wedge between the risk-neutral and physical series, and thus, reflect the

corresponding premia.
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