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Abstract

Many facts are learned through the intermediation of individuals with special access to

information, such as law enforcement officers, employees with a security clearance, or experts

with specific knowledge. This paper considers whether societies can learn about such facts when

information is costly to acquire, cheap to manipulate, and produced sequentially. The answer

is negative under an “asymptotic scarcity” condition pertaining to the amount of evidence

available which distinguishes, for example, between reproducible scientific evidence and the

evidence generated by a crime.

∗Early versions of this project were presented at Microsoft Research New England (Summer 2015), Boston College,

Washington University, Universitat Pompeu Fabra, Universitat Autònoma de Barcelona, Johns Hopkins University,
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1 Introduction

In order to function, societies and organizations must rely on individuals with specific access to

information: criminal investigations are run by law-enforcement officers, political investigations are

handled by special prosecutors, and scientific knowledge concerning policy-relevant factors such

as the anthropogenic component of climate change and the effects of vaccination and tobacco on

health, is also mediated by scientists with a special training and/or access to data. For the public at

large as well as for policymakers and other economic agents, there is often no other way of learning

about facts than through specific intermediaries, and even the “exogenous” signal often featured

in economic models, perhaps an “accidental” discovery of evidence, must be reported by someone

whose motives and discovery may potentially be questioned.

This mediated information is, moreover, often costly to acquire and often cheaper to fabricate

or manipulate. For instance, it may be easier to coerce a false testimony or confession than to

find an actual witness with reliable information, or to spread a rumor about someone rather than

check what this person actually did, and it is easier to produce “significant” results when data can

be fabricated or falsified. Sometimes, information manipulation may take more insidious forms,

such as the selective or biased reporting of news by media outlets and the selective reporting of

experimental results in scientific papers. Politicians, lawyers, and experts in various fields may

also find it easier to produce arguments for or against a decision than to study seriously the actual

merits of the decision.

In these and other contexts, incentivizing investigators raises the following dilemma: if incentives

are too weak, investigators may prefer to shirk rather than acquire costly information. And if

incentives are too highly powered, this creates a temptation for investigators to manipulate their

findings in specific ways. For example, a researcher or expert witness paid by a corporation may

have an incentive to report findings or opinions which align with the corporation’s objectives. A

prosecutor rewarded for achieving a high conviction rate may try to maximize this rate at the

expense of the truth. A police department rewarded for a high clearance rate or investigating a

particularly heinous or prominent crime may be pressured to “solve the case” at all cost, possibly

discounting information that would undermine its main lead.

The natural answer to this dilemma is to compare the evidence produced by different investigators.

For example, a judge rendering a verdict may be concerned that his opinion be corroborated

by subsequent judicial opinions. A criminal investigator may face sanctions if his findings are

contradicted by a higher-level investigation. In many applications, this corroboration process is

sequential: at any point in time, there is one investigator in charge of the case, whose findings
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are disclosed at least to any future investigator of the case. Similarly, journalists and researchers

can read articles published by their peers on a topic before producing their own article. There are

instances in which the investigation process is parallel,1 but in many applications the investigation

process may be more accurately captured by a sequential description.

This paper introduces a model of sequential investigations with the following structure. The object

of the investigation is a fact which may be learned through evidence uncovered by a costly process.

In each period, an investigator is assigned to learn about the fact, and can choose between shirking,

investigating the case seriously, or fabricating some evidence at a lower cost. The evidence pro-

duced is made available to subsequent investigators. An investigator’s compensation can depend

arbitrarily on all reports produced by the investigation, subject to a uniform bound on rewards

and punishments.

The paper’s main objective is to study whether there exist compensation schemes that induce learn-

ing: Given a prior distribution over the fact and the evidence generating process, can investigators’

compensation be structured to induce adequate investigation and disclosure of evidence?

The answer, in turns out, depends on the evidence generating process. When evidence is re-

producible, as is typically the case in mathematics and physics, it is possible to induce serious

investigations until a certain level of confidence is gained about the underlying fact. For example,

suppose that a sequence of mathematicians is asked whether a particular proof is correct, or a

sequence experimental physicists is asked to check the value of a physical constant. There is no

shortage of evidence for checking such facts: each investigator can generate her own piece of evi-

dence. And investigators in each sequence can be incentivized to do so as long as there is enough

uncertainty about the answer.2

When evidence is in limited supply, however, the result is negative. No matter how incentives

are structured, it is impossible to make anyone work and all equilibria of the investigation process

are uninformative. The limited supply assumption may be described as follows: as the body of

real evidence already accumulated becomes arbitrarily large, it becomes arbitrarily unlikely that

there exists additional evidence to uncover. The assumption does not preclude the possibility that

some piece of evidence is indicative of more evidence to be found. But as more and more evidence

1A notable example concerns academic refereeing, although in this case the incentive structure is arguably rather

remote from a Crémer-McLean mechanism.
2When confidence becomes very high, it becomes more profitable for investigators to herd with earlier findings

rather than investigate the fact themselves. As long as there is sufficient uncertainty about the fact, however, outcome-

based rewards can be used to incentivize investigators. The confidence threshold depends, among other things, on

the cost of investigation relative to the maximal size of the rewards and punishment.
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accumulates, the assumption implies that such this possibility vanishes.

To understand this result, the problem may be restated as follows: when is it possible to structure

incentive so that investigators coordinate on the truth, despite the sequentiality of the investiga-

tion? Intuitively, to elicit the truth from an investigator, we must have available a signal that

correlates with the truth above and beyond the information available to this investigator. As the

investigation progresses, however, this signal becomes more difficult to acquire. Suppose that there

exists an informative equilibrium. Then, either the evidence keeps accumulating, in which case the

probability that further evidence exists becomes too small to warrant effort, or the process reaches

a point at which no new evidence is reported for a long period of time, which is also indicative

that there is no evidence left. Either way, investigators become increasingly pessimistic about the

existence of additional evidence to be uncovered and stop working.

Thus the investigation process must reach an informational cascade of sort, in which all investiga-

tors’ actions (whether they shirk or fabricate evidence) are no longer informative and purely based

on previous investigators’ effort. Unlike in the seminal herding models, however, this cascade rip-

ples back to the early investigators, whose payoffs are completely dependent on future investigators’

actions: if no investigator after round 11, say, ever seeks the truth, then investigator 10 has no

incentive to seek it either, since other than through investigators 1–9 reports, which are publicly

available, the truth will not affect 10’s compensation.

There are two main challenges to establish this result. First, note that the unraveling argument is

straightforward if one can establish that no investigator ever works after some fixed round across

all possible histories. However, in any candidate equilibrium, the number of investigators who

work seriously is history dependent and potentially unbounded (this is true even when evidence

is reproducible prone to mistakes). When an investigator considers working, he understands that

whether further investigations take place will depend on his report. For example, the investigator

may be able to close the investigation by reporting that he found nothing, say, but keep it alive by

claiming that he discovered new evidence.

Secondly, there is no obvious variable on which to build the “increased pessimism” argument. For

example, some evidence produced by an investigator may suggest that past evidence was fabricated

(e.g., if this evidence is incompatible with past evidence). Discovery of evidence, even taken at face

value, does not necessarily make investigators believe that more evidence has been found, even in

a stochastic sense. Likewise, if an investigator reports that he found nothing, this need not imply

make it more likely that no evidence exists: for example, if this was the first round of investigation

and it is common knowledge that there exist at least two pieces of evidence about the case, failure

to find evidence reveals only that this investigator shirked or was unlucky.
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2 Model

The object of the investigation is a fact, ω, lying in some measurable space Ω. For example, ω may

represent whether a defendant is guilty, in which case Ω is binary, or the identity of the author of

a crime, in which case Ω is the list of all suspects.

Associated with this fact is a collection E of pieces of evidence (e1, . . . , eM ). In a criminal case, for

instance, this represents all the evidence that the criminal has left behind. Ex ante, the collection E

is random, including the numberM of pieces. Let E denote the set of all possible evidence collections

which may be generated, also assumed to be measurable, and F (·|ω) denote the distribution of

evidence over E conditional on each ω. For example, if ω represents whether a defendant is guilty

and Ω = {g, n}, em is incriminating if the marginal distribution of F with respect to em satisfies

F (em|g) > F (em|n).

In each round i ≥ 1, a new individual is assigned to investigate the fact. i can choose between three

actions: investigate the fact seriously at cost c > 0, shirk, or fabricate evidence at cost bounded by

d < c.

For simplicity, fabrication and serious investigation are treated as mutually exclusive actions. How-

ever, the paper’s main result holds as stated if one allows i to be fabricate evidence after investi-

gating the fact, regardless of what he found, as explained in Section 6.

If i investigates the facts seriously (hereafter, “works”) and there is some evidence and there is some

real evidence left E′′ to be uncovered, then i discovers some subset of this evidence with probability

λE′′ . If all the evidence has been uncovered by past investigators, then a serious investigation reveal

nothing (i.e., λ∅ = 0).

The result of i’s action is a collection mi of evidence. This evidence, whether authentic or fabricated,

is made available to all subsequent investigators.3 The paper’s main interest lies in the case where

evidence is cheap to fabricate.

The incentives—punishments and rewards—provided to i are captured by a compensation function

Ci, which may depend on the entire evidence sequence m = (m1, . . . ,mj , . . .). In particular,

i may be punished if the evidence that he produced is incompatible with what is found by later

investigators, or if he failed to produce evidence that is later uncovered by subsequent investigators.

Alternatively, i may be rewarded if his finding seems novel compared to past investigators. The

compensation function may represent a stream of rewards and punishment. For example, if i receives

3In applications, this evidence could be made public, as in the case of judicial opinions and published articles, or

simply transferred to anyone inheriting the case, as in criminal investigations
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a compensation ci,j(m1, . . . ,mj) at round j ≥ i and discounts future compensation according some

discount factor δ < 1, then

Ci(m1, . . .) =
∑
j≥i

δj−ici,j(m1, . . .mj)

The function Ci does not depend directly on the state ω. This assumption captures the idea that

social planner (or public) in charge of administering the compensation does not get to observe the

truth directly: its only way to assess i’s efforts is through other investigators’ reports, rather than

through a public signal. We also assume that the punishments and rewards that can be given

to any investigator are uniformly bounded and cannot depend significantly on evidence produced

arbitrarily far in the future.

Given a realized stream m = (m1, . . . , ) of evidence, i’s realized utility is

ui(m) = Ci(m)− ci

where ci = c is i sought evidence seriously and 0 otherwise. The equilibrium concept is the standard

notion of Perfect Bayesian Equilibrium (PBE).

3 Reproducible evidence: An Example

Suppose that the state of the world is binary ω ∈ {H,L} with prior P (ω = H) = p̂ and the set E
consists of all sequences of signals “H” and “L”. If i investigates the fact, he receives an informative

signal m̃i about ω such that Pr(“H ′′|H) = Pr(“L′′|L) = π > 1/2. In this setting, all investigators

discover some piece of evidence, so shirking can easily be discouraged by punishing any empty

report. Thus suppose that i can either “work” (i.e., investigate the fact seriously) at cost c > 0

and report his evidence, i.e., mi = m̃i, or fabricate some evidence at zero cost, i.e., mi = ai where

ai ∈ {“H ′′, “L′′) is the evidence fabricated by i.

Given any equilibrium of this game, let for each i ∈ N γi denote the probability that i works, and

let pi denote the probability that ω = H given past information.

Proposition 1 For any cutoffs p
¯
, p̄ such that 0 < p

¯
< p̂ < p̄ < 1, there exist large reward/punishment

values P,R such that the following strategies constitute an equilibrium: γi = 1 as long as pi ∈ (p
¯
, p̄)

and γi = 0 afterwards. In particular, there exist informative equilibria.

Proof. Given the symmetric signal structure, notice that the posterior pi is entirely determined

by the difference in the number of “H” and “L” signals as long as all agents j < i work with
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probability 1. Therefore, the set of equilibrium posteriors forms a grid {qk} containing p̂ and

interrupted immediately outside of (p
¯
, p̄). Let q0 ≤ p

¯
< q1, . . . , p̂, . . . , qN < p̄ < qN+1 denote this

grid. Along the candidate equilibrium, the belief pi evolves on this grid until it hits either q0 or

qN+1, at which point no one investigates.

Let ĩ denote the last investigator who works: we have pĩ ∈ {q1, qN} and pĩ+1 ∈ {q0, qN+1}. Also

let p̃ = pĩ+1 denote the value of the belief when learning stops under the candidate equilibrium.

To implement our candidate equilibrium consider a reward scheme where an investigator’s com-

pensation is entirely determined by his signal and the final posterior p̃.

For any i such that pi = qk ∈ (p
¯
, p̄), if i reports “H”, reward him by RkH if p̃ = qN+1 and punish him

by P kL if p̃ = q0. If i reports “L”, reward him by RkL if p̃ = q0 and punish him by P kL if p̃ = qN+1.

We will see that when the maximal rewards and punishment, R and P , are high enough, one may

always choose values {Rkθ , P kθ }θ∈{“L′′,“H′′},k∈{1,...,N} to incentivize i.

For p, q on the grid, let π(p, q) denote the probability, given subjective belief p, that p̃ = qN+1 if

the public belief variable starts at q. That is π(p, q) is the probability that an individual with prior

p assigns to pi converging to qN+1 in equilibrium given that the public belief, which serves as the

state variable for the equilibrium, starts at q.

If i fabricates report “H” starting from prior pi = qk, he assigns a probability π(qk, qk+1 to the

public belief converging to qN+1, whereas if i works and receives report “H ′′, his belief about the

continuation equilibrium is π(qk+1, qk+1). Similarly, if i fabricates “L′′, his belief is π(qk, qk−1),

while if he works and reports “L′′, his belief is π(qk−1, qk−1). It is straightforward to verify the

inequalities

π(qk+1, qk+1) > π(qk, qk+1) (1)

and

π(qk−1, qk−1) < π(qk, qk−1), (2)

for all k ∈ [2, N − 1]. The strictness of the inequalities comes from the fact that conditional on

the true state ω, the dynamic of {pj}j≥i+1 starting any given value of pi+1 is strictly increasing

in ω in FOSD, as is easily checked. Therefore, the probability of hitting qN+1 before q0 is strictly

increasing in the belief pi that the state is high.

For k = 1, the investigation stops if i reports down, so (2) only holds as an equality because

the investigation stops if i reports “L”, but (1) is still strict, because this report triggers further

investigation. The reverse is true for k = N : (1) only holds as an equality while (2) is strict.

Investigator i’s incentives may be computed as follows: If i fabricates evidence, the best he can get
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is

max{π(qk, qk+1)RkH + (1− π(qk, qk+1))P kH ;π(qk, qk−1)P kL + (1− π(qk, qk−1))RkL}. (3)

The left term is i’s expected payoff if he fabricates “H”, and the right terms is the payoff if he

fabricates “L”. Since i can fabricate either evidence at no cost, his best payoff from fabrication is

the maximum of these two terms.

If i works, he gets

zk[π(qk+1, qk+1)RkH + (1− π(qk, qk+1))P kH ] + (1− zk)[π(qk−1, qk−1)P kL + (1− π(qk−1,k−1 ))RkL] (4)

where zk is the probability of receiving signal “H” given belief qk, and is equal to zk = Pr(“H ′′|qk) =

qkπ + (1− qk)× (1− π).

Therefore, i will be incentivized to work if the expression in (4) exceeds the expression in (3) by at

least c.

This condition is straightforward to guarantee: choose P kH and P kL equal to some arbitrarily number,

P̄ , and let RkH = −P kH
π(qk,qk+1)

1−π(qk,qk+1)
and RkL = −P kL

1−π(qk,qk−1)
π(qk,qk−1)

. This guarantees that i’s expected

payoff from fabrication is zero, regardless of the outcome. From (1) and (2), his payoff from working

truth is of order P̄ and thus exceeds c, for P̄ high enough.4 This is true even if k = 1 or N because,

in that case there is one signal that i can send after working which yields a payoff of order P̄ , while

the other signal yields 0. And the signal associated with a positive payoff arises with a probability

that is bounded away from 0, since pi lies in (p
¯
, p̄) which is contained in the interior of [0, 1].

Moreover this scheme is feasible as long as the maximal reward R and and punishment P respec-

tively exceed sup{Rkθ : θ ∈ {L,H}, k ∈ {1, . . . , N} and λ.

4 Main Result

For any E′ ∈ E , let g(E′) denote the probability that the real collection of evidence, E, strictly

contains E′ given that it contains at least E′.

Assumption 1 (Cheap fabrication) The cost of fabricating any evidence m, d(m) is bounded

above by d < c.

4Precisely, one can let π̄ denote a strictly positive lower bound on the slack in inequalities (1) and (2) over all k’s,

whenever they hold strictly. Then the gain from working is of order P̄ π̄.
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Assumption 2 (Asymptotic scarcity)

lim
k→∞

sup
E′:|E′|=k

g(E′) = 0.

Assumption 3 (Bounded compensation) i’s compensation Ci is measurable with respect to

m = (m1, . . .) and takes values in a compact set [−P,R].

Assumption 4 (Discovery rate monotonicity) If 0 < |E′′| ≤ |Ê′′|, then λ ≤ λE′′ ≤ λÊ′′,

where λ ∈ (0, 1).

Assumption 2 is an asymptotic hazard rate condition. Intuitively, it says that the probability that

there is more evidence out to be found given that already k pieces have been discovered goes to

zero as k becomes large. It does not rule out the possibility that some evidence discovery suggests

that more evidence may be found. It requires that when an arbitrarily large number of pieces have

been discovered, the probability that there exist even more pieces of evidence becomes arbitrarily

small.

Assumption 4 means that the more evidence there is left to uncover, and the more likely it is that

a serious investigation will uncover at least some of the uncovered evidence.

Theorem 1 Under Assumptions 1–4, In any PBE, the report sequence m is independent of ω.

5 Proof

Consider any informative equilibrium, i.e., one for which some agent works with positive probability,

and let γi denote the probability that i works, given past evidence (m1, . . . ,mi−1). If, following

some history, γi = 0, it is common knowledge that i’s evidence is uninformative. Therefore, i’s

report can be removed from other agents’ compensation functions without affecting their incentives.

Without loss of generality, we focus on equilibria such that for each on path history, there exists

some ĩ ∈ N such that γi > 0 for all i ≤ î and γi = 0 for all i > ĩ. Similarly, we can rule out cases

in which i fabricates evidence that cannot be produced by working: such evidence is uninformative

and the equilibrium can be easily modified to get rid of this case.

The analysis focuses on an equilibrium with the above properties and will derive a contradiction in

the form of a violation of the IC constraint of some agent.

Fix some ε arbitrarily small. From Assumption 2, there exists some integer K > 0 such that i) the

ex ante probability that at least K pieces of evidence have been generated is strictly positive, ii)
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for any k ≥ K, the probability that E contains strictly more than k pieces of evidence given that

it contains at least k pieces is less than ε.

Let A denote the event that at most K pieces of evidence were generated. Note that Pr(A) ≥ 1−ε.
In what follows, we will often consider players’ beliefs conditional on A. In particular, for any

integers k and i, let fki denote the probability that there remain k pieces of evidence to discover

given i’s information and conditional on A. By assumption, fK0 > 0 and fki = 0 for all k > K and

i ∈ N.

We will use the following observation, whose proof is straightforward and omitted.

Lemma 1 γi > 0 only if Pri[γi+1 > 0|i works] = 1.

The intuition is clear if there is no message that i can produce after working that prompts i + 1

(and hence, any j > i) to work, then i’s compensation is independent of ω, conditionally on

(m1, . . . ,mi), and i’s optimal strategy is to either shirk or fabricate a message mi that maximizes

his compensation.

To prove theorem 1, we will use an induction argument based on the number of remaining pieces of

evidence. Since we did not impose any a priori bound on that number, we will apply the argument

conditional on A, in which cases there are most K pieces, and then treat the general case.

The first result is to show that conditional on A, the probability that K pieces of evidence (i.e.,

the maximal number, conditional on A) remain to be found is non-increasing in equilibrium.

Lemma 2 fKi is nonincreasing in i along all on-path histories.

Proof. Consider any i and report mi. Let αi and σi denote i’s probability of fabricating evidence

and of shirking, respectively,, conditional on (m1, . . . ,mi−1). Note that αi + γi + σi = 1, and that

these three probabilities are completely pinned down by mi−1
1 : they do not directly depend on A.

i) Suppose first that i claims to have found some evidence, so mi 6= ∅. By Bayesian updating, we

have for mi 6= ∅:

fKi+1(mi) =
fKi αiPr(mi|αi)

αiPr(mi|fabricate) + γiPri(mi|work,A)

That is: conditional on A, the probability that K pieces remain given i produced mi is the proba-

bility that K pieces remained before when i inherited the case and that i fabricated the evidence

mi, divided by the probability of producing evidence mi, which depends on whether i works or

fabricates, and on the probability that mi is produced in each case.
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Rearranging the the previous equation yields

fKi − fKi+1 = γif
K
i

Pri(mi|work,A)

αiPr(mi|fabricate) + γiPri(mi|work,A)
= γif

K
i

1

αiγi`i(mi)
(5)

where

`i(mi) =
Pr(mi|fabricate)
Pri(mi|work,A)

is the likelihood that i fabricates mi over i producing mi for real.

ii) Suppose now that mi = ∅, which is consistent with three possibilities: i shirked, i worked but

there was no evidence left to uncover, sor i worked and there is some evidence to uncover but i was

unlucky.

For each k > 1, let λki denote the probability that i uncovers real evidence conditional on A and

on there being k pieces left to uncover. By assumption, λki ≥ λ and λki is nondecreasing in k. Let

λi = 1
1−f0i

∑K
k=1 f

k
i λ

k
i denote the probability of uncovering some real evidence conditional on A and

on the existence of some remaining evidence.

From Bayes’ rule, we have

fKi+1(mi = ∅) =
fKi (σi + γi(1− λKi )

σi + γi[f0i + (1− f0i )(1− λi)]

Rearranging yields

fKi − fKi+1 = γif
K
i

λif
0
i + (λKi − λi)

σi + γi[f0i + (1− f0i )(1− λi)]
. (6)

Since λKi ≥ λi and the denominator of the last equation is less than 1, we conclude that

fKi+1(∅)− fKi ≤ −γifKi λf0i . (7)

Let M denote the set of all on-path histories truncated at any i and

fK = inf{fKi : i ∈ N, (m1, . . . ,mi−1) ∈M, γi > 0}

Lemma 3 There is a constant γ̂ > 0 such that for all ε > 0 small enough and on-path history such

that i works and fKi ≤ fK + ε, γj ≤ γ̂ ε
fKi

for all j ≥ i.

Proof. From Lemma 2, it suffices to show that result for i. It will then follow for all j ≥ i: either

j doesn’t work at all, or j works and fKj ≤ fK + ε, so the proof for i will apply to j.

Focusing on i, hence, let Mi denote the set of all messages that i can produced on path, including

the empty message, and for each mi ∈Mi let f(mi) = fKi+1 given message mi.
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There must be some messages mi ∈ Mi for which f(mi) ≥ fK . Otherwise, by definition of fK ,

i+ 1 (and hence, all j ≥ i+ 1) does not work regardless of the message, and there is no incentive

for i to work (cf. Lemma 1).

First, suppose that the only message for which f(mi) ≥ fK is the empty message: it means that

all nonempty messages stop the investigation, i.e., no j ≥ i + 1 ever works following mi 6= ∅. In

this case, (7) implies that the drop in fK is of order

γif
0
i f

K
i λ

We will show that f0i is uniformly bounded below away from zero. Indeed, suppose that f0i is less

than some η > 0. Then it means that the probability of finding something is arbitrarily close to

1. So if i works and finds nothing, the probability that he was just unlucky is arbitrarily close

to 1. This implies that i’s expected payoff conditional on this outcome is almost identical to the

expected payoff obtained if i shirked, which contradicts the optimality of working: by fabricating

or shirking, i can replicate at lower cost the expected payoff following any evidence obtained from

working.

Conditional on the empty message being the only message leading i+1 to work, f0i must be bounded

below by some constant f̂ which incentivizes i to work. The decrease in fKi is therefore at least

γif
K
i f∅, where f∅ = λf̂ > 0. Since i + 1 works following mi = ∅, we have fKi+1 ≥ fK and, hence,

fKi − fKi+1 ≤ ε. This implies that

γi ≤
ε

fKi f∅
.

Second, suppose that some nonempty messages prompt i+ 1 to work, and let `
¯

denote the infimum

value of `(mi) across all nonempty messages prompting i+ 1 to work.

If `
¯
≥ L for some large constant L, any message that i sent causing i+ 1 to work is L times more

likely to have been fabricated than having come from real evidence. Let bi denote the probability

that i produces a message that leads i+ 1 to work, if i works. Notice that bi is bounded above by

1/`
¯
, because

bi =

∫
Mi(i+1 works)

dPr(mi|work) =

∫
Mi(i+1 works)

dPr(mi|frabricates)
`(mi)

≤ 1

`
¯

.

But if bi is negligible compared to (c−d)/(R+P ), then the event that i produces nonempty messages

prompting i+ 1 to work is negligible from i’s perspective, and thus not enough to incentivize i to

work. Therefore, the only possibility is that mi = ∅ also prompts i+ 1 to work and we are back to

the previous case.
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Therefore, there is a threshold `∗ that only depends on c, d and (R+P ), such that if `
¯
≥ `∗ we are

essentially in the first case.

Finally, consider the case `
¯
< `∗. Then from (5), the decrease in fKi is at least γif

K
i f̂ , where

f̂ = 1/(1 + `∗). Since the decrease is no larger than ε, this implies that

γi ≤
ε(1 + `∗)

fKi
.

Letting γ̂ = max{1 + `∗, 1/f∅} proves the lemma.

Lemma 4 fK = 0.

Proof. Suppose on the contrary that fK ≥ δ > 0, and consider any history where i works and

fKi ≤ fK + ε for ε suitably small to be chosen later. From Lemma 3, γj ≤ ε γ̂δ for all j ≥ i. In

particular, from i’s perspective, the probability that some investigation takes place at any given

round j > i is of order ε. Because the number of investigation rounds after round i is potentially

unbounded, however, the probability of investigations in at least one round j > i could a priori be

non-negligible.

Let βj denote the probability that j finds new evidence, conditional on j’s information. We will

prove that Ei[
∑

j>i βj ] is of order ε. For ε small enough, it will show that i cannot be incentivized

to work.

To prove this result, consider any j > i. If γj = 0, then clearly βj = 0, so suppose instead that

γj > 0 and, for any nonempty evidence m ∈ Mj that j may produce in equilibrium, let γj(m)

denote the probability that j produces m conditional on A, and let αj(m) denote the probability

that j fabricates m (this is unconditional on A, since this only depends on the j’s randomization

strategy, which only depends on past reports mj−1
1 .5

We can rewrite the Bayesian updating equation (5) as

fKj − fKj+1(m) = fKj
γj(m)

γj(m) + αj(m)

The probability that j finds evidence is

βj =
∑

m∈Mj\{∅}

γj(m).

5The argument is stated here when the set of pieces of evidence is countable. The argument is easy to modify by

using distributions if Mj is a more general space.
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Combining the previous two equations and using that fKj ≥ δ, we have

βj ≤
1

δ

∑
m∈Mj\{∅}

(fKj − fKj+1(m))(γj(m) + αj(m)) =
1

δ
Ej [(f

K
j − fKj+1)1mj 6=∅] ≤

1

δ
Ej [f

K
j − fKj+1]

Therefore,

Ei[βj ] ≤ Ei[
1

δ
Ej [f

K
j − fKj+1]] = Ei[

1

δ
[fKj − fKj+1],

where the inequality follows from the law of iterated expectations.

Recalling that ĩ ≥ i denotes the last j who works with positive probability, this person is random

from i’s perspective, but we have

Ei

∑
j>i

βj

 = Ei

 ĩ∑
j=i+1

βj

 = Ei

 ĩ−1∑
j=i+1

βj + βĩ

 .
From (3), we have βĩ ≤ γĩ ≤ ε

γ̂
δ .

For j < ĩ,

Ei

 ĩ−1∑
j=i+1

βj

 ≤ 1

δ
Ei

 ĩ−1∑
j=i+1

fKj − fKj+1

 =
1

δ
Ei
[
fKi+1 − fKĩ

]
≤ ε

δ

Combining this yields

Ei[
∑
j>i

βj ] ≤ ε
γ̂ + 1

δ

which shows that i’s incentives to work are of order ε, contradiction the assumption that i worked,

for ε small enough.

This proves that for all ε > 0 small enough , there is a history and an i such that i) fKi ≤ ε and ii)

i works. The rest of the proof focuses on such histories where ε wi;ll be chosen small enough below.

We wish to prove a result similar to 4 for all k ≤ K, and will proceed by induction.

Suppose that K > 1 and let fK−1 denote the infimum of fK−1i over all i’s and histories for which

fKi ≤ ε and i works.

Lemma 5 fK−1 = 0.

Proof. Suppose on the contrary that fK−1 > δ. By Bayesian updating, we have for mi 6= ∅

fK−1i+1 (mi) =
fK−1i αiPr(mi|fabricate) + 1|mi|=1f

K
i γiPri(mi|work,A)

αiPr(mi|fabricate) + γiPri(mi|work,A)
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Therefore,

fK−1i − fK−1i+1 (mi) =
(fK−1i − fKi 1|mi|=1)γiPr(mi|work,A)

αiPr(mi|fab) + γiPr(mi|work,A)

For ε less than δ, the numerator is always positive, so fK−1i decreases.

For mi = ∅, we have as before, still letting σi denote the probability that i shirks and λi ≥ λ > 0

denote the probability conditional on A that i finds any remaining evidence if some exists if i works.

From Bayes’ rule, we have

fK−1i+1 (mi = ∅) =
fK−1i (σi + γi(1− λK−1i ))

σi + γi[f0i + (1− f0i )(1− λi)]

Rearranging yields

fK−1i − fK−1i+1 = γif
K−1
i

λif
0
i + (λK−1i − λi)

σi + γi[f0i + (1− f0i )(1− λi)]
. (8)

Noticing that λK−1i ≥ λi − ε ≥ λ− ε because

λi =

∑K
k=1 f

k
i λ

k
i∑K

k=1 f
k
i

and fKi ≤ ε and λK−1i ≥ λki for k ≤ K − 1. and the denominator is less than 1, we conclude that

the drop in fK is bounded below

fKi+1(∅)− fKi ≤ −γifKi λf0i . (9)

This proves a version of Lemma 2 for K − 1, which holds for all histories such that fKi ≤ ε where ε

is chosen to be small relative to λ. It follows that a version of Lemma 3 and, subsequently 4 holds

for all such histories.

Proceeding by induction, there exists a history for which i works, but fki = O(ε) for all integers

k ∈ [1,K]. Now consider i’s situation: over A, the probability that more evidence can be discovered

is of order ε and hence negligible. But over Ac, there are two cases: either more than K pieces have

already been discovered with probability arbitrarily close to 1, so the probability of discovering

even more is less than ε (by our choice of A), or there is a nonnegligible probability that strictly

fewer than K pieces have been discovered already, but in this case this should be the case as well

if exactly K pieces were generated, by Assumption 4, which would imply that conditional on A,

f0i bounded above away from 1 by a fixed constant, contradicting the fact 1− f0i =
∑K

k=1 f
K
i is of

order ε.

This proves that i has no incentive to work, which brings the desired contradiction.
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6 Extensions

Joint investigation and fabrication

As the proof makes clear, there is no change in the result if investigators are allowed to fabri-

cate/falsify/misreport evidence after a serious investigation. This result should be clear for two

reasons. First, allowing this possibility only increases the set of possible deviations relative to

work. Second, as the proof illustrates, what matters for the argument is whether i ever benefits

from learning something about the truth, and the answer is that he does not be benefit from it.

This result does not change if i can manipulate his report afterward.

Altruism towards other investigators

The result holds without change if an investigator cares about other investigators’ utility, as long

as the resulting utility is still uniformly bounded. Formally, such altruism would only alter the

compensation function.

Intrinsic motivation

The result is also unchanged if an investigator cares about other investigators’ reports, above and

beyond any material reward or punishment that comes with it. For example, an investigator may

be pleased if subsequent investigators follow his opinion or may take pleasure in contradicting a

past investigator, making an “original” report, etc. All these considerations are already captured

by a compensation function that depends on all reports

Random ordering of investigators

Suppose that the ordering of investigators is only revealed sequentially: an investigator doesn’t

know the identity and compensation scheme of future investigators. These considerations do not

affect the analysis, because what matters for the argument is how to interpret past evidence: as

long as an investigator knows the equilibrium strategy of past investigators, which is conditional

on their knowledge at the time, something which the later investigator can reconstruct, he can

interpret past evidence correctly.

The forward looking part of the analysis concerns only the probability that future investigators will

uncover evidence, and this bound does not depend on the order of future investigators, or on their

particular compensation scheme.
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7 Discussion: Overturning the result

7.1 The role of ethical behavior

One of the key assumption is that an investigator’s compensation does not directly depend on the

true state of the world ω.

In some context, the investigator may have no material benefit from the truth, but may still care

about it for other reasons. For example, a medical researcher may genuinely wish to learn more

about a disease and its treatment; a police officer may genuinely care about find the real culprit of

a crime, etc.

Such ethical behavior can circumvent the conclusion of Theorem 1. Moreover, these effects can

be combined: for example, if investigator 2 is ethical, then not only will he contribute to learning

about the fact, but his report may also be used to incentivize investigator 1 to work. The strength

of these effects depends on i) the number of ethical investigators and ii) other investigators’ belief

about this number.

If investigators are sufficiently patient and/or punishment and rewards are sufficiently extreme,

then even a small chance that some future investigators be ethical can suffice to incentivize amoral

ones.

In general however, if punishment and rewards are limited, the expected number of ethical inves-

tigators must be sufficiently large to incentivize amoral investigators.

This observation leads to several issues.

First, the extent to which people behave correctly depends critically on how ethical they think others

are: if no one believes in the existence of ethical agents, then it may be impossible to sustain any

equilibrium in which societies and organization can learn about the type of facts studied here. In

particular, public declaration undermining the public’s trust in officials’ standards of ethic may be

particularly damaging, as may be educations purely based on the belief that agents are completely

amoral.

Secondly, to the extent that ethical agents do exist, it may be critical to select them for the type

of investigations studied in this paper. Law enforcement officers, prosecutors, judges, scientists,

and experts of various sorts may need to exhibit an ethical sense. It may be important to divert

amoral individuals away from these professions and from this perspective, lucrative professions

which appeal to greedy or amoral individuals may paradoxically serve a useful purpose, by diverting
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these individuals from the type of tasks where moral behavior is needed.

Material reasons to care about the truth

When interactions are repeated, investigators may care about the truth per se even if they are

self interested. For example, someone asked to learn about a disease may care that this disease

affect him in the future, which makes the dependence of the truth explicit in his objective function.

Similarly, an executive trying to learn about the strengths and weaknesses of his firm may value

the answer because of its direct relevance for the firm profitability in the future

Such situations stands in sharp contrasts with a criminal investigation where the police officer

assigned to the case has presumably little direct material interest in learning who committed the

crime, or a judicial opinion where the judge is very unlikely to be materially affected by the verdict

on a defendant.
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