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Varieties of Risk Elicitation ∗

by Daniel Friedman, Sameh Habib, Duncan James, and Sean Crockett†

January 31, 2018

Abstract

We explore a variety of risk preference elicitation procedures that involve direct choice from a

set of lotteries, including budget lines (BL) and binary choice lists (HL). We find statistically

significant violations of the expected utility hypothesis (EUH) consistent with disappointment

aversion, and also find violations of first order stochastic dominance, but both sorts of violations

are mostly small and only slightly impair the predictive power of a parametric implementation

of EUH. The estimated coefficient of relative risk aversion, gamma, varies widely across indi-

vidual subjects (consistent with EUH) and also across elicitation tasks (inconsistent with direct

implementation of EUH). An alternative nonparametric measure of risk preferences displays

similar patterns. The two risk preference measures are highly correlated with each other for

each elicitation task. Each separate measure varies widely across individual subjects and across

elicitation tasks, with low to nil correlation between BL tasks and HL tasks. Some of the vari-

ation across tasks can be explained by attributes such as graphical vs text representation that

have no role in decision theory.
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1 Introduction

Over the last six decades, economists have proposed a wide variety of methods to elicit individual

subjects’ risk preferences. The methods, of which there are now many dozens, share the same

ultimate scientific goal: to predict out-of-sample risky choice behavior at the population level and,

if possible, at the individual level (e.g., Smith, 1989, Friedman, Isaac, James, and Sunder, 2014).

In this paper we pursue a key intermediate goal: to compare subject behavior across elicitation

methods. After all, if one can not predict choices in a different laboratory elicitation task, there is

little hope of predicting risky choice behavior elsewhere. We will compare population distributions

of risk preference estimates across elicitation tasks, and will examine within-subject consistency.

Our focus is direct choice methods. That is, in every elicitation task we consider, individual

subjects directly choose a particular lottery from some given feasible set of lotteries; there is no

bidding, asking, or strategizing at any point in any procedure. To promote comparability and

consistency, we construct feasible sets that hold constant across elicitation tasks the key decision-

theoretic variables such as price and probability. Of course, the elicitation tasks also differ in the

ways that they present these variables. For example, some tasks convey price and probability

information via text, while other tasks convey the same information via spatial displays, such as a

budget line.

Section 2 below surveys some relevant literature and positions our contribution. Section 3

obtains theoretical predictions, some of them slightly novel. Our point of departure is the expected

utility hypothesis (EUH): a subject’s risk preferences can be represented via the expectation of a

personal Bernoulli function that remains stable across time and contexts. We derive implications

when feasible lotteries lie on a budget line defined for two Arrow securities. We show that a scalar

variable, which we call L, is a sufficient statistic for the prices and probabilities of the Arrow

securities, and that the coefficient γ of relative risk aversion is an attractive index of a subject’s

risk preferences. After noting stronger implications for the special case of constant absolute risk

aversion, we derive implications for two specific alternatives to EUH, Disappointment Aversion and

Prospect Theory. We also obtain results on stochastic dominance that apply to these and many

other alternatives to EUH.

Section 4 lays out the design of our experiment. It presents our budget line (BL) screen display,

as well as alternative non-spatial displays called budget jars (BJ and BJn) that offer precisely the

same sets of feasible lotteries at the same sets of Arrow prices and probabilities. It also shows how

the Eckel-Grossman task (Eckel and Grossman, 2002, 2008) can be displayed spatially as a set of
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six discrete points on a budget line, and how each line from a Holt-Laury multiple price list (Holt

and Laury, 2002) can either be displayed as two points on a budget line or as a text line with two

radio buttons. The section then lays out the way we structure a set of 56 trials for each subject.

Each of our 142 subjects completes 5 of the 6 elicitation tasks with either prices or probabilities

appearing in each block of trials in monotone or random order, in a balanced manner.

Section 5 presents the results. We find statistically significant violations of the EUH consistent

with disappointment aversion, and also find violations of first order stochastic dominance, but both

sorts of violations are mostly small and only slightly impair the predictive power of CRRA relative

to DA. Both γ and RRP, a new nonparametric measure of individual risk aversion, vary widely

across individual subjects (consistent with EUH) and across elicitation tasks (inconsistent with

direct implementation of EUH). The risk aversion measures RRP and γ are highly correlated with

each other within each elicitation task; each separate measure shows fairly high correlations for

repetitions across the same task and across isomorphic tasks. Other correlations are low, and are

low to nil between BL tasks and HL tasks. Some of the variation across tasks can be explained by

attributes such as graphical vs text representation that have no role in decision theory.

2 Relevant Literature

A principal goal of our paper is to assess how design attributes of elicitation tasks influence risk

preference estimates, including attributes central to decision theory (such as prices and probabilities)

as well as other attributes (such as the format for presenting the task) deemed irrelevant by decision

theory. We now review prior work with that goal in mind.

Auction Bids. Subjects’ bids in First Price Sealed Bid (FPSB) auction and knowledge of

their induced values imply, through the lens of a particular bidding model (such as the Constant

Relative Risk Averse Model), specific values of their CRRA risk parameter γ.1 The research program

including Cox, Roberson, and Smith (1982) and Cox, Smith, and Walker (1988) presents theory

and empirical estimates. FPSB tends to generate γ estimates suggestive of risk aversion.

Alternatively, one can make inferences about subjects’ risk preferences from their bids in a

second price sealed bid auction (SPSB) or, in perhaps more familiar language, from variants of

the BDM procedure. The original version in Becker, DeGroot, and Marschak (1964) amounts to

setting a reserve price for selling the lottery in a second price auction with automated bidders; it

tends to generate gamma estimates on the risk-seeking side. A minor variant called buying-BDM
1The logic is similar to that of solving for implied volatility, given market prices and option contract specifications,

using a particular option pricing model such as (Black and Scholes, 1973).
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tends to generate gamma estimates on the risk-averse side; both of the preceding are documented

by Kachelmeier and Shehata (1992). Dual-to-selling and dual-to-buying versions can also be con-

structed, as by James (2011); dual-to-selling responses tend towards risk aversion, while dual-to-

buying responses tend towards risk-seeking.

Direct Choice. Another class of elicitation methods directly asks the subject to choose one

lottery from a menu of lotteries. Binary choice (Hey and Orme, 1994) and choice from longer menus

of lotteries (as in Binswanger, 1980, Eckel and Grossman, 2002, 2008) are examples of direct choice

methods. Another example is choice from a budget line consisting of all affordable combinations of

Arrow-Debreu state dependent securities, as in Choi, Fisman, Gale, and Kariv (2007), or Andreoni

and Harbaugh (2009) or Andreoni, Kuhn, and Sprenger (2015). Although it does not explicitly

display a budget line, the investment game of Gneezy and Potters (1997) also falls into this category,

as noted in Section 4.1 below. Taken one row at a time, the well-known multiple price list of Holt

and Laury (2002) is an instance of binary choice, but overall — with all rows present at the same

time and with random selection of a single row for payment — it also fits another category; we shall

return to this shortly.

Inconsistency across elicitation tasks. Lichtenstein and Slovic (1971, 1973) is an early

attempt to cross-reference risky choice behavior across different elicitation tasks. They compared

subject behavior in (a) direct choice between two lotteries (i.e. binary choice) and (b) numerical

valuation of those lotteries by means of selling-BDM. They found a great deal of inconsistency —

self-contradiction, in fact — in subject behavior across the two different procedures. Subsequent

study and attempted resolution of those inconsistencies since then is known as the literature on

preference reversals. Collins and James (2015) demonstrate that replacing selling-BDM with dual-

to-selling-BDM eliminates a majority of reversals, and that those remaining fit the pattern predicted

due to the model of noise in response behavior model of Blavatskyy (2014).

Isaac and James (2000) provide another striking example of apparently inconsistent individual

behavior across elicitation tasks. Subjects in their study who appear risk averse in the FPSB task

often seem risk seeking in the selling-BDM task, and vice versa. This result — the scrambling

of subjects’ gamma estimates across different procedures — remains an intriguing result, and one

which has received much subsequent support (e.g. Berg, Dickhaut, and McCabe, 2005, Loomes and

Pogrebna, 2014, Sprenger, 2015, Pedroni, Frey, Bruhin, Dutilh, Hertwig, and Rieskamp, 2017).

Equivalent Procedures. From a decision-theoretic standpoint, the Holt-Laury multiple price

list procedure is equivalent to the dual-to-selling version of BDM (James, 2011), which is in turn

related to Grether (1981) if the latter is applied to comparison between two lotteries, each with
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unknown probabilities (as is done by Crockett and Crockett, 2018). This equivalence was antici-

pated, though not specifically identified, by Freeman, Halevy, and Kneeland (2016), who pointed

out that paying one row of Holt-Laury, randomly selected, rendered Holt-Laury subject to the same

non-EUT critique applied to selling-BDM by Karni and Safra (1987). In other words, Holt-Laury

implemented with pay-one-randomly (POR) payment protocol (Cox et al., 2015) is a form of BDM.

The various balloon (Lejuez, Read, Kahler, Richards, Ramsey, Stuart, Strong, and Brown,

2002) or bomb elicitation (Crossetto and Filippin, 2013) tasks, experiencing some popularity at

present, are equivalent to an N=2 FPSB auction. This is because the task of uncovering a zero-

payoff absorbing state while being paid in a linearly increasing manner for exploration, up to but

short of discovering that state, is payoff equivalent to pitting the human subject against a random

draw from a uniform density [Vlower, Vupper], where the latter is actually Nash play in an N=2

FPSB. (The robot bidders used in Cox, Smith, and Walker (1988) did just this, albeit with N>2.)

Supposed Irrelevancies. Decision theory, for example using the formalism of mechanism

design, can be used to classify the different elicitation procedures (e.g., Hurwicz, 1972, Smith, 1976).

For example, FPSB and SPSB (and thus BDM procedures) have different cost rules and induce

different strategies. (Of course, if subjects have stable preferences, these should still be recoverable

from either and consistent across both procedures.) Conversely, two institutions identical in cost and

allocations rules, and thus in the predicted mapping from endowments and preferences to behavior,

may have differences in practical implementation. For example, FPSB and the Dutch auction have

identical cost and allocation rules, but differ in transition rules, and empirically generate different

behavior (Cox, Roberson, and Smith, 1982) despite predicted revenue equivalence (at least given

agents who correctly perform Bayesian updating).

Yet more subtle differences in implementation exist, and may affect behavior (again, despite

theoretical predictions to the contrary). For example, the response mode (see Section 4.1) afforded

the subject by the experimenter may shape the subject’s responses. Or the manner in which

information is presented to the subject may affect behavior, even when holding response mode

constant. For example, Habib, Friedman, Crockett, and James (2017) find that spatial (volume)

representation of payoff and probability information in the Holt-Laury task supports different (less

risk averse) behavior than text representation of the same information; this is despite algebraic and

response mode (direct choice via radio button) equivalence across the two versions of the task.

Even the pattern (or lack thereof) in the way in which the exogenous parameters of the ex-

periment are run past the decision-making agent might change behavior. Lévy-Garboua, Maafi,

Masclet, and Terracol (2012) find that behavior in Holt-Laury is different depending on whether
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the rows, and thus state probabilities, of the Holt-Laury task are presented in a monotone order

(i.e., Ph = 0.1 is followed by Ph = 0.2, 0.3, ...) or in a random sequence. Specifically, behavior is

closer to risk neutrality when the rows of the task are presented in monotone order. Our experiment

will revisit these and other effects deemed irrelevant by decision theory.

Positioning the present paper. There is a vast literature on testing the implications of par-

ticular generalizations of the expected utility hypothesis, and another vast literature on searching

for some "best" elicitation method. Neither of these is an appropriate context for what we attempt-

ing in this paper. Rather, we seek regularities in cross-method (in)consistency. Our comparisons

of individual risk preference parameters elicited across different procedures use only the simplest

possible cost and allocation rule — direct choice from a given set of lotteries — in order to isolate

the effects of the presentation format.

3 Theoretical Predictions

In all risk preference elicitation tasks that we consider, a subject chooses an allocation (x, y) from

a compact feasible set F of Arrow securities. As the notation suggests, we assume two mutually

exclusive possible states, X and Y, with known probabilities πX > 0 and πY > 0 with πX +πY = 1;

a chosen allocation (x, y) pays x points in state X and y points in state Y.

According to the Expected Utility Hypothesis (EUH), each human subject has her own fixed

Bernoulli function, i.e., a smooth (twice differentiable) and strictly increasing function u : R → R,

defined up to a positive affine transformation. The EUH further states that the subject’s choice

(x∗, y∗) solves

max
(x,y)∈F

πXu(x) + πY u(y). (1)

The art of elicitation is for the experimenter to choose the feasible set F (or a sequence of F ’s)

so that subjects’ choices reveal key aspects of their Bernoulli functions u. For some elicitation tasks,

the feasible set is a standard budget set: non-negative bundles that are affordable. Since u′ > 0,

there is then no further loss of generality in replacing F by the budget constraint

pxx+ pyy = m, (2)

where m is an (implicit or explicit) endowment of cash, and px > 0 and py > 0 are the prices of the

two Arrow securities. In all elicitation tasks that we study, F is a subset (sometimes a finite subset)

of points satisfying (2). We normalize prices so that px+py = 1; this jibes with the convention that
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a unit of cash is the portfolio (1,1).

The first order conditions for optimization problem (1)-(2) can be written out in terms of the

Lagrange multiplier λ for (2) as

λ =
πY
py
u′(y) =

πX
px
u′(x), (3)

or as

MRS =
u′(x)

u′(y)
=
πY
πX

px
py
, (4)

or as

ln
u′(x)

u′(y)
= −[lnπX − lnπY − ln px + ln py] ≡ −L (5)

Thus, for whichever Bernoulli function u a subject may have, the EUH implies that
1. An interior choice (x, y) is determined by ratios of state prices and probabilities.

2. The composite variable L = lnπX − lnπY − ln px + ln py is a sufficient statistic for prices and

probabilities. Equation (5) holds at interior solutions, and corner solutions are also defined by

L: corner (mpx , 0) is chosen if ln
u′( m

px
)

u′(0) ≥ −L, while corner (0, mpy ) is chosen if ln u′(0)
u′( m

py
) ≤ −L.

3. When regressing log marginal rate of substitution on log price ratio and log odds, the coeffi-

cients should be equal in magnitude with opposite signs.

We will soon see that some popular generalizations of EUH obey similar rules. But first we note

that we can say more in important special cases.

3.1 Special cases

For a risk neutral agent we have u′(x) = u′(y) = constant, and (3) becomes

πY
py

=
πX
px
. (6)

Equation (6) can only be satisfied if L = 0. Otherwise we’ll get a corner solution where the risk

neutral person spends her entire budget on the asset with higher probability/ price ratio, viz. x∗ = 0

if L < 0 and y∗ = 0 if L > 0.

CRRA, a widely used parametric family of Bernoulli functions, sets u(c|γ) = c1−γ

1−γ where the

parameter γ ≥ 0 is the coefficient of relative risk aversion. (For γ = 1 the function is log utility, as

can be seen using L’Hospital’s rule.) Here u′(c) = c−γ , so MRS = [xy ]
−γ . Inserting this into (4) and

taking logs yields

ln
x

y
=
−1
γ

[lnπY − lnπX − ln py + ln px] =
1

γ
L. (7)
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That is, regressing log-odds of the chosen allocation on L will directly reveal (as the inverse slope) the

subject’s coefficient γ of relative risk aversion. Moreover, as separate regressors, all four components

of L (log prices and log probabilities) should have exactly the same coefficients, ±γ−1.

3.2 Generalizations of EUT

Gul (1991) presents a model with a free parameter β ≥ 0 intended to capture disappointment

aversion as a probability distortion in a two state world — people make choices as if maximizing

expected utility that assigns extra weight (by a factor of 1+β) to the probability of the less favorable

state. In our notation, the unnumbered equations near the top of Gul (1991, p. 678) say that the

indifference curve segments have slope

−dy
dx

= B
πX
πY

u′(x)

u′(y)
> 0, (8)

where B = (1 + β) if x < y (so X is the less favorable state) and B = (1 + β)−1 if x > y (so Y is

less favorable). Thus the indifference curve has a kink on the diagonal x = y, with -slope πX
πY

(1+β)

on the right and -slope πX
πY

(1 + β)−1 on the left.

Suppose, as is common in the subsequent literature, that the underlying Bernoulli function u

is CRRA with risk aversion coefficient γ > 0. The tangency condition − dy
dx = px

py
applies as usual

when the optimal choice is interior (not on the diagonal nor at a corner of the budget set). Writing

b = ln(1 + β), and recalling that in this case u′(x)
u′(y) = (xy )

−γ , we see that disappointment aversion

changes equation (7) to

ln
x

y
=

1

γ
[L− b] (9)

when L > b and so x > y. By symmetry, when L < −b, we again have a tangency but with x < y

and with −b replaced by +b in (9). For values of L ∈ [−b, b], a DA agent will choose at the kink in

the indifference curve where the diagonal x = y intersects the budget line. Of course, for extreme

values of L and sufficiently small parameters b and γ, corner solutions (on the x or y axis) are also

possible. Estimating equations (13) below will spell this out explicitly.

Prospect theory (Kahneman and Tversky, 1979) is another relevant generalization of EUH.

It has two main elements. The first is the Value function V , whose shape may change on either

side of a reference point. The natural reference point in our context is zero. In that case, V is

equivalent to a Bernoulli function. The second element is a probability weighting function w(πX),

whose “inverse-S shape” is intended to capture “diminishing sensitivity” to changes in probability

over the middle range of probabilities (e.g., Kahneman and Tversky, 1979, Tversky and Kahneman,
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1992, Camerer and Ho, 1994). Our experiment will focus on probabilities between πX = 0.3 and

0.8, for which
∣∣∣w(πX)
w(πY ) − 1

∣∣∣ < ∣∣∣πXπY − 1
∣∣∣; that is, Prospect Theory implies the diminished senstitivity

of individuals to changes in the relative probabilities of the two states. Thus, if Prospect Theory’s

weighted probabilities replace the objective probabilities in the tangency (and corner) conditions

developed earlier, then EUH implication 3 above must be modified to state that the coefficient on

objective log odds will have smaller magnitude than the coefficient on log price ratio.

3.3 Non-parametric summary statistic

We have seen that we can recover an estimate of a subject’s coefficient of relative risk aversion from

her responses to a budget line elicitation task. If her Bernoulli function is approximately CRRA we

can use equation (7), and if her choices are approximated by the DA model we can use (9).

For more general preferences over lotteries (and even for heuristics that are not consistent

with a preference relation), the estimated γ can still be regarded as an indicator of a subject’s

risk preferences, but it no longer has a precise interpretation. An agnostic researcher may prefer

some sort of nonparametric indicator, but we are not aware of any such statistic that is generally

accepted and is defined and comparable across a broad class of elicitation tasks. We considered

several possibilities and eventually settled on a normalized risk premium, defined as follows.

LetM = max(x,y)∈F πXx+πY y be the maximum feasible expected payoff in an elicitation task.

When L 6= 0, there is a unique point (xM , yM ) that achieves that maximum and would be selected by

a risk neutral agent. As usual, define µM = πXxM+πY yM and σ2
M = πX(xM−µM )2+πY (yM−µM )2;

note that σM > 0 in all our elicitation tasks. Let C = πXxC + πY yC be the expected payoff of the

subject’s actual choice (xC , yC) ∈ F . Then the revealed Relative Risk Premium is

RRP =
M − C
σM

(10)

if L 6= 0 and otherwise is 0. Thus RRP resembles a coefficient of variation or a Sharpe ratio, and

captures the agent’s willingness to forego expected payoff in order to reduce dispersion.

3.4 Stochastic Dominance

Suppose that πX = πY = 0.5 and px = 0.4 while py = 0.6. No matter what her risk preferences,

an agent facing these prices and probabilities should never choose a point on the budget line with

x < y. For example, suppose she considered choosing (x, y) = (7.5, 15), exhausting her budget

m = 12. Since the states are equally likely, she’d be just as happy with (15, 7.5), no matter what
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her Bernoulli function is. But the portfolio (15, 7.5) costs only 10.5, so she could afford to spend

1.5 more on either Arrow security (or both) and be strictly better off than at (x, y) = (7.5, 15).

The general result is expressed in terms of first order stochastic dominance (FOSD). Recall that

lottery A (strictly) FOSDs lottery B iff FA(x) ≤ FB(x) for all x, with strict inequality for some x.

The definition refers to the cumulative distribution function FZ(x), the probability that the realized

payoff in lottery Z is no greater than x. Recall also (e.g., Mas-Colell, Whinston, and Green (1995),

p. 195) that every expected utility maximizing agent prefers lottery A to B iff A FOSDs B.

Proposition 1 A choice (x, y) on the budget line (2) is strictly first order stochastically dominated

by another choice on the same budget line iff

a. one Arrow state (e.g., X) is more likely and its security is less expensive (e.g., πX ≥ πY and

px ≤ py), with at least one of these comparisons strict; and

b. the choice includes strictly less of the less-expensive-more-likely security (e.g., x < y).

See Appendix A for a proof. The Proposition tells us that every choice on the budget line can

be rationalized by some Bernoulli function if the more likely state has a higher price, or if L = 0.

But some choices will be dominated when prices are equal and probabilities differ, or the reverse,

and when the more likely state has a lower price.2 In those cases, we can test for the rationality

of subjects without committing to a functional form. For example, in Figure 1 below, the budget

line crosses the diagonal at (400, 400)/9; any choice on the budget line with x > 400/9 is strictly

dominated by an interval of choices with x < 400/9.

4 Laboratory Procedures

We first present the six general elicitation tasks used in our experiment. Then we lay out our

within-subjects design and implementation details.

4.1 Elicitation Tasks

Budget line (BL). One task is to choose from a simple budget line in the tradition of Choi et al.

(2007), as in Figure 1. The subject sees the state probabilities and (x, y) coordinates in text, while

the state prices and the cash endowment are implicit in the slope and intercepts of the displayed
2The proof readily extends to cover many extensions of expected utility, including prospect theory with symmetric

probability weighting and also disappointment aversion.
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Figure 1: In treatment BL, the subject chooses an allocation of Arrow securities by clicking any
point on a given budget line, then clicking Confirm bar (not shown). Text box shows values (x, y)
at clicked point, here (14, 82.5). Axis labels note πX and πY ; here, each is 0.5.

budget line. Our task varies the price ratio from 0.23 to 1.23, and varies the X state probability

from 0.3 to 0.8.

Budget Jars (BJ and BJn). The interface for a new elicitation task is shown in Figure 2. The

task has precisely the same feasible set as the BL task but it uses a much different graphical display.

Subjects start with an explicit cash endowment (shown in green in the wide jar) and use sliders

on the other two jars to buy the two Arrow securities. The level in the cash jar decreases (resp.

increases) as the subject moves up (resp. down) the level in the red (security X) or blue (security Y)

jar, at a rate proportional to the price of that security. The text below the jars spells out the state

contingent payoffs (and state probabilities) at the current allocation. The subject clicks Submit bar

to finalize the current allocation.3

The Submit bar is grayed out (not clickable) until the cash jar is empty in treatment BJn. That

is, in this variant, cash must be exhausted. Note, however, that the set F of feasible allocations

(x, y) shown in the next to last column ("Total") is the same as in treatment BJ (where cash balance

can remain positive), and also the same as in treatment BL, for given state probabilities, prices and
3Proposition 1 implies that any choice involving a positive amount of a strictly more expensive security is first

order stochastically dominated when state probabilities are equal. Suppressing the more expensive jar to prevent
such choices would render the BJ task equivalent, from a decision theoretic perspective, to the Investment Game of
Gneezy and Potters (1997). With their parameters — endowed cash is 4.0 and intercept (wolog, with the x-axis) is
10 — the price ratio is 4/(10− 4) ≈ 0.667.
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Figure 2: In treatment BJ, subjects choose an affordable allocation (x, y) by moving the sliders on
the red and blue jars. The text below automatically updates so that x is shown in the “Total” column
in the Red row, and y is shown below it in the Blue row. Clicking the Submit bar finalizes the
allocation. In treatment BJn, the subject must empty the cash jar before the Submit bar becomes
active.

cash income.

Budget Dots: Eckel and Grossman (BDEG). Eckel and Grossman (2002, 2008) ask subjects

to chose an allocation (x, y) from a menu F of five or six possibilities, with equal state probabilities

πX = πY = 0.5. We modify their task by also considering unequal probabilities and by displaying

F as discrete points in a graph otherwise similar to Figure 1. The Eckel-Grossman menus typically

graph as in Figure 3a: equally spaced points on a budget line spanned by the more distant intercept

(for the cheaper security) and the perfectly hedged portfolio (x = y); the stochastically dominated

points are excluded.

Multiple price list (HL, BDHL). Perhaps the most widely used elicitation task in recent

years is the multiple price list in text format (e.g., Holt and Laury, 2002). Each row in the

text list has the same two allocations but different rows have different state probabilities. Our

HL treatments use Holt & Laury’s original pair of lotteries — (x, y) = (2.00, 1.60), called “safe,”

and (x, y) = (3.85, 0.10), called “risky” — and the six most relevant state probabilities, πX =

0.3, 0.4, 0.5, 0.6, 0.7, 0.8.4 Treatment HL stacks six rows of text, each row representing choice be-
4The original list also included lines for πX = 0.1, 0.2, 0.9, 1.0 but the vast majority of subjects choose the safe

lottery for the first two omitted probabilities and choose the risky lottery for the last two. To streamline our design,
we omit these four items; see Habib, Friedman, Crockett, and James (2017) for insight into the impact of such
omissions.
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Figure 3: Discrete budget dots. Axis labels note πX and πY ; here, each is 0.5. (a) In
treatment BDEG, the subject chooses an allocation of Arrow securities by clicking one of
the six large dots on the given budget line, then clicking Confirm bar. (b) In treatment
BDHL, subjects click one of two dots representing the two feasible HL allocations.

Figure 4: In treatment HL, subjects click a radio button to choose between two feasible allocations
in each line; the X state probability (here 0.40) increases by 0.10 from one line to the next.

tween two lotteries as in Figure 4, with πX = 0.3 in the top line increasing by 0.1 in each successive

line and πY = 1 − πX . Treatment BDHL takes the lotteries from one row (i.e., with a particular

πX value) from HL and displays the two feasible choices graphically, as in Figure 3(b), where the

implicit price ratio is p = −∆y
∆x = 1.60−0.10

3.85−2.00 ≈ 0.81. As further described below, successive trials

vary the probabilities while keeping the price constant, and some sets of trials use an implicit price

of .58 instead of the original 0.81.

4.2 Experimental Design

Each subject faces a total of 66 lottery choices, organized into 11 blocks. The first and last block

for each subject is the six-line HL elicitation task with p = px
py

= 0.81; unless otherwise noted, the

analysis below treats each of these blocks as a single trial. The other blocks consist of six consecutive

trials, each with a single lottery choice. The middle block (block 6 of 11) for each subject is always

the BL task with π = 0.5 and price sequence p = 0.23, 0.58, 0.81, 0.93, 1.00, 1.23. The remaining

blocks (2-5 and 7-10) use other elicitation tasks, but within each block the task is held constant.
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Figure 5: Experimental Design Summary. Sessions are balanced across several design dimensions:
fixed price vs fixed probability, order of the two levels at which price or probability is fixed, monotone
vs random sequencing of varying price (or probability), and treatment order across blocks.

We place equal numbers of subjects in two sorts of sessions: fixed price and fixed probability,

according to the design of blocks 2-5 and 7-10. As summarized in Figure 5, half of the fixed price

sessions keep price at .81 in blocks 2-5, and keep it fixed at .58 in blocks 7-10, while the two fixed

prices are flipped in the other half of these sessions. Within each block of these fixed price sessions,

each of the six probabilities (from πX = 0.3 to 0.8) is used once. In half of these sessions a monotone

increasing sequence of probabilities is used in blocks 2-5, while random sequences are used in blocks

7-10. In the other sessions random sequences are used in blocks 2-5 and the monotone sequence is

used in blocks 7-10. Each fixed price session uses the elicitation tasks BL, BDHL, BJ, BJn once

each in the first four blocks and once each in the last four blocks. Of the 4! = 24 possible task

sequences that could be employed before (or after) the middle block (6), we selected a balanced

subset denoted Order1 thru Order6, and used them with equal frequency.

In the fixed probability sessions, we similarly keep πX fixed at 0.5 in blocks 2-5 and at .65

in blocks 7-10, or the reverse. Within each of these blocks we present the six varying prices p =

px
py

= 0.23, 0.58, 0.81, 0.93, 1.00, 1.23 in monotone increasing sequence or in random sequence, and

use Order1 through Order6 for the elicitation tasks across the monotone blocks. The set of four

tasks in these sessions is the same as in the fixed price sessions except that BDEG (which requires

fixed probabilities) replaces BDHL (which requires fixed prices).
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4.3 Implementation

A total of 142 subjects from the LEEPS lab subject pool participated in 18 sessions between October

2016 and March 2017. After subjects read instructions (a copy is attached as Appendix C) privately

the conductor explained the mechanics of each elicitation institution and allowed subjects to make

practice decisions prior to the paid trials.

Each subject was paid for a single trial, determined by a ball drawn from a bingo cage with

56 numbered balls. If ball 1 or ball 56 came up, indicating a HL trial, then a roll of a six sided

die determined the relevant line. The subject then rolled a ten-sided die to determine which state

(X or Y) of the chosen lottery paid that period. Each session lasted about 60 minutes, and the

final payments [min,max] range, including $7 show-up fee, was $[7.00, 17.00], with average payout

roughly $10.

5 Results

To provide perspective on subsequent data analysis, we begin with the four scatterplots in Figure

6, each showing all choices in Blocks 2-10 for a single subject. The log allocation ratios for each

choice are plotted against the log price - log odds composite variable L; open squares are used for

the budget jar task (or open circles when there is a no-cash constraint), triangles for budget line

task, and plusses for the relevant budget dot task. For reference, the solid line graphs what equation

(7) predicts for a expected utility maximizer with the original Bernoulli function u(c) = ln(c). The

dashed line plots risk-neutral optimal choices, while the dotted line plots the choices of an otherwise

risk-neutral person with an interval of disappointment aversion.

The subject in Panel (a) could be characterized as a noisy CRRA expected utility maximizer

with γ close to 1. Panel (b) shows another subject in a fixed probability session who, in 53 of 54

trials, maximized expected value (as in CRRA with γ = 0). Panels (c) and (d) show two different

subjects in fixed price sessions who seem like noisy disappointment averters in the budget dot task

(here BDHL), but who diverge in the other tasks (towards γ = 1 or γ = 0, respectively). These

four examples exhibit only a small slice of our 142 subjects’ diverse behavior.

Stochastically dominated choices in Figure 6 appear in the second or fourth quadrant, where L

and lnx/y have opposite signs.5 We see seven choices in those quadrants in panel (c) of the Figure,
5The converse is false: not all choices that plot in those quadrants are stochastically dominated. For example,

a choice with y > x is not a FOSD violation when ln
py
px

> ln πY
πX

> 0 even though that choice plots in the fourth
quadrant. On the other hand, choices consistent with CRRA, or with most other common parametric Bernoulli
functions, never plot in the second or fourth quadrant.
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(a) (b)

(c) (d)

Figure 6: Choices (truncated at lnx/y = ±4.0) for four subjects. Actual choices by
elicitation task are plotted with open symbols, and theoretical predictions are plotted with
lines, sorted according to L = lnπX − lnπY − ln px + ln py. Log refers to CRRA model
with γ = 1, RN refers to risk neutral choice (γ = 0), and DA refers to the disappointment
averse model with b = 0.5 and γ = 0.
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but rather few in the other panels; in most such cases, we are close to the quadrant boundaries.

Table 1 takes a more systematic look at violations of first order stochastic dominance (FOSD).

The feasible set F contains no dominated choices in the BDEG and BDHL tasks, so they are

omitted from the Table. The same is true for HL if we consider each row as a separate task, but

multicrossings in 6-line HL trials (i.e., in the first and last trials) are FOSD violations, and these

appear in the Table’s last column. The other columns report FOSD violations in the remaining

tasks, where Proposition 1 applies.

BL BJ BJn HL
Opportunities 2196 1438 1399 284
Violations 309 424 508 27

(Random) 872 571 558 257
Major Violations 16 9 19 -

(Random) 258 209 201 -

Table 1: Violations of FOSD. “Opportunites" is the number of trials involving a task that allowed FOSD
violations. “Violations" are the number of trials in which subjects’ actual choices violated FOSD. “Random"
gives the expected number (to nearest integer) of violations given iid uniformly distributed random choices
in each task. A violation (x, y) at L is deemed "major" if L× ln(xy ) ≤ −1.

We distinguish between minor violations (as illustrated in the previous Figure) and “major”

violations, defining the latter as lying inside the rectangular hyperbola ln(xy )L = −1. Table 1 shows a

fair number of minor violations of FOSD but (by this criterion, chosen a priori), relatively few major

violations. Table B.5 in Appendix B looks at tighter criteria for major violations, and confirms that

a large majority of actual violations are tiny, due to clicking just a few pixels away from a sensible

choice. Subsequent analysis therefore will include all data including FOSD violations.

5.1 Prices and probabilities

Recall that implications 2 and 3 of standard decision theory predict that people will treat the

composite variable L = ln(πX) − ln(πY ) − ln(Px) + ln(Py) as a sufficient statistic for prices and

probabilities, and that they will react symmetrically to prices and to probabilities. Do actual choices

support those strong predictions?

To find out, we run regressions on pooled data of all 142 subjects. The dependent variable

is lnx/y, the log portfolio ratio of the actual choice, trial by trial. Of course, that variable is not

defined at corner choices, where lnx/y = ±∞. Therefore, the regressions reported below truncate

at lnx/y = ±4.0, i.e., we lump together all observations within exp(−4) ≈ 2% of a corner. The key
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regression is

ln(
x

y
) = αlo ln(

πX
πY

) + αlp ln(
Px
Py

) + ε, (11)

in which symmetry is imposed via the parameter restriction

αlo + αlp = 0. (12)

Dependent variable:ln(x/y)

(1) (2) (3) (4)

logOdds 1.288∗∗∗ 1.320∗∗∗ 1.390∗∗∗ 1.473∗∗∗

(0.080) (0.077) (0.070) (0.056)

logPrice −1.101∗∗∗ −1.130∗∗∗ −1.233∗∗∗ −1.334∗∗∗
(0.082) (0.079) (0.078) (0.079)

Observations 5,964 6,804 7,668 9,372
R2 0.430 0.441 0.460 0.477
F-stat 16.16∗∗∗ 18.78∗∗∗ 13.48∗∗∗ 12.02∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Estimates of Equation (11), with errors clustered at subject level. Column 1 data includes
only BL, BJ and BJn trials. Column 2 also includes BDEG trials, and column 3 includes BDHL
trials as well. Column 4 also includes the HL list data, with each line treated as a separate trial.
F-stats are for the parameter restriction (12).

Table 2 presents the results for different subsets of the data. The F-tests strongly reject the null

hypothesis of symmetry in favor of the one-sided alternative that subjects respond more strongly

to probabilities than to prices. Note that this is the opposite direction from the “diminishing

sensitivity” prediction of Prospect Theory.

Still, the estimated probability (or log odds) responsiveness of about 1.3 or 1.4 is not dramati-

cally different than the price responsiveness of 1.1 to 1.3. Thus the theoretical prediction that L is

a sufficient statistic for the state prices and state probabilities misses a significant and unexpected

regularity, but is nevertheless a decent first approximation. Subsequent analysis will therefore often

use L to summarize the prices and probabilities.
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5.2 Disappointment Aversion

How important is the tendency (first noted in Choi et al., 2007) for subjects to pick almost perfectly

hedged portfolios, even when L is not very close to zero? To gain some insight, we estimate the

two parameter model introduced in Section 3.2. Recall that we seek to estimate the coefficient of

relative risk aversion γ as well as the disappointment aversion parameter b = ln(1 + β), using L as

an explanatory variable for the log choice ratio lnx/y.

The model says that a subject will choose a point on the diagonal x = y (where lnx/y = 0)

when L falls within a certain range defined by b. Applying the logic of Section 3.2, we obtain the

estimating equations

lnx/y = 0 if L ∈ (−b, b) (13)

=
1

γ
[L− b] if L ∈ [b, 4γ + b]

=
1

γ
[L+ b] if L ∈ [−4γ − b,−b]

= 4 if L > [4γ + b]

= −4 if L < −[4γ − b]

and use NLLS. That is, for a given subject (label suppressed), let R(L(π, p), b, γ) be the right-hand

side of (13). Then

(b̂, γ̂) = argmin
54∑
t=1

[l̃n xt/yt −R(Lt, b, γ)]2. (14)

The tilde in l̃n xt/yt is to remind us that that dependent variable is truncated at ±4.

Figure 7 compares the predictive power of that two parameter model to that of a simple CRRA

model (as in equation (7) or, equivalently, imposing the restriction b = 0 in equations (13 - 14)). For

each subject, we designate one of the observations as the prediction target, estimate both models on

the remaining 53 of the 54 observations, predict the target observation and compute the prediction

error for each model. The table reports squared prediction errors summed over all 54 possible

prediction targets.

The Figure shows that the majority of our 142 subjects have relatively small prediction errors

(SSE < 150) that hardly differ between the two models and so fall almost on top of the diagonal

line. The largest outlier has a larger DA error (about 500) than simple CRRA error (about 350).

The DA model does slightly better than the CRRA model with the subjects with largest SSE’s, but

(by definition) neither model predicts their behavior very well. See Appendix B for more analysis of
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Figure 7: Predictive power comparison. Vertical axis is sum of squared prediction errors (SSE) for
DA model (13 - 14), and horizontal axis is SSE for simple CRRA model (b = 0).

the two parameter model and more model comparisons. We conclude that we don’t sacrifice much

predictive accuracy by using the simpler (one-parameter CRRA) model in the analysis to follow.

5.3 Distributions of estimated risk aversion

We now disaggregate by both subject and task. To compute the parametric risk aversion measure

γ for tasks in the BL family, we return to our maintained hypothesis that prices and probabilities

enter only via the composite variable L, but now include task-specific interactive dummy variables

to detect differences across elicitation tasks. For each subject we estimate

ln(x/y) = (β1 + β2BJ + β3BJn)L+ ε, (15)

for the relevant seven blocks, which contain 42 observations: 18 from BL, and 12 each from BJ and

BJn. Revealed risk aversion then is computed from the resulting coefficient estimates via

γ̂iτ = 1/(β̂1 + β̂k), (16)

where k = 2 for treatment τ = BJ and k = 3 for τ = BJn. Of course, for the omitted treatment

τ = BL, the revealed value is just 1/β̂1.

We also obtain γ estimates from the six-line HL trials using the traditional crossover method, as
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Figure 8: (a) Cumulative distribution functions of γ̂iτ for all subjects. HL-co, BDHL-co, and BDEG-
adj estimates use standard crossover method, and other estimates use equations (15, 16). (b) Cumulative
distribution functions of RRP for all subjects.

follows. Let the subject cross from the safe allocation (2.00, 1.60) to the risky allocation (3.85, 0.10)

between rows k and k + 1, and let γj be the parameter value that would make a CRRA EU-

maximizing agent indifferent between the two allocations in row j. Then γ̂ = 0.5(γk + γk+1) for

that trial. For each subject we record γ̂HL−co, the mean γ̂ of the first and last trials. We also

compute γ̂ = 0.5(γk+γk+1) for each block of six BDHL trials the subject encountered in fixed price

sessions, and record the average γ̂BDHL−co over the two BDHL blocks for that subject. HL-co (or

BDHL-co) is not defined for subjects who never cross or who multicross in either HL trial (or in

any BDHL block).

The γ estimate for a single trial of BDEG of a fixed probability session is, as customary, the

average of two γ values: one for which a CRRA agent would be indifferent between the chosen dot

and the one above it, and one for which the indifference γ is between the chosen dot and the one

below. (For trials where the chosen dot is extreme, so there is either no dot above or else no dot

below, we simply use the γ algebraically implied by equation (7). For each subject, BDEG-adj is

the average over the 12 BDEG trials (two blocks of 6).

Panel (a) of Figure 8 collects the results for subjects in all sessions. The lowest γ estimates

come from the HL and BDHL tasks; both are approximately uniformly distributed between 0 and

0.8. At the other extreme, the BJ and BJn regression estimates have medians around 1.0; their

distributions are relatively dispersed and skewed towards higher values. The no-cash constraint

seems to reduce the fraction of outlying estimates (γ̂ > 4.0) from about 10% to under 4%. The

regression estimates from BL and BDEG produce middling distributions concentrated in the range

[0.5, 3.0], with greater density towards the lower end.
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Panel (b) of Figure 8 also shows distributions across all subjects of estimates for each relevant

task, but it uses the non-parametric risk preference measure RRP. Recall from equation (10) that,

for BL-like tasks (including BJ and BJn as well as BDEG) the RRP measure is defined as the

shortfall in expected value (of the risk-neutral choice minus that of the actual choice) normalized

by the standard deviation of the risk-neutral choice. We treat each six-line HL trial as a compound

lottery in computing RRP, i.e., C in equation (10) is the expected value of 1/6 chance of playing

the chosen (safe or risky) lottery for each of the 6 lines, and M and σM are similarly calculated for

the six risk-neutral choices. We treat the six trials in a BDHL block in the same manner.

In Panel b, as in Panel a, the BJ and BJn distributions of RRP are close to each other, and

indicate that subjects respond to these tasks as if considerably more risk averse than in the HL

and BDHL tasks. Again, the distributions for the BL and BDEG tasks lie in between, but now are

closer to the HL distributions.

BDHL-co BDEG-adj BL BJ BJn
HL-co 0.01 0.00 0.00 0.00 0.00
BDHL-co - 0.00 0.00 0.00 0.00
BDEG-adj - - 0.49 0.28 0.66
BL - - - 0.01 0.05
BJ - - - - 0.75
HL-co 0.05 0.00 0.00 0.00 0.00
BDHL-co - 0.03 0.00 0.00 0.00
BDEG-adj - - 0.00 0.00 0.00
BL - - - 0.00 0.00
BJ - - - - 0.87

Table 3: Kolmogorov-Smirnov p-values for equality of γ distributions (top panel) and RRP (lower
panel). Tests consider all choices by all subjects, who each faced five of the six tasks; subjects in
fixed price (resp. fixed probability) sessions did not face the BDEG (resp. BDHL) task.

Table 3 reports Kolmogorov-Smirnov test results, and firmly rejects the null hypothesis that

most pairs of tasks have the same distribution of risk aversion parameters γ. Confirming visual

impressions from Figure 8, the exceptions are that the distribution of BDEG is similar to that for

other tasks in the BL family, and that BJ and BJn have rather similar distributions. KS tests on

the RRP distributions rejects the null hypothesis for all pairs except for BJ and BJn. Overall, we

see that different tasks generally lead to substantially different risk estimates.

Is the same true for tasks that decision theory would deem identical? Table 4 compares indi-

vidual subjects’ γ estimates in the first round HL trial (which implements exactly the traditional

HL method) with their γ estimates in later HL trials: the (identically implemented) last round

HL trial, and BDHL blocks under different price treatments. The table shows that re-test stability
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Px
Py

= .81 Px
Py

= .57

Last HL-co Monotone Random Monotone Random
t test -0.02 0.02 0.14 0.03 -0.17

( 0.45) (0.74) (0.04) (0.64) (0.01)
df 120 25 20 19 22
KS test 0.05 0.47 0.42 0.34 0.49

(0.99) (0.00) (0.02) (0.11) (0.00)
corr 0.63 0.38 .42 0.33 0.11

Table 4: HL consistency tests (and p-values). Matched pair t-tests for the null hypothesis that,
for each subject, γ calculated from the first HL trial (via the standard crossover method) minus γ
calculated from specified later trials is zero. Kolmogorov-Smirnov (KS) test compares the cumulative
distributions, and corr reports the Spearman rank correlation coefficients, across the same subsets
of trials. All subjects (except for those who multi-cross) are included in the first column; remaining
columns are restricted to the 72 fixed price subjects, of whom 43 saw BDHL blocked at price .81
and BDHL random at price .58 while the remaining 29 subjects saw the reverse. Subjects who never
cross were assigned γ = 0 (resp. γ = 4) if they always chose the risky (resp. safe) gamble.

of subject behavior over earlier and later administrations of HL cannot be rejected in mean or in

distribution. The same table also shows, however, that divergences emerge in comparisons to be-

tween the first administration of HL and administrations of BDHL. BDHL implementing the same

implicit price ratio, P = 0.81, as HL, but in random order, supports significantly less risk averse

behavior. BDHL implementing a P = 0.57 price ratio, in random order, supports significantly more

risk averse behavior; this finding is directionally consistent with the results on the effect of payoff

transforms shown by Habib et al. (2017), where a payoff transform equivalent to a P = 0.23 price

ratio in an MPL supported substantially more risk averse behavior than did P = 0.81. We will

present further results on the effects of visual format and of environment sequencing in Section 5.5.

5.4 Within subject (in)consistency

The tests so far look at population distributions and so do not address subject-level consistency.

As stated near the beginning of Section 3, the expected utility hypothesis is that a human subject

not only chooses as if maximizing some Bernoulli function, but also that her Bernoulli function

is fixed. Such preference stability is crucial from a scientific perspective — the whole point of

using some artificial task to elicit risk preferences is that those revealed preferences should enable

the researcher to predict behavior in other risky settings of more direct economic interest. As a

step towards checking preference stability or consistency, we now examine the power of individual

subject’s choices in one elicitation task to predict behavior in other elicitation tasks.

Given the substantial differences already observed in the population distributions, the main

23



concern now is the relative ranking among subjects. Does a subject who, say, reveals herself to

be among the most (or least) risk averse subjects in one task tend in other elicitation tasks to

reveal a relatively high (or low) degree of risk aversion? Specifically, are subjects’ Spearman rank

correlations across tasks near ρ = 1.0?

An affirmative answer seems especially plausible for tasks that basic decision theory considers

identical. Since they employ precisely the same feasible set F = a budget line, the BL, BJ, and

BJn tasks are the same according to basic decision theory, and they are closely related to the tasks,

BDHL and BDEG, that use finite subsets of the budget line. By the same token, the initial and

final period trials of HL are identical to each other and to p = 0.81 blocks of BDHL. Therefore

decision theory (and, a fortiori, EUH) predicts identical rankings within these task families.

Fixed Price BDHL BL BJ BJn
HL 0.35 0.23 0.23 0.22
BDHL - 0.51 0.46 0.54
BL - - 0.72 0.81
BJ - - - 0.80
Fixed Prob BDEG BL BJ BJn
HL 0.15 -0.07 0.03 0.16
BDEG - 0.46 0.56 0.53
BL - - 0.68 0.62
BJ - - - 0.86

Table 5: Within-subject Spearman rank correlation of estimated γ.

Table 5 collects the rank correlations for the parametric measure γ of revealed risk preference.

In the fixed price sessions we indeed get fairly high correlations within the BL family, in the 0.7 -

0.8 range. Correlation between HL and BDHL is .35, lower than one might expect given the within

family consistency seen in Figure 8, and given the correlations around 0.5 of BDHL with members

of the BL family. In the fixed probability sessions, the HL correlation with members of the BL

family is close to zero; other correlations are roughly similar to those in the fixed price sample.

Table 6 tells a generally similar story for the non-parametric measure RRP. In the Fixed Price

data, the within family correlation is ρ = 0.50 for the two HL members, and is roughly .5 to .8

within the three BL members, while cross family correlations are around .6 for BDHL and .3 - .4

for HL. Again, in the Fixed Probability data, the cross family correlations are near zero (with the

possible exception of the HL-BDEG correlation of 0.21) while the four members of the BL family

have within-family correlations ranging from a bit under 0.5 to almost 0.7.
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Fixed Price BDHL BL BJ BJn
HL 0.50 0.41 0.33 0.37
BDHL - 0.61 0.51 0.59
BL - - 0.71 0.82
BJ - - - 0.80
Fixed Prob BDEG BL BJ BJn
HL 0.21 0.08 0.06 0.06
BDEG - 0.61 0.57 0.44
BL - - 0.58 0.47
BJ - - - 0.69

Table 6: Within-subject Spearman rank correlation of estimated RRP.

5.5 Sensitivity to task attributes

The previous two subsections show clearly that a decision theoretic focus is too narrow to explain

many of the most interesting regularities in our data. Can some of the observed differences across

elicitation tasks be explained instead by the way human subjects react to the presentation of the

choices? More specifically, could some task attributes that are irrelevant according to decision

theory nonetheless affect the central tendencies of revealed risk preferences?

HL BDHL BDEG BL BJ BJn
Spatial - X X X - -
2Dots X X - - - -
6Dots - - X - - -
Cash - - - - X -
FixProb - - X * * *
Random - * * * * *

Table 7: Task attributes. A Xin the column for a given task indicates that the attributes in that row is
always present, a − indicates an attribute never present, and a * indicates an attribute present in some but
not all trials using the task.

Table 7 considers six such attributes for our six elicitation tasks, four of which pertain to the

elicitation format and two of which pertain to the wider environment. The attribute “Spatial” refers

a budget line display in Arrow-Debreu 2D space, either allowing choice anywhere on the line (in BL)

or on a subset of points (BDHL and BDEG). “2Dots" refers to tasks with only binary choices, either

via radio buttons selecting lotteries presented in text (HL) or via two points in Arrow-Debreu 2D

space (BDHL). The attribute “6Dots” refers to the other discrete choice possibility on the budget

line. “Cash” refers to the attribute (used only in treatment BJ) allowing retention of cash in the

cash jar (as opposed to its explicit exhaustion in BJn, and implicit budget exhaustion in all other

treatments). The environmental attributes are Fix[ed ]Prob[ability] sessions (versus Fixed Price)
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and Random (versus monotone) ordering of price or probability sequences.

γ RRP

(1) (2) (3) (4)

Spatial −0.124∗ −0.124∗∗∗ −0.081∗∗∗ −0.081∗∗∗
(0.073) (0.025) (0.006) (0.017)

2Dots −0.347∗∗∗ −0.347∗∗∗ −0.167∗∗∗ −0.167∗∗∗
(0.053) (0.064) (0.009) (0.035)

6Dots 0.468∗∗∗ 0.468∗∗∗ −0.011 −0.011∗∗
(0.076) (0.027) (0.007) (0.005)

Cash 0.050 0.050∗∗∗ 0.020∗∗∗ 0.020
(0.083) (0.018) (0.007) (0.012)

FixProb −0.019 −0.019 −0.087∗∗∗ −0.087∗∗∗
(0.156) (0.040) (0.019) (0.026)

Random 0.095∗∗∗ 0.095∗ 0.024∗∗∗ 0.024∗∗∗

(0.053) (0.052) (0.009) (0.008)

period 0.003 0.003 −0.0003 −0.0003∗∗∗
(0.001) (0.002) (0.0002) (0.0001)

Spatial:FixProb −0.140 −0.140∗∗∗ 0.013 0.013
(0.113) (0.041) (0.011) (0.021)

Cash:FixProb 0.136 0.136∗∗∗ −0.006 −0.006
(0.134) (0.018) (0.010) (0.012)

FixProb:Random −0.083∗∗∗ −0.083 −0.023 −0.023
(0.105) (0.111) (0.020) (0.015)

FixProb:period −0.001 −0.001 0.001∗ 0.001∗∗∗

(0.003) (0.003) (0.001) (0.0002)

Observations 6,752 6,752 6,815 6,815
R2 0.246 0.246 0.653 0.653

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: OLS regression coefficients (and standard errors) for risk preference measures γ and RRP.
Regressions include subject level fixed effects with errors clustered at the subject level (columns 1
and 3) and task level (columns 2 and 4).

Table 8 reports regressions of revealed risk aversion on attribute dummies. The first two

columns report results for the γ measure and the other two columns for the RRP measure. One

can see that there are economically significant and statistically significant effects beyond those
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recognized by decision theory. For example, the Spatial coefficient suggests that, consistent with

the results in Habib et al. (2017), subjects responding to budget lines (or dots) drawn in a two-

dimensional space reveal less risk aversion (lower gamma estimates) than subjects responding to

text. The effect is substantial (≈ -0.12) and is compounded in the fixed probability environment

(≈-.12 - .02 - .14 = -.28). The BDEG attribute of restricting choice to 6 dots on the same side of

the perfect hedge increases the elicited γ by almost 0.5, while the discrete restriction in BDHL to

2 dots (one of which is near the corner of the budget line) reduces the elicited γ by about 0.35.

Such differences are huge in terms of economic behavior: the difference between risk neutrality and

highly risk averse "square root" utility (as typical of FPSB data estimated under CRRAM (Cox,

Smith, and Walker, 1988) is, of course, 0.5.

Another intriguing result is that the Random sequence attribute seems to impact fixed price

sessions but not fixed probability sessions. This suggests that the mechanism behind the sequence

effect (and also the Lévy-Garboua et al. (2012) result on variations in implementation of Holt-Laury)

may be that subjects rely on the monotone ordering of probabilities (as across rows of standard

Holt-Laury) to guide their decision-making. There is, however, no such reliance in budget allocation

it seems not to matter whether changes in the slope of a budget line are random or monotone.

Whether cash retention is allowed or budget exhaustion is enforced (explicitly or implicitly) seems

to matter more in the sessions where probability is fixed and price ratios (budget line slopes) vary.

The impact of attributes such as discreteness (e.g. “6 Dot") may be less surprising (the choice set

is restricted in BDEG relative to BL, for instance), but it is still worth documenting them, and of

course controlling for them.

6 Discussion

We report a laboratory experiment in which each of our 142 subjects responds to a variety of direct

choice lottery tasks, each of which is intended to elicit personal risk preferences. For each task

and for each subject, we summarize the elicited preferences parametrically, via the coefficient γ of

relative risk aversion, and also non-parametrically, via a relative risk premium (RRP). Our main

findings can be summarized briefly.

First, the expected utility hypothesis (EUH) — that each subject chooses among lotteries as

if maximizing the expectation of some personal Bernoulli function — is a decent approximation

for each elicitation task considered separately. Our subjects often violate first order stochastic

dominance restrictions, but the vast majority of violations are tiny. (Biais, Mariotti, Moinas, and

Pouget (2017) reach a similar conclusion in independent recent work.) Also contrary to EUH,
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some subjects choose almost perfectly safe lotteries at moderately unfavorable prices and jump to

much riskier lotteries at slightly more extreme prices, consistent with the Disappointment Aversion

DA model in Gul (1991). However, the usual two-parameter DA model has essentially the same

predictive power in our data as a one-parameter restriction that is consistent with EUH.

Perhaps the most intriguing deviation from EUH, not previously documented to our knowledge,

is that our subjects overall respond more strongly to probabilities than to prices. EUH predicts

symmetric responses, and the “diminishing sensitivity" of Prospect Theory’s probability weighting

function predicts asymmetry in the opposite direction from what we find. (One of the authors had

also conjectured, incorrectly, that more salient visual information regarding prices — the slopes of

budget lines — would provoke a stronger response than probabilities conveyed by mere axis labels.)

Although the asymmetry is statistically quite significant, the symmetric EUH prediction remains a

decent approximation for most economic purposes.

Our second main finding is that the EUH is a rather poor approximation when comparing

behavior across elicitation tasks. The EUH allows subjects to differ in their elicited risk preferences,

and indeed our subjects do differ considerably. However, EUH does not allow for differences across

elicitation tasks; indeed, for elicited personal Bernoulli functions to be scientifically useful, they

must have some sort of stability across tasks. To the contrary, we find large differences across

elicitation tasks in the population distributions of γ and RRP. We also find considerable instability

in the ordering of individual subjects within a distribution, especially when we compare tasks that

are not very closely related. For example, for both the parametric and nonparametric measures,

the binary list tasks (HL and BDHL) produced distributions that are more compressed than those

for the budget line tasks (BL, BJ and BJn), and the by-subject rank correlations are across the two

families are low to nil.

Our third main finding is that, to some degree, these differences and inconsistencies across

elicitation tasks can be related to attributes that, according to basic decision theory, should be

irrelevant. For example, spatial presentation of information reveals less risk aversion than text

presentation. Presenting monotone sequences of prices or probabilities encourages subjects to reveal

less risk averse than random sequences. Such differences are inconsequential from the perspective

of decision theory, yet the estimated differences in elicited preferences are economically quite large,

comparable to the difference between a square root and a linear Bernoulli function.

This last result sharpens the findings of earlier studies such as Isaac and James (2000)), Berg

et al. (2005), Loomes and Pogrebna (2014), and Pedroni et al. (2017), among others. These studies,

and ours, establish that that any given subject is likely to reveal different risk preferences across
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different elicitation tasks. It has been less clear up to this point why that happens, and what

decision theorists and experimenters should do about it. By restricting our tasks to direct choice

between lotteries, we avoid ongoing debates over tangential issues such as possible (bad) strategic

bidding or a gap between willingness to pay and willingness to accept, and instead are able to isolate

effects associated with specific aspects of task interfaces. It is now clear that conventional decision

theory by itself can not explain the nontrivial differences we find across tasks that have exactly the

same feasible sets defined by probabilities and prices. The differences in location and dispersion of

population distributions, and the scrambled ordering across subjects, requires some other sort of

explanation.

Our results on these attributes may help point the way forward. Expanding on a result of

Habib et al. (2017), that representing binary lottery choices as rotating cylinders instead of text

pushes revealed preferences towards risk neutrality, we find that quite generally it matters whether

probability and price information is represented spatially (e.g., as budget lines) or in text. Expanding

on Lévy-Garboua et al. (2012), we find that that a monotone (as opposed to random) ordering

of probabilities and prices also pushes subjects’ behavior towards risk neutrality. Likewise, the

theoretically redundant addition of cash to the set of available lotteries seems to influence elicited

preferences.

On the theoretical side, such findings suggest to us that decision theory might benefit from

incorporating models that are sensitive to how information is acquired and processed, in the spirit

of, for example, Pleskac and Busemeyer (2010), and Massaro and Friedman (1990). On the empirical

side, these findings suggest seeking new laboratory (and perhaps field) experiments testing for the

persistence and robustness of behavioral differences across tasks with different formats but identical

opportunities and consequences.
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Appendix A Proof of Proposition

A budget line is the set of lotteries (x, y) ∈ R2 satisfying xpx + ypy = m, where m is an (implicit

or explicit) endowment of cash, and px > 0 and py > 0 are the prices of the two Arrow securities,

with state probabilities πX , πY > 0 and πX + πY = 1.

Recall that a lottery L FOSD’s another lottery M if their cumulative distribution functions

(cdf’s) satisfy FM (z)−FL(z) ≥ 0 for all z ∈ R, and that the lottery ordering is strict if the inequality

is strict for some z ∈ R.

Proposition 2 . A lottery (x, y) ∈ R2 is strictly first order stochastically dominated by another

lottery on the same budget line iff

a. one Arrow state is more likely and its security is less expensive (e.g., πX ≥ πY and px ≤ py),

with at least one of these comparisons strict; and

b. the lottery includes strictly less of the less expensive security (e.g., x < y).

Proof.6 First consider the case πX ≥ πY and px < py, and suppose that x < y. The cdf for lottery

(x, y) is
F (z) = 0 if z < x

= πX if x ≤ z < y

= 1 if z ≥ y

We will construct another lottery (a, b) on the same budget line as (x, y) in two steps, and

show that it strictly FOSD’s (x, y). First set a = y and b′ = x, and let G be is corresponding cdf.

Then F (z)−G(z) = 0 for z < x and z > y, but F (z)−G(z) = πX − πY ≥ 0 for x ≤ z < y, so the

lottery (a, b′) FOSD’s (x, y). Now set b = b′ + c/py, where c = (y − x)(py − px) > 0 by hypothesis,

and let H be the cdf for the lottery (a, b). Clearly G(z) = H(z) except for y < z ≤ y+ c/py, where

G(z) − H(z) = 1 − πX > 0. Thus (a, b) strictly FOSD’s (a, b′) and thus, by transitivity, strictly

FOSDs (x, y). To complete the proof for the present case we need only verify that the expenditure

on (a, b) is the same as on (x, y):

apx + bpy = ypx + (x+ c/py)py = ypx + xpy + c = ypx + xpy + (y − x)(py − px) = xpx + ypy = m.

The other cases have very similar proofs. For example, if πX > πY and px ≤ py, then the

conclusion follows from the fact that (a, b′) strictly FOSD’s (x, y). Of course, we can only guarantee
6Adapted slightly from an original proof by Brett Williams.
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weak FOSD of (x, y) with y > x when both πX ≥ πY and px ≤ py. To show that (x, y) with y < x

is FOSD’d when πX ≤ πY and px ≥ py, we use precisely the same approach interchanging the roles

of X and Y .

To complete the proof, we need only show that no lottery on the budget line is strictly FOSD’d

when (i) πX > πY and px > py or (ii) πX < πY and px < py, and to check subcases where the

inequalities are weak. Of course, the arguments are the same for (ii) as for (i) due to the symmetric

roles of X and Y , so it suffices to consider only case (i). For this case, let F,G be the cdfs for

lotteries (x, y) 6= (a, b) on the same budget line. Since the line is negatively sloped, one of the

points, say (x, y), is northwest of the other, so x < a and b < y. There are now three subcases.
1. Both points are above the diagonal x′ = y′. Since px > py, we have x < a < b < y. It follows

that F (z)−G(z) = πX > 0 for x ≤ z < a but F (z)−G(z) = πX − 1 < 0 for b ≤ z < y. Hence

neither point FOSD’s the other.

2. Both points are below the diagonal x′ = y′. Since px > py, we have b < y < x < a. It follows

that F (z) −G(z) = 0 − πY < 0 for b ≤ z < y but F (z) −G(z) = 1 − πY > 0 for x ≤ z < a;

again, no FOSD ranking.

3. x < y but a > b. We can not have x < b < y < a, as this would imply that the budget line

has -slope y−b
a−x < 1 but the hypothesis px > py implies -slope > 1. The other three orderings

b < x < a < y, b < x < y < a, x < b < y < a, are possible, but each implies a change in the

sign of F (z)−G(z). For example, with b < x < y < a, we have F (z)−G(z) = 0− πY < 0 for

b ≤ z < x but F (z)−G(z) = 1− πY > 0 for y ≤ z < a.

The subcases where the inequalities are weak follow from taking limits as px
py
→ 1 and πX

πY
→ 1.

�
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Appendix B Supplementary Analysis

Dependent variable:ln(x/y)

(1) (2) (3) (4)

log(πX) 1.927∗∗∗ 2.048∗∗∗ 1.114∗∗∗ 2.229∗∗∗

(0.231) (0.223) (0.200) (0.158)

log((1 - πX)) −0.805∗∗∗ −0.722∗∗∗ −1.501∗∗∗ −0.669∗∗∗
(0.197) (0.194) (0.173) (0.136)

log(Px) −1.529∗∗∗ −1.604∗∗∗ −1.012∗∗∗ −1.588∗∗∗
(0.187) (0.181) (0.172) (0.143)

log(Py) 0.357 0.138 1.213∗∗∗ −0.634∗∗∗
(0.270) (0.259) (0.228) (0.180)

Observations 5,964 6,804 7,668 9,372
R2 0.432 0.444 0.463 0.489

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.1: Estimates of Equation (17), with errors clustered at subject level. Column 1 data
includes only BL, BJ and BJn trials. Column 2 also includes BDEG trials, and column 3 includes
BDHL trials as well. Column 4 also includes the HL list data, with each line treated as a separate
trial.

One interesting nuance that presents itself when working with binary choice data is whether to

treat those data as a whole, as in Holt and Laury, or as a series of individual instances of choice,

as per Hey and Orme (1994). Or to put it another way, what would MPL data generate in terms

of γ, if they were instead handled by means of regression (akin to Hey and Orme (1994))? Table

B.3 shows that within a particular format of MPL (within HL, or within BDHL) the distributions

of γ estimates shift (K-S<.001), but ordering within each distribution is largely preserved (0.88

Spearman rank correlation in each case). Otherwise there is substantial scrambling of ordering

and/or shift in distribution (when comparing different combinations of data handling and format of

MPL). We do not suggest that one or the other method of handling binary choice data is necessarily

better or worse, rather that whichever approach one employs will impart its own influence to the

estimates derived thereby. This mutability of γ is in addition to the other sources of mutability due

to other sources, documented elsewhere in this paper. A point to consider here is that estimates

obtained from regressions including HL and BDHL individual decisions also include data from all

our other institutions (BL, BJ, BJn and BDEG), unlike in Hey and Orme (1994) where all decisions
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Fixed Price HL-co BDHL-co BL BJ BJn
HL 0.89 0.47 0.37 0.34 0.32
BDHL 0.30 0.89 0.56 0.50 0.54
BL 0.23 0.54 0.99 0.73 0.82
BJ 0.17 0.41 0.68 0.99 0.78
BJn 0.22 0.56 0.77 0.80 0.99
Fixed Prob. HL-co BDEG-adj BL BJ BJn
HL 0.82 0.26 -0.03 0.03 0.13
BDEG 0.21 0.70 0.56 0.60 0.55
BL 0.09 0.48 0.90 0.68 0.66
BJ -0.02 0.50 0.64 0.82 0.77
BJn 0.04 0.40 0.50 0.78 0.88

Table B.2: Within-subject Spearman rank correlation by task between RRP (rows) and γ (columns).
Fixed price data reported in top panel and fixed probability data in lower panel.

are obtained from binary choices.

HL-co BDHL-co HL BDHL
HL-co - 0.03 0.00 0.00
BDHL-co 0.35 - 0.00 0.00
HL 0.88 0.48 - 0.46
BDHL 0.34 0.88 0.49 -

Table B.3: Kolmogorov Smirnov tests p-values (above diagonal), and Spearman rank correlations
(below diagonal) for γ estimates obtained from the standard cross-over method (HL-co and BDHL-
co) vs treating each line as an observation to estimate γ from equations (15, 16),

ln(
x

y
) = α1ln(πX) + α2ln(πY ) + α3 ln(Px) + α4ln(Py) + ε (17)
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Figure B.1: γ estimates from equations (15, 16) using all observations for all decisions, including
each line of the HL list and BDHL as separate observations.

Figure B.2: γ estimates from CRRA and DA models.
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Dependent variable:γ

(1) (2)

spatial 0.074 0.074
(0.051) (0.095)

Cash 0.148∗ 0.148
(0.079) (0.107)

dots2 −0.389∗∗∗ −0.389∗∗∗
(0.060) (0.111)

dots6 0.467∗∗∗ 0.467∗∗∗

(0.075) (0.030)

binary 0.173∗∗∗ 0.173∗

(0.025) (0.099)

FixProb 0.174 0.174∗

(0.155) (0.100)

random 0.190∗∗∗ 0.190∗∗∗

(0.048) (0.062)

period 0.001 0.001
(0.001) (0.002)

spatial:FixProb −0.370∗∗∗ −0.370∗∗∗
(0.103) (0.107)

Cash:FixProb 0.038 0.038
(0.133) (0.107)

FixProb:random −0.180∗ −0.180∗
(0.092) (0.102)

FixProb:period 0.002 0.002
(0.003) (0.002)

Observations 10,090 10,090
R2 0.207 0.207

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.4: Dependent variable is implied γ for all decisions, except for HL list, BDHL and BDEG,
where data is used twice; once as implied γ for each decision/line and another time where the HL
list and BDHL list/screens are combined to generate one γ based on methods intended by authors.
For BDEG a single decision is considered twice; once as implied γ and another as intended by the
authors. The dummy binary is 1 for the case where the dependent variable is γ calculated from
cross point. dots 2 is a dummy equal to 1 for all HL and BDHL decisions regardless of method of
calculating γ and similarly for dots6 for BDEG.
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Figure B.3: Scatter plot of γ and b estimtes from DA model for each subject.

Major Violations of FOSD
Major Cutoff c = -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0

BL Major Violations 85 60 44 32 30 26 24 22 16 16
(Random) 722 603 519 456 407 367 333 305 280 258

BJC Major Violations 47 26 22 20 16 11 10 10 9 9
(Random) 498 437 391 352 320 292 268 246 226 209

BJ Major Violations 62 43 34 30 28 27 24 21 20 19
(Random) 483 423 377 339 308 281 257 236 218 201

Table B.5: As in Table 1 of the text, except that that the cutoff value c in L× ln(xy ) ≤ c varies as
indicated.

40


