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1. Introduction

Private information is transmitted in organizations during the decision-making process.
One typical information transmission method is ordinary and informal talk, which we
call “cheap talk.” Cheap talk itself does not affect the payoffs of parties. However,
what it conveys often affects future decision making. Then, parties may transmit their
private information strategically.

The seminal analysis of the strategic communication between an informed expert
(sender or he) and an uninformed decision maker (receiver or she) was provided by
Crawford and Sobel (1982), hereafter CS. In their model, communication is unilateral
and one-shot. More precisely, the sender sends a message to the receiver, and then the
receiver chooses a project. The major results in the CS model are that the existence of
the misalignment of preferences between the sender and the receiver typically prevents
full revelation of information and that there exists a partially informative equilibrium
when the incentive conflict is not too large.

CS assume that the receiver is passive in the communication process. A number
of situations are like this. In other situations, the receiver may participate in the
communication process actively, e.g., she may compensate the sender for his messages.
The present paper studies multistage communication as an extension of the CS model
and investigate how information transmission can be improved through the receiver’s
active participation in the communication process. In particular, we focus on multistage
information transmission with voluntary monetary transfer.

Our communication procedure differs from that of the CS model in two ways.
First, the sender can send messages to the receiver unilaterally more than once. We
assume that sending messages is costless1 and messages are unverifiable.2 Second, the
receiver can pay money to the sender voluntarily whenever she receives a message
from the sender. More specifically, the receiver and sender engage in finite-period
communication before the former chooses a project. In each period, the sender sends
an unverifiable message to the receiver without cost, and then, the receiver pays money
to the sender voluntarily. After this finite-period communication, the receiver chooses
a project.

1Spence (1973) studies a signaling model where a informed party conveys information by taking actions
that affect their own utility. In the framework of the CS model, Austen-Smith and Banks (2000), Kartik
(2007), and Karamychev and Visser (2016) show that information transmission can be improved when the
sender can send a costly message (burn money) to signal information. Relatedly, Kartik et al. (2007) and
Kartik (2009) study amendments to the CS model with other means of costly signals such as lying costs.
In the present paper, we focus on the receiver’s active participation in the communication process. Thus,
we assume that the sender cannot send a costly signal.

2Seidmann and Winter (1997) and Mathis (2008) study the sender–receiver game where the message sent
by the sender is (partially) verifiable, namely the set of available messages depends on the sender’s type.
They provide the sufficient conditions (the latter provides the necessary and sufficient conditions) for the
existence of a fully revealing equilibrium. Forges and Koessler (2008) and Hörner and Skrzypacz (2016)
study multistage sender–receiver games with certifiable messages (the long persuasion). The former
geometrically characterizes the set of equilibrium payoffs. The latter shows that the sequential revelation
of partially informative signals can increase payments to the sender who is trying to sell his information
to the receiver.
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In the present paper, we show that when the receiver places greater importance on
the project than the sender does, (i) the receiver can obtain more detailed information
from the expert than in the CS model3 and (ii) there exists an equilibrium whose
outcome Pareto-dominates all the equilibrium outcomes in the CS model.

We also show that there exists no fully separating equilibrium in our model. This
implies that information transmission is limited in our communication procedure.
By concentrating on the well-known uniform-quadratic model (i.e., with quadratic
preferences regarding the project and a uniform type distribution), we find an upper
bound of the receiver’s equilibrium payoff and show that this can be approximated by
the receiver’s payoff under a certain equilibrium when the communication round is
high.

Since we assume that messages are unverifiable, the receiver cannot write a con-
tract that specifies the monetary transfer depending on the messages sent by the sender.
When the receiver cannot write a contract and communication is one-shot, voluntary
monetary transfer does not affect information transmission. Moreover, allowing mul-
tiple rounds of unilateral (one-sided) communication in the CS model does not affect
the set of equilibria identified by the original model. For details, see Krishna and Mor-
gan (2004).4 We show that information transmission can be improved by combining
multistage information transmission with voluntary monetary transfer.

The intuition for why the receiver pays money to the sender under the equilibrium
in our model is as follows. In any cheap talk game, there always exists a completely
uninformative equilibrium (the babbling equilibrium). Therefore, if there is a partially
informative equilibrium, then there are multiple equilibria. Thus, the dependence of the
selection of the future equilibrium on the receiver’s past payment creates an incentive
for the receiver to pay money to the sender. Similar to Benoit and Krishna (1985), we
use the multiple equilibria in the remaining (original) game to provide an incentive for
voluntary payments.

Consider the situation where a (partially) informative equilibrium is played in the
future only when the receiver pays a certain amount of money to the sender in the
current period. Otherwise, play continues according to the babbling equilibrium. In
such a situation, the higher the receiver’s importance towards a project than towards
monetary transfer, the more she is willing to pay money in the current period to ensure
that the uninformative equilibrium would not be chosen in the future.

In our communication procedure, the sender sends a message while paying atten-
tion not only to the expected outcome from the project that would be implemented
in the future but also to the expected future monetary transfer. This fact means that
the possibility of the future monetary transfer affects the sender’s incentive regarding
sending a message in the current period, implying that the receiver can control the
sender’s incentive through voluntary monetary transfer to a certain degree.

3This result means that there exists an equilibrium whose partition has a greater number of elements
than that achieved in any equilibrium in the CS model.

4Allowing multiple rounds of “bilateral” (face-to-face or two-sided) communication in the CS model
could result in equilibria that Pareto-dominate those of the original model. For more details, see Krishna
and Morgan (2004).
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The intuition for how the receiver controls the sender’s incentive through voluntary
monetary transfer is simple. In the CS model, given a state of the world, the most
desirable project for the sender always differs from that for the receiver. This fact means
that in the CS model, excessively detailed information transmission is prevented since
the sender has an incentive to deceive the receiver into choosing a project that is more
desirable for him. By contrast, in our model, the receiver can weaken this cheating
incentive of the sender by paying money to him when he conveys some information
that is contrary to the bias.

It is obvious that there always exists an equilibrium under which players waste time
in the communication round regardless of its length. For instance, irrespective of the
length of the communication round is, there always exists an equilibrium under which
the sender sends an informative message to the receiver at most once and the receiver
never pays money. The equilibrium partition achieved in such an equilibrium is always
achievable in the CS model. It seems that R does not use T-period communication
effectively under these equilibria. In the present paper, we show the benefit of long
term communication by demonstrating that under a certain condition, there exists an
equilibrium where information is transmitted within an extended period of time.

Dessein (2002) studies the delegation problem. In his model, the receiver chooses
whether to communicate with the sender. She then makes a decision herself or fully
delegates the decision-making authority to the sender. He shows that the receiver
prefers full delegation to communication as long as the incentive conflict is not too large.
Since the work of Dessein (2002), the problem of “when players should communicate
(or delegate) in an organization” has been the object of extensive study. Moreover, it
has been shown that if the receiver can commit herself to a predetermined decision rule,
she can always obtain higher ex ante expected payoff than that in any equilibrium in the
CS model. For details, see Goltsman et al. (2009). Note that the optimal predetermined
decision rule is always no worse than full delegation. Hence, if the receiver can write
a contract that determines the decision making ex ante, then communication (without
transfer) is not necessary for good decision making.

We compare multistage information transmission with voluntary monetary transfer
with the optimal predetermined decision rule induced by Goltsman et al. (2009) to
investigate the most effective communication protocol for the receiver. Surprisingly,
when the communication round is high, the receiver may obtain a higher ex ante
expected payoff than that under optimal arbitration under which players benefit from
the “formal contract” that forces them to commit themselves to the predetermined
decision rule.

The present paper is organized as follows. Section 2 introduces the model. Section 3
characterizes the equilibria. Section 4 derives the general properties of these equilibria.
Section 5 analyzes the uniform-quadratic model and shows the benefits of multistage
information transmission with voluntary monetary transfer. In Section 5.1, we show
two main results by constructing an equilibrium where information is transmitted
within two periods. In Section 5.2, we show the benefit of long-term communication.
In Section 5.3, we compare our communication procedure with other communication
protocols. In Section 6, we generalize players’ payoff functions and the prior probability
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distribution, and show two results that correspond to the results in Section 5.1. Section 7
concludes.

1.1. Related Literature

CS study the one-shot unilateral communication game in which the sender sends a
costless and unverifiable message about his private information to the receiver, who
then makes a decision regarding the project that affects the payoffs of both parties. They
obtain a complete characterization of the set of equilibria in their model and show that
the existence of the incentive conflict prevents the full revelation of information. In the
present paper, we investigate how information transmission can be improved under
multistage information transmission with voluntary monetary transfer.

Krishna and Morgan (2008) study an amendment to the CS model by allowing
the receiver to write a contract that specifies the monetary transfer depending on the
message sent by the sender. They show that full information revelation is feasible
but not optimal and they characterize the optimal contract. In their model, there is
a crucial assumption that the receiver can commit herself to compensate the sender
for his message. We show that in the situation where the communication round has
multiple periods, the receiver can control the sender’s incentive through voluntary
payment, although she cannot contract with the sender.

Our results are closely related to those of Krishna and Morgan (2004). Both their
study and our analysis in the present paper investigate how information transmis-
sion can be improved through the receiver’s active participation in the communication
process. Krishna and Morgan (2004) add a long communication protocol to the CS
model. They show that if bilateral (face-to-face) communication between the receiver
and sender is possible before the sender sends a message about his private information
to the receiver, there exists an equilibrium whose outcome Pareto-dominates all the
equilibrium outcomes in the CS model. The key factor to their results is that after the
sender conveys some information in the face-to-face communication, multiple equilib-
ria exist in the remaining game. The outcome of this face-to-face communication, which
could be random, determines which of these equilibria is played in the future. This
fact affects what the sender conveys during the face-to-face communication. Therefore,
in Krishna and Morgan (2004), the receiver tries to control the sender’s incentive by
controlling the degree of uncertainty associated with the outcome of the face-to-face
communication. By contrast, in our model, the receiver tries to control the sender’s
incentive directly through voluntary monetary transfers. Moreover, there always exists
a completely uninformative (babbling) equilibrium in the CS model. Therefore, the re-
ceiver’s voluntary monetary transfer is supported by a fear of the sender’s punishment
of babbling.

Noisy communication leads to improved information transmission (e.g., Krishna
and Morgan, 2004; Blume et al., 2007; Goltsman et al., 2009; Ivanov, 2010; Ambrus et
al., 2013).5 Blume et al. (2007) and Goltsman et al. (2009) characterize the optimal level

5Aumann and Hart (2003) study a finite simultaneous-move (long conversation) game in which there
are two players, with one player better informed than the other. They provide a complete geometrical
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of noise (precisely, the latter characterize the optimal device, which they call “optimal
mediation,” that controls the noise in communication) and provide a least upper bound
of the receiver’s equilibrium payoff.

In Section 5.1, we compare our communication procedure with optimal mediation
and show that when the receiver places greater importance on the project than the
sender does, the receiver can obtain a higher ex ante expected payoff than that under
optimal noisy communication (mediation).

As shown by Dessein (2002), the receiver prefers delegation to communication as
long as the incentive conflict is not too large. In particular, in the uniform-quadratic case
of the CS model, the receiver always prefers delegation to communication even when
informative communication is feasible. This implies that it is important to investigate
when the receiver should communicate with the sender instead of delegating authority.
Moreover, Goltsman et al. (2009) tackle the problem of designing a pre-determined
decision rule which includes full delegation analyzed by Dessein (2002). They provide a
potentially stochastic mechanism in the framework of the CS model: arbitration. Under
the arbitration, a neutral third-party (arbitrator) can ask the sender for information
and commit to a pre-determined potentially stochastic decision rule. Goltsman et
al. (2009) characterize the optimal arbitration mechanism.6 Accordingly, we compare
our communication procedure with the optimal arbitration and show that the receiver
can obtain higher ex ante expected payoff than that under the optimal arbitration when
the length of the communication round is high and the incentive conflict is not too
large.

In all the studies mentioned above, once the communication phase is over, the
receiver chooses a project. By contrast, in the previous studies we mention below, there
are multiple rounds of communication and actions. More precisely, in each period, the
sender sends a message and then the receiver chooses a project. Hence, the models are
different from ours. Golosov et al. (2014) study strategic information transmission in a
finitely repeated cheap talk game. Only the sender knows the state of the world, which
remains constant through out the game. They show that the sender can condition his
message on the receiver’s past actions; additionally, the receiver can choose actions
that reward the sender for following a path of messages that eventually leads to the
full revelation of information. By contrast, there is no fully revealing equilibrium in
our model. For truth telling to be incentive compatible, the resulting payment (i.e., the
sum of the monetary transfer that the sender receives) must be different for each state.
This point means that there must exist a on-the-path history where the receiver pays a
positive amount of money to the sender even though she would not obtain additional
information after this payment. At such a history, she has no incentive to pay money

characterization of the set of equilibrium payoffs when the state of the world is finite and a long com-
munication is possible. In this study, state space and players’ action space must be finite. Therefore, we
cannot directly apply the results of this study to our model.

6One simple decision rule for the receiver is delegate the sender to make a decision, but possibly to
constrain the set of available decisions. This class of mechanisms includes delegation mechanisms ana-
lyzed in Holmström (1977), Melumad and Shibano (1991), and Alonso and Matouschek (2008). Goltsman
et al. (2009) show that the optimal arbitration mechanism is deterministic as a consequence. This shows
that the optimal arbitration includes the optimal delegation mechanism.
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to the sender. Therefore, there is no fully revealing equilibrium.
Kolotilin and Li (2016) investigate the optimal relational contracts in an infinitely

repeated cheap talk game. In contrast to our study, the sender’s private information
is not persistent in their model. Additionally, in each period, both the sender and the
receiver can pay money to each other. In their model, there are equilibria where the
sender always reveals his private information completely since he can send a costly
signal by paying money to the receiver. They show that full separation can be attained
in the equilibrium, whereas partial or complete pooling is optimal if preferences are
divergent. Moreover, they allow the sender to pay money to the receiver. Therefore,
the optimal relational contract that maximizes social welfare in their model differs from
effective communication in our model.

2. Model

There are two players, a sender (S) and a receiver (R). R has the authority to choose
a project y ∈ Y ≡ R+, but the outcome produced by project y depends on S’s private
information, θ, which is distributed according to a differentiable distribution function
G(θ), with density g(θ), over Θ ≡ [0, 1].

Before R chooses a project, R and S engage in T-period communication. Each period
consists of two-stage, stage 1 and stage 2. Stage 1 is the report stage, where S sends a
costless and unverifiable message to R. Let M ≡ [0, 1] be S’s message space. We denote
by mt a message sent by S at the report stage in period t. Stage 2 is the transfer stage,
where R voluntarily pays money to S. Let W ≡ R+ be the set of the amount of payment
possible for R. We denote by wt an amount of payment, which R pays to S at the transfer
stage in period t.

After T-period communication, we proceed to period T + 1, where R chooses a
project and the game ends. Let w be a sequence of transfers, w ≡ (w1, . . . ,wT) ∈WT. We
define R’s payoff function UR : Y ×Θ ×WT → R as follows:

UR(y, θ,w) ≡ r · uR(y, θ) −
T∑

t=1

wt

where r is a positive constant which represents a coefficient of loss aversion with respect
to a project she chose.

We define S’s payoff function US : Y ×Θ ×WT → R as follows:

US(y, θ,w) ≡ s · uS(y, θ, b) +
T∑

t=1

wt

where s is a positive constant which measures the relative importance between mone-
tary transfer and the utility from a project. Parameter b > 0 represents a “bias”, which
measures how much S’s interest differs from R’s.

Here, r · uR(y, θ) and s · uS(y, θ, b) denote utilities from project y for R and S, respec-
tively. We assume that for i ∈ {R,S}, the function ui is twice-continuously differentiable
and satisfies assumptions that for each θ and b, ui

11 < 0 and ui
12 > 0, and ui

1 = 0 for
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some y. Since ui
1 = 0 for some y and ui

11 < 0, for each given (θ, b) there exists a unique
maximizing project: yR(θ) = arg maxy uR(y, θ) and yS(θ, b) = arg maxy uS(y, θ, b). We
assume that uR(y, θ) ≡ uS(y, θ, 0) and uS

13 > 0 everywhere. Since uS
13 > 0 and b > 0,

we have yR(θ) < yS(θ, b) for each θ. Constants r > 0 and s > 0 are scalar parameters.
The former measures how strongly R prefers the project, y = yR(θ), which is the most
desirable for R. The latter measures how strongly S prefers the project, y = yS(θ, b),
which is the most desirable for S.

∑T
t=1 wt is the sum of monetary transfers. In what

follows, we denote by Γ(b, s, r,T) our T-period communication game.

2.1. History and Strategies

A (public) history h(t, j) is defined to be a sequence of players’ past actions realized until
the beginning of the stage j in period t.

h(t, j) ≡
(m1,w1, . . . ,mt−1,wt−1) if j = 1,

(m1,w1, . . . ,mt−1,wt−1,mt) if j = 2.

A (public) history hT+1 is defined to be a sequence of players’ past actions realized until
the beginning of the period T + 1, where R chooses a project.

hT+1 ≡ (m1,w1, . . . ,mT,wT).

Let H(t, j) and HT+1 be the set of h(t, j) and hT+1, respectively. We assume that H(1,1) is a
singleton set {ϕ}. Let us denote the set of all histories at stage j byH j ≡ ∪T

t=1 H(t, j).
Let h(t,1)

θ
∈ Θ × H(t,1) ≡ H(t,1)

Θ
be an S’s private history at stage 1 in period t. Let

H1
Θ

be the set of all S’s private histories, H1
Θ
≡ Θ × H1. An S’s behavior strategy,

σ : H1
Θ
→ ∆M, specifies the probability distribution of messages S of type θ sends at

stage 1 in period t.7

An R’s pure strategy is s measurable function ρ : H2 ∪ HT+1 → R+, specifies the
amount of payment she pays at stage 2 in the communication phase and the project
she chooses in period T + 1. Note that ρ(h(t,2)) ∈ W, and ρ(hT+1) ∈ Y.8 A belief system,
f : H2 ∪HT+1 → ∆Θ, specifies the R’s belief about S’s types at a history h ∈ H2 ∪HT+1.

3. Equilibrium

LetH ≡ Θ ×M1 ×W1 × · · · ×MT ×WT × Y be the set of sequences of the realized state
and players’ actions, (θ,m1,w1, . . . ,mT,wT, y).9 Let B(H) be the Borel algebra on H.10

7We denote byB(X) the Borel algebra on a set X. An S’s behavior strategy is a function σ : B(M)×H1
Θ
→

[0, 1] with the following two properties: (1) For every M̃ ∈ B(M), the function σ(M̃, ·) : H1
Θ
→ [0, 1] is

measurable. (2) For every h(t,1)
θ ∈ H1

Θ
, the function σ(·, h(t,1)

θ ) : M̃ → [0, 1] is a probability measure. The
definition of σ is originated from Milgrom and Weber (1985).

8Due to the strict concavity of R’s preference over projects, she never mixes between projects in
period T + 1.

9In order to avoid confusion, we add a time operator to the players’ action space.
10Suppose that Rk and Rl are equipped with their Borel algebras B(Rk) and B(Rl), respectively, and let

Rk+l = Rk ×Rl. Then, B(Rk+l) = B(Rk) ⊗ (Rl). Hence, B(Θ × · · · × Y) ≡ B(Θ) ⊗ B(M1) ⊗ · · · ⊗ B(WT) ⊗ B(Y)
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Given a strategy profile and a prior distribution, ((σ, ρ),G), a probability measure P on
the measurable space (H,B(H)) is uniquely determined. For details, see Appendix L.
Given h ∈ H, the values of players’ payoffs, both UR and US, are uniquely derived,
respectively. Moreover, the functions UR : H → R and US : H → R are measurable.
Therefore, the players’ ex ante expected payoffs

∫
h∈HUR(h)P(dh) and

∫
h∈HUS(h)P(dh)

are well-defined, respectively.
Fix an S’s private history at stage 1 in period t as h(t,1)

θ
. We denote by VS(σ, ρ|h(t,1)

θ
,mt)

the S’s continuation payoff after sending mt at h(t,1)
θ

. Fix a public history at stage 2 in
period t as h(t,2) and an R’s payment wt. Let VR((σ, ρ), f |h(t,2),wt) be the R’s continuation
payoff after paying wt at this history.

We shall analyze (weak) perfect Bayesian equilibria in Γ(b, s, r,T): both players’
strategies must maximize their expected payoffs after all histories, and the system
of beliefs f must be consistent with the regular conditional probability derived from
((σ, ρ), f ) and G.11

Definition 1. A strategy profile (σ, ρ) and a belief system f constitute a perfect Bayesian
equilibrium if the following conditions hold. For any t ∈ {1, . . . ,T},

1. for any h(t,1)
θ
∈ H(t,1)

Θ
and mt ∈ supp{σ(·|h(t,1)

θ
)},

mt ∈ arg max
m′t

VS(σ, ρ|h(t,1)
θ
,m′t),

2. for any h(t,2) ∈ H(t,2),

ρ(h(t,2)) ∈ arg max
w′t

{
VR((σ, ρ), f |h(t,2),w′t) − w′t

}
,

3. for any hT+1 ∈ HT+1,

ρ(hT+1) ∈ arg max
y′

r
∫

uR(y′, θ) f (dθ|hT+1),

4. the belief system f is consistent with (σ, ρ).12

Hereafter, we call a perfect Bayesian equilibrium simply equilibrium. Suppose that
((σ, ρ), f ) be an equilibrium. At any payment stage history h(t,2), R does not obtain
additional information about S’s type from her own action wt. Therefore, we require
that at any h(t,2), any deviation by R from ρ(h(t,2)) does not affect the beliefs she uses as
the basis for belief-updating.

4. Some Properties of Equilibria

In what follows, we derive some properties of equilibria.
11In Γ(b, s, r,T), there always exists an equilibrium that is essentially equivalent to a perfect Bayesian

equilibrium in the CS model. Hence, in this paper we do not prove the existence theorem.
12For details, see Appendix M.
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4.1. Relation to the CS Model

First, we discuss the relation between the equilibria in the CS model and those in
Γ(b, s, r,T). Since R cannot obtain additional information about θ after stage 2 in period
T, she has no incentive to choose wT > 0. Therefore, wT must be equal to 0 in any
equilibrium. Consequently, Γ(b, s, r, 1) is contained in the CS model, and we call it
the model with one-shot information transmission. CS have shown that under one-shot
information transmission, for every b > 0, there exists a positive integer ñ(b) such
that, for every n ∈ {1, . . . , ñ(b)}, there exists an equilibrium with a n-element partition,
{[an, an−1), [an−1, an−2), . . . [a1, a0]}. Under this equilibrium, S’s type θ ∈ [ai+1, ai) reports
that his type belongs to this interval, and after receiving the message that “θ belongs to
[ai+1, ai)”, R chooses the project y(ai+1, ai) ≡ arg maxy

∫ ai

ai+1
uR(y, θ)g(θ)dθ. By convention,

we define y(a1, a0) = y∗(a0) if a1 = a0. Since uR is strictly concave, y(ai+1, ai) is uniquely
determined. Moreover, since uR

12 > 0, y(ai+1, ai) is strictly increasing in both of its
arguments. Therefore, it must be satisfied that: for i = 1, . . . ,n − 1,

s · uS(y(ai+1, ai), ai, b) − s · uS(y(ai, ai−1), ai, b) = 0; (1)

an = 0; (2)

a0 = 1. (3)

We shall call a sequence a ≡ {a0, . . . , an} is a (backward) solution of (1) if a satisfies
(1)–(3). We shall impose the following monotonicity condition on a solution of (1).

Condition M . If a′ and a′′ are two solutions of (1) with a′0 = a′′0 and a′1 > a′′1 , then a′i ≥ a′′i
for all i ≥ 2.

This condition is met by the uniform-quadratic case: s · uS(y, θ, b) ≡ −s(y− (θ+ b))2,
r · uR(y, θ) ≡ −r(y − θ)2, and G(θ) is uniform distribution over [0, 1]. CS have shown
that Condition M also holds for more general specifications.

Suppose a strategy profile under which S sends an informative message only at
stage 1 in period 1, and R pays nothing to S at any payment stage. Obviously, if both
S’s behavior regarding sending m1 and R’s behavior regarding choosing y depending on
m1 are the same as an equilibrium in the CS model, then this strategy profile constitutes
an equilibrium in Γ(b, s, r,T). Therefore, we immediately have the following Fact 1.

Fact 1. Any equilibrium partition achieved in the CS model can be achieved under an equilibrium
in Γ(b, s, r,T).

4.2. Relation to Direct Contract

In this section, we first characterize the relation between equilibria in Γ(b, s, r,T) and
those in a case where R can write a contract that specifies the transfer as functions of
messages sent by S.

Fix an equilibrium ξ = ((σ, ρ), f ). Let µξ : Θ → ∆(MT) be a probability distribution
induced by (σ, ρ) over MT. When a sequence of messages m ∈MT is given, a sequence of
payments w ∈WT and a project y are induced from ρ, respectively. Let ωξ : MT →WT

and yξ : MT → Y be the functions induced by ρ, respectively.
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Now, consider the case where R can contract ωξ with S. By the construction of
ωξ : MT → WT, under this indirect contract (MT, ωξ), the strategy profile (µξ, yξ)
constitutes an perfect Bayesian equilibrium that is outcome equivalent to ξ in the sense
that both of this equilibrium and ξ induce the same probability distribution over WT×Y
for any θ.

Next, we discuss the relation between equilibria under this indirect contract (MT, ωξ)
and those under a direct contract where R can write a contract that specifies the transfer
as functions of the direct message m ∈ Θ sent by S. Let (Θ, ω) be a direct contract under
which S reportsθ ∈ Θ and R paysω(θ) for S. Let y : Θ→ Y be the R’s strategy under the
direct contract (Θ, ω). By the application of the result of Krishna and Morgan (2008),13

we immediately have the following Fact 2.

Fact 2. Consider an equilibrium under (MT, ωξ). There exists a direct contract (Θ, ω) un-
der which there exists a pure strategy equilibrium which is outcome equivalent to the given
equilibrium under (MT, ωξ).

Finally, we characterize the relation between equilibria in Γ(b, s, r,T) and those under
a direct contract (Θ, ω). The following Proposition 1 shows that given an equilibrium ξ
inΓ(b, s, r,T), there exists an equilibrium of a direct contract which is outcome equivalent
in the sense that it results in the same projects and transfer as in the original equilibrium
for almost every state.

Proposition 1. Fix an equilibrium ξ in Γ(b, s, r,T). There exists a direct contract (Θ, ω) under
which there exists a pure strategy equilibrium which is outcome equivalent to ξ.

In the indirect contract cases, ωξ(m) specifies a sequence of payments, w1(m), . . . ,
wT(m)), dependently on m. In the direct contract case, ω(θ) specifies the resulting
transfer dependently on θ. Fact 2 shows that for almost every θ and for any m, m′ ∈
suppµξ(·|θ), it must be satisfied that

∑T
t=1 wt(m) =

∑T
t=1 wt(m′) = ω(θ) and the induced

projects is same, yξ(m) = yξ(m′) = y(θ). This means that there exists a direct contract
(Θ, ω) under which there exists a pure strategy equilibrium which is outcome equivalent
to any equilibrium in Γ(b, s, r,T).

4.3. Partition Equilibrium

As is the case in the CS model, all the equilibria in Γ(b, s, r,T) are interval partitional,
that is, all the equilibria are partition equilibria.

Definition 2 (Partition Equilibrium). Fix an equilibrium ξ in Γ(b, s, r,T). Consider a
pure strategy equilibrium, under a direct contract (Θ, ω), which is outcome equivalent
to ξ. If there exists a family of sets {Iλ}λ∈Λ over Θ such that

1. {Iλ}λ∈Λ constitutes an interval partition14 over Θ,

2. y(θ) = y(θ′) for all θ, θ′ ∈ Iλ,

13For details, see Proposition 2 in Krishna and Morgan (2008).
14For all λ , λ′, Iλ ∩ Iλ′ = ∅. For all λ ∈ Λ, Iλ is convex, and

∪
λ∈Λ Iλ = Θ.
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3. if λ , λ′, then y(θ) , y(θ′) for all θ ∈ Iλ and θ′ ∈ Iλ′ , then

we call ξ partition equilibrium, and {Iλ}λ∈Λ equilibrium partition.

We show the following Proposition 2.

Proposition 2. Any equilibrium under a direct contract (Θ, ω) is partition equilibrium.

The proof of Proposition 2 can be found in Appendix A. The above Proposition 1
implies that any equilibrium outcome inΓ(b, s, r,T) is also achieved in equilibrium under
a corresponding direct contract. Therefore, Proposition 2 means that all equilibria in
Γ(b, s, r,T) are partition equilibria. The following Proposition 3 shows that there is no
fully separating equilibria in Γ(b, s, r,T).

Proposition 3. There exists no fully separating equilibrium in Γ(b, s, r,T).

The proof of Proposition 3 can be found in Appendix B. In Krishna and Morgan
(2008), R can commit herself to compensating for S’s message. Therefore, fully separat-
ing equilibria (full revelation contracts) are always feasible in their model. By contrast,
in our model, since R cannot commit herself to compensating for S’s message, she
pays money to S only when paying money is optimal for her. For truth telling to be
incentive compatible, it must be satisfied that the resulting sum of monetary transfer
that S receives is different for each θ ∈ Θ. Precisely, that must be strictly decreasing in
θ. This means that R reaches almost surely a history where she pays a certain amount
of money to S even though she does not obtain additional information in the future.
Therefore, R has no incentive to pay money to S at such a history. This is the reason
why there exists no fully separating equilibrium.

5. The Uniform-quadratic Case

As noted earlier, it is hard to obtain the full characterization of equilibria. In what fol-
lows, we take a small step in that direction, concentrating on the well-known uniform-
quadratic case: r · uR(y, θ) = −r(y − θ)2, s · uS(y, θ, b) = −s(y − (θ + b))2, and G(θ) is a
uniform distribution over Θ.

5.1. Two-period Information Elicitation

As a starting point, we construct an equilibrium where information is transmitted
within two period and R pays a positive amount of money to S on the equilibrium
path. By constructing such an equilibrium, we show two results. One is that if T ≥ 2
and r is large relative to s, R can obtain more detailed information in our model than that
in a model with one-shot information transmission. The other is that if T ≥ 2 and r is
large relative to s, there exists an equilibrium whose outcome ex ante Pareto-dominates
all the equilibrium outcomes in a model with one-shot information transmission. In
Section 6, we show these two results under more general setting.

To simplify the analysis, we suppose that b ∈ (1/12, 1/4). Then, there are two
equilibria in a model with one-shot information transmission. One is the uninformative
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equilibrium: a0 = 1 and a1 = 0. The other is a partially informative equilibrium:
a0 = 1, a1 = 1/2 − 2b and a2 = 0. CS have shown that both S and R prefer the
partially informative equilibrium to the uninformative equilibrium. Under the partially
informative equilibrium, the ex ante expected payoff of R is −r(1/48 + b2) whereas the
ex ante expected payoff of S is −s(1/48 + b2) − sb2.

Now, we show the following Proposition 4 which establishes that in multistage
information transmission with voluntary monetary transfer, there exists an equilib-
rium whose partition has more steps than that in a model with one-shot information
transmission.

Proposition 4. Fix b ∈ (1/12, 1/4). If s/r < (1 − 4b)/(1 + 12b), then there exists a perfect
Bayesian equilibrium with a 3-element partition.

Proof of Proposition 4. To prove this Proposition, we construct a 3-element partition equi-
librium under which S conveys θ < a1 or not in period 1. After conveying θ < a1, then
S conveys in period 2 whether θ belongs to [0, a2) or [a2, a1).

More precisely, we consider a strategy profile under which the information is trans-
mitted in the following steps. At stage 1 in period 1, S of type θ < a1 sends a message
m1 randomly according to a uniform distribution over [0, a1), and S of type θ ≥ a1 sends
a message m1 randomly according to a uniform distribution over [a1, 1]. If R receives
m1 < a1 at stage 1 in period 1, then she pays w1 = w to S. Otherwise, she pays nothing
to S at stage 2 inperiod 1. At stage 1 in period 2, if m1 < a1 and w1 ≥ w, then S of type
θ < a2 sends a message m2 randomly according to a uniform distribution over [0, a2),
and S of type θ ≥ a2 sends a message m2 randomly according to a uniform distribution
over [a2, 1]. Otherwise, any type of S sends a message m2 randomly according to a
uniform distribution over [0, 1]. In period t ≥ 2 R pays nothing to S. In period t ≥ 3, S
always sends babbling message.

Under the above strategy profile, R eventually learns whether θ belongs to [0, a2),
[a2, a1), [a1, 1] or [0, a1)}. Note that [0, a1) is the support of R’s belief at off-the-path h3:
m1 < a1, w1 < w and m2 ∈ [0, 1].

At hT+1 where m1 ≥ a1, since R believes θ is uniformly distributed over [a1, 1],
optimal project for R is y1 = (a1+1)/2. At hT+1 where m1 < a1, w1 ≥ w, and m2 ≥ a2, since
R believesθ is uniformly distributed over [a2, a1), optimal project for R is y2 = (a2+a1)/2.
At hT+1 where m1 < a1, w1 ≥ w, and m2 < a2, since R believes θ is uniformly distributed
over [0, a2), optimal project for R is y3 = a2/2. At hT+1 where m1 < a1 and w1 < w, since
R believes θ is uniformly distributed over [0, a1), optimal project for R is ỹ = a1/2.

Figure 1 illustrates the equilibrium strategy. In period t ≥ 2, R always pays nothing
to S. This implies that the partition {[0, a2), [a2, a1)} must coincide with the 2-element
equilibrium partition achieved in a model with one shot information transmission
where θ is drawn from the uniform distribution over [0, a1). By Crawford and Sobel, it
must be satisfied that

a2 = a1/2 − 2b. (4)

Since we now construct a 3-element partition equilibrium where 0 < a2 < a1 < 1, it
must be satisfied that a2 > 0. Hence, it must be satisfied that a1 > 4b.
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Figure 1: Equilibrium Strategy

The key of our idea is that information elicitation is divided into two steps. After
receiving the message m1 < a1 in period 1, there are two “cheap talk” equilibria in the
remaining game. One is the completely uninformative equilibrium, that is, babbling
equilibrium whose partition is {[0, a1)}. The other is partially informative equilibrium,
that is, 2-element partition equilibrium whose partition is {[0, a2), [a2, a1)}. After receiving
the message m1 < a1, R pays w1 = w to S so that the babbling equilibrium would not
be chosen in period 2. Furthermore, this R’s “message contingent payment” has an
impact on S’s incentive.

In what follows, we make sure that by taking a1, a2 and w suitably, we can constitute
an equilibrium where S and R follow the above strategy profile. Under the above
strategy profile, S of type θ ∈ (ai, ai−1) sends messages so that yi would be chosen by R.
Hence, the payoff of S’s type θ ∈ (ai, ai−1) is derived as follows:

− s(y3 − (θ + b))2 + w for θ ∈ [0, a2);

− s(y2 − (θ + b))2 + w for θ ∈ [a2, a1);

− s(y1 − (θ + b))2 for θ ∈ [a1, 1].

Since we suppose that a2 = a1/2 − 2b, we have

− s(y3 − (θ + b))2 > −s(y2 − (θ + b))2 for θ ∈ [0, a2);

− s(y3 − (θ + b))2 < −s(y2 − (θ + b))2 for θ ∈ (a2, 1];

− s(y3 − (θ + b))2 = −s(y2 − (θ + b))2 for θ = a2.

This implies that at stage 1 in period 2 where m1 < a1 and w1 ≥ w, S has no incentive to
deviate from given strategy.

At stage 1 in period 2 where m1 < a1 and w1 < w, and at stage 1 in period 2 where
m1 ≥ a1, S always sends a babbling message. Therefore, S has no incentive to deviate
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at such a history. The same can be said in period t ≥ 3. Hence, we can conclude that S
has no incentive to deviate in period t ≥ 2 when a2 = a1/2 − 2b.

At stage 1 in period 1, if S of type θ sends m1 ≥ a1, then he obtains −s(y1 − (θ+ b))2.
Otherwise, S of type θ ≥ a2 obtains −s(y2 − (θ + b))2 + w, and S of type θ < a2 obtains
−s(y3 − (θ + b))2 + w. If it is satisfied that

−s(y1 − (a1 + b))2 = −s(y2 − (a1 + b))2 + w, then (5)

−s(y1 − (θ + b))2 ≥ max
j∈{1,2}

{−s(y j+1 − (θ + b))2 + w} for θ ≥ a1; (6)

−s(y j+1 − (θ + b))2 + w > −s(y1 − (θ + b))2 for i ≥ 1 and θ ∈ [âi+1, âi). (7)

When (6) and (7) hold, S has no incentive to a deviation at stage 1 in period 1. The
following Figure 2 illustrates (6) and (7).

-

6

θ0

US(y, θ, b|y)

a2y3

6

?

w1
a1

y2

6

?

w1
1y1

Blue curve: s · uS(y3, θ, b) + w1

Red curve: s · uS(y2, θ, b) + w1

Black curve: s · uS(y1, θ, b)

Figure 2: The sender’s payoff on the equilibrium path

By the equation (5), we have

w = w(a1) ≡ s[3(1/2 + b − a1/4)(a1/4 + b − 3/2)]. (8)

Since w(a1) is strictly increasing in a1 ∈ [4b, 1], we have an inverse function of w(·)
such that w−1(w) ≡ a1(w) is strictly increasing in w ∈ [w(4b),w(1)]. Since, moreover,
we suppose that b ∈ (1/12, 1/4), it is satisfied that w(4b) = s(12b − 1)/4 > 0. Note that
a1(w) = 2

3

{
2 −

√
(1 + 6b)2 − 12w/s

}
and a1(w) ∈ (4b, 1) when w ∈ (w(4b),w(1)).

Summarizing the above, we can conclude that S has no incentive to a deviation
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when boundaries of partition satisfy the following conditions:

ai(w) ≡


1 for i = 0,
2
3

{
2 −

√
(1 + 6b)2 − 12w/s

}
for i = 1,

1
3

{
2 −

√
(1 + 6b)2 − 12w/s

}
− 2b for i = 2,

0 for i = 3.

(9)

where w ∈ (w(4b),w(1)).
At any h(t,2), R has no incentive to increase the amount of payment because that

does not affect S’s behavior. Therefore, we have only to make sure that paying w is
optimal for R at stage 2 in period 1 where m1 < a1.

At stage 2 in period 1 where m1 < a1, if R pays w1 ≥ w, then she obtains u∗(w1):

u∗(w1) = −w1 −
1
a1

2∑
i=1

∫ ai

ai+1

r
[ai+1 + ai

2
− θ

]2
dθ

= −w1 −
r

12a1

2∑
i=1

(ai − ai+1)3

= −w1 −
r

12a1
(a3

2 + (a1 − a2)3).

Clearly, u∗(w1) takes the maximum value u∗ at w1 = w.
On the other hand, by paying w1 < w at stage 2 in period 1 where m1 < a1, she

obtains u(w1):

u(w1) = −w1 +

∫ a1

0

1
a1

UR
(a1

2
, θ

)
dθ

= −w1 −
r
a1

∫ a1

0

(a1

2
− θ

)2
dθ

= −w1 −
a2

1

12
r .

Clearly, u(w1) takes the maximum value u at w1 = 0. Therefore, paying w is an optimal
decision for R if and only if u∗ ≥ u. Using condition (9), we have

u∗ ≥ u ⇐⇒ r
(
{a1(w)}2

16
− b2

)
≥ w. (10)

Since a1(w) ≡ 2
3

{
2 −

√
(1 + 6b)2 − 12w/s

}
, for any w ∈ (w(4b),w(1))

• a1(w) is strictly increasing in w;

• {a1(w)}2
16 − b2 > 0 and {a1(w(4b))}2

16 − b2 = 0;

• d2

dw2 {a1(w)}2 > 0.

15



Hence, if r({a1(w(1))}2/16 − b2) > w(1), then there exists w ∈ (w(4b),w(1)) such that for
all w ∈ [w,w(1)), the inequality (10) holds.

Since a1(w(1)) = 1 and w(1) = s(1+ 12b)(3+ 12b)/48, the inequality r({a1(w(1))}2/16−
b2) > w(1) can be simplified into

s
r
<

1 − 4b
1 + 12b

.

Summarizing the above, we can conclude that if s/r < (1 − 4b)/(1 + 12b), then
the strategy profile and the system of beliefs that we construct above constitute an
equilibrium when w ∈ [w,w(1)) and boundaries of partition satisfies the condition (9).
□

Remark 1. In any equilibrium where R pays positive amount of money to S on the
equilibrium path, meaningful information transmission must occur after R pays money
to S. Therefore, there must exist a partially informative equilibrium after R pays w to
S. If it is not so, messages sent by S in period 2 are completely noninformative.
Consequently, R has no incentive to pay money to S in period 1. For this reason, in
Proposition 4, we require that b < 1/4.

We can consider a possibility of the existence of a 3-element partition equilibrium
where S reveals the interval in a different order. Specifically, consider the following
strategy profile. In period 1, S conveys θ ≥ a2 or not. If S conveys θ ≥ a2, then R pays
w̃, and then, S conveys θ < a1 or not. Note that a2 < a1. The following Proposition 5
shows that there is no equilibrium where information is transmitted in such a way.

Proposition 5. Fix b ∈ (1/12, 1/4). Then, there exists no 3-element partition equilibrium
where information is transmitted in the following steps. First, S conveys that θ belongs
to which element of {[0, a2), [a2, 1]}. Second, S conveys that θ belongs to which element of
{[a2, a1), [a1, 1]}.

Proof of Proposition 5. For S’s incentive compatibility in period 2, the partition {[a2, a1), [a1, 1]}
must be coincide with the 2-element equilibrium partition achieved in a model with
one shot information transmission where θ is drawn from the uniform distribution
over [0, a1). By Crawford and Sobel, it must be satisfied that 1 = 2a1 − a2 + 4b. This
equation can be simplified into

1 − a1 = a1 − a2 + 4b. (11)

Moreover, similar to the condition (5), the indifference condition for S of type θ = a2

induces the following condition:

w̃ = s{(a2 + a1)/2 − (a2 + b)}2 − s(a2/2 − (a2 + b))2.

The value of w̃ is positive if and only if a1 − a2 > a2 + 4b. This means that a1 − a2 > 4b.
Hence, we have

(a2 − 0) + (a1 − a2) + (1 − a1) = 2(a1 − a2) + 4b + a2

> 12b + 3a2.
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Since we now suppose that b ∈ (1/12, 1/4), we have 12b+3a2 > 1. Therefore, boundaries
of the partition and the payment w̃ is not well defined. This implies that we cannot
construct a 3-element partition equilibrium under which R learns θ < a2 or not in
period 1, and after learning θ ≥ a2 in period 1, then R learns in period 2 whether θ
belongs to [a2, a1) or [a1, 1]. □

It can be confirmed that if r is large relative to s, R can obtain greater ex ante expected
revenue from the project in a 3-element partition equilibrium than that in 2-element
partition equilibrium where the communication is one-shot. For details, see the proof
of the following Lemma 1. This implies that R can obtain more valuable information
about S’s type through multistage information transmission with voluntary monetary
transfer. However, it is not true that multistage information transmission with volun-
tary monetary transfer is always beneficial to R since she has to pay money to S in order
to obtain valuable information.

We now show the second result that when r is large relative to s, multistage infor-
mation transmission with voluntary monetary transfer is more beneficial to both R and
S than one-shot information transmission.

Proposition 6. Fix b ∈ (1/12, 1/4). Then there exists a positive value η∗(b) such that if s
r <

η∗(b), there exists a 3-element partition equilibrium whose outcome ex ante Pareto-dominates
all the equilibrium outcomes in the model with one-shot information transmission.

Suppose that s/r < (1 − 4b)/(1 + 12b). Fix a 3-element partition equilibrium con-
structed in the proof of Proposition 4. We prove Proposition 6 by two steps. First, we
show that if r is large relative to s, there exists a 3-element partition equilibrium which
R prefers to all the equilibria without monetary transfer.

CS have shown that for given b, in a model with one-shot information transmission,
R always strictly prefers 2-element partition equilibrium to the babbling equilibrium.
Let {[ã2, ã1)[ã1, ã0] be the partition of 2-element partition equilibrium in a model with
one-shot information transmission. We denote by EÛR the ex ante expected payoff of
R under this equilibrium. We have

EÛR = −
2∑

i=1

∫ ãi−1

ãi

r
[ ãi−1 + ãi

2
− θ

]2
dθ

= − r
48
− rb2.

We denote by EU
R

(a1) the ex ante expected payoff of R under the 3-element partition
equilibrium with a1 ∈ (a, 1) where a ≡ a1(w).

By the definition of a1(w), we have

w(x) ≡ a−1
1 (x) = s[3(1/2 + b − x/4)(x/4 + b − 3/2)]. for x ∈ [a, 1).

In what follows, we denote by s · α(b, x) the function w(x).
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The ex ante expected payoff of R under 3-element partition equilibrium where
a1 = x ∈ (a, 1) is

EU
R

(x) = −
3∑

i=1

∫ ai−1(x)

ai(x)
r
[
ai−1(x) + ai(x)

2
− θ

]2

dθ − xs · α(b, x)

= −r
{

x3

48
+ xb2

}
− r

12
(1 − x)3 − xs · α(b, x).

We show the following Lemma 1.

Lemma 1. There exists a positive value η∗(b) such that if s/r < η∗(b), there exists x, x ∈ (a, 1)
such that

EU
R

(x) > EÛR and EU
R

(x) < EÛR.

Proof of Lemma 1. Let δ(x, s, r) ≡ 1
r {EU

R
(x) − EÛR}. We have

δ(x, s, r) = − 1
16

(1 − x3) +
x
4

(1 − x) + b2(1 − x) − s
r
xα(b, x).

It holds that δ(x, s, r) < 0, if and only if

η∗(b, x) ≡
− 1

16 (1 − x3) + x
4 (1 − x) + b2(1 − x)

xα(b, x)
<

s
r
.

Since ∂
∂x |x=1η∗(b, x) < 0 and η∗(b, 1) = 0, there exists ε̂ > 0 such that η∗(b, x) < s/r for all

x ∈ (1 − ε̂, 1).
It holds that δ(x, s, r) > 0, if and only if

η∗(b, x) >
s
r
.

Since infx∈(a,1) xα(b, x) > 0, η∗(b, x) has a least upper bound η∗(b) = supx∈(a,1) η
∗(b, x) > 0.

Therefore, if s/r < η∗(b), there exists x such that x ∈ (a, 1) and δ(x) > 0. This completes
the proof of Lemma 1. □

Remark 2. When x almost equal to 1, boundaries of the 3-element partition equilibrium
almost coincides with boundaries of the 2-element partition equilibrium in a model with
one-shot information transmission. Nevertheless, the payment of monetary transfer
a−1

1 (x) is high (almost coincides with w(1)). Therefore, if s/r < (1 − 4b)/(1 + 12b), there
always exists a 3-element partition equilibrium which is unfavorable to R. Moreover,
since w goes to w(1) as s/r goes to (1−4b)/(1+12b), a goes to 1 as s/r goes to (1−4b)/(1+
12b). Hence, η∗(b) is always less than (1 − 4b)/(1 + 12b).

Hereafter, we complete the proof of Proposition 6 . CS have shown that for given
b, in a model with one-shot information transmission, S always strictly prefers ex ante
2-element partition equilibrium to the babbling equilibrium. We denote by EÛS the ex
ante expected payoff of S under the 2-element partition equilibrium in a model with
one-shot information transmission. We have

EÛS = −
2∑

i=1

∫ ãi−1

ãi

s
[ ãi−1 + ãi

2
− θ

]2
dθ − sb2

=
s
r
EÛR − sb2.
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We denote by EUS(x) the ex ante expected payoff of S under the 3-element partition
equilibrium with a1 = x ∈ (a, 1).

EU
S
(x) = −

3∑
i=1

∫ ai−1(x)

ai(x)
s
[
ai−1(x) + ai(x)

2
− θ

]2

dθ − sb2 + x · w(x)

=
s
r

{
EU

R
(x) + x · w(x)

}
− sb2 + x · w(x).

Clearly, if EU
R

(x) > EÛR, then EU
S
(x) > EÛS. Therefore, if s/r < η∗(b), there exists

x ∈ (a, 1) such that

EU
R

(x) > EÛR and EU
S
(x) > EÛS.

This completes the proof of Proposition 6.

It is well known that the existence of non-strategic mediator leads to improved
information transmission. Now, we compare our communication procedure with op-
timal mediation. In mediation model S can send a message to an impartial mediator,
who then passes on a recommendation to R according to some predetermined rule.
Goltsman et al. (2009) have characterized the optimal mediation where R’s ex ante
expected payoff is − r

3 b(1 − b). The following Proposition 7 shows that under 2-period
information elicitation with voluntary monetary transfer, R can obtain higher ex ante
expected payoff than that under optimal mediation model.

Proposition 7. Fix b ∈ (1/12, {4 +
√

3}/26).15 Then there exists η′(b) such that if s/r < η′(b),
for some x ∈ (a, 1),

EU
R

(x) > − r
3

b(1 − b).

Since this proposition can be proved in the same way as the proof of Lemma 1,
the formal proof is omitted. When b is almost equal to 1/4, boundaries of the 3-
element partition equilibrium almost coincides with those of the 2-element partition
equilibrium in the CS model. The value of − r

3 b(1 − b) is always strictly higher than
the R’s equilibrium payoff under the 2-element partition equilibrium in the CS model.
Therefore, Proposition 7 requires that b < (4 +

√
3)/26 < 1/4.

5.2. Effective T-period Communication

Under the equilibrium that we construct in previous Section 2.5.1, information is trans-
mitted within only two periods, the first period and the second period, regardless of
the length of communication. It seems that R does not use T-period communication
effectively. In Section 2.5.2, we show the benefit of long term communication.

First, we provide some properties of equilibrium outcomes. The following Propo-
sition 8 shows that all the equilibria in Γ(b, s, r,T) are finite partition equilibria.

15Note that 1
5 <

1
26

(
4 +
√

3
)
< 1

4 .
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Proposition 8. In the uniform-quadratic case, all the equilibria in Γ(b, s, r,T) are finite partition
equilibria.

The proof of Proposition 8 can be found in Appendix C. Second, we provide an
upper bound of R’s equilibrium payoff. The following Proposition 9 establishes an
upper bound16 of R’s equilibrium payoff.

Proposition 9. In the uniform-quadratic case, the upper bound of R’s equilibrium payoff is
given by −16rb3/3.

The proof of Proposition 9 can be found in Appendix D. One of the main findings
in our analysis is that under some conditions, this upper bound −16rb3/3 can be ap-
proximated by R’s payoff under a finite partition equilibrium when T is long enough.
For the details of this result, see Proposition 11.

Next, we demonstrate that under a certain condition, there exists an equilibrium
under which information is transmitted within the whole T periods. More precisely, we
consider the following information elicitation. In period 1, R learns whether the value
of θ is less than a1. If R learns that the value of θ is less than a1, then she pays a certain
amount of money to S. After that, in period 2, R learns whether the value ofθ is less than
a2. If R learns that the value of θ is less than a2, then she pays a certain amount of money
to S. This information elicitation is repeated until the last period in the communication
round. In the last period in the communication round, R learns whether the value
of θ is less than aT. Under this communication process, R eventually learns to which
element of a partition {[ai+1, ai)}Ti=1 ∪ [a1, a0] the state θ belongs. In what follows, we call
this communication process (monotone) effective T-period communication.17

θ
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1

a0a1

?w1 > 0
-�-�

θ
0

aT+1

1

a0a1a2
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... · · ·

θ
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1

a0a1a2at−1at
-�-�
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θ
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a0aT−1aT a1a2· · ·
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Figure 3: Information elicitation under monotone effective T-period communication

Proposition 10. Fix b ∈ (0, 1/4). If s/r < (1− 4b)/(1+ 12b), there exists an equilibrium with
effective T-period communication.

16This upper bound is not necessarily the least upper bound.
17This Information elicitation is similar to those in Ivanov (2015) and Hörner and Skrzypacz (2016)
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To prove Proposition 10, we construct a (T + 1)-element partition equilibrium with
effective T-period communication. Under this equilibrium, the information is transmit-
ted in the following steps. At h(t,1) in which mt′ < at′ and wt′ ≥ w∗t′ for all t′ < t, S of type
θ < at sends a message mt randomly according to a uniform distribution over [0, at),
and S of type θ ≥ at sends a message mt randomly according to a uniform distribution
over [at, 1]. Otherwise, any type of S sends a message mt randomly according to a
uniform distribution over [0, 1]. If R learns θ < at at stage 1 in period t, then he pays w∗t
to S. Otherwise, he pays nothing to S at stage 2.

Under the above communication procedure, for any hT+1, the closure of {θ ∈ Θ :
f (θ|hT+1) > 0}, I(hT+1), belongs to {[ai+1, ai]}Ti=0 ∪ {[aT+1, ai]}T−1

i=0 , and R believes that θ is

uniformly distributed over I(hT+1). Therefore, R must choose y = min I(hT+1)+max I(hT+1)
2 at

hT+1.
At hT in which mt′ < at′ and wt′ ≥ w∗t′ for all t′ < T, since R does not obtain

additional information in the future, w∗T must be equal to 0. Therefore, {[ai+1, ai)}Ti=T−1
must coincide with the 2-element equilibrium partition achieved in a model with one
shot information transmission where Θ = [0, aT−1). By Crawford and Sobel, it must be
satisfied that

aT =
aT−1

2
− 2b.

This implies that aT−1 > 4b. We define at and w∗t as follows:

ai ≡


1 − ia for i ∈ {0, . . . ,T − 1},
1−(T−1)a

2 − 2b for i = T,

0 for i = T + 1.

w∗t ≡


2bsa for t ∈ {0, . . . ,T − 2},
s

16 {1 + 12b − a(T + 1)}{1 + 4b − a(T − 3)} for t = T − 1,

0 for t = T.

Note that 0 = aT+1 < aT < aT−1 < · · · < a0 = 1 and 4b < aT−1 if and only if
a < (1 − 4b)/(T − 1), and w∗T−1 > 0 if a < min{(1 + 12b)/(T + 1), (1 + 4b)/(T − 3)}. Since
we suppose that T ≥ 3, we have (1 + 4b)/(T − 3) > (1 − 4b)/(T − 1). Therefore, if
a < min{(1− 4b)/(T− 1), (1+ 12b)/(T+ 1)}, ai and w∗t are well-defined. Moreover, for any
t ∈ {1, . . . ,T − 1}, w∗t becomes a solution to an equation,

s
(at + at−1

2
− (at + b)

)2
= −s

(at+1 + at

2
− (at + b)

)2
+ w∗t ,

induced by a condition which requires that S’s types who fall on the boundaries between
adjacent intervals are indifferent between the associated values of y.

The strategy profile and system of beliefs outlined above, which we denote by ξT,
can not always be an equilibrium. It depends on the value of a. We show that ξT

can be an equilibrium by taking a small enough. When a ≈ 0, R’s payment wt in each
t ≤ T − 2 goes 0. Consider a history at stage 2 in period T − 1 where mt < at for
all t ≤ T − 1. At such a history, there are two cheap talk equilibria in the remaining
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game; the babbling equilibrium and the 2-element partition equilibrium. Since we
now suppose that a ≈ 0, if the 2-element partition equilibrium is chosen in period T,
R’s continuation payoff is approximated by −r(b2 − 1/48). Otherwise, R’s continuation
payoff is approximated by −r/12. Moreover, w∗T−1 ≈ s(1 + 12b)(1 + 4b)/16. Since we
suppose that s/r < (1 − 4b)/(1 + 12b), we have

−r
(
b2 − 1

48

)
−

(
− r

12

)
>

s
16

(1 + 12b)(1 + 4b).

Thus, R has incentive to pay w∗T−1 at this history so that the babbling equilibrium would
not be chosen in next period. The formal proof can be found in Appendix E.

In Proposition 10, we have only shown the possibility of the effective T-period
communication. In order for ξT to be an equilibrium, it might be required that aT−1 is
close to 1. If aT−1 is close to 1, R faces with the history h(T,1) in which I(h(T,1)) = [0, aT−1]
with a high probability on the equilibrium path. Moreover, {[ai+1, ai)T

i=T−1} almost
coincides with the 2-element equilibrium partition achieved in a model with one-shot
information transmission. In such a case, the initial (T−1)-period communication does
not have much meaning for R ex ante. Now, we show that the benefit of long therm
communication.

Proposition 11. Fix b ∈ (0, 1/4) and r > 0. For any d > 0, there exists T(b, d, r) such that if
T ≥ T(b, d, r), there exists η(b,T, d, r) such that if s < η(b,T, d, r), R can obtain the higher ex
ante expected payoff than −16rb3/3 − d.

The formal proof can be found in Appendix F. We have already shown that an
upper bound of R’s equilibrium payoff is −16rb3/3. This Proposition 11 shows that
if the length of the communication round is sufficiently high and R places greater
importance on the project than S does, then this upper bound can be approximated by
an R’s equilibrium payoff.

Remark 3. Suppose that ξε constitutes an equilibrium of Γ(b, s, r,T) where R obtains
EUR(ε) > −16rb3/3 − d. Consider Γ(b, s, r,T′) where T′ > T. Now, construct a strategy
profile ξ′ε by modifying ξε. In particular, under ξ′ε, players follow ξε until period T, and
then S always sends babbling massage and R never pays money to S in the future. It is
obvious that ξ′ε constitutes an equilibrium of Γ(b, s, r,T′) and R’s equilibrium payoff is
equal to EUR(ε) > −16rb3/3 − d.

5.3. Comparison with Other Communication Protocols

Now, we compare the effective T-period communication with other communication
protocols, i.e. delegation, arbitration and mediation, that strictly dominate the one-
shot information transmission: that is, under these communication protocols, R can
obtain the higher ex ante expected payoff than that under the one-shot information
transmission.
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When R delegates control, her payoff is given by −rb2. As shown by CS, the ex ante
expected payoff of R under the one shot information transmission is given by

EUR
CS = −r

(
1

12n2 +
b2(n2 − 1)

3

)
.

The maximum number of partition equilibrium outcomes ñ is given by

ñ ≡
−1

2
+

1
2

(
1 +

2
b

) 1
2
 ,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. We can immediately
verify that EUR

CS < −rb2 for n ≥ 2, and thus R prefers delegation to the one shot
information transmission whenever informative communication is possible.

In contrast, under effective T-period communication, R can obtain the ex ante
expected payoff as well as −16rb3/3 when T is sufficiently large and s is small relative
to r. We can verify immediately that −16rb3/3 > −rb2 when b < 3/16.

Next, consider a communication protocol arbitration where the players can send
messages to a neutral third party (arbitrator), and after having received the messages,
the arbitrator announces an project. This announcement serves as a binding recommen-
dation to R. Namely, R cannot choose any action that is different from the recommended
one. Goltsman et al. (2009) characterizes the optimal arbitration rule and shows that
the R’s ex ante expected payoff under optimal arbitration is −rb2(1 − 4b/3).18 We can
immediately verify that −16rb3/3 > −rb2(1 − 4b/3) when b < 3/20.

Therefore, Proposition 11 implies that when the length of the communication round
is high and R places greater importance on the project than S does, R can obtain higher
ex ante expected payoff under effective T-period communication than those under
delegation and arbitration.19

6. Generalization of Proposition 4 and Proposition 6

In this section, we show the following two results under the more general settings where
the players’ payoff functions and the prior probability of the state are not restricted to
the uniform-quadratic case but those described in Section 2. One is that if T ≥ 2 and r
is large relative to s, R can obtain more detailed information in our model than that in a
model with one-shot information transmission. The other is that if T ≥ 2 and r is large
relative to s, there exists an equilibrium whose outcome ex ante Pareto-dominates all
equilibrium outcomes in a model with one-shot information transmission.

We now show that the first result. Recall that ñ(b) denotes the maximum number
of elements of equilibrium partition achievable in a model with one-shot information
transmission. As can be seen from the uniform-quadratic case, under our equilibrium
construction in Proposition 4, it is necessary that after S conveys some information in

18Having restricted attention to deterministic mechanism, Melumad and Shibano (1991) provided the
optimal arbitration (optimal delegation) rule.

19Since the optimal arbitration rule dominates the optimal mediation rule, our communication protocol
could also strictly dominate the optimal mediation rule.
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period 1, there are multiple equilibria in the remaining game. Therefore, we assume
that ñ(b) ≥ 2. In a model with one-shot information transmission, if Condition M
holds, then the most informative equilibrium is ñ(b)-element partition equilibrium
where {[ãñ(b), ãñ(b)−1), . . . [ã1, ã0]}, and 0 = ãñ(b) < ãñ(b)−1 < · · · < ã1 < ã0 = 1.

The following Proposition 12 establishes that in multistage information transmis-
sion with voluntary monetary transfer, there exists an equilibrium whose partition has
more steps that that in a model with one-shot information transmission.

Proposition 12. Fix b > 0 and suppose that ñ ≡ ñ(b) ≥ 2. Then, there exists a positive value
η(b) such that if s/r < η(b), then there exists an equilibrium with a (ñ + 1)-element partition.

To prove this Proposition, we construct a strategy profile that induces a (ñ + 1)-
element partition: {[âñ+1, âñ), . . . [â1, â0]}, and 0 = âñ+1 < âñ < · · · < â1 < â0 = 1. The
following strategy profile is an extension of the strategy profile that we construct in
Section 5.1.

At stage 1 in period 1, S of type θ ≥ â1 sends a message m1 randomly according to
a uniform distribution over [â1, 1], and S of type θ < â1 sends a message m1 randomly
according to a uniform distribution over [0, â1). If m1 < â1, then R pays a certain
amount of money, w∗, to S at stage 2 in period 1. Otherwise, she pays nothing to
S. If m1 < â1 and w1 ≥ w∗, then, at stage 1 in period 2, S of type θ ≥ â2 sends a
message m2 randomly according to a uniform distribution over [â2, 1], and S of type
θ ∈ [âi+1, âi), for i ∈ {2, . . . , ñ}, sends a message m2 randomly according to a uniform
distribution over [âi+1, âi). Otherwise, S sends a message m2 randomly according to
uniform distribution over [0, 1] regardless of his type. In period t ≥ 2, R always pays
nothing to S. In period t ≥ 3, S always sends babbling message. In period T + 1, R
chooses a project ρ(hT+1) ≡ arg maxy

∫
uR(y, θ) f (θ|hT+1)dθ. In what follows, we denote

by (σ̂, ρ̂) the strategy profile defined above, and denote by f̂ the belief system derived
from (σ̂, ρ̂).
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Figure 4: Equilibrium
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Under the above strategy profile, we have to take an equilibrium partition whose
boundaries {âñ, . . . , â2} coincide with those of the ñ-element partition equilibrium in
the CS model where state space is [0, ã1). Moreover, it must be satisfied that w∗ =
s · uS(y(a2, a1), a1, b) − s · uS(y(a1, 1), a1, b) > 0. Therefore, if θ is close to â1 and θ < â1,
then S strictly prefers the project y(â1, 1) to the project y(â2, â1). Hence, R pays money
w∗ after receiving the message that “m1 < â1” so that S’s type θ < â1 would not lie to
her. Since R cannot commit to compensate for S’s message, the following inequality
must be hold for paying w∗ to be optimal for R.

r
G(â1)

ñ∑
i=1

∫ âi

âi+1

uR(y(âi+1, âi), θ)g(θ)dθ − r
G(â1)

∫ â1

0
uR (

y(0, â1), θ
)

g(θ)dθ ≥ w∗. (12)

The left-hand side of this inequality represents the value of additional information,
that is, the value of the partition {[0, âñ), . . . , [â2, â1)}, that R receives in period 2 by
paying w∗ after receiving m1 < â1. It is obvious that R always strictly prefers the
partition {[0, âñ), . . . , [â2, â1)} to the partition {[0, â1)}. This implies that the left-hand
side of the inequality (12) is positive and increasing in r when ñ ≥ 2. Moreover, since
w∗ = s ·uS(y(a1, 1), a1, b)− s ·uS(y(a2, a1), a1, b),20 the right-hand side of the inequality (12)
is decreasing and goes to 0 as s goes to 0. Therefore, if r is large enough relative to s,
then R has incentive to pay w∗ after receiving the message m1 < â1.

In Appendix G, we make sure that there exists η(b) > 0 such that if s
r < η(b), by

taking the boundaries of the partition {[âñ+1, âñ), . . . [â1, â0]} suitably, ((σ̂, ρ̂), f̂ ) constitutes
an equilibrium.

Next, we show that under some conditions, multistage information transmission
with voluntary monetary transfer is more beneficial to both R and S than one-shot
information transmission. To see this, we focus on the equilibrium, ((σ̂, ρ̂), f̂ ), that we
constructed to prove the Proposition 12.

Let {[âx
ñ+1, â

x
ñ), . . . [âx

1, â
x
0]} be the partition whose boundaries {âx

ñ, . . . , â
x
2} coincide with

those of the ñ-element partition equilibrium in the CS model where state space is [0, x).
We denote by EÛR(x) the ex ante expected payoff of R under ((σ̂, ρ̂), f̂ ) with (ñ + 1)-

element partition: {[âx
ñ+1, â

x
ñ), . . . [âx

1, â
x
0]} where âx

1 ≡ x ∈ (a1(s/r), 1). Let a1(s/r) be the
infimum value of z such that (12) holds for all x ∈ (z, 1).21

We have

EÛR(x) = Ŵ(x) − E[w∗].

where Ŵ(x) denotes R’s ex ante expected utility from project:

Ŵ(x) ≡ r
ñ+1∑
i=1

∫ âx
i−1

âx
i

uR(y(âx
i , â

x
i−1), θ)g(θ)dθ.

CS have shown that in a model with one-shot information transmission, under Condi-
tion M, R always strictly prefers ñ-element partition equilibrium to any other equilibria.

20Recall the Figure 2 in Section 5.1.
21The formal characterization of a1(s/r) can be found in Appendix G.
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We denote by EUR
CS the ex ante expected payoff of R under the ñ-element partition equi-

librium in a model with one-shot information transmission. We have

EUR
CS = r

ñ∑
i=1

∫ ãi−1

ãi

uR(y(ãi, ãi−1), θ)g(θ)dθ.

The boundaries {âx
ñ+1, â

x
ñ, . . . , â

x
1} almost coincides with the boundaries {ãñ, ãñ−1, . . . , ã0}

induced by ñ-element partition equilibrium in a model with one-shot information
transmission when âx

1 ≈ 1. Therefore, we have limx↑1 Ŵ(x) = EUR
CS. This implies that

Ŵ(x) > EUR
CS for some x ∈ (a1(s/r), 1) when the following Condition C holds.

Condition C . d
dx

∣∣∣
x=1 Ŵ(x) < 0.

In what follows, we restrict attention to ((UR,US),G) under which Condition C
holds. Note that there exists a pair of players payoff functions and the prior distribution
of state, ((UR,US),G), under which Condition C holds. For details, see Appendix K. It
is not true that Condition M implies that Condition C. In Remark 8 in Appendix K, we
provide an example in which Condition M is satisfied, while Condition C is not.

Under this condition, for some âx
1 ≡ x ∈ (a1(s/r), 1), the partition {[âx

ñ+1, â
x
ñ), . . . [âx

1, â
x
0]}

is more informative for R with respect to the project than the partition {[ãñ, ãñ−1), . . . [ã1, ã0]}.
However, even when Condition C holds, it is not true that multistage information trans-
mission with voluntary monetary transfer is always beneficial to R since she has to pay
money w∗ to S in order to obtain valuable information.

We now show the following Proposition 13.

Proposition 13. Fix b > 0 and suppose that ñ ≥ 2 and Condition C holds. Then there exists a
positive value η̃(b) such that if s/r < η̃(b), there exists a (ñ + 1)-element partition equilibrium
whose outcome ex ante Pareto-dominates all the equilibrium outcomes in a model with one-shot
information transmission.

We prove Proposition 13 by three steps. Let ((σ̂, ρ̂), f̂ ) be a partition equilibrium
constructed in Proposition 12. First, we show that if s

r < η(b), there exists a (ñ + 1)-
element partition equilibrium which S prefers to all equilibria in Γ(b, s, r, 1). This result
can be summarized as Lemma 2. Second, we show that there exists a positive value η(b)
such that if s

r < η(b), there exists a (ñ+1)-element partition equilibrium which R prefers
to all equilibria in Γ(b, s, r, 1). This result can be summarized as Lemma 3. Finally, we
show that there exists a positive value η̃(b) such that if s

r < η̃(b), the intersection of the
following two sets is nonempty: the set of (ñ + 1)-element partition equilibria which S
prefers to all equilibria in Γ(b, s, r, 1) and the set of (ñ + 1)-element partition equilibria
which R prefers to all the equilibria in Γ(b, s, r, 1).

Now, we show the following Lemma 2.

Lemma 2. Fix b > 0 and suppose that ñ ≥ 2. If s/r < η(b), there exists a (ñ + 1)-element
partition equilibrium ((σ̂, ρ̂), f̂ ) such that S always strictly prefers ((σ̂, ρ̂), f̂ ) to any equilibrium
in a model with one-shot information transmission.

Now, we denote by EUS
CS the ex ante expected payoff of S under the ñ-element

partition equilibrium with {ãñ, . . . , ã0} in a model with one-shot information transmis-
sion. We denote by EÛS(x) the ex ante expected payoff of S under the (ñ + 1)-element
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partition equilibrium ((σ̂, ρ̂), f̂ ) with (ñ + 1)-element partition: {[âx
ñ(b)+1, â

x
ñ(b)), . . . [â

x
1, â

x
0]}

where âx
1 ≡ x ∈ (a1(s/r), 1).

Since the boundaries {âx
ñ+1, . . . , â

x
1} almost coincides with the boundaries {ãñ, . . . , ã0}

when âx
1 ≈ 1, by taking x suitably, we have EÛS(x) − EUS

CS > 0.

Next, we show the following Lemma 3.

Lemma 3. Fix b > 0 and suppose that ñ ≥ 2. Then, there exists a positive value η(b) such that
if s/r < η(b), there exists x, x ∈ (a1(s/r), 1) such that

EÛR(x) > EUR
CS and EÛR(x) < EUR

CS.

Intuitively, R seems to prefer the (ñ + 1)-element partition with {âx
ñ(b)+1, . . . , â

x
0} to

the ñ-element partition with {ãñ, . . . , ã0} since the former has more steps than the latter.
We have already shown that if Condition C holds , then there exists x < 1 such that
Ŵ(x) > EUR

CS. Fix x, then Ŵ(x) − EUR
CS is increasing in r. Since, moreover, w∗ is

decreasing and goes to 0 as s goes to 0, the expected payment E[w∗] is also decreasing
and goes to 0 as s goes to 0. Thus, if r is large enough relative to s, then there exists x
such that EÛR(x) > EUR

CS.
Now, fix s and r. Then, Ŵ(x) − EUR

CS goes to 0 as x goes to 1 since {âx
ñ+1, . . . , â

x
1}

converges to {ãñ, . . . , ã0} as x goes to 1 . Nevertheless, w∗ goes to s · uS(yR(1), 1, b) − s ·
uS(y(ã1, 1), 1, b) > 0 and Pr(m1 < x) ≈ 1 as x goes to 1.22 This means that E[w∗] goes to
s · uS(yR(1), 1, b) − s · uS(y(ã1, 1), 1, b) > 0 as x goes to 1. Hence, there always exists x ≈ 1
such that EÛR(x) < EUR

CS.

Finally, we complete the proof of Proposition 13 by demonstrating that if r is large
enough relative to s, then we can take x ∈ (a1(s/r), 1) such that

EÛR(x) > EUR
CS and EÛS(x) > EUS

CS.

The formal proof of Lemma 2–3, and Proposition 13 can be found in Appendix H–J.

7. Conclusion

In this paper, we studied multistage information transmission with voluntary monetary
transfer in the framework of the CS model. We have shown that multistage information
transmission with voluntary monetary transfer can lead to more informative equilib-
rium outcomes than those in the CS model. Moreover, we have shown that under
multistage information transmission with voluntary monetary transfer, there exists an
equilibrium whose outcome Pareto-dominates all the equilibrium outcomes in the CS
model.

We have provided an upper bound (not necessarily the least upper bound) of R’s
ex ante expected payoff under partition equilibria. Moreover, we have provided a
sufficient condition for this upper bound to be approximated by an R’s equilibrium
payoff. Consequently, we show that when the length of the communication round

22For details, see Appendix G.
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is high and R places greater importance on the project than S does, R can obtain
higher ex ante expected payoffunder effective T-period communication than that under
delegation and arbitration.

A full characterization of all equilibria in our model remains an open question.

Appendix A Proof of Proposition 2

Fix a pure strategy equilibrium under a direct contract (Θ, ω). Then, the existence of a
family of sets {Iλ}λ∈Λ that satisfies the conditions 1–3 in Definition 2 is trivial. Hence,
we have only to make sure that Iλ is convex for each λ ∈ Λ. First, we show that the R’s
strategy regarding the project, y : Θ→ Y, satisfies the following property.

Lemma 4. In a pure strategy equilibrium under a direct contract (Θ, ω), the receiver’s strategy
regarding the project, y(θ), is nondecreasing.

Proof of Lemma 4. From S’s incentive compatibility condition, for any θ, θ′ ∈ Θ,

uS(y(θ), θ, b) + ω(θ) ≥ uS(y(θ′), θ, b) + ω(θ′), and

uS(y(θ′), θ′, b) + ω(θ′) ≥ uS(y(θ), θ′, b) + ω(θ).

This implies that

uS(y(θ), θ, b) − uS(y(θ′), θ, b) ≥ uS(y(θ), θ′, b) − uS(y(θ′), θ′, b)

Since we suppose that uS
1,2 > 0, we have y(θ) ≥ y(θ′) for θ > θ′. □

From this lemma, we have the following lemma.

Lemma 5. In a pure strategy equilibrium under a direct contract (Θ, ω), if y(θ) = y(θ) for
θ < θ, then y(θ) = y(θ) = y(θ) for all θ ∈ [θ, θ]. Moreover, ω(θ) = ω(θ) = ω(θ) for all
θ ∈ [θ, θ].

Lemma 5 implies the convexity of Iλ. ^

Appendix B Proof of Proposition 3

We now suppose that there exists a fully separating equilibrium ξF. Let (Θ, ωF) be a
direct contract under which there exists a pure strategy equilibrium that is outcome
equivalent to ξF. Let y(θ) be the R’s equilibrium strategy under (Θ, ωF). Since R
learns the true state eventually under ξF, y(θ) = yR(θ) in the pure strategy equilibrium
under (Θ, ωF). When truth telling is a best response for S, it is necessary to satisfy the
condition:

s · uS(yR(θ), θ, b) + ω(θ) ≥ s · uS(yR(θ′), θ, b) + ω(θ′) for all θ′ , θ.

From the first-order condition, we have the differential equation

d
dθ
ω(θ) = −s · uS

1(yR(θ), θ, b)
d

dθ
yR(θ).
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Since uS
1(yR(θ), θ, b) > 0 and y′R(θ) ≡ d

dθ yR(θ) > 0, S’s incentive compatibility condition
requires that

ω(θ) = ω(1) +
∫ 1

θ
s · uS

1(yR(z), z, b)y′R(z)dz. (13)

From the condition (13), the compensation schedule that induces full revelation is
strictly decreasing in θ. Finally, we show that R’s payment strategy satisfing the
condition (13) cannot be optimal for her. Let m̃ be a sequence of messages that belongs
to suppµξF(·|θ = 0). Since

∑T
t=1 wt(m̃) = ω(0) > 0 and wT(m̃) = 0, there exists t̃ ∈

{1, . . . ,T − 1} such that wt̃(m̃) > 0 and wt(m̃) = 0 for all t ∈ {t̃ + 1, . . . ,T}.23 Since
ω(0) is the maximum value of ω(θ), under the given equilibrium ξF, there exists an
on-the-path history h̃ ∈ H(t̃,2), where R pays a positive amount of money to S at this
history and never pays money after this history; ρ(h̃) > 0 and ρ(h̃+) = 0 for any
h̃+ ∈ {h ∈ ∪T

t=t̃+1
H(t,2) : h is consistent with h̃ and on-the-path history}. Note that given

m̃, the history h̃ occurs with probability one by the assumption that we suppose that
R’s strategy is a pure strategy. Since ξF is a full separating equilibrium, R chooses yR(0)
after h̃. Therefore, she has no incentive to pay a positive amount of money at h̃. For all
m ∈ suppµξF(·|θ = 0), the same is true. This means that the given R’s payment strategy
does not satisfy the equilibrium condition. ^

Appendix C Proof of Proposition 8

Fix an equilibrium ξ. Let (Θ, ω) be a direct contract under which there exists a pure
strategy equilibrium that is outcome equivalent to ξ. Let y(θ) be the R’s equilibrium
strategy under (Θ, ω). We have already shown that ξ is a partition equilibrium in the
proof of Proposition 2. Let Θ̂ be the set of the boundaries of equilibrium partition. First,
we show the following Lemma 6.

Lemma 6. If there exists open intervals (θk+1, θk) and (θ j, θ j−1) such that θk+1 < θk ≤ θ j <

θ j−1 and (θk+1, θk), (θ j, θ j−1) ⊂ Θ̂, then

• ω is strictly decreasing in θ over (θk+1, θk) and (θ j, θ j−1), and

• limθ↑θk ω(θ) ≡ ω > ω ≡ limθ↓θ j ω(θ).

Proof of Lemma 6. First, we show that ω is strictly decreasing in θ over (θk+1, θk) and
(θ j, θ j−1). For all θ ∈ (θk+1, θk), the truth telling to be a best response requires that

s · uS(yR(θ), θ, b) + ω(θ) ≥ s · uS(yR(θ′), θ, b) + ω(θ′) for all θ′, θ ∈ (θk+1, θk).

The first-order condition for S results in the differential equation

d
dθ
ω(θ) = −s · uS

1(yR(θ), θ, b)
d

dθ
yR(θ).

23Since R cannot obtain additional information about θ after stage 2 in period T, she has no incentive to
choose wT > 0.

29



Since uS
1(yR(θ), θ, b) > 0 and y′R(θ) ≡ d

dθ yR(θ) > 0, S’s incentive compatibility condition
requires that

ω(θ) = ω(θk) +
∫ θk

θ
s · uS

1(yR(z), z, b)y′R(z)dz. (14)

The same argument holds for interval (θ j, θ j−1). Hence, we have

ω(θ) = ω(θ j−1) +
∫ θ j−1

θ
s · uS

1(yR(z), z, b)y′R(z)dz. (15)

From the conditions (14) and (15), the compensation schedule that induces the full
revelation is strictly decreasing in θ over (θk+1, θk) and (θ j, θ j−1).

To simplify the proof, we now suppose that there exists no open interval (θ, θ) ⊂
(θk, θ j) such that (θ, θ) ⊂ Θ̂. Since we now consider the uniform-quadratic case, the
equilibrium payoffs of S of type θk and θ j are −sb2+ω and −sb2+ω, respectively. More-
over, under the uniform-quadratic assumption, if [θ′, θ′′] is an element of equilibrium
partition24 such that θ′ < θ′′, then

lim
θ↓θ′

s · uS(y(θ), θ, b) + ω′ = s · uS(y(θ′), θ′, b) + ω′

> s · uS(y(θ′′), θ′′, b) + ω′′ = lim
θ↑θ′′

s · uS(y(θ), θ, b) + ω′′

where ω′ = ω′′ = ω(θ) for θ ∈ (θ′, θ′′) since s · uS(y(θ′), θ′, b) = s((θ′ + θ′′)/2 − θ′ − b)2

and s · uS(y(θ′′), θ′′, b) = s((θ′ + θ′′)/2 − θ′′ − b)2. We have

s · uS((θ′ + θ′′)/2, θ′, b) > s · uS((θ′ + θ′′)/2, θ′′, b). (16)

From the conditions (14)–(16), we can conclude that s ·uS(y(θ), θ, b)+ω(θ) is strictly
decreasing in θ over (θk+1, θ j−1) ∩ Θ̂. Therefore, we have

lim
θ↑θk

s · uS(y(θ), θ, b) + ω(θ) = −sb2 + ω

> −sb2 + ω = lim
θ↓θ j

s · uS(y(θ), θ, b).

This completes the proof of Lemma 6. □

Now we suppose that there exists an open interval (θk+1, θk) ⊂ Θ̂. Lemma 6 implies
that for almost every θ̂ ∈ (θk+1, θk), there is no θ̃ ∈ Θ \ (θk+1, θk) such that ω(θ̃) = ω(θ̂).
This means that R surely reaches a history such that she pays positive amount of
money to S even though she has already known the S’s type. This holds almost every
θ ∈ (θk+1, θk). Hence, we can conclude that there exists no open interval (θk+1, θk) such
that (θk+1, θk) ⊂ Θ̂.

Next, we show that the cardinality of Θ̂ is finite. We prove this by contradiction.
Now, suppose that the cardinality of Θ̂ is countably infinite. Then, we can take an
infinite sequence {θn}n∈N such that

24The same argument holds for the cases of [θ′, θ′′), (θ′, θ′′] and (θ′, θ′′)
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• limn→∞ θn = L for some L ∈ Θ̂,

• Υ < Θ̂ for any Υ ∈ (inf{θn}n∈N, sup{θn}n∈N) \ {θn}n∈N, and

• sup{θn}n∈N − inf{θn}n∈N < 4b.

Since sup{θn}n∈N − inf{θn}n∈N < 4b, we have θn′ − θn < 4b for n < n′.
Define o, o and o as elements of {θn}n∈N such that o < o < o and θ < Θ̂ for any

θ ∈ (o, o) \ {o}. Let ωo be ω(θo) for θo ∈ (o, o). Let ωo be ω(θo) for θo ∈ (o, o). Then, we
have s · uS(y(θo), o, b) + ωo = s · uS(y(θo), o, b) + ωo. Since o − o < o − o + 4b, we have
ωo − ωo = s · uS(y(θo), o, b) − s · uS(y(θo), o, b) > 0. Therefore, the image of ω the subset
(inf{θn}n∈N, sup{θn}n∈N) ⊂ Θ under ω is a countably infinite set. Now, suppose that
#{Θ̂ \ {θn}n∈N} < ∞. Then, there exists an open interval (v, v) ⊂ (inf{θn}n∈N, sup{θn}n∈N)
such that

• ω(v′) = ω(v′′) and y(v′) = y(v′′) for all v′, v′′ ∈ (v, v), and

• ω(v′) , ω(ṽ) and y(v′) , y(ṽ) for any ṽ < (v, v).

This means that if the S’s type belongs to (v, v), then R surely reaches a history such that
she pays positive amount of money to S even though she does not obtain additional
information in the future. Hence, under the given strategy profile, R reaches such a
history with positive probabilities: Pr(θ ∈ (v, v)). Hence, we can conclude that there
must be #{Θ̂ \ {θn}n∈N} = +∞.　 This implies that we can take an infinite sequence
{θ̃ζ}ζ∈N such that

• limζ→∞ θ̃ζ = Ψ for someΨ ∈ Θ \ (inf{θn}n∈N, sup{θn}n∈N);

• Υ̂ < Θ̂ for any Υ̂ ∈ (inf{θ̃ζ}ζ∈N, sup{θ̃ζ}ζ∈N) \ {θ̃ζ}ζ∈N;

• sup{θ̃ζ}ζ∈N − inf{θ̃ζ}ζ∈N < 4b.

In the same way as in the proof of Lemma 6, we can make sure that {ω(θ) : θ ∈
(inf{θn}n∈N, sup{θn}n∈N)} ∩ {ω(θ) : θ ∈ (inf{θ̃ζ}ζ∈N, sup{θ̃ζ}ζ∈N)} = ∅. Therefore, under
the given strategy profile, R reaches a history such that she pays positive amount of
money to S even though she does not obtain additional information in the future, even
if #{Θ̂ \ {θn}n∈N} = +∞. This means that the given R’s payment strategy does not satisfy
the equilibrium condition. Therefore, the cardinality of Θ̂must be finite. ^

Appendix D Proof of Proposition 9

We make sure that −16rb3/3 is an upper bound (not necessarily the least upper bound)
of R’s ex ante expected payoff under partition equilibria. Fix an equilibrium ξ, and
a (S’s incentive compatible) direct contract (Θ, ω), which is outcome equivalent to ξ.
Suppose that ω(θ) is decreasing. Then, for R’s payment strategy to be optimal, there
must be two elements equilibrium partition, [0, a′) and [a′, a′′), where w(θ′) = w(θ′′) for
θ′ ∈ [0, a′) and θ′′ ∈ [a′, a′′). This means that the boundary a′ must coincide with the
boundary of the 2-element partition (CS) equilibrium where the state space is [0, a′′). If
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a′′ < 4b, then S’s indifferent condition s · uS(y(0, a′), a′, b) − s · uS(y(a′, a′′), a′, b) = 0 has
no solution. Therefore, it must be satisfied that a′′ ≥ 4b when ω(θ) is decreasing.

Now we suppose that ω(θ) is nondecreasing. Then, there are two elements of
equilibrium partition, [a, a′] and (a′, a′′], where w(θ′) < w(θ′′) for θ′ ∈ [a, a′] and θ′′ ∈
(a′, a′′]. Now, we allow the case where a = a′, this means that S tells the truth when
θ = a. For S’s indifferent condition, it must be satisfied that

US(y(θ′), θ′, ω(θ′)) = US(y(θ′′), θ′′, ω(θ′′))

This implies that

ω(θ′′) − ω(θ′) = s
[(a′ + a′′

2
− a′ − b

)2
−

(a + a′

2
− a′ − b

)2]
> 0.

Therefore, it must be satisfied that a′−a+4b < a′′− a′25. Hence, we conclude that R’s ex
ante expected payoff under (Θ, ω) is lower than −16rb3/3. This implies that −16rb3/3 is
an upper bound (not necessarily the least upper bound) of R’s ex ante expected payoff
under partition equilibria. ^

uS

θ
a′′a a′

•
u′•

u′′
ω(θ′′) − ω(θ′) = u′ − u′′ < 0.

Figure 5: a′′ − a′ < a′ − a + 4b

uS

θ
a′′a a′

•u′

•u′′ ω(θ′′) − ω(θ′) = u′ − u′′ > 0.

Figure 6: a′′ − a′ > a′ − a + 4b

25See Figure 5 and Figure 6.
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Appendix E Proof of Proposition 10

First, we now make sure of the optimality of S’s strategy. At history h(t,1) in which
wt′ < w∗t′ or mt′ ≥ at′ for some t′ < t, any type of S send a message randomly according
to the same distribution, a uniform distribution over [0, 1]. Therefore, there is no
profitable deviation for S at such a history.

At history h(1,1) or h(t,1) in which mt′ < at′ and wt′ ≥ w∗t′ for all t′ < t, if S of type

θ sends mt ≥ at, then he will obtain −s
(

at+at−1
2 − (θ + b)

)2
in the future. Otherwise, the

continuation payoff of S can be −s
( at̃+1+at̃

2 − (θ + b)
)2
+
∑t̃

l=t w∗l for t̃ ∈ {t, . . . ,T}. By at and
w∗t defined above, it is easy to verify that for any t̃ ∈ {t, . . . ,T},

−s
(at + at−1

2
− (θ + b)

)2
> −s

(at̃+1 + at̃

2
− (θ + b)

)2
+

t̃∑
l=t

w∗l for any θ > at, (17)

−s
(at + at−1

2
− (θ + b)

)2
< −s

(at̃+1 + at̃

2
− (θ + b)

)2
+

t̃∑
l=t

w∗l for any θ ∈ [at̃+1, at̃), (18)

−s
(at + at−1

2
− (θ + b)

)2
= −s

(at+1 + at

2
− (θ + b)

)2
+ w∗t for θ = at. (19)

Moreover, for θ = at,

max

−s
(at̃+1 + at̃

2
− (θ + b)

)2
+

t̃∑
l=t

w∗l


t̃∈{t,...,T}

= −s
(at+1 + at

2
− (θ + b)

)2
+ w∗t .

Since these (17)–(19) hold for any t ∈ {1, . . . ,T}, there is no profitable deviation for S
from ξT.

Next, we make sure of the optimality of R’s strategy. At any history hT+1 ∈ HT+1,
the posterior belief f (θ|hT+1 ≡ (h(T,2),wT)) = f (θ|h(T,2)) is a uniform distribution sup-

ported on an interval whose mid-point is equal to min I(hT+1)+max I(hT+1)
2 . Therefore,

y = min I(hT+1)+max I(hT+1)
2 is an optimal project for R at any hT+1 ∈ HT+1.

At history h(t,2) in which wt′ < w∗t′ or mt′ ≥ at′ for some t′ < t, R has no chance to
obtain additional information about k in the future. Therefore, he must pay nothing
to S at such a history. At history h(T−1,2) in which he learns θ < aT−1 at the preceding
stage 1, mt′ < at′ and wt′ ≥ w∗t′ for all t′ < T − 1 and mT−1 < aT−1, if R pays wT−1 ≥ w∗T−1,
then he obtains u∗T−1(wT−1):

u∗T−1(wT−1) = −wT−1 − r
T+1∑
i=T

∫ ai−1

ai

1
aT−1

(ai + ai−1

2
− θ

)2
dθ

= −wT−1 − r
(

(aT)3

12aT−1
+

(aT−1 − aT)3

12aT−1

)
= −wT−1 − r

(
b2 +

(aT−1)2

48

)
.

Clearly, u∗T−1(wT−1) takes the maximum value u∗T−1 at wT−1 = w∗T−1. On the other hand,
by paying wT−1 < w∗T−1, he obtains uT−1(wT−1):
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uT−1(wT−1) = −wT−1 − r
∫ aT−1

0

1
aT−1

(aT−1

2
− θ

)2
dθ

= −wT−1 − r
(aT−1)2

12
.

Clearly, uT−1(wT−1) takes the maximum value uT−1 at wT−1 = 0. Therefore, paying w∗T−1
is optimal for R if and only if u∗T−1 ≥ uT−1.

u∗T−1 ≥ uT−1 ⇐⇒ r
(

(aT−1)2

16
− b2

)
≥ w∗T−1. (20)

By making a sufficiently close to 0, the left-hand side of this inequality can be made
to be as close to r

(
1
16 − b2

)
as desired and the right-hand side of this inequality can be

made to be as close to s
16 {1 + 12}{1 + 4b} as desired. It is obvious that if s

r <
1−4b
1+12b , there

exists â(b,T) > 0 such that if a < â(b,T), then u∗T−1 > uT−1.

At history h(t,2), t ∈ {1, . . . ,T − 2}, in which he learns θ < at at the preceding stage 1,
mt′ < at′ and wt′ ≥ w∗t′ for all t′ < t and mt < at, if R pays wt ≥ w∗t , then he obtains u∗t(wt):

u∗t(wt) = −wt −
T∑

i=t+1

w∗i
ai

ai−1
− r

T+1∑
i=t+1

∫ ai−1

ai

1
at

(ai + ai−1

2
− θ

)2
dθ

= −wt −
T∑

i=t+1

w∗i
ai

ai−1
− r

(
aT−1b2

at
+

(aT−1)3

48at
+ (T − 1 − t)

(a)3

48at

)
.

Clearly, u∗t(wt) takes the maximum value u∗t at wt = w∗t . On the other hand, by paying
wt < w∗t , he obtains ut(wt):

ut(wt) = −wt − r
∫ at

0

1
at

(at

2
− k

)2
dk

= −wt − r
(at)2

12
.

Clearly, ut(wt) takes the maximum value ut at wt = 0. Therefore, paying w∗t is optimal
for R if and only if u∗t ≥ ut.

u∗t ≥ ut ⇐⇒ r
(
−aT−1b2

at
− (aT−1)3

48at
− (T − 1 − t)

(a)3

48at
+

(at)2

12

)
≥

T∑
i=t+1

w∗i
ai

ai−1
+ w∗t . (21)

By making a sufficiently close to 0, the left-hand side of this inequality can be made
to be as close to r

(
1
16 − b2

)
as desired and the right-hand side of this inequality can be

made to be as close to s
16 {1 + 12}{1 + 4b} as desired. It is obvious that if s

r <
1−4b
1+12b , there

exists ã(b,T) > 0 such that if a < ã(b,T), then u∗t > ut for any t ∈ {1, . . . ,T − 2}. Take
a < min

{
1+12b
T+1 ,

1−4b
T−1 , â(b,T), ã(b,T)

}
. Then, ξT constitutes an equilibrium. ^
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Appendix F Proof of Proposition 11

We now impose a condition, a = 1−(4b+ε)
T−1 , on ξT. Since aT−1 = 4b + ε ∈ (4b, 1), it must be

satisfied that ε ∈ (0, 1−4b). Moreover, it holds that a = 1−(4b+ε)
T−1 < 1−4b

T−1 <
1+4b
T−3 . Therefore,

if a < 1+12b
T+1 , ai and w∗t are well-defined. We now suppose that T > T̃(b) ≡ 1

8b +
1
2 , and

then a < 1+12b
T+1 for any ε ∈ (0, 1− 4b). Let ξε be this modified strategy profile and system

of beliefs. The following lemma shows that if r is large relative to s, then ξε can be an
equilibrium.

Lemma 7. Fix b ∈ (0, 1/4), and T ≥ T̃(b). Then, for any ε ∈ (0, 1 − 4b), there exists η(b,T, ε)
such that if s/r < η(b,T, ε), then ξε can be an equilibrium.

Proof of Lemma 7. It is obvious that the condition a = 1−(4b+ε)
T−1 only affects R’s optimal

decision at h(t,2), t ∈ {1, . . . ,T − 1}, in which he learns θ < at at the preceding stage 1,
mt′ < at′ and wt′ ≥ w∗t′ for all t′ < t − 1 and mt < at. Therefore, we have only to make
sure whether the inequalities (20) and (21) hold.

Since aT−1 = 4b + ε > 4b, we have (aT−1)2

16 − b2 > 0. Therefore, we have

u∗T−1 ≥ uT−1 ⇐⇒
s
r
≤ (aT−1)2 − 16b2

{1 + 12b − a(T + 1)}{1 + 4b + a(3 − T)} . (22)

The left-hand side of the inequality (21) can be simplified into

r
aT−1

at

{
4(at)3 − (aT−1)3 − (T − 1 − t)a3

48aT−1
− aT−1

at
b2

}
.

Since at = aT−1 + (T − 1 − t)a, we have

4(at)3 − (aT−1)3 − (T − 1 − t)a3

48aT−1
>

(at)3

16aT−1
>

(at)2

16
> b2 >

aT−1

at
b2.

This implies that

aT−1

at

{
4(at)3 − (aT−1)3 − (T − 1 − t)a3

48aT−1
− aT−1

at
b2

}
> 0.

Since, moreover, w∗t > 0 , the right-hand side of the inequality (21) is higher than 0.
Therefore, we have

u∗t ≥ ut ⇐⇒

s
r
<

aT−1
at

{
4(at)3−(aT−1)3−(T−1−t)a3

48aT−1
− aT−1

at
b2

}
1
s
∑T

i=t+1 w∗i
ai

ai−1

. (23)

Note that the value of
w∗i
s does not depend on s. Now we can conclude that there

exists η(b,T, ε) such that if s
r < η(b,T, ε), then the inequalities (22) and (23) hold and ξε

constitutes an equilibrium. □
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We denote by EUR(ε) the ex ante expected payoff of R under a strategy profile ξε.

EUR(ε) = rW(ε) −
T∑

i=1

w∗i
ai

ai−1
.

rW(ε) denotes the expected revenue from the project under ξε:

rW(ε) = −r
T+1∑
i=1

∫ ai−1

ai

(ai + ai−1

2
− θ

)2
dθ

= r
[
−(4b + ε)b2 − (4b + ε)3

48
− 1

48
{1 − (4b + ε)}3

(T − 1)2

]
.

There exists ε(b, d, r) > 0 such that if ε ∈ (0, ε(b, d, r)), then

r
[
−(4b + ε)b2 − (4b + ε)3

48

]
> −16

3
rb3 − d.

This implies that for any ε ∈ (0, ε(b, d, r)), there exists T(b, ε, d, r) such that for any
T ≥ T(b, ε, d, r),

rW(ε) > −16
3

rb3 − d. (24)

Recall that w∗i is linear increasing in s for all i ∈ {1, . . . ,T}. Suppose that T ≥
T(b, ε, d, r). Then, for any ε ∈ (0, ε(b, d, r)), there exists η̂(b,T, ε, d, r) such that if s <
η̂(b,T, ε, d, r), we have EUR(ε) > −16rb3/3 − d.

Suppose that T ≥ T(b, d, r) and ε ∈ (0, ε(b, d, r)). By Lemma 7, it is obvious that
if s

r < η(b,T, ε), then ξε constitutes an equilibrium. Therefore, if s < η̃(b,T, ε, d, r) ≡
min{η̂(b,T, ε, d, r), r · η(b,T, ε)}, the strategy profile ξε constitutes an equilibrium under
which EUR(ε) > −16rb3/3 − d.

We define T(b, d, r) and E(b, d, r) as follows.

T(b, d, r) ≡ max
{

min
ε∈(0,ε(b,d,r))

T(b, ε, d, r), T̃(b)
}
, and

E(b, d, r) ≡
{
ε ∈ (0, ε(b, d, r)) : T(b, ε, d, r) = T(b, d, r)

}
.

Define η(b,T, d, r) as follows:

η(b,T, d, r) ≡ sup
ε∈E(b,d,r)

η̃(b,T, ε, d, r).

This completes the proof. ^

Appendix G Proof of Proposition 12

LetH be the set of all histories where R makes a decision,H ≡ {∪T
t=1 H(t,2)} ∪HT+1. We

denote by I(h) the closure of the set {θ ∈ Θ : f (θ|h ∈ H) > 0}. Under the belief system
f̂ , we have I(hT+1) ∈ {[âñ+1, âñ], . . . [â1, â0], [âñ+1, â1]} for any hT+1 ∈ HT+1. Therefore,
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at hT+1 in which I(hT+1) = [âi+1, âi] for some i ∈ {0, . . . ñ}, the optimal project for R
is y(âi+1, âi) ≡ arg maxy

∫ âi

âi+1
uR(y, θ)g(θ)dθ, and at hT+1 in which I(hT+1) = [âñ+1, â1],

the optimal project for R is y(âñ+1, â1) ≡ arg maxy
∫ â1

â0
uR(y, θ)g(θ)dθ. Hence, ρ̂(hT+1)

becomes y(âi+1, âi) at hT+1 in which I(hT+1) = [âi+1, âi] for some i ∈ {0, . . . ñ}, and ρ̂(hT+1)
becomes y(âñ+1, â1) at hT+1 in which I(hT+1) = [âñ+1, â1]. It is obvious that ρ̂(hT+1) is an
optimal action for R at any hT+1 ∈ HT+1.

In period t ≥ 2, R always pays nothing to S. This implies that {[âi+1, âi)}ñi=1
must coincide with the ñ-element equilibrium partition achieved in a model with
one shot information transmission where θ is drawn from a distribution with density

{g(θ)/
∫ â1

0 g(θ)dθ} · 1[0,â1)(θ). Therefore, the boundaries of this partition, {[âi+1, âi)}ñi=1,
must be solutions to the following a nonlinear difference equation whose initial and
terminal conditions are a1 = â1 and añ+1 = 0, respectively: for i = 2, . . . , ñ,

s · uS(y(ai+1, ai), ai, b) − s · uS(y(ai, ai−1), ai, b) = 0. (25)

When â1 = 1, the solution to (25) induces a partition which coincides with ñ-element
equilibrium partition in a model with one shot information transmission. Moreover, the
solution to (25), vary continuously with respect to initial condition a1 = â1, and we now
suppose that the solution to (1)–(3), {ã0, . . . , ãñ}, induces a partition: 0 = ãñ < · · · < ã0 = 1.
Therefore, there exists x < 1 such that (25) is well-defined for all â1 ∈ (x, 1). Let a1 be the
minimum value of x such that for all â1 ∈ (x, 1), the solution to (25) induces a ñ-element
partition: 0 = añ+1 < añ < · · · < a1 = â1. Since the solution to (25) does not depends on
both s and r, the value of a1 also does not depends on both s and r.

If {â2, . . . , âñ+1} is a solution to (25) where â1 ∈ (a1, 1), there is no profitable deviation
for S from σ̂ at any h(2,1)

θ
in which m1 < â1 and w1 ≥ w∗. Moreover, S always sends a

babbling message at any h(2,1)
θ

in which m1 ≥ â1, or m1 < a1 and w1 < w∗. The same can

be said at any h(t,1)
θ

for t ≥ 3. This implies that if {â1, . . . , âñ+1} is a solution to (25) where

â1 ∈ (a1, 1), then σ̂ is optimal for S at any h(t,1)
θ

for t ≥ 2. Therefore, in what follows, we
suppose that {â2, . . . , âñ+1} is a solution to (25) where â1 ∈ (a1, 1).

At stage 1 in period 1, if S of type θ sends m1 ≥ â1, then he obtains s ·uS (
y(â1, 1), θ, b

)
.

Otherwise, S of type θ ≥ â2 obtains s · uS (
y(â2, â1), θ, b

)
+ w∗, and S of type θ ∈ [âi+1, âi),

for i ≥ 2, obtains s · uS (
y(âi+1, âi), θ, b

)
+ w∗. We assume that uS

11 < 0 and uS
12 > 0.

Moreover, it holds that y(âi+1, âi) > y(âi, âi−1). Therefore, if it is satisfied that

s · uS (
y(â1, 1), â1, b

) − s · uS (
y(â2, â1), â1, b

)
= w∗, then (26)

s · uS (
y(â1, 1), θ, b

) ≥ max
j∈{1,...,ñ}

s · uS
(
y(â j+1, â j), θ, b

)
+ w∗ for θ ≥ â1, and (27)

s · uS (
y(âi+1, âi), θ, b

)
+ w∗ > s · uS (

y(â1, 1), θ, b
)

for i ≥ 1 and θ ∈ [âi+1, âi). (28)

When (27) and (28) hold, S has no incentive to deviate from σ̂ at stage 1 in period 1.
Since we assume that R’s payment must be nonnegative, w∗ must be nonnegative. We
now make sure that R’s payment, w∗(â1) ≡ s ·uS (

y(â1, 1), â1, b
)− s ·uS (

y(â2, â1), â1, b
)
, that

holds the equation (26) is positive for any â1 ∈ (a1, 1). If w∗(â1) = 0 for some â1 ∈ (a1, 1),
then (1)–(3) has a solutions: 0 = âñ+1 < âñ < · · · < â0 = 1. This is incompatible
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with the definition of ñ. Since y(â1, 1), y(â2, â1) and â2 is continuous in â1 ∈ (a1, 1],
w∗(â1) is continuous in â1 ∈ (a1, 1]. Since, moreover, â2 = ã1 when â1 = 1, we have
w∗(1) = s · uS(yR(1), 1, b) − s · uS(y(ã1, 1), 1, b). Note that w∗(1) > 0 since uS

11 < 0 and
y(ã1, 1) < yR(1) < yS(1, b). Therefore, w∗(â1) > 0 for any â1 ∈ (a1, 1].

At any h(t,2), R has no incentive to increase the amount of payment because that
does not affect S’s behavior. Therefore, we have only to make sure the optimality of ρ
at h(1,2) in which m1 < â1. At history h(1,2) in which m1 < â1, if R pays w1 < w∗, then she
obtains u(w1):

u(w1) = −w1 +
r

G(â1)

∫ â1

0
uR (

y(0, â1), θ
)

g(θ)dθ.

Clearly, u(w1) takes the maximum value u at w1 = 0. On the other hand, by paying
w1 ≥ w∗ at history h(1,2) in which m1 < a1, she obtains u∗(w1):

u∗(w1) = −w1 +
r

G(â1)

ñ∑
i=1

∫ âi

âi+1

uR(y(âi+1, âi), θ)g(θ)dθ.

Clearly, u∗(w1) takes the maximum value u∗ at w1 = w∗. Therefore, paying w∗ is an
optimal decision for R at h(1,2) in which m1 < â1 if and only if

u∗ ≥ u ⇐⇒
r

G(â1)

ñ∑
i=1

∫ âi

âi+1

uR(y(âi+1, âi), θ)g(θ)dθ − r
G(â1)

∫ â1

0
uR (

y(0, â1), θ
)

g(θ)dθ ≥ w∗.(29)

We denote by r · V(â1) the left-hand side of the inequality (29). V(â1) is continuous
in â1 ∈ (a1, 1], and V(â1) > 0 for â1 ∈ (a1, 1]. Moreover, V(1) = EUR

CS,ñ − EUR
CS,ui

where EUR
CS,ñ ≡

∑ñ
i=1

∫ ãi−1

ãi
uR(y(ãi, ãi−1), θ)g(θ)dθ and EUR

CS,ui ≡
∫ 1

0 uR(y(0, 1), θ)g(θ)dθ.

Let α(â1) be uS (
y(â1, 1), â1, b

) − uS (
y(â2, â1), â1, b

)
. In what follows, s · α(â1) denotes R’s

payment, w∗(â1), that holds the equation (26). The inequality (29) can be simplified into
s
r ≤

V(â1)
α(â1) . It is obvious that V(â1)

α(â1) is continuous in â1 ∈ (a1, 1], and

V(1)
α(1)

=
EUR

CS,ñ − EUR
CS,ui

uS(y∗(1), 1, b) − uS(y(ã1, 1), 1, b)
> 0.

Therefore, if s
r < η(b) ≡ V(1)

α(1) , then {â1 ∈ (a1, 1) : s/r ≤ V(â1)/α(â1)} , ∅. This implies
that if s

r < η(b), there exists a nonempty set {â1 ∈ (a1, 1) : s/r ≤ V(â1)/α(â1)} such that
((σ̂, ρ̂), f̂ ) constitutes a (ñ + 1)-element partition equilibrium when â1 ∈ {â1 ∈ (a1, 1) :
s/r ≤ V(â1)/α(â1)}. ^

Remark 4. Since V(1)
α(1) = η(b) > 0 and V(â1)

α(â1) is continuous in â1 ∈ (a1, 1], there exists

z ∈ (a1, 1) such that s
r ≤

V(â1)
α(â1) holds for any â1 ∈ (z, 1). Let a1(s/r) be the infimum value

of z. Since V(â1)
α(â1) is continuous in â1 ∈ (a1, 1] and V(â1)

α(â1) > 0 for all â1 ∈ (a1, 1], the value of
a1(s/r) is strictly decreasing and goes to a1 as s

r goes to 0.
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Appendix H Proof of Lemma 2

Crawford and Sobel have shown that in a model with one-shot information trans-
mission, under Condition M, S always strictly prefers ex ante ñ-element partition
equilibrium to any other equilibria. We have

EUS
CS = s

ñ∑
i=1

∫ ãi−1

ãi

uS(y(ãi, ãi−1), θ, b)g(θ)dθ.

By Proposition 1, it must be satisfied that s
r < η(b) in order for an equilibrium

((σ̂, ρ̂), f̂ ) to exist. Therefore, in what follows, we suppose that s
r < η(b).

The ex ante expected payoff of S under ((σ̂, ρ̂), f̂ ) is

EÛS(x) = s

 ñ+1∑
i=1

∫ âx
i−1

âx
i

uS(y(âx
i , â

x
i−1), θ, b)g(θ)dθ + G(x) · α(x)

 .
Recall that s · α(x) ≡ w∗(x) = s · uS (

y(x, 1), x, b
) − s · uS

(
y(âx

2, x), x, b
)

is positive for
x > a1, and s · α(x) is continuous in x > a1.

Let ∆(x) denote EÛS(x) − EUS
CS. Since limx↑1 ∆(x) = α(1) > 0 and ∆(x) is continuous

in x ∈ (a1, 1], there exists d < 1 such that d ≥ a1(s/r) and

∆(x) > 0 for all x ∈ (d, 1) .

This completes the proof of Lemma 2. ^

Remark 5. Define d(s/r) ≡ inf{d : d ≥ a1(s/r) and ∆(x) > 0 for all x ∈ (d, 1)}. Since a1(s/r)
is decreasing as s

r is decreasing and ∆(x) does not depend on both s and r, it is satisfied
that d(s/r) is decreasing (but not always strictly decreasing) as s

r is decreasing.

Appendix I Proof of Lemma 3

In common with the proof of Lemma 2, we suppose that s
r < η(b).

Let δ(x, s, r) denote {EÛR(x) − EUR
CS}/r. We have

δ(x, s, r) = Ŵ(x) − s
r
G(x) · α(x) −

ñ∑
i=1

∫ ãi−1

ãi

uR(y(ãi, ãi−1), θ)g(θ)dθ.

It holds that δ(x, s, r) < 0, if and only if

η(b, x) ≡
Ŵ(x) −∑ñ

i=1

∫ ãi−1

ãi
uR(y(ãi, ãi−1), θ)g(θ)dθ

G(x) · α(x)
<

s
r
.

Since η(b, x) is continuous in x ∈ (a1, 1] and η(b, 1) = 0, there exists ε̂ > 0 such that
η(b, x) < s

r for all x ∈ (1 − ε̂, 1).
It holds that δ(x, s, r) > 0, if and only if

η(b, x) >
s
r
.
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Since x belongs to (a1(s/r), 1) and infx∈(a1(s/r),1) G(x)α(x) > 0, η(b, x) has a least upper
bound η(b|s/r) = supx∈(a1(s/r),1) η(b, x). Under Condition C, η(b, x) > 0 for some x ∈
(a1(s/r), 1). This implies that η(b|s/r) > 0. Since, moreover, a1(s/r) is not increasing
as s

r is decreasing, η(b|s/r) is not decreasing as s
r is decreasing. Therefore, we can

take a supremum of the value of s
r that satisfies η(b|s/r) > s

r . We denote by η(b) this

supremum. Note that η(b) < +∞ since Ŵ(x) − ∑ñ
i=1

∫ ãi−1

ãi
uR(y(ãi, ãi−1), θ)g(θ)dθ < +∞

for any x ∈ (a1, 1). This completes the proof of Lemma 3. ^

Remark 6. When x almost equal to 1, the partition under the (ñ + 1)-element par-
tition equilibrium almost coincides with the partition under the ñ-element partition
equilibrium in a model with one-shot information transmission. Nevertheless, the
expected payment of monetary transfer is high (almost coincides with sα(1)). There-
fore, if s

r < η(b), there always exists a (ñ + 1)-element partition equilibrium which is
unfavorable to R.

Appendix J Proof of Proposition 13

In common with the proof of Lemma 2, we suppose that s
r < η(b).

Let δ(x, s, r) denote {EÛR(x) − EUR
CS}/r. We have

δ(x, s, r) = Ŵ(x) − s
r
G(x) · α(x) −

ñ∑
i=1

∫ ãi−1

ãi

uR(y(ãi, ãi−1), θ)g(θ)dθ.

It holds that δ(x, s, r) < 0, if and only if

η(b, x) ≡
Ŵ(x) −∑ñ

i=1

∫ ãi−1

ãi
uR(y(ãi, ãi−1), θ)g(θ)dθ

G(x) · α(x)
<

s
r
.

Since η(b, x) is continuous in x ∈ (a1, 1] and η(b, 1) = 0, there exists ε̂ > 0 such that
η(b, x) < s

r for all x ∈ (1 − ε̂, 1).
It holds that δ(x, s, r) > 0, if and only if

η(b, x) >
s
r
.

Since x belongs to (a1(s/r), 1) and infx∈(a1(s/r),1) G(x)α(x) > 0, η(b, x) has a least upper
bound η(b|s/r) = supx∈(a1(s/r),1) η(b, x). Under Condition C, η(b, x) > 0 for some x ∈
(a1(s/r), 1). This implies that η(b|s/r) > 0. Since, moreover, a1(s/r) is not increasing
as s

r is decreasing, η(b|s/r) is not decreasing as s
r is decreasing. Therefore, we can

take a supremum of the value of s
r that satisfies η(b|s/r) > s

r . We denote by η(b) this

supremum. Note that η(b) < +∞ since Ŵ(x) − ∑ñ
i=1

∫ ãi−1

ãi
uR(y(ãi, ãi−1), θ)g(θ)dθ < +∞

for any x ∈ (a1, 1). This completes the proof of Lemma 3. ^

Remark 7. When x almost equal to 1, the partition under the (ñ + 1)-element par-
tition equilibrium almost coincides with the partition under the ñ-element partition
equilibrium in a model with one-shot information transmission. Nevertheless, the
expected payment of monetary transfer is high (almost coincides with sα(1)). There-
fore, if s

r < η(b), there always exists a (ñ + 1)-element partition equilibrium which is
unfavorable to R.
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Appendix K Condition C

Suppose that s ·uS(y, θ, b) ≡ −s(y− (θ+ b))2, r ·uR(y, θ) ≡ −r(y−θ)2, and G(θ) is uniform
distribution over [0, 1]. In this case, the the boundaries of the partition induced from
((σ̂, ρ̂), f̂ ) are given by

âx
i =


1 for i = 0,

x for i = 1,
ñ+1−i

ñ x − 2b(ñ + 1 − i)(i − 1) for i = 2, . . . , ñ,

0 for i = ñ + 1.

We have already shown that for ñ ≥ 2, there existsη(b) such that if s
r < η(b), then ((σ̂, ρ̂), f̂ )

constitutes an equilibrium whose partition induced by âx
i where x ∈ (a1(s/r), 1). Note

that y(âx
i+1, â

x
i ) =

âx
i+1+âx

i
2 for i = 0, . . . , ñ.

The Envelope Theorem yields

d
dx

Ŵ(x) =
ñ∑

i=1

g(âx
i )

dâx
i

dx
[uR(y(âx

i+1, â
x
i ), âx

i ) − uR(y(âx
i , â

x
i−1), âx

i )].

Since limx↑1 âx
i = ãi−1, we have

d
dx

∣∣∣∣∣
x=1

Ŵ(x) =
ñ−1∑
j=1

g(ã j)[uR(y(ã j+1, ã j), ã j) − uR(y(ã j, ã j−1), ã j)]
d

dx

∣∣∣∣∣
x=1

âx
j+1

+g(ã0)[uR(y(ã1, ã0), ã0) − uR(y∗(ã0), ã0)]
d
dx

∣∣∣∣∣
x=1

âx
1.

Therefore, we have

d
dx

∣∣∣∣∣
x=1

Ŵ(x) =
ñ−1∑
j=1

− (
ã j+1 − ã j

2

)2

+

(−ã j + ã j−1

2

)2 ñ − j
ñ
−

(1 − ã1

2

)2
.

Since ã j =
ñ− j

ñ − 2bj(ñ − j),

−
(

ã j+1 − ã j

2

)2

+

(−ã j + ã j−1

2

)2

> 0 for j = 1, . . . , ñ − 1.

Moreover,

ñ−1∑
j=1

− (
ã j+1 − ã j

2

)2

+

(−ã j + ã j−1

2

)2 ñ − j
ñ

<
ñ−1∑
j=1

− (
ã j+1 − ã j

2

)2

+

(−ã j + ã j−1

2

)2
<

(1 − ã1

2

)2
.

This establishes d
dx

∣∣∣
x=1 Ŵ(x) < 0.
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Remark 8. Suppose that s · uS(y, θ, b) ≡ −s(y − (θ + b))2, r · uR(y, θ) ≡ −r(y − θ)2, and
G(θ) is a distribution over [0, 1] with a density g(θ) = −2θ + 2. By the Theorem 2 in
Crawford and Sobel (1982), all solution to (1) satisfy Condition M. By Condition M and
uS

13 > 0, we have dâx
i /dx > 0 and

uR(y(ã j+1, ã j), ã j) − uR(y(ã j, ã j−1), ã j) ≥ uS(y(ã j+1, ã j), ã j, b) − uS(y(ã j, ã j−1), ã j, b) ≥ 0.

Since g(1) = 0, this means that d
dx

∣∣∣
x=1 Ŵ(x) > 0.

Appendix L Construction of P

Let σ1 : B(M1) × Θ → [0, 1] and G : B(Θ) → [0, 1] be S’s behavior strategy at stage 1
in period 1 and the prior probability measure on (Θ,B(Θ)), respectively. Note that
σ1(M̃, ·) : Θ → [0, 1] is measurable for each M̃ ∈ B(M1). First, we induce a product
measure P1

σ on (Θ ×M1,B(Θ) ⊗ B(M1)) as follows: for each Θ̃ ∈ B(Θ) and M̃ ∈ B(M1),

P1
σ(Θ̃ × M̃) =

∫
θ∈Θ̃
σ1(M̃, θ)G(dθ).

Let ρ−1
1 (W̃) be the set of m1 such that {m1 ∈ M1 : ρ(m1) ∈ W̃ for W̃ ∈ B(W1). Since we

assume that ρ : M1 →W1 is a measurable, it is satisfied that ρ−1
1 (W̃) ∈ B(M1) We induce

a product measure P1
σ,ρ on (Θ×M1 ×W1,B(Θ)⊗B(M1)⊗B(W1)) as: for each Θ̃ ∈ B(Θ),

M̃ ∈ B(M1) and W̃ ∈ B(W1),

P1
σ,ρ(Θ̃ × M̃ × W̃) = P1

σ(Θ̃ × {M̃ ∩ ρ−1
1 (W̃)}),

Next, we induce a product measureP2
σ on (H(2,1)

Θ
×M2,B(H(2,1)

Θ
)⊗B(M1)) as follows: for

each H̃ ∈ B(H(2,1)
Θ

) and M̃ ∈ B(M2),

P2
σ(H̃ × M̃) =

∫
h∈H̃
σ2(M̃, h)P1

σ,ρ(dh)

where σ2 : B(M2)×H(2,1)
Θ
→ [0, 1] denotes S’s behavior strategy at stage 1 in period 2. By

the repeated application of the above result, we can obtain P. Under the given strategy
profile and belief system ((σ, ρ), f ), in the same way, we can uniquely determine a
probability measure over the outcomes after any (public or private) history.

Appendix M Consistency of the belief system

Given h(t,2), the belief system induces a probability measure f (·|h(t,2)) on (Θ,B(Θ)). Since,
moreover, the S’s behavior strategy σ(M̃, ·|h(t,2),wt) : Θ → [0, 1] is measurable for any
M̃ ∈ B(Mt+1) and wt ∈ Wt. we can uniquely define a probability measure P(·|h(t,2),wt)
on (Θ ×Mt+1,B(Θ) ⊗ B(Mt+1)) as follows: for Θ̃ ∈ B(Θ) and M̃ ∈ B(Mt+1),

P(Θ̃ × M̃|h(t,2),wt) ≡
∫
Θ̃

σ(M̃, θ|h(t,2),wt) f (dθ|h(t,2)).
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Therefore, we calculate the posterior belief: if P(Θ × M̃|h(t,2),wt) > 0, then

f (Θ̃|h(t,2),wt, M̃) =
P(Θ̃ × M̃|h(t,2),wt)
P(Θ × M̃|h(t,2),wt)

.

Moreover, fix Θ̃ ∈ B(Θ), then P(Θ̃, ·|h(t,2),wt) and P(Θ, ·|h(t,2),wt) induce measures ν̃ and
ν on (Mt+1,B(Mt+1)), respectively. Since ν̃ is absolutely continuous with respect to ν, and
both measures are σ-finite, there exists a Radon-Nikodym derivative f (mt+1|Θ̃, h(t,2),wt)
such that for any M̃ ∈ B(Mt+1),

ν̃ =

∫
M̃

f (mt+1|Θ̃, h(t,2),wt)ν(dmt+1).

Hence, we require that for mt+1 ∈ supp(ν),

f (Θ̃|h(t+1,2)) = f (mt+1|Θ̃, h(t,2),wt),

where h(t+1,2) = (h(t,2),wt,mt+1).
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