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Abstract

This paper proposes a novel test of zero pricing errors for the linear factor pricing model
when the number of securities, N , can be large relative to the time dimension, T , of the
return series. The test is based on Student t tests of individual securities and has a number of
advantages over the existing standardised Wald type tests. It allows for non-Gaussianity and
general forms of weakly cross correlated errors. It does not require estimation of an invertible
error covariance matrix, it is much faster to implement, and is valid even if N is much larger
than T . Monte Carlo evidence shows that the proposed test performs remarkably well even
when T = 60 and N = 5, 000. The test is applied to monthly returns on securities in the
S&P 500 at the end of each month in real time, using rolling windows of size 60. Statistically
significant evidence against Sharpe-Lintner CAPM and Fama-French three factor models are
found mainly during the recent financial crisis. Also we find a significant negative correlation
between a twelve-months moving average p-values of the test and excess returns of long/short
equity strategies (relative to the return on S&P 500) over the period November 1994 to June
2015, suggesting that abnormal profits are earned during episodes of market ineffi ciencies.
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1 Introduction

This paper is concerned with testing for the presence of alpha in Linear Factor Pricing Models
(LFPM) such as the capital asset pricing model (CAPM) due to Sharpe (1964) and Lintner
(1965), or the Arbitrage Pricing Theory (APT) model due to Ross (1976), when the number
of securities, N , is quite large relative to the time dimension, T , of the return series under
consideration. The Sharpe-Lintner CAPM model predicts that expected excess returns (mea-
sured relative to the risk-free rate) on any given security or a given portfolio of securities is
proportional to the expected excess return on the market portfolio, with the constant of the
proportionality, β, being security/portfolio specific.

There exists a large literature in empirical finance that tests various implications of Sharpe-
Lintner model. Cross sectional as well as time series tests have been proposed and applied in
many different contexts. Using time series regressions, Jensen (1968) was the first to propose
using standard t-statistics to test the null hypothesis that the intercept, αi, in the Ordinary
Least Squares (OLS) regression of the excess return of a given security, i, on the excess return
of the market portfolio is zero.1 The test can be applied to individual securities as well as to
portfolios.

However, when a large number of securities are under consideration, due to dependence of
the errors across securities in the LFPM regressions, the individual t-statistics are correlated
which makes controlling the overall size of the test problematic. Gibbons, Ross and Shaken
(1989, GRS) propose an exact multivariate version of the test which deals with this problem
if the CAPM regression errors are Gaussian and N < T . This is the standard test used in the
literature, but its application has been confined to testing the market effi ciency of a relatively
small number of portfolios, typically 20 − 30, using monthly returns observed over relatively
long time periods. The use of large T as a way of ensuring that N < T , is also likely to
increase the possibility of structural breaks in the β′s that could in turn adversely affect the
performance of the GRS test.

Recently, there has been a growing body of finance literature which uses individual security
returns rather than portfolio returns for the test of pricing errors. Ang, Liu and Schwarz (2016)
show that the smaller variation of beta estimates from creating portfolios may not lead to
smaller variation of cross-section regression estimates. Cremers, Halling and Weinbaum (2015)
examine the pricing of both aggregate jump and volatility risk based on individual stocks rather
than portfolios. Chorida, Goyal and Shanken (2015) advocate the use of individual securities
to investigate whether the source of expected return variation is from betas or security-specific
characteristics.

It is clearly desirable to develop tests of market effi ciency that can deal with a large number
of securities over relatively short time periods so that the problem of time variations in β′s
is somewhat mitigated. It is also important that such tests are reasonably robust to non-
Gaussian errors, particularly as it is more likely that one would encounter non-normal errors
in the case of LFPM regressions for individual securities as compared to regressions estimated
on portfolios comprising a large number of securities.

Out of the two main assumptions that underlie the GRS test, the literature has focussed on
the implications of non-normal errors for the GRS test, and ways of allowing for non-normal
errors when testing αi = 0. Affl eck-Graves and McDonald (1989) were amongst the first to
consider the robustness of the GRS test to non-normal errors who, using simulation techniques,
find that the size and power of GRS test can be adversely affected if the departure from non-
normality of the errors is serious, but conclude that the GRS test is ".. reasonably robust
with respect to typical levels of nonnormality." (p.889). More recently, Beaulieu, Dufour and

1Cross sectional tests of CAPM have been considered by Douglas (1968), Black, Jensen and Scholes (1972),
and Fama and Macbeth (1973), among others. An early review of the literature can be found in Jensen (1972),
and more recently in Fama and French (2004).
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Khalaf (2007, BDK) and Gungor and Luger (2009, GL) have proposed tests of αi = 0 that
allow for non-normal errors, but retain the restriction N < T . BDK develop an exact test
which is applicable to a wide class of non-Gaussian error distributions, and use Monte Carlo
simulations to achieve the correct size for their test. Gungor and Luger (2009) propose two
distribution-free nonparametric sign tests in the case of single factor models that allow the
error distribution to be non-normal but require it to be cross-sectionally independent and
conditionally symmetrically distributed around zero.2

Our primary focus in this paper is on development of multivariate tests of H0 : αi = 0,
for i = 1, 2, ..., N , when N > T , whilst allowing for non-Gaussian and weakly cross-sectionally
correlated errors. The latter condition is required for consistent estimation of the error covari-
ance matrix, V, when N is large relative to T . In the case of LFPM regressions with weakly
cross-sectionally correlated errors, consistent estimation of V can be achieved by adaptive
thresholding which sets to zero elements of the estimator of V that are below a given thresh-
old. Alternatively, feasible estimators of V can be obtained by Bayesian or classical shrinkage
procedures that scale down the off-diagonal elements of V relative to its diagonal elements.3

Fan, Liao and Mincheva (2011, 2013) consider consistent estimation of V in the context an
approximate factor model. They assume V is sparse and propose an adaptive thresholding
estimator of V, which they show to be positive definite with satisfactory small sample prop-
erties. Fan, Liao and Yao (2015) derive the conditions under which standardised Wald tests
of H0 can be asymptotically justified. Gagliardini, Ossola and Scaillet (2016) develop two-
pass regressions of individual stock returns, allowing time-varying risk premia, and propose
a standardised Wald test. Raponi, Robotti and Zaffaroni (2016) propose a test of pricing
error in cross-section regression for fixed number of time series observations. They use a bias-
corrected estimator of Shaken (1992) to standardise their test statistic. Gungor and Luger
(2016) propose simulation based approach for testing pricing errors. They claim that their test
procedure is robust against non-normality and cross-sectional dependence in errors. Amen-
gual and Repetto (2014) consider the standardised F-type test statistic based on principal
component estimation under both serial and cross-section correlation in errors.

In this paper we follow an alternative strategy where we develop a test statistic that
initially ignores the off-diagonal elements of V and base the test of H0 on the average of the t
tests of αi = 0, over i = 1, 2, ..., N . We then correct the standardized version of this average
statistic for the effects of non-zero off-diagonal elements. The correction involves consistently
estimating N−1Tr

(
R2
)
, where R =

(
ρij
)
is the error correlation matrix. The estimation of

N−1Tr
(
R2
)

= N−1
∑N

i=1

∑N
j=1 ρ

2
ij is subject to the curse of dimensionality which we address

by using the multiple testing threshold estimator, R̃, recently proposed by Bailey, Pesaran
and Smith (2016). We show that consistent estimation of N−1Tr

(
R2
)
can be achieved under

more general specification of R as compared to tests that require consistent estimator of the
full matrix, R. We are able to establish that the resultant test is applicable more generally
and continues to be valid for a wider class of error covariances, and holds even if N rises
faster than T . The proposed test is also corrected for small sample effects of non-Gaussian
errors, which is of particular importance in finance. We refer to this test as Jensen’s α test of
LFPM and denote it by Ĵα. The test can also be viewed as a robust version of a standardised

2Bossaerts, Plot and Zame (2007) provide a novel GMM test of CAPM which does not require large T , but
is designed for the analysis of experimental data on a few risky assets held across a relatively large number of
subjects. It is interesting to see if their approach can be adapted to the analysis of historical observations of
the type considered in this paper.

3There exists a large literature in statistics and econometrics on estimation of high-dimensional covariance
matrices which use regularization techniques such as shrinkage, adaptive thresholding or other dimension-
reducing procedures that impose certain structures on the variance matrix such as sparsity, or factor structures.
See, for example, Wong, Carter and Kohn (2003), Ledoit and Wolf (2004), Huang, Liu, Pourahmadi, and Liu
(2006), Bickel and Levina (2008), Fan, Fan and Lv (2008), Cai and Liu (2011), Fan, Liao and Mincheva (2011,
2013), and Bailey, Pesaran and Smith (2016).
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Wald test, in cases where the off-diagonal elements of V become relatively less important as
N → ∞. The implementation of the Ĵα test is also computationally less demanding, since it
does not involve estimation of an invertible high dimensional error covariance matrix.

Our assumption regarding the sparsity ofV advances on Chamberlain’s (1983) approximate
factor model formulation of the asset model, where it is assumed that the largest eigenvalue of
V (or R) is uniformly bounded in N (Chamberlain, 1983, p.1307). We relax this assumption
and allow the maximum column sum matrix norm of R to rise with N but at a rate slower
than

√
N , whilst controlling the overall sparsity of R by requiring N−1Tr(R2) to be bounded

in N . In this way we are able to allow for two types of cross-sectional error dependence: one
due to the presence of weak common factors that are not suffi ciently strong to be detectable
using standard estimation techniques, such as principal components; and another due to the
error dependence that arise from interactive and spill-over effects.

We establish that under the null hypothesis of αi = 0, the Ĵα test is asymptotically
distributed as N(0, 1) for T and N →∞ jointly, so long as N/T 2 → 0, mN = ‖R‖1 = O

(
N δρ

)
,

0 ≤ δρ < 1/2, and N−1Tr
(
R2
)
is bounded in N . The test is also shown to have power against

alternatives that rises inN1/2T . The proofs are quite involved and in some parts rather tedious.
For the purpose of clarity we provide statements of the main theorems with the associated
assumptions in the paper, but relegate the mathematical details to an appendix.

Small sample properties of the Ĵα test are investigated using Monte Carlo experiments
designed specifically to match the correlations, volatilities, and other distributional features
(skewness and kurtosis) of the residuals of Fama-French three factor regressions of individual
securities in the Standard & Poor 500 (S&P 500) index. We consider the comparative test
results for the following eight sample size combinations, T = 60 and 100, and N = 50, 100, 200
and 500. The Ĵα test performs well for all sample size combinations with size very close to
the chosen nominal value of 5%, and satisfactory power. Comparing the size and power of the
Ĵα test with the GRS test in the case of experiments with N = 50 < T = 60, 100 for which
the GRS statistics can be computed, we find that the Ĵα test has a higher power than the
GRS test in most experiments. This could be due to the non-normal errors adversely affecting
the GRS test, as reported by Affl eck-Graves and McDonald (1989) and Affl eck-Graves and
McDonald (1990). In addition, the Ĵα test outperforms the feasible versions of the standardised
Wald tests, replacing V with the recently developed estimators of large dimensional variance-
covariance matrix of Fan, Liao and Mincheva (2013, FLM) and Ledoit-Wolf (2004). The Ĵα
test also outperforms the simulation-based Fmax test of Gungor and Luger (2016) that can be
implemented when N > T . The Fmax test is shown to be undersized substantially across the
various designs, and have lower power uniformly as compared to the Ĵα test. We also carried
out additional experiments that allow for time variations in betas as well as errors with a
mixture of weak factors and spatial autoregressive processes, using much larger values of N ,
namely N = 1, 000, 2, 000 and 5, 000, whilst keeping T at 60 and 100. We only considered
the Ĵα test for these experiments, and found no major evidence of size distortions even for the
experiments with T = 60 and N = 5, 000.

Encouraged by the satisfactory performance of the Ĵα test, even in cases where N is much
larger than T , we applied the test to monthly returns on the securities in the Standard and
Poor (S&P) 500 index using rolling windows of size 60 over the period September 1989 to
June 2015. The survivorship bias problem is minimized by considering the sample of securities
included in the S&P 500 at the end of each month in real time. We report the Ĵα test statistics
for a single-factor and a three Fama-French factor model over the period 1989-2015, and find
statistically significant evidence against Sharpe-Lintner CAPM and Fama-French factor model
only during the recent financial crisis.

Finally, we examine if there exists any relationship between the p-values of Ĵα test and
excess returns on long/short equity hedge funds (relative to the return on S&P 500). A priori
one would expect a reverse relationship between market effi ciency and excess return of an
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investment strategy, with excess returns being low during periods of market effi ciency (high
p-values) and vice versa. In fact, we find a significant negative correlation between a twelve-
months moving average p-values of Ĵα test and excess returns of long/short equity strategies
over the period November 1994 to June 2015, suggesting that abnormal profits are earned
during episodes of market ineffi ciencies.

The outline of the rest of the paper is as follows. Section 2 sets out the panel data model
for the analysis of LFPM, and the GRS test. Section 3 proposes the Ĵα test for large N
panels, derives its asymptotic distribution, and Section 4 summarises the main theoretical
results. Section 5 reports on small sample properties of Ĵα, GRS, standardised Wald tests and
Gungor and Luger (2016) simulation based Fmax test, using Monte Carlo techniques. Section
6 presents the empirical application. Section 7 concludes. The proofs of main theorems are
provided in Appendix A, and the lemmas which are used for the proofs, as well as the additional
Monte Carlo evidence, are provided in an Online Supplement to this paper, that is available
on request.

Notations

We useK and c to denote finite and small positive constants. If {ft}∞t=1 is any real sequence
and {gt}∞t=1 is a sequences of positive real numbers, then ft = O(gt), if there exists a positive
finite constant K such that |ft| /gt ≤ K for all t. ft = o(gt) if ft/gt → 0 as t → ∞. For a
N ×N matrix A = (aij), the minimum and maximum eigenvalues of matrix A is denoted by
λmin(A) and λmax(A), respectively, its trace by Tr(A), its maximum absolute column and row
sum matrix norms by ‖A‖∞ = supi

∑N
j=1 |aij |, and,‖A‖1 = supj

∑N
i=1 |aij |, respectively, its

Frobenius and spectral norms by ‖A‖F =
√
Tr(A′A), and ‖A‖ = λ

1/2
max(A′A), respectively.

For a N × 1 dimensional vector, α, ‖α‖ = (α′α)1/2.

2 Some preliminaries and the GRS test

Under Arbitrage Pricing Theory (APT) of Ross (1976), we have

Rit = νt + β′iλ+ β′i(ft − µf ) + uit, for i = 1, 2, ..., N ; t = 1, 2, ..., T, (1)

where, Rit is return on security i during period t, ft = (f1t, f2t, ..., fmt)
′ is the m × 1 vector

of factors, βi = (βi1, βi2, ..., βim)′ is the associated vector of risk factors, and νt is zero-beta
expected return which under APT should be equal to the risk-free rate, λ is the vector of
expected cross-sectional risk premium and µf = E (ft). Setting νt = rt + ν, where rt is the
risk-free rate, the return regressions can be written as

yit = αi + β′ift + uit, for i = 1, 2, ..., N ; t = 1, 2, ..., T, (2)

where yit = Rit − rt, and
αi = ν + β′i(λ− µf ). (3)

To ensure that the risk from common factors, ft, cannot be fully diversified we assume that
at least one of the factors is strong, in the sense that

sup
s

N∑
i=1

|βis| = O(N), (4)

and allow for the presence of common unobserved weak factors in the error term uit. Specifi-
cally we assume that

uit = γ ′ivt + ηit, (5)
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where vt is a k×1 vector of unobserved common factors that are IID(0, Ik), γi = (γi1, γi2, ..., γik)
′

is the associated vector of factor loadings with bounded elements, supi,s |γis| < K. The factors
included in the error process are weak in the sense that their effects are not pervasive and
satisfy the condition

sup
s

N∑
i=1

|γis| = O
(
N δγ

)
, with 0 ≤ δγ < 1/2. (6)

The idiosyncratic errors, ηit, are also allowed to be weakly cross correlated. Specifically, we
assume that ηt = (η1t, η2t, ...., ηNt)

′ = Qηεη,t, where εη,t = (εη,1t, εη,2t, ...., εη,Nt)
′, {εη,it}

are IID processes over i and t, with means zero, unit variances, γ2,εη = E
(
ε4η,it

)
− 3, and

supi,tE(|εη,it|8+c) ≤ K < ∞, for some c > 0. We denote the correlation matrix of ηt by
Rη =

(
ρη,ij

)
, and note that Rη = QηQ

′
η. To ensure that ut = (u1t, u2t, ..., uNt)

′ is weakly
cross-correlated we require that k, the number of weak factors, is finite, and that ‖Qη‖∞ ≤ K
and ‖Qη‖1 ≤ K. The error specification in (5) is quite general and allows for common factors
as well as network and spatial error cross dependence, so long as the common factors are
suffi ciently weak.

Different tests of LFPM are proposed in the literature. Some researchers have focussed on
testing ν = 0, which ensures that the zero-beta excess return is zero. Others have considered
testing the restrictions λ = µf , which require that the risk-premia on factors coincide with
factor means.4 In this paper we adopt a more direct approach and consider testing the joint
hypotheses

H0 : αi = 0, i = 1, 2, ..., N, (7)

allowing for the multiple testing nature of the null. In the context of the APT model, the test
of αi = 0 for all i can be interpreted as a test of the joint hypotheses that ν = 0, and λ = µf .

It proves useful to stack the panel regressions in (2) by time series as well as by cross
section observations. Stacking by time series observations we have

yi. = αiτT + Fβi + ui., (8)

where yi. = (yi1, yi2, ..., yiT )′, τT = (1, 1, ..., 1)′, F′= (f1, f2, ..., fT ), and ui. = (ui1, ui2, ..., uiT )′.
Stacking by cross-sectional observations we have

yt = α+ Bf t + ut, (9)

where yt = (y1t, y2t, ..., yNt)
′, α = (α1, α2, ..., αN )′,B = (β1,β2, ...,βN )′ and ut = (u1t, u2t, ..., uNt)

′.
For exact sample tests of LFPM, initially we assume that ut ∼ IIDN (0,V), namely errors,

uit, are Gaussian, have zero means, and are serially uncorrelated such that E(uitujt′) = 0, for
all i, j,and t 6= t′, with E (utu

′
t) = V, where V = (σij) is an N×N symmetric positive definite

matrix. A non-Gaussian version of this assumption will be considered below. Starting with
Jensen’s (1968) test of individual αi’s, we note that the OLS estimator of αi given by

α̂i = y′i.

(
MFτT
τ ′TMFτT

)
, (10)

where MF = IT − F (F′F)−1F′, is an effi cient estimator despite the fact that V is not a
diagonal matrix. This result follows since (8) is a seemingly unrelated regression equation
(SURE) specification with the same set of regressors across all the N securities. It is also
easily seen that for all i = 1, 2, ..., N,

α̂i =
(
αiτ

′
T + β′iF

′ + u′i.
)( MFτT
τ ′TMFτT

)
= αi + u′i.c, (11)

4See, for example, Shanken (1992).
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where
c = MFτT /τ

′
TMFτT . (12)

Writing the above set of estimates for all i in matrix notations, we have

α̂ = α+


u′1.c
u′2.c
...

u′N.c

 ,

where u′i.c =
∑T

t=1 uitct, and ct is the t
th element of c. Hence

α̂ = α+

T∑
t=1

utct, (13)

where as before ut = (u1t, u2t, ..., uNt)
′. Therefore, under the Gaussianity,

α̂ v N

(
α,

1

τ ′TMFτT
V

)
.

Also in the case where T ≥ N +m+ 1, an unbiased and invertible estimator of V is given by
( T
T−m−1)V̂, where V̂ is the sample covariance matrix estimator

V̂ = T−1
∑T

t=1
ûtû

′
t, (14)

ût = (û1t, û2t, ..., ûNt)
′, ûit is the OLS residual from the regression of yit on an intercept and

ft.
Under the Gaussianity, ût has a multivariate normal distribution with zero means, α̂ and

ût are independently distributed, and hence using standard results from multivariate analysis
it follows that (see, for example, Theorem 5.2.2 in Anderson (2003)) the GRS statistic (see
p.1124 of GRS)

GRS = Ŵ0 =
T −N −m

N

(
τ ′TMFτT

T

)
α̂′V̂−1α̂, (15)

is distributed exactly as a non-central F distribution with (T − N − m) and N degrees of

freedom, and the non-centrality parameter µ2α = T−N−m
N

(
τ ′TMF τT

T

)
α′V−1α, which is zero

under H0 : α = 0.5

As noted in the Introduction, the single most important limiting feature of the GRS and
other related tests proposed in the literature is the requirement that T must be larger than
N . To circumvent this limitation, in applications of the GRS test, individual securities are
grouped into (sub) portfolios and the GRS test is then typically applied to 20-30 portfolios
over relatively long time periods. However, it is clearly desirable to develop tests of αi = 0,
that can be applied to a very large number of individual securities over relatively short time
periods (to minimize the adverse effects of structural change in βi’s) which inevitably lead to
cases where T < N .

Even in cases where N < T , the power of the GRS test could be compromised since it
assumes V to be unrestricted, whilst in the context of approximate factor model advanced
in Chamberlain (1983), the errors are at most weakly correlated, which places restrictions on
the off-diagonal elements of V and its inverse. As we shall see below, a test that exploits

5Noting that (1 + f̄ ′Ω̂−1 f̄)−1 = T−1 (τ ′TMF τT ), it is easily seen that (15) can be written as the
widely used expression of GRS statistic, T−N−m

N
(1 + f̄ ′Ω̂−1 f̄)−1α̂′V̂−1α̂, where f̄ = T−1

∑T
t=1 ft, and

Ω̂ = T−1
∑T
t=1(ft−f̄)(ft−f̄)′.

6



restrictions implied by the weak cross-sectional correlation of the errors is likely to have much
better power properties than the GRS test that does not make use of such restrictions. It is
also important to bear in mind that being a multivariate F test, the power of the GRS test is
primarily driven by the time dimension, T , whilst for the analysis of a large number of assets
or portfolios we need tests that have the correct size and are powerful for large N .

3 Large N tests of alpha in LFMP models

To develop large N tests of H0 : α = 0, we consider the following version of the GRS statistic,
as set out in (15),

Wv =
(
τ ′TMFτT

)
α̂′V−1α̂, (16)

where we have dropped the degrees of freedom adjustment term and replaced V̂ by its true
value. Wv can be regarded as a Wald test statistic, and under Gaussianity and H0 : α = 0,
Wv ∼ χ2N . Since the mean and the variance of a χ2N random variable is N and 2N , one could
consider a standardised Wald test statistic

SWv =
(τ ′TMFτT ) α̂′V−1α̂−N√

2N
. (17)

Under Gaussianity and H0 : α = 0, SWv →d N (0, 1) as N →∞. To construct tests of large
N panels, a suitable estimator of V is required. But as was noted in the Introduction this is
possible only if we are prepared to impose some restrictions on the structure of V. In the case
of LFPM regressions where the errors are at most weakly cross-sectionally correlated, this can
be achieved by adaptive thresholding which sets to zero elements of V that are suffi ciently
small, or by use of shrinkage type estimators that put a substantial amount of weight on the
diagonal elements of the shrinkage estimator of V.

Fan, Liao and Mincheva (2011, 2013) consider consistent estimation of V in the context of
an approximate factor model. They assume V is sparse and propose an adaptive thresholds
estimator, V̂POET , which they show to be positive definite with satisfactory small sample
properties. We refer to the feasible standardized Wald test statistic replacing V with V̂POET

as SWPOET test. Another candidate is the shrinkage estimator of V proposed by Ledoit-Wolf
(2004), which we denote by V̂LW , and refer to the associated standardised Wald statistic
as SWLW . Such "plug-in" approaches are subject to two important short comings. First,
even if V can be estimated consistently, the test might perform poorly in the case of non-
Gaussian errors. Notice that the standardisation of the Wald statistic is carried out assuming
Gaussianity. Further, consistent estimation of V in the Frobenius norm sense still requires
T to rise faster than N , and in practice threshold estimators of V are not guaranteed to be
invertible for finite samples where N >> T .

3.1 A Ĵα test for large N securities

To avoid some of the above mentioned limitations of the plug-in procedure, we avoid using an
estimator of V altogether and base our proposed test on diagonal elements of V, namely the
N ×N diagonal matrix, D = diag(σ11, σ22, ..., σNN ), with σii = E

(
u2it
)
, rather than the full

covariance matrix. Specifically, we consider the statistic

Wd =
(
τ ′TMFτT

)
α̂′D−1α̂ =

(
τ ′TMFτT

) N∑
i=1

(
α̂2i
σii

)
, (18)

and its feasible counterpart given by

Ŵd =
(
τ ′TMFτT

)
α̂′D̂−1v α̂ =

(
τ ′TMFτT
v−1T

) N∑
i=1

(
α̂2i
σ̂ii

)
, (19)
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where σ̂ii = û′i.ûi./T , and the degrees of freedom v = T −m − 1 is introduced to correct for
small sample bias of the test.6 The infeasible statistic, Wd, can also be written as

Wd =
N∑
i=1

z2i , (20)

where
z2i = α̂2i (τ

′
TMFτT )/σii. (21)

It is then easily seen that

Ŵd =

N∑
i=1

t2i , (22)

where ti denotes the standard t-ratio of αi in the OLS regression of yit on an intercept and ft,
namely

t2i =
α̂2i (τ

′
TMFτT )

v−1T σ̂ii
. (23)

As with the panel testing strategy developed in Im et al. (2003), a standardized version of
Ŵd, defined by (19), can now be considered:

N−1/2
[
Ŵd − E

(
Ŵd

)]
√
V ar

(
Ŵd

) , (24)

where
N−1E

(
Ŵd

)
= E

(
t2i
)
, (25)

N−1V ar
(
Ŵd

)
= N−1V ar

(∑N
i=1 t

2
i

)
= N−1

∑N
i=1 V ar

(
t2i
)

+
2

N

∑N
i=2

∑i−1
j=1Cov

(
t2i , t

2
j

)
.

(26)
Under Gaussianity, the individual ti statistics are identically distributed as Student t with v
degrees of freedom, and we have (assuming v = T −m− 1 > 4)

E(t2i ) =
v

v − 2
, V ar(t2i ) =

(
v

v − 2

)2 2(v − 1)

v − 4
. (27)

Using (25), (26) and (27), the standardized statistic (24) can now be written as

Jα
(
θ2N
)

=
N−1/2

[
Ŵd − E

(
Ŵd

)]
√
V ar

(
Ŵd

) =
N−1/2

∑N
i=1

(
t2i − v

v−2

)
√(

v
v−2

)2
2(v−1)
v−4

(
1 + θ2N

) , (28)

where
θ2N = N−1

∑N
i=2

∑i−1
j=1Corr

(
t2i , t

2
j

)
, (29)

and
Corr(t2i , t

2
j ) = Cov(t2i , t

2
j )/[V ar(t

2
i )V ar(t

2
j )]

1/2.

To make the Jα test operational, we need to provide a large N consistent estimator of θ2N .
Second, we need to show that, despite the fact that Jα test is standardised assuming ti has a
standard t distribution, the test will continue to have satisfactory small sample performance
even if such an assumption does not hold due to the non-Gaussianity of the underlying errors.

6Only securities with σ̂ii > 0 are included in Ŵd.
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More formally, in what follows we relax the Gaussianity assumption and assume that ut = Qεt,
whereQ is an N×N invertible matrix , εt = (ε1t, ε2t, ..., εNt)

′, and {εit} is an IID process over
i and t, with means zero and unit variances, and for some c > 0, E(|εit|8+c) exists, for all i and
t. Then E (utu

′
t) = V = (σij) = QQ′, and V is an N ×N symmetric positive definite matrix,

with λmin (V) ≥ c > 0. We allow for cross-sectional error heteroskedasticity, but assume
that the errors are homoskedastic over time. This assumption can be relaxed by replacing
the assumption of error independence by a suitable martingale difference assumption. This
extension will not be attempted in this paper.

3.2 Sparsity conditions on error correlation matrix

As noted already, we advance on the literature by allowing V = (σij) to be approximately
sparse. Equivalently, we define sparsity in terms of the elements of the correlation matrix
R =

(
ρij
)
, where ρij = σij/σ

1/2
ii σ

1/2
jj . We consider the following two conditions

mN = max
1≤i≤N

∑N
j=1

∣∣ρij∣∣ = O(N δρ), with 0 ≤ δρ < 1/2, (30)

and

Tr
(
R2
)

=

N∑
i=1

N∑
j=1

ρ2ij = O (N) . (31)

Under (30), mN is allowed to rise with N , but at a slower rate than N1/2. Strict sparsity
requires mN to be bounded in N , which is often assumed in the literature on consistent
estimation of large covariance matrices. Conditions (30) and (31) allow for a general form of
weak correlations across the errors, including the familiar spatial or local dependence, and is
compatible with (30). For example, consider the case where condition (30) applies to the first
p rows of R (with p fixed), and the rest of the N−p rows of R are absolute summable, namely

N∑
j=1

∣∣ρij∣∣ = O
(
N δρ

)
, for i = 1, 2, ..., p,

N∑
j=1

∣∣ρij∣∣ = O(1), for i = p+ 1, p+ 2, ..., N .

Then, since
∣∣ρij∣∣2 ≤ ∣∣ρij∣∣, it readily follows that
Tr
(
R2
)

=

p∑
i=1

 N∑
j=1

ρ2ij

+
N∑

i=p+1

N∑
j=1

ρ2ij

≤
p∑
i=1

 N∑
j=1

∣∣ρij∣∣
+

N∑
i=p+1

N∑
j=1

∣∣ρij∣∣
≤ O(pN δρ) + (N − p)O(1) = O(N), for 0 ≤ δρ < 1/2.

Another important case covered by our sparsity assumption is when uit has the weak factor
structure given by (5), with the factor loadings, γi, satisfying (6). Denoting the correlation
matrix of the idiosyncratic errors, ηt = (η1t, η2t, ..., ηNt)

′ by Rη =
(
ρη,ij

)
, and assuming that

‖Rη‖∞ < K, (32)
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we have Tr
(
N−1R2

η

)
= O(1). It is now easily seen that conditions (30) and (31) are also

satisfied under this set up. Denoting the correlation matrix of ut = (u1t, u2t, ...., uNt)
′ by

R =
(
ρij
)
we have

ρij = γ̃ ′iγ̃j +

(
ση,iiση,jj
σiiσjj

)1/2
ρη,ij , (33)

where γ̃i = γi/σ
1/2
ii = γi/ (γ ′iγi + ση,ii)

1/2. Since
∣∣ρij∣∣ ≤∑k

s=1 |γ̃is|
∣∣γ̃js∣∣+

∣∣ρη,ij∣∣, then
mN = ‖R‖∞ = max

i

N∑
j=1

k∑
s=1

|γ̃is|
∣∣γ̃js∣∣+ max

i

N∑
j=1

∣∣ρη,ij∣∣
≤ k

(
sup
i,s
|γ̃is|

)max
i

N∑
j=1

∣∣γ̃js∣∣
+ ‖Rη‖∞ .

Since supi,s |γ̃is| ≤ supi,s |γis|, and sups

N∑
j=1

∣∣γ̃js∣∣ ≤ sups

N∑
j=1

∣∣γjs∣∣ = O(N δγ ), and by assump-

tion ‖Rη‖∞ < K, the condition (30) is met if δρ ≤ δγ . Also, (noting that supi,s |γ̃is| ≤ 1)

N−1Tr
(
R2
)
≤ N−1

N∑
i=1

N∑
j=1

(
k∑
s=1

|γ̃is|
∣∣γ̃js∣∣+

∣∣ρη,ij∣∣
)2

≤ N−1
N∑
i=1

N∑
j=1

(
k∑
s=1

|γ̃is|
∣∣γ̃js∣∣

)2
+ 2N−1

N∑
i=1

N∑
j=1

k∑
s=1

|γ̃is|
∣∣γ̃js∣∣+N−1Tr

(
R2
η

)
= N−1

k∑
s,s′=1

(
N∑
i=1

|γ̃is| |γ̃is′ |
)2

+ 2N−1
k∑
s=1

(
N∑
i=1

|γ̃is|
)2

+N−1Tr
(
R2
η

)

≤
(
k2 + 2k

)
N−1

(
sup
s

N∑
i=1

|γis|
)2

+N−1Tr
(
R2
η

)
.

Therefore, under conditions (6) and (32), N−1Tr
(
R2
)
is bounded in N if 0 ≤ δγ < 1/2.

Remark 1 Our assumption of approximate sparsity allows for a suffi ciently high degree of
cross error correlations, which is important for the analysis of financial data, where it is not
guaranteed that inclusion of common factors in the return regressions will totally eliminate
weak error correlations due to spatial and/or within sector error correlations. It is important
that both factor and spatial type error correlations, representing strong and weak forms of
interdependencies, are taken into account when testing for alpha. By allowing the error term
to include weak factors, one only need to focus on identification of strong factors to be included
in ft, which can be achieved by using market factors or principal components of individual
returns.7 The error associated with the estimation of strong factors is likely to be negligible
for N and T suffi ciently large. In the present paper we abstract from such estimation errors
and condition our analysis on given values of ft.

7Note also that the consistency of the plug-in procedure proposed by Fan, Liao and Mincheva (2011, 2013)
also requires that strong common factors are removed before estimation of the error covariance matrix, V.
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3.3 Non-Gaussianity

For the discussion of the effects of Non-Gaussianity on Jα test below, it is convenient to
introduce the following scaled error

ξit = uit/σ
1/2
ii , (34)

so that for each i, ξit has mean zero a unit variance. In the case where the errors are non-
Gaussian the skewness and excess kurtosis of uit, are given by γ1,i = E(ξ3it) and γ2,i =

E(ξ4it) − 3, respectively, that could differ across i. Note that under non-Gaussian errors, ti
is no longer Student t distributed and E(t2i ) and V (t2i ) need not be the same across i, due
to the heterogeneity of γ1,i and γ2,i over i. Using a slightly extended version of Laplace
approximation of moments of ratio of quadratic forms by Lieberman (1994), we are able to
derive the following approximations of E(t2i ) and V ar(t

2
i ):

8

E
(
t2i
)

=
v

v − 2
+O

(
v−3/2

)
, (35)

and

V ar
(
t2i
)

=

(
v

v − 2

)2 2 (v − 1)

(v − 4)
+O

(
v−1
)
. (36)

Substituting (35) and (36) into (24) we have the following non-Gaussian version of Jα
(
θ2N
)
,

defined by (28):

Jα
(
θ2N
)

=
N−1/2

∑N
i=1

(
t2i − v

v−2

)
+O

(√
N/v3

)
√[(

v
v−2

)2
2(v−1)
(v−4) +O (v−1)

] (
1 + θ2N

) ,
where θ2N is defined by (29). When the numerator of the Jα statistic is replaced byN

−1/2∑N
i=1

(
t2i − 1

)
,

which is the typical mean adjustment employed by Fan et al (2015) and Gagliardini et al.
(2016), for example, then the order of the asymptotic error of the numerator such test sta-
tistics becomes

√
N/v2 as compared to

√
N/v3 obtained for the Jα test. This is one reason

why our proposed test performs better than the ones proposed in the literature, especially

in cases where N >> T . The asymptotic error of using
(

v
v−2

)2
2(v−1)
(v−4) for V ar(t

2
i ) under

non-Gaussianity in the Jα test is O(v−1), which is small for suffi ciently large v.9

3.4 Allowing for error cross-sectional dependence

A second important difference between the Jα test and the other tests proposed in the liter-
ature is the inclusion of θ2N in the denominator of the test statistic to take account of error
correlations. As it will be shown more formally below, the limiting property of θ2N is governed
by the sparsity of V, and is given by10

θ2N − (N − 1)ρ2N → 0, (37)

as N and T →∞, so long as N/T 2 → 0, and 0 ≤ δγ < 1/2, where

ρ2N =
2

N(N − 1)

∑N
i=2

∑i−1
j=1 ρ

2
ij . (38)

8See Lemma 21 in the Online Supplement to the paper, which is available upon request.
9 Small sample evidence on the effi cacy of using N−1/2

∑N
i=1

(
t2i − v

v−2

)
over N−1/2

∑N
i=1

(
t2i − 1

)
is re-

ported in Table M3 of the Online Supplement, which is available upon request.
10 (37) follows from Lemma 18 in the Online Supplement which is available on request.
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ρ2N is known as the average pair-wise squared correlation coeffi cient and plays a key role in
tests of error cross-sectional correlations in panel regressions. See, for example, Breusch and
Pagan (1980) and Pesaran, Ullah and Yamagata (2008). To see the relationship between θ2N
and the sparsity of V, we note that

N−1Tr
(
R2
)

= 1 +
2

N

∑N
i=2

∑i−1
j=1 ρ

2
ij = 1 + (N − 1) ρ2N ,

which in view of (37) justifies replacing 1 + θ2N by N
−1Tr

(
R2
)
for N and T suffi ciently large

so long as N/T 2 → 0, and 0 ≤ δγ < 1/2. Therefore, ignoring θ2N can lead to serious size—
distortions even for large N and T panels when the errors are cross-correlated and N−1Tr

(
R2
)

does not tend to zero, since the denominator of Jα will be under-estimated. The size distortion
will be present even if we impose stronger sparsity conditions on V, for example, by requiring
mN to be bounded in N . It is, therefore, important that θ2N (or ρ

2
N ) is replaced by a suitable

estimator.
One possible way of estimating ρ2N would be to use sample correlation coeffi cients, ρ̂ij ,

defined as
ρ̂ij = σ̂ij/σ̂

1/2
ii σ̂

1/2
jj , (39)

where σ̂ij = T−1
∑T

t=1 ûitûjt, and ûit is the residuals from the OLS regression of yi on
G = (τT ,F). However, such an estimator is likely to perform poorly in cases where N is
large relative to T , and some form of thresholding is required, as discussed in the literature
on estimation of large covariance matrices.11 Here we consider the application of the mul-
tiple testing (MT) approach to regularisation of large covariance matrices recently proposed
by Bailey Pesaran and Smith (2016, BPS). However, BPS establish their results for yit − ȳi,
whilst we need to apply the thresholding approach to ûit. Second BPS consider exact sparsity
conditions on the error covariance matrix, whilst we allow for a much more general sparsity
conditions. We extend BPS’s analysis to address both of these issues.12 The multiple testing
(MT ) estimator of ρij , denoted by ρ̃ij , is given by

ρ̃ij = ρ̂ijI
[∣∣√vρ̂ij∣∣ > cp(N)

]
, (40)

where v = T −m− 1,

cp(N) = Φ−1
(

1− p

2f(N)

)
, (41)

p is the nominal p-value (0 < p < 1), and f(N) = N δ, v = cdN
d, where cd and δ are finite

positive constants. Using (57), the multiple testing estimator of ρ2N is given by

ρ̃2N,T =
2

N(N − 1)

∑N
i=2

∑i−1
j=1 ρ̃

2
ij . (42)

Under the sparsity conditions (30) and (31), it can be shown that (N − 1)
(
ρ̃2N,T − ρ2N

)
→p 0,

so long as N/T 2 → 0, as N and T →∞, jointly, and

δ > (1− 0.5d)ϕ, (43)

where ϕ ≤ 1 +
∣∣∣γ2,εη ∣∣∣, where γ2,εη = E

(
ε4η,it

)
− 3, εη,it is the ith element of the N × 1

error vector εη,t = Q−1η ηt, with ηt = (η1t, η2t, ...., ηNt)
′.13 The critical value function, cp (N) ,

11See, for example, Cai and Liu (2011), Fan et al. (2013), Bailey Pesaran and Smith (2016), among others.
12Other thresholding estimators of V proposed in the literature can also be used. The effi cacy of using the

estimator ρ̃2N,T over other estimators in small samples is investigated and the results are summarised in Table
M2 in the Online Supplement (available on request).
13See Theorem 4 in Section 4 and its proof in Appendix A.
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depends on the nominal level of significance, p, and the choice of δ, subject to condition (43).
The test results are unlikely to be sensitive to the choice of p, over the conventional values in
the range of 1 to 10 per cent.14 d determines the relative expansion rate of N and T . The
value of ϕ depends on the degree of dependence of the errors even if they are uncorrelated.
In the case where the errors, εη,it, are Gaussian γ2,εη = 0 and ϕ ≤ 1, and it is suffi cient to set
δ > d/2. However, in the non-Gaussian case, and given the evidence provided by Longin and
Solnik (2001) and Ang, Chen and Xing (2006) on the degree of nonlinear dependence of asset
returns, it is more prudent to set δ close to unity or even higher. In simulations and empirical
exercises to be reported below we set f (N) = N − 1, which is equivalent to setting δ = 1.15

Accordingly, we propose the following feasible version of the Jα statistic

Ĵα =
N−1/2

∑N
i=1

(
t2i − v

v−2

)
(

v
v−2

)√
2(v−1)
(v−4)

[
1 + (N − 1)ρ̃2N,T

] , (44)

where ti is the t-ratio for testing αi = 0, defined by (23), v = T −m − 1, and ρ̃2N,T is given

by (42). The Ĵα test is robust to non-Gaussian errors and allows for a relatively high degree
of error cross-sectional dependence. In what follows we provide a formal statement of the
conditions under which Ĵα tends to a normal distribution.

3.5 Surviorship bias

Finally, it is important that the application of the Ĵα test is not subject to the survivorship
bias. The GRS type tests of alpha considers a relatively small number of portfolios over a
relatively large time periods to achieve suffi cient power. By making use of portfolios rather
than individual securities the GRS test is less likely to suffer from survivorship bias. By
comparison tests such as the Ĵα test can suffer from the surviorship bias due to the fact that
they are applied to individual securities directly and obtain power from increases in N as well
as from T . To deal with the survivorship bias we propose that the Ĵα test is applied recursively
to securities that have been trading for at least T time periods (days or months) at any given
time t. The set of securities included in the Ĵα test vary over time and dynamically takes
account of exit and entry of securities in the market. The number of securities, Nτ , used in
the test at any point of time, τ , depends on the choice of T , and declines as T is increased. It
is clearly important that a balance is struck between T and Nτ . Since the Ĵα test is applicable
even if N is much larger than T , and given that the power of the Ĵα test rises both in N and
T , then it is advisable to set T such that minτ (Nτ )/T 2 is suffi ciently small, say around 0.1.
This procedure is followed in the empirical application discussed in Section 6 below, where we
set T = 60 and end up with Nτ in the range [464, 487], given minτ (Nτ )/T 2 = 0.12.

4 Summary of the main theoretical results

In this section we provide the list of assumptions and a formal statement of the theorems for
the size and power of the proposed Ĵα. First, we state the assumptions for establishing the
results.

Assumption 1: The m× 1 vector of common observed factors, ft, in the return regressions,
(2), are distributed independently of the errors, uit′ for all i, t and t′. The number of

14 In the Monte Carlo experiments reported below, we set p = 10%.
15The robustness of the Ja test against non-Gaussian and nonlinear error dependence is investigated and

reported in Table 4 below. These results are generally supportive of setting δ = 1.
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factors, m, is fixed, and the factors can be strong in the sense that

sup
s

N∑
i=1

|βis| = O(N δβ ), 0 ≤ δβ ≤ 1. (45)

and satisfy f ′tft ≤ K < ∞, for all t. The (m + 1) × (m + 1) matrix T−1G′G, with
G = (F, τT ) , is a positive definite matrix for all T , and as T →∞, and τ ′TMFτT > 0,
where MF = IT − F (F′F)−1F′.

Assumption 2: The errors, uit, in (2), have the following mixed weak-factor spatial repre-
sentation

uit = γ ′ivt + ηit, for i = 1, 2, ..., N ; t = 1, 2, ..., T, (46)

where γi = (γi1, γi2, ..., γik)
′ is a k × 1 vector of factor loadings, vt = (v1t, v2t, ..., vkt)

′ is
a k × 1 vector of unobserved common factors and ηit are the idiosyncratic components.

(i) The unobserved factors vt, are serially independent and the k elements are independent
of each other, such that vt ∼ IID(0, Ik), γ2,v = E

(
v4st
)
− 3, and sups,tE

(
v8+cst

)
< K,

for some c > 0. The factor loadings, γis for s = 1, 2, ..., k, are bounded, supi,s |γis| < K,
and the factors, vt, are weak in the sense that

sup
s

N∑
i=1

|γis| = O
(
N δγ

)
, with 0 ≤ δγ < 1/2. (47)

(ii) For any i and j, the T pairs of realizations,
{(
ηi1, ηj1

)
,
(
ηi2, ηj2

)
, ...,

(
ηiT , ηjT

)}
, are in-

dependent draws from a common bivariate distribution with mean E (ηit) = 0, V ar (ηit) =
ση,ii, 0 < c < ση,ii ≤ K, and the covariance E

(
ηitηjt

)
= ση,ij .

Assumption 3: Denoting the standardized errors by ξit = uit/σ
1/2
ii , with σii = γ ′iγi + ση,ii;

then for any i and j, ξit, ξjt, ξ
2
it, ξ

2
jt, and ξitξjt, for t = 1, 2, ..., T , are random draws from

a common distribution which is absolutely continuous with non-zero density on subsets
of R5.

Writing the error factor specification, (46), in matrix notation we have

ut = Γvt + ηt, (48)

where ut = (u1t, u2t, ..., uNt)
′, Γ = (γ1,γ2, ...,γN )′, and ηt = (η1t, η2t, ..., ηNt)

′. Under As-
sumption 2, and denoting E (ηtη

′
t) = Vη = (ση,ij), we have

E
(
utu

′
t

)
= ΓΓ′ + Vη = V = (σij), with σij = γ ′iγj + ση,ij . (49)

We now make the following further assumption.

Assumption 4: The covariance matrices V and Vη defined by (49) are N × N symmetric,
positive definite matrices with λmin (V) ≥ λmin (Vη) ≥ c,

εt = (ε1t, ε2t, ...., εNt)
′ = Q−1ut, and εη,t = (εη,1t, εη,2t, ...., εη,Nt)

′ = Q−1η ηt, (50)

where Q and Qη are the Cholesky factors of V and Vη, respectively. Matrix Qη is row
and column bounded in the sense that

‖Qη‖∞ < K, and ‖Qη‖1 < K. (51)

{εit} and {εη,it} are IID processes over i and t, with means zero, unit variances, γ2,εη =

E
(
ε4η,it

)
− 3, and supi,tE(|εit|8+c) ≤ K < ∞, and supi,tE(|εη,it|8+c) ≤ K < ∞, for

some c > 0.
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Remark 2 The above assumptions allow the returns on individual securities to be strongly
cross-sectionally correlated through the observed factors, ft, and allow for weak error cross-
correlations once the effects of strong factors are removed. Such residual interdependencies
could arise due to spatial or other network type spill-over effects not captured by the observed
common factors.

Remark 3 Under condition (51)

‖Vη‖∞ ≤
∥∥QηQ

′
η

∥∥
∞ ≤ ‖Qη‖∞ ‖Qη‖1 < K = O(1), (52)

nevertheless due to the weak factors we have

‖V‖∞ = sup
j

N∑
i=1

|σij | = O
(
N δγ

)
,

and allows the overall error variance matrix, V, to be approximately sparse, in contrast to
the literature that requires ‖V‖∞ < K. The relaxation of the sparsity condition on V is
particularly important in finance where security returns could be affected by weak unobserved
factors. Using principal components does not resolve the problem since, principal components
provide consistent estimates of the factors (up to a rotation matrix) only if the factors are
strong.

Remark 4 The high-order moment conditions in Assumption 4 allow us to relax the Gaus-
sianity assumption whilst at the same time ensuring that our test is applicable even if N is
much larger than T .

Remark 5 Assumptions 2(ii) and 3 ensure that the sample cross correlation coeffi cients of
the residuals, ρ̂ij, have an Edgeworth expansion which is needed for consistent estimation of
ρ2N , defined by (38). For further details see Bailey et al (2016).

Our main theoretical results are set out in the following theorems. The proofs of these
theorems are provided in Appendix A, and necessary lemmas for the proofs are given in the
Online Supplement available upon request.

Theorem 1 Consider the return regressions, (2), and the statistic
∑N

i=1 z
2
i defined by (20).

Suppose that Assumptions 1-4 hold, and N−1Tr
(
R2
)
is bounded in N , where R =

(
ρij
)
,

ρij = E(ξitξjt), and ξit = uit/σ
1/2
ii is the standardized error of the return regression equation

(2). Then, under H0 : αi = 0, in (2) for all i,

qNT = N−1/2
N∑
i=1

(
z2i − 1

)
→d N(0, 2ω2), as N →∞ and T →∞, jointly, (53)

where
ω2 = lim

N→∞
N−1Tr

(
R2
)

= 1 + lim
N→∞

(N − 1)ρ2N ,

with
ρ2N =

2

N(N − 1)

∑N
i=2

∑i−1
j=1 ρ

2
ij. (54)

Theorem 2 Consider the regression model (2), and the statistics
∑N

i=1 z
2
i and

∑N
i=1 t

2
i , which

are defined by (20) and (22), respectively. Suppose that Assumptions 1-4 hold. Then, under
the null hypothesis, H0 : αi = 0 for all i,

SNT = N−1/2
N∑
i=1

(
z2i − t2i

)
→p 0,
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as N → ∞ and T → ∞ jointly, so long as N/T 2 → 0, 0 ≤ δγ < 1/2, where δγ is defined by
(47).

Theorem 3 Consider the regression model (2), and suppose that Assumptions 1-4 hold. Then,
under H0 : αi = 0, for all i,

Jα
(
ρ2N
)

=
N−1/2

∑N
i=1

(
t2i − v

v−2

)
√(

v
v−2

)2
2(v−1)
v−4

[
1 + (N − 1)ρ2N

] →d N (0, 1) , (55)

so long as N/T 2 → 0, and 0 ≤ δγ < 1/2, as N → ∞ and T → ∞, jointly, where ti, ρ2N and
δγ are defined by (23), (54) and (47), respectively, with v = T −m− 1.

Theorem 4 Let
ρ̃2N,T =

2

N(N − 1)

∑N
i=2

∑i−1
j=1 ρ̃

2
ij, (56)

where
ρ̃ij = ρ̂ijI

[∣∣√vρ̂ij∣∣ > cp(N)
]
, (57)

ρij = E(ξitξjt), ξit = uit/σ
1/2
ii is the standardized error of the return regression equation (2),

v = T −m− 1, ρ̂ij is defined by (39)

cp(N) = Φ−1
(

1− p

2f(N)

)
, (58)

p is the nominal p-value (0 < p < 1), and f(N) = N δ and v = cdN
d, where cd and δ are finite

positive constants. Suppose that Assumptions 1-4 hold and∑N
i,j=1

∣∣ρij∣∣ = O(N).

Then
(N − 1)

(
ρ̃2N,T − ρ2N

)
→p 0,

if N/v2 = O
(
N1−2d) → 0, (or if d > 1/2) as N and v → ∞, and δ > (1 − d/2)ϕ, where

ϕ ≤ 1 +
∣∣∣γ2,εη ∣∣∣, and γ2,εη = E

(
ε4η,it

)
− 3 (Assumption 4).

Theorem 5 Consider the panel regression model (2) in asset returns, and suppose that As-
sumptions 1-4 hold. Consider the statistic

Ĵα =
N−1/2

∑N
i=1

(
t2i − v

v−2

)
(

v
v−2

)√
2(v−1)
(v−4)

[
1 + (N − 1)ρ̃2N,T

] , (59)

where ti is given by (23), v = T −m − 1, ρ̃2N,T is defined by (56), using the threshold cp(N)

given by (58), with p (0 < p < 1), f(N) = N δ, T = cdN
d, where cd and δ are finite positive

constants, δ > (1− 0.5d)ϕ, where ϕ ≤ 1 +
∣∣∣γ2,εη ∣∣∣, and γ2,εη = E

(
ε4η,it

)
− 3. Then, under

H0 : αi = 0 for all i,
Ĵα →d N (0, 1) , (60)

if N/T 2 → 0, as N and T →∞, jointly.

For the power of the Ĵα test, we consider the local alternatives

H0a : αi =
ς i

N1/4v1/2
, with 0 ≤ |ς i| <∞, for all i. (61)
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Theorem 6 Consider the panel regression model (2) in asset returns, and suppose that con-
ditions of Theorem 5 apply. Then, under the local alternatives, H0α, defined by (61),

Ĵα →d N
(
φ2/
√

2, 1
)
, (62)

where φ2 = limN→∞
1
N

∑N
i=1 ς

2
i /σii.

Remark 7 This theorem establishes that the Ĵα test is consistent (in the sense that its power

tends to unity), if φ2 > 0, which is satisfied if limN→∞
(
N−1

∑N
i=1 ς

2
i

)
> 0. It is also interest-

ing to note that the power of the Ĵα test increases uniformly with N and T , in contrast to the
power of the GRS test that rises with T , only. The Ĵα test has power even if

∑N
i=1 α

2
i does not

increase with N , so long as N increases suffi ciently slowly as compared to T . To see this, let∑N
i=1 α

2
i = O

(
N δα

)
, and note that under the local alternatives, (61), and setting T = O

(
Nd
)
,

we have
∑N

i=1 α
2
i =

(
N−1

∑N
i=1 ς

2
i

)
N1/2−d = O

(
N δα

)
, or

(
N−1

∑N
i=1 ς

2
i

)
= O

(
N δα+d−1/2

)
.

Hence, the proposed test will be consistent so long as δα + d ≥ 1/2. The case of δα = 0 is of
particular interest since it does not require all securities under consideration to have non-zero
alphas for the test to have power.

5 Small sample evidence based on Monte Carlo experiments

We examine the finite sample property of the Ĵα test by Monte Carlo experiments, and compare
its performance to a number of existing tests. For comparison, we consider the GRS test
and the feasible versions of the standardised Wald tests, SWPOET and SWLW , which are
discussed in Section 3. We also consider the Fmax test recently proposed by Gungor and Luger
(2016, GL). They propose basing a test of H0 : α = 0 on simulated distribution of Fmax =
max1≤i≤N Fi, where Fi is a standard F -statistic for testing αi = 0 in the OLS regression of
yit on an intercept and ft. The simulations are carried out by residual resampling allowing
for cross-sectional correlations and cross-sectional heteroskedasticity using Wild bootstraps.
GL employ a bounds testing approach to allow for unconsidered nuisance parameters, which
could result in having inconclusive test outcomes.16

Computational details of the above tests are given in Section M1.2 of the Online Supple-
ment available on request.

5.1 Monte Carlo designs and experiments

We consider the following data generating process (DGP)

rit = αi +
m∑
`=1

β`if`t + uit, i = 1, 2, .., N ; t = 1, 2, ..., T , (63)

and calibrate its parameters to closely match the main features of the time series observations
on individual returns and the three Fama-French factors (market factor, HML and SMB) used
in the literature on tests of market effi ciency.17 The Monte Carlo (MC) design is also intended

16We also considered two distribution-free sign tests of αi = 0, proposed by Gungor and Luger (2009). These
tests, referred to as SS and WS tests, are valid for single factor models with errors that are conditionally sym-
metric around zero, but they do allow for non-normal errors, are relatively easy to compute, and are applicable
even when N > T . The results of these simulations are reported in Table M4 of the Online Supplement. These
tests are also outperformed by the Ĵα test.
17SMB stands for "small market capitalization minus big" and HML for "high book-to-market ratio minus

low". See Fama and French (1993), and Appendix C for further details and data sources.
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to match the models used for the empirical applications that follow. Accordingly, we setm = 3
and generate the factors as

f`t = 0.53 + 0.06f`,t−1 +
√
h`t ζ`t, for ` = 1, (Market factor),

f`t = 0.19 + 0.19f`,t−1 +
√
h`t ζ`t, for ` = 2, (HML),

f`t = 0.19 + 0.05f`,t−1 +
√
h`t ζ`t, for ` = 3, (SMB),

where ζ`t ∼ IIDN(0, 1) and18

h`t = 0.89 + 0.85h`,t−1 + 0.11ζ2`,t−1, for ` = 1, Market,

h`t = 0.62 + 0.74h`,t−1 + 0.19ζ2`,t−1, for ` = 2, HML,

h`t = 0.80 + 0.76h`,t−1 + 0.15ζ2`,t−1, for ` = 3, SMB.

The above processes are generated over the period t = −49,−48, ....0, 1, 2, ...., T with f`,−50 = 0
and h`,−50 = 1 for ` = 1, 2, 3. Observations t = 1, 2, ..., T are used in the MC experiments.

To capture the main features of the individual asset returns and their cross correlations,
we generate the idiosyncratic errors, ut = (u1t, u2t, ..., uNt)

′, according to ut = Qεt, where
εt = (ε1t, ε2t, ..., εNt)

′, and Q = D1/2P with D = diag(σ11, σ22, ..., σNN )′, σii = V ar(uit),
and P being a Cholesky factor of correlation matrix of ut, R, which is an N × N matrix
used to calibrate the cross correlation of returns. For each i, εit is generated such that uit
exhibits skewness and kurtosis which is typical of individual security returns. To this end, R
is generated as

R = IN + bb′ − B̌2, (64)

where b = (b1, b2, ...., bN )′, and B̌ = diag(b). The correlation matrix R also arises from the
single factor model, uit = γivt + σ

1/2
η,iiηit, with vt ∼ IID(0, 1), and ηit ∼ IID(0, 1), and

bi = γi/σ
1/2
ii , where σii = γ2i + ση,ii. To generate different degrees of error cross-sectional

dependence, we draw the first and the last Nγ (< N) elements of b as Uniform(0.7, 0.9),
and set the remaining middle elements to 0. We set Nγ = bN δγc, where bAc is the largest
integer part of A. Using δγ , our assumption mN = o(N1/2) can be expressed by mN = N δγ

with δγ < 1/2. In our experiments, we consider the values of exponents δγ = 1/4, 1/2, and
3/5. The case of no error cross-sectional dependence is obtained when Nγ = 0, and the error
cross-sectional dependence is weak when δγ < 1/2. The case of δγ = 3/5 is included to see
how the Ĵα test performs when cross-sectional error correlations are higher than the threshold
value of 1/2 allowed by the theory. To save space, we omit reporting the results for the
case where δγ = 0 as they are qualitatively similar to the case with δγ = 1/4. The present
design focusses on the weak factor error correlations and assumes the idiosyncratic errors, ηit,
are cross-sectionally uncorrelated. A more general design that allows for both forms of error
correlations will be considered below.

Recently, Fan, Liao and Yao (2015; FLY) have derived the conditions under which the lim-
iting normal distribution of SWPOET will be asymptotically justified. Under their assumptions
the SWPOET test allows for N > T . However, FLY’s assumptions are much more restrictive
than ours.19 For example, FLY do not cover cases where 1/4 < δγ ≤ 1/2. When δγ = 1/4,
FLY require that T = O (N ln(N)κ), for some κ > 2. Thus, when δγ = 1/4, so long as T

18The estimates used in the generation of the factors and their volatilities are computed using monthly
observations over the period April 1973 - September 2011.
19 In addition to some regularity conditions, FLY require Assumption A.2. which defines their version of

"sparseness": Suppose N1/2 (logN)κ = o (T ) for some γ > 2, and (i) minσij 6=0 |σij | >>
√
(logN) /T ; (ii) at

least one of the following cases holds: (a) DN = 2
∑N
i=2

∑i−1
j=1 I (σij 6= 0) = O(N1/2) and = O

(
T

N1/2(lnN)κ

)
or; (b) DN = O (N) and m2

N = O (1). Then they show that SWPOET →d N (0, 1) ,as N,T → ∞ jointly (see
Proposition 4.2 of FLY).
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rises slightly faster than N , the SWPOET test is asymptotically justified. On the other hand,
Ĵα →d N(0, 1) so long as v = O

(
Nd
)
with d > 2/3 when δγ = 1/4. Therefore, the Ĵα test

is expected to provide better finite sample approximation than the SWPOET test, especially
when N is larger than T and/or when error cross-correlation is not very weak. The simulation
results that follow seem to support these theoretical insights.20

To calibrate the variance, skewness and kurtosis of the simulated returns, we used estimated
values of these measures based on residuals of Fama-French regressions for each security over
the estimation windows τ =September 1989,..., September 2011, using sample of sizes of
T = 60 months. Specifically, for each i = 1, 2, ..., Nτ we run the Fama-French regressions
ri,τt − rf,τt = α̂iτ + β̂1,iτ (rm,τt − rf,τt) + β̂2,iτSMBtτ + β̂3iHMLtτ + ûi,τt, t = 1, 2, ..., 60, at
the end of each month τ =September 1989,..., September 2011, and computed σ̂ii,τ = m̂2,iτ ,

γ̂1,i,τ = m̂3,iτ/m̂
3/2
2,iτ and γ̂2,iτ = m̂4,iτ/m̂

2
2,iτ − 3 with m̂s,iτ = (60)−1

∑60
t=1

(
ûi,τt − ûi,τ

)s
,

and ûi,τ = (60)−1
∑60

t=1 ûi,τt. We ended up with 126,181 different values of σ̂ii,τ , γ̂1,i,τ and
γ̂2,i,τ estimated for around 476 securities over 265 different estimation windows. We discarded
estimates that lied below the 2.5% and above the 97.5% quantiles to avoid the calibrated values
being dominated by extreme outliers. The same procedure was applied to the estimated factor
loadings, β̂`i.τ . The means and medians of σ̂ii,τ , γ̂1,i,τ , γ̂2,i,τ and β̂`i,τ for ` = 1, 2, 3, and their
2.5% and 97.5% quantiles are summarized in Table 1. As can be seen from these results there
is a considerable degree of heterogeneity in estimates of the factor loadings and in the measures
of deviations, skewness and kurtosis, across securities and sample periods. The details of the
procedure to generate the non-normal and cross-correlated errors are described in Appendix
B.

To estimate size of the tests, we set αi = 0 for all i. To investigate power, we generated αi
as αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc; αi = 0 for i = Nα + 1, Nα + 2, ..., N .
We considered the values λα = 0.8, 0.9, 1.0, but the power ended up to be very high even for
λα = 0.8. Therefore, we only report power estimates for λα = 0.80.

All combinations of T = 60, 100 and N = 50, 100, 200, 500 (and 1, 000, 2, 000, 5, 000 for
the Ĵα test) are considered. All tests are conducted at a 5% significance level. Experiments
are based on R = 2, 000 replications.

5.2 Size and power

Table 2 reports the size and power of the GRS, Ĵα, SWPOET , SWLW and Fmax tests of
Gungor and Luger (2016), in the case of models with three factors, under various degrees of
cross-sectional error correlations, as measured by the exponent, δγ .

First, consider Panel A of Table 2 which deals with the case where the errors are normally
distributed but cross-sectionally weakly dependent with δγ = 1/4.21 The GRS test when
applicable (namely when T > N) being an exact test, has the correct size. The empirical
size of the Ĵα test is also very close to the 5% nominal level for all combinations of N and
T . Even when N = 500, the size of the Ĵα test lies in the range 5.0% to 5.3% for different
values of T . In contrast the SWPOET test grossly over-rejects the null hypothesis, and the
degree of the over-rejection becomes more serious N increases for a given T . For example,
when T = 60, increasing N from 50 to 500, the size of the SWPOET test rises from 18.3%
to 53.1%. In line with the discussion in Section 3.4, the size distortion is mitigated when T
increases. For T = 60 and N = 50 the size is 18.3% but it falls to 12.1% when T = 100
and N = 50. The size properties of the SWLW test is very similar to those of the SWPOET

test. The size of the Fmax test tend to be substantially smaller than the nominal level for

20This may also explain why FLY test suffers from size-distortion as discussed by Bailey, Pesaran and Yam-
agata in Fan, Liao and Mincheva (2013), where N is allowed to increase with T fixed.
21 In line with our theoretical findings (see Section 2), the results of cross-sectionally independent case (with

δγ = 0) is qualitatively similar to the case where δγ = 1/4.
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all combinations of N and T (this is in line with the reported results in Gungor and Luger,
2016). The rejection frequencies range between 0.1% to 0.2%. Furthermore, inconclusive test
outcomes are observed more often, ranging between 2.7% and 4.6% of the outcomes.22 The
power of the Ĵα tests is substantially higher than that of the GRS test. For example, for
T = 60 and N = 50 the power of the GRS test is 15.0% as compared to 65.9% for the Ĵα
test, although both tests have similar sizes (4.6% for the GRS test and 7.4% for the Ĵα test).
This is in line with our discussion at the end of Section 2, and reflects the fact that GRS
assumes an arbitrary degree of cross-sectional error correlations and thus relies on a large
time dimension to achieve a reasonably high power. In contrast, the power of the Ĵα test is
driven largely by the cross-sectional dimension. This can be seen clearly from the tabulated
results. Keeping N fixed at 50, and increasing T from 60 to 100 increases the power of the
GRS test from 15.0% to 69.2%, whilst the power of the Ĵα test (for example) rises from 65.9%
to 87.4%. It is interesting that even in this case (with T much larger than N) the Ĵα test still
has substantially higher power than the GRS test, with comparable type I errors. The power
comparison of the SWPOET and SWLW with other tests seem inappropriate, given their large
size-distortions. Having said this, it is perhaps remarkable that the power of the Ĵα test is
comparable to the unadjusted power of the SWPOET and SWLW tests. The power of the
Ĵα test uniformly dominates that of the Fmax test for all experiments. The low power of the
Fmax test is partially explained by the large proportions of inconclusive results. For T = 60,
between 29.3% and 45.5% of inconclusive results are observed for different N . For T = 100,
the proportion of inconclusive results tends to decline as N increases. For example, increasing
N from 50 to 500 lowers the frequencies of inconclusive results of the Fmax test from 39.0% to
29.1%.

Consider now the case where the errors are normally distributed and cross-sectionally
relatively strongly dependent. First let us discuss the results when δγ = 1/2. The Ĵα test
seems quite robust to cross-sectional error correlations, with its size falling in the range 5.1%
to 6.6%. The size of the Ĵα test for N = 50 and T = 60 is 6.4%, and its power is 53.6%, which
still exceed the power of the GRS test, which is 20.7%. But, as expected, increasing T from 60
to 100 results in the power of the GRS test to rise to 84.9%, which marginally beat the power
of the Ĵα test at 82.3%. As discussed earlier, the SWPOET test is not justified asymptotically
when δγ = 1/2. For N = 50, increasing T from 60 to 100 does not improve the size distortion
of these tests, with sizes of 21.5% and 23.3%, respectively.

When δγ = 3/5 > 1/2, out of all the tests considered, only the GRS test is valid so long as
N < T , and indeed has the correct size in such cases. However, interestingly, the size of the
Ĵα test is also close to its nominal level (at 5.5%-7.2%) even for such a high value of δγ . This
seems to be due to the inclusion of (N − 1)ρ̃2N,T in the denominator of the Ĵα statistic.

We now consider the empirically most relevant case where the errors are non-normal as
well as being cross-sectionally correlated. The effects of non-normal errors on the tests are
documented in Panel B of Table 2. Consider first the case where the errors are non-normal and
cross-sectionally weakly correlated (δγ = 1/4). We see that the size of the GRS test is hardly
affected by the types of departures from Gaussianity observed in the regression residuals.
The robustness of the GRS test to non-normal errors of the type encountered in practice has
also been documented by Affl eck-Graves and McDonald (1989). As to be expected from the
theoretical discussions, the Ĵα test is reasonably robust to non-Gaussian errors, and exhibit
only a very mild tendency of over-rejecting the null hypothesis, even for relatively large N . For
example, whenT = 60, for N = 50, 100, 200, and 500, the sizes of the Ĵα test are 6.5%, 6.9%,
5.9%, and 6.6%, respectively. The over-rejection of the SWPOET test tends to be somewhat
magnified by non-normality. The effects of non-normality upon the size of the SWLW is less

22The frequencies of inconclusive outcomes for the Fmax test for different combinations of N and T are
reported in Table M1 of the Online Supplement.
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obvious. The size of the Fmax test is again much smaller than the nominal level, but on average
slightly higher than that under normal errors. For example, the average of the size of the Fmax
test for all the combinations of (N,T ) is 0.14% under normal errors, but that under non-normal
errors it is 0.25%. Also, on average the incidence of inconclusive outcomes for the Fmax test
is slightly higher under non-normal errors. For example, the average of the frequencies of
the inconclusive outcomes for all the combinations of (N,T ) is 3.7% under normal errors,
but increases to 4.3% under non-normal. Under non-normal errors, the Ĵα test continues to
maintain its power superiority over the GRS and the Fmax tests. When δγ = 1/2 and 3/5
the size of the Ĵα test is reasonably controlled and lies in the range 6.0%-7.9%. The power
comparisons discussed for the weakly cross-sectionally uncorrelated case (δγ = 1/4) also carry
over to the present set of experiments with the much higher degrees of error cross-sectional
correlations (δγ = 1/2 and 3/5).

We also carried out additional experiments with much larger values of N , namely N =
1, 000, 2, 000 and 5, 000, whilst keeping T at 60 and 100. We only considered the Ĵα test for
these experiments, as it is unlikely that other tests considered, given their relatively poor
performance for values of N ≤ 500, would perform better than the Ĵα test. The results are
summarised in Table 3. As can be seen, the size is satisfactorily controlled with good power
properties, only showing moderate over-rejection under non-Gaussianity for T = 60, and for
relatively strong error cross correlations. For example, for N = 5, 000, when T = 60 with
non-normal errors, the size of the Ĵα test for δγ = 1/4, 1/2 and 3/5 are 7.8%, 9.5% and 9.3%,
whereas, by increasing T to 100, for N = 5, 000 the size of the test drops to 7.1%, 5.9% and
7.1%, respectively.

Finally, we investigated the robustness of the Ĵα test against possible nonlinear dependence
across security returns, discussed in the literature by Longin and Solnik (2001), and Ang, Chen
and Xing (2006), among others. In the presence of nonlinear dependence, correlation of higher

order moments of errors, such as Corr
(
u2it, u

2
jt

)
, could be non-zero even when uit and ujt are

uncorrelated. Table 4 summarises the size and power of the Ĵα test when the regression errors
follow multivariate t distribution. Under this design Nλc securities’squared errors are cross-
correlated, while the errors themselves are uncorrelated, which give rise to ϕ ≤ 2.5. As can
be seen, the Ĵα test continues to perform well, giving the correct size and high power, across
all of the MC designs.

5.3 Experiments with mixed factor-spatial error processes

So far we have considered error processes with a weak common factor structure but with
cross-sectionally independent idiosyncratic errors. As we discussed in sub-section 3.2, our
test, including estimators of the cross-correlation measure (N − 1) ρ2N , continues to apply
when the eigenvalues of variance matrix of idiosyncratic errors are bounded. Accordingly, we
further investigate finite sample behaviour of the Ĵα test under the DGPs identical to those
considered for Table 2, except that spatial autoregressive component is incorporated into
the error generating process. Specifically, the error correlation matrix is now given by R =

D
−1/2
σ VD

−1/2
σ , where Dσ = diag (σii), V = (σij), V = γγ ′ + (IN − ρεW)−1 (IN − ρεW′)−1

with γ =
(
γ1, γ2, ..., γNγ , 0, 0, ..., 0

)′
, γi for i ≤ Nγ = bN δγc are drawn from uniform(0.7,0.9)

distribution and γi = 0 for i = Nγ + 1, Nγ + 2, ...., N , ρε is spatial coeffi cient such that
0 ≤ |ρε| < 1, W′ = (w1,w2, ...,wN ) with τ ′Nwi = 1 and its diagonal elements being all zero.
Observe that when Nγ = 0, errors possess pure spatial autoregressive processes, and when
ρε = 0, the DGP becomes identical to that for the results reported earlier (in Tables 2 and 3).
We have chosen the value ρε = 0.5, 0.8 and a rook form for W = (wij), namely, all elements
in W are zero except wi+1,i = wj−1,j = 0.5 for i = 1, 2, ..., N − 2 and j = 3, 4..., N , with
w1,2 = wN,N−1 = 1. To investigate the importance of allowing for error correlations in the
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construction of the Jα test we also consider a version the test that does not control for error
cross-correlations. This version is denoted by Jα(0), and obtained by setting ρ2N = 0 in Jα(ρ2N ),
defined by (55). Table 5 reports the results for ρε = 0.5, both with and without the weak factor
component. In the latter case γ = 0, and error cross-correlations are only due to the spatial
autregressive effects. As can be seen from the Panel A of the table, under Gaussianity, the
size of the Ĵα test is well controlled, with slight over-rejection when T = 60, which disappears
when T is increased to 100. This result holds for all the values of N considered, including
N = 5, 000. In contrast, the Jα(0) test over-rejects the null hypothesis, around 10%, for all
the combinations of N and T . This confirms that using the MT estimator of ρ2N does a good
job at correcting the bias of the Jα test for the spatial error correlations. The over-rejection
of the test becomes more pronounced when the errors are non-Gaussian (see Panel B), but
the size distortion becomes rather small for T = 100, even if N > 1, 000. The results are
very similar when the errors have a mixed spatial-factor models. When δγ = 1/4 and 1/2,
there is no noticeable difference in the results from the case with γ = 0 for both Gaussian and
non-Gaussian errors. When δγ = 3/5, as to be expected, we observe moderate size distortions,
especially when T = 60 and N ≥ 1000. The Ĵα test continues to show good power performance
for both types of error processes and for different values of δγ . As noted earlier, there is some
loss of power δγ is increased. But the extent of the power loss is much smaller than those
reported in Table 2.23

5.4 Experiments with time varying betas

We also investigated the robustness of the proposed test to random time variations in βi. In
the case where betas are time-varying (2) can be written as

yit = αit + β′itft + uit, (65)

where αit = ν + β′it(λ − µf ). Suppose that time variations in βit can be modelled by the
following random coeffi cient model24

βit = βi + υit, (66)

where E (βit) = βi, and υit = (υ1,it, υ2,it, ..., υm,it)
′ ∼ IID (0,Ωυ,ii) over i and t, and distrib-

uted independently of ujt′ and fs for all i, j, t, t′, and s. Using (66) we now have

yit = αi + β′ift + ůit, (67)

where ůit = υ′itf̃t + uit, and f̃t = ft − µf + λ. Suppose that ft is a stationary process with
mean µf and variance Ωf . Then for each i, ůit is serially independent with zero means and
constant unconditional variances, namely

E (̊uit) = 0, E (̊uit̊ujt) =

{
σ̊ii = συ,ii + σii for i = j
σ̊ij = σij for i 6= j,

where συ,ii = E
(
f̃ ′tυitυ

′
itf̃t

)
= λ′Ωυ,iiλ+Tr (ΩfΩυ,ii). Hence,

Corr (̊uit, ůjt) = ρ̊ij =
ρij

[1 + (συ,ii/σii)]
1/2 [1 + (συ,jj/σjj)]

1/2
, for i 6= j, (68)

23The results for ρε = 0.8 are qualitatively similar to the results for ρε = 0.5, which are summarised in Table
M5 in the Online Supplement (available upon request).
24This set up is suffi ciently general and accommodates a wide class of random coeffi cient models considered

in the literature, but it rules out persistent and systematic time variations in betas. In practice, as with
the empirical application discussed in Section 6 below, one can deal with such persistent time variations by
considering tests of LFPM over relatively short time periods, which requires the test to apply in cases where
N is much larger than T .
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and it readily follows that
∣∣̊ρij∣∣ ≤ ∣∣ρij∣∣, and the presence of random variations in betas in fact

reduces the degree of error cross sectional dependence. Therefore, the composite errors, ůit,
implied by the time-varying betas satisfy the sparsity conditions (30) and (31). However, the
theoretical analysis become further complicated due to the fact that ůit are now conditionally

heteroskedastic, namely V ar
(̊
uit

∣∣∣̃ft) = f̃ ′tΩυ,iif̃t + σii. Nevertheless, our preliminary analysis

suggests that the proposed test continues to be applicable in this case so long as ft is stationary
with bounded support and the in-sample mean of ft is suffi ciently small. A formal proof of
this conjecture is beyond the scope of the present paper. But in support of our conjecture we
provide additional Monte Carlo evidence in Table 6, where we present finite sample behaviour
of the Ĵα test under the DGPs identical to those considered for Table 5, except that betas
are now generated to be time varying. Specifically, we generated betas as β`it = β`i + υ`it
with υ`it ∼ IIDN (0, 1), and set yit = αi +

∑3
`=1 β`itf`t + uit, i = 1, 2, .., N ; t = 1, 2, ..., T .

The results summarized in Table 6 are qualitatively similar to those in Table 5, suggesting
that allowing for random time variations in betas do not adversely impact the small sample
properties of the Ĵα test, and if anything tend to correct the slight over-rejection of the test in
the case of models with time-invariant betas, most likely due to the fact that random-variations
in betas reduce the degree of error cross-correlations.

6 Empirical Application

6.1 Data description

We consider the application of our proposed Ĵα test to the securities in the Standard &
Poor 500 (S&P 500) index of large cap U.S. equities market. Since the index is primarily
intended as a leading indicator of U.S. equities, the composition of the index is monitored by
Standard and Poor to ensure the widest possible overall market representation while reducing
the index turnover to a minimum. Changes to the composition of the index are governed by
published guidelines. In particular, a security is included if its market capitalization currently
exceeds US$ 5.3 billion, is financially viable and at least 50% of their equity is publicly floated.
Companies that substantially violate one or more of the criteria for index inclusion, or are
involved in merger, acquisition or significant restructuring are replaced by other companies.

In order to take account for the change to the composition of the index over time, we
compiled returns on all the 500 securities that constitute the S&P 500 index each month
over the period January 1984 to June 2015. The monthly return of security i for month t is
computed as rit = 100(Pit − Pi,t−1)/Pi,t−1 +DYit/12, where Pit is the end of the month price
of the security and DYit is the per cent per annum dividend yield on the security. Note that
index i depends on the month of which the security i is a constituent of S&P 500, τ , say,
which is suppressed for notational simplicity.

The time series data on the safe rate of return, and the market factors are obtained from
Ken French’s data library web page. The one-month US treasury bill rate is chosen as the
risk-free rate (rft), the value-weight return on all NYSE, AMEX, and NASDAQ stocks (from
CRSP) is used as a proxy for market return (rmt), the average return on the three small
portfolios minus the average return on the three big portfolios (SMBt), and the average
return on two value portfolios minus the average return on two growth portfolio (HMLt).
SMB and HML are based on the stocks listed on the NYSE, AMEX and NASDAQ. All data
are measured in percent per month. See Appendix C for further details.

6.2 Month end test results (September 1989 - June 2015)

Encouraged by the satisfactory performance of the Ĵα test, even in cases where N is much
larger than T , we apply the Ĵα test that allows for non-Gaussian and cross-correlated errors to
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all securities in the S&P 500 index at the end of each month spanning the period September
1989 to June 2015.25 In this way we minimize the possibility of survivorship bias since the
sample of securities considered at the end of each month is decided in real time. As far as
the choice of T is concerned, to reduce the impact of possible persistence or systematic time
variations in betas, we select a relatively short time period of 60 months. Recall that the
experimental results reported above show that our test is robust to random time variations in
betas. Accordingly, we estimated the CAPM regressions

ri,τt − rf,τt = α̂iτ + β̂iτ (rm,τt − rf,τt) + ûi,τt, (69)

and the Fama-French (FF) three factor regressions,

ri,τt − rf,τt = α̂iτ + β̂1,iτ (rm,τt − rf,τt) + β̂2,iτSMBtτ + β̂3iHMLtτ + ûi,τt, (70)

for t = 1, 2, ..., 60, i = 1, 2, ..., Nτ , and the month ends, τ =September 1989,....,June 2015.
All securities in the S&P 500 index are included except those with less than sixty months of
observations and/or with five consecutive zeros in the middle of sample periods.

Table 7 reports summary statistics for p-values of the Ĵα test, cross-sectional averages
of measures of departure from non-normality and average pair-wise correlations of residuals
from CAPM and FF regressions of securities in the S&P 500 index using five year estimation
windows (sixty months) at the end of the months of September 1989 to June 2015. The results
confirm important departures from normality in the residuals. The extent of the departures are
particularly pronounced in the case of kurtosis measures where γ2 = 0 is rejected in 26-29% of
the samples under consideration. Three measures of average pair-wise correlations of residuals
are reported in the last columns of the table, which indicate minor degrees of cross-sectional
correlations. The residuals from FF regressions tend to be cross-sectionally less correlated
than those of CAPM regressions. The p-values range from 0 to 1, with a mean and median of
0.52 and 0.63 for the CAPM model, and 0.46 and 0.50 for the FF model, suggesting important
time variations in the degree of market effi ciency.

Figure 1 provides plots of the evolution of p-values of the Ĵα test based on CAPM and FF
regressions at the end of the months of September 1989 to June 2015. The months at which the
null of market effi ciency is rejected at the 5% level based on both CAPM and FF regressions
are August 1998, November 1998-February 1999, August 2007-March 2009 and November
2013-June 2015 (the last data point). The period around August 1998 and December 1998-
February 1999 coincide with the Russian financial crisis (during August -September 1998) and
the subsequent collapse of Long-Term Capital Management. The period August 2007-March
2009 matches the recent global financial crisis. November 2013-June 2015 corresponds to series
of exogenous economic and financial shocks - unrest around Russian, started by the Ukraine
crisis, then the negative oil price shock started around June 2014. In general, the Ĵα test
tends to result in rejection of the null of market effi ciency, in the Sharpe-Lintner sense, during
periods of major financial disruptions.

6.3 Long/short equity returns and p-values of the Ĵα test

As the test results in Figure 1 clearly show important variations in the p-values of the Ĵα test
over time, it would be interesting to see if such variations are related to the performance of
trading strategies. There are many trading strategies that are designed to exploit non-zero
α’s in selection of securities. A prominent example is the long/short equity strategy where
securities are ordered by their predicted returns, from the most positive to the most negative.

25 In all the empirical applications T < N , and the GRS test can not be computed. We have also decided to
exclude other tests discussed in the Monte Carlo Section on the grounds of their substantial size distortion of
the null and/or low power.
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The investor then goes long on securities with positive predicted returns and goes short on
securities with negative return predictions. There are many variations in the way that this
strategy is implemented which need not concern us here. What we are interested in is to see if
there are any relationships between the return on long/short (L/S) strategies and the evidence
of market ineffi ciency as measured by estimated p-values. In time periods where αi = 0 for all
i, the L/S strategy is unlikely to perform better than the market return, and could do even
worse if one allows for transaction costs and management fees. But we would expect a higher
return on the L/S strategies relative to the market if there are positive and negative alphas
that the investor can identify and exploit. Therefore, a priori we would expect an inverse
relationship between p-values and returns on L/S strategies relative to the market.

For return on L/S strategies we used Credit Suisse Long/Short Equity Hedge Fund Index
that are available monthly from December 1993. This is a subset of the Credit Suisse Hedge
Fund Index and provides the aggregate performance of long/short equity funds, and as such is
not subject to a selection bias. We denote the monthly return on this index by rht and consider
the relationship between r̃ht = rhτ − rt, where rt is the return on S&P 500 index, and monthly
p-values of the Ĵα tests, which we denote by π̂t.26 The p-values needed for this purpose are
already reported in Figure 1. Given the considerable volatility of return data, in Figures 2
and 3 we plot twelve-month moving averages of returns and p-values computed as r̃ht(12)
= 1

12

∑11
j=0 r̃h,t−j , and π̂t(12) = 1

12

∑11
j=0 π̂t−j , respectively. Figure 2 depicts the relationship

for p-values computed using the CAPM regressions, and Figure 3 shows the relationship for
the p-values computed using the FF regressions. There is a significant negative relationship
between the p-values and the excess returns. The value of sample correlation between r̃ht(12)
and CAPM p-value is -0.28 (s.e. 0.061), giving a t-ratio of -4.6, strongly rejecting the null of
zero-correlation.27 The value of sample correlation between r̃ht(12) and FF p-value is almost
identical, giving -0.27 (s.e. 0.061) and a t-ratio of -4.4.

7 Conclusion

In this paper we propose a simple test of Linear Factor Pricing Models (LFPM), the Ĵα test,
when the number of securities, N , is large relative to the time dimension, T , of the return
series. It is shown that the Ĵα test is more robust against error cross-sectional correlation
than the standardised Wald tests based on an adaptive thresholding estimators of V, which is
considered by Fan, Liao and Yao (2015). It allows N to be much larger than T , as compared
to alternative tests proposed in the literature. The proposed test also allows for a wide class of
error dependencies including mixed weak-factor spatial autoregressive processes, and is shown
to be robust to random time-variations in betas.

Using Monte Carlo experiments, designed specifically to match the correlations, volatilities,
and other distributional features of the residuals of Fama-French three factor regressions of
individual securities in the Standard & Poor 500 index, we show that the proposed Ĵα test
performs well even when N is much larger than T , and outperform other existing tests such
as the tests of Fan et al (2015) and Gungor and Luger (2016) test. Also in cases where N < T
and the standard F test due to GRS can be computed, we still find that the Ĵα test has a
much higher power, especially when T is relatively small.

Application of the Ĵα test to all securities in the S&P 500 index with 60 months of return
data at the end of each month over the period September 1989 - June 2015 clearly illustrates the
utility of the proposed test. Statistically significant evidence against Sharpe-Lintner CAPM
and Fama-French three factor models is found during periods of financial crisis and market
disruptions. Furthermore, a significant negative correlation is found between a twelve-month

26See Appendix C for further details and the source of the L/S equity hedge fund returns.
27The standard error of the sample correlation ρ̂T is computed as [(1− ρ̂2T )/(T − 2)]1/2.
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moving average p-values of the Ĵα test and excess returns of long/short equity strategies over
the period November 1994 to June 2015.

Table 1: Summary statistics of the estimates used in the Monte Carlo
simulations

This table reports the summary statistics for estimated β′s, variance, skewness and kurtosis measures
of residuals from Fama-French (FF) three factor regressions, estimated for all securities in the S&P 500
index with at least sixty months of return data using rolling estimation windows of sixty months, over
the period September 1989 to September 2011. β̂iτ is estimated using the FF regressions: ri,τt−rf,τt =

α̂iτ + β̂1,iτ (rm,τt − rf,τt) + β̂2,iτSMBtτ + β̂3iHMLtτ + ûi,τt, for i = 1, 2, ..., Nτ , and t = 1, 2, ..., 60,
where Nτ denotes the number of securities available at the estimation windows τ = September 1989,...,
September 2011. σ̂ii,τ = m̂2,iτ γ̂1,iτ = m̂3,iτ/m̂

3/2
2,iτ and γ̂2,iτ = m̂4,iτ/m̂

2
2,iτ − 3, which are computed

using the FF residuals, where m̂s,iτ = (60)
−1∑60

t=1

(
ûi,τt − ûi,τ

)s
and ûi,τ = (60)−1

∑60
t=1 ûi,τt, for

s = 2, 3, 4. All securities in the S&P 500 index are included except those with less than sixty months of
observations and/or with five consecutive zeros in the middle of sample periods. Under normal errors
we set γ1,i = γ2,i = 0.

Mean Median 2.5% Quantile 97.5% Quantile

σ̂ii,τ 65.60 44.72 12.81 249.89

γ̂1,i,τ 0.18 0.14 -0.89 1.46

γ̂2,i,τ 1.00 0.38 -0.71 6.74

β̂1,i,τ 1.10 0.51 0.24 2.26

β̂2,i,τ 0.10 0.04 -0.91 1.47

β̂3,i,τ 0.20 0.24 -1.55 1.72
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Table 2: Size and power of GRS, Ĵα, SWPOET , SWLW and Fmax tests

This table summarises the size and power of GRS, Ĵα, SWPOET , SWLW and Fmax tests of αi =
0, for i = 1, 2, ..., N , in the case of three-factor models. The observations are generated as yit =
αi +

∑3
`=1 β`if`t + uit, i = 1, 2, .., N ; t = 1, 2, ..., T , f`t = µf` + ρf`f`,t−1 +

√
h`t ζ`t, h`t = µh` +

ρ1h`h`,t−1 + ρ2h`ζ
2
`,t−1, ζ`t ∼ IIDN(0, 1), t = −49, ..., T with f`,−50 = 0 and h`,−50 = 0, ` = 1, 2, 3,

µf` = 0.53, 0.19, 0.19, ρf` = 0.06, 0.19, 0.05, µh` = 0.89, 0.62, 0.80, ρ1h` = 0.85, 0.74, 0.76, ρ2h` =
0.11, 0.19, 0.15, for ` = 1, 2, 3, respectively. For the size of the test, αi = 0 for all i, and for the power of
the test, αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8, otherwise αi = 0, where bAc
is the largest integer part of A. The idiosyncratic errors, ut = (u1t, u2t, ..., uNt)

′, are generated as ut =

Qεt, where εt = (ε1t, ε2t, ..., εNt)
′, and Q = D1/2P with D = diag(σ11, σ22, ..., σNN )′, σii = V ar (σii) ,

and P being a Cholesky factor of correlation matrix of ut, R = IN+bb′−B̌2, which is an N×N matrix
used to calibrate the cross correlation of returns, where b = (b1, b2, ...., bN )′, B̌ = diag(b). The first
and the last Nγ (< N) elements of b are generated as Uniform(0.7, 0.9), and the remaining middle
elements are set to 0. We set Nγ = bNδγ c. We consider the values δγ = 1/4, 1/2 and 3/5. For the
case of non-normal errors, uit are generated following steps 1-4 of the procedure in Appendix B, using
skewness and kurtosis measures, γ1,i and γ2,i. σ

2
i , γ1,i, γ2,i and β`i for ` = 1, 2, 3, are randomly drawn

from their respective empirical distributions, see Subsection 5.1 and Appendix B for details. GRS is
the F test due to Gibbons et al. (1989) which is distributed as FN,T−N−m, and is applicable when
T > N +m+ 1. N/A signifies that the GRS statistic can not be computed. Ĵα is the propose large N
test which is robust to non-Gaussian errors and cross-sectional correlations; SWPOET and SWLW are

the tests based on the POET estimator of Fan et al. (2013), V̂
−1
POET , and Ledoit-Wolf (2004) shrinkage

estimator, V̂
−1
LW , as estimates of V

−1 in (17). Fmax is the bounds test of Gungor and Luger (2016),
with frequencies of inconclusive test outcomes reported in Table M1 in the Online Supplement available
on request. Values of the Ĵα, SWPOET and SWLW test statistics are compared to a positive one-sided
critical value of the standard normal distribution. All tests are conducted at the 5% significance level.
Experiments are based on 2,000 replications.

Panel A: Normal Errors
δγ = 1/4 δγ = 1/2 δγ = 3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500
Size: αi = 0 for all i

GRS 60 4.6 N/A N/A N/A 5.3 N/A N/A N/A 5.4 N/A N/A N/A
100 5.8 N/A N/A N/A 5.3 N/A N/A N/A 5.5 N/A N/A N/A

Ĵα 60 7.4 5.3 6.0 5.0 6.4 5.9 5.6 6.1 6.0 5.5 6.7 7.2
100 6.6 5.2 5.5 5.3 6.1 6.6 5.1 5.3 6.7 6.3 5.6 5.8

SWPOET 60 18.3 26.2 34.0 53.1 21.5 25.0 30.4 48.6 21.4 23.1 30.6 45.2
100 12.1 14.3 20.4 30.3 23.3 18.7 20.9 27.5 28.9 20.8 24.8 29.0

SWLW 60 17.7 23.3 33.9 56.5 22.3 32.9 46.8 67.6 28.5 50.7 75.0 93.0
100 12.7 16.7 21.6 31.3 16.9 24.1 37.3 50.8 21.6 43.9 76.1 94.0

Fmax 60 0.2 0.1 0.2 0.1 0.3 0.1 0.3 0.2 0.1 0.1 0.1 0.1
100 0.2 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.2 0.1 0.2
Power: αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8, otherwise αi = 0

GRS 60 15.0 N/A N/A N/A 20.7 N/A N/A N/A 24.2 N/A N/A N/A
100 69.2 N/A N/A N/A 84.9 N/A N/A N/A 87.6 N/A N/A N/A

Ĵα 60 65.9 80.2 93.2 98.8 53.6 67.2 84.1 96.4 42.2 53.9 66.3 82.1
100 87.4 97.4 99.9 100.0 82.3 93.7 98.7 100.0 72.2 86.4 95.0 99.6

SWPOET 60 81.9 95.2 99.3 100.0 80.3 91.1 98.6 99.9 77.5 88.3 97.0 99.9
100 93.5 99.3 100.0 100.0 97.3 98.9 99.9 100.0 95.8 97.9 99.8 100.0

SWLW 60 68.8 82.7 93.5 99.7 77.4 89.7 96.7 99.7 86.1 96.4 99.9 100.0
100 86.2 95.1 99.5 100.0 94.3 98.5 99.8 100.0 96.8 99.8 100.0 100.0

Fmax 60 11.5 12.5 17.6 22.2 12.5 15.1 16.6 22.7 11.6 13.8 17.8 24.3
100 29.5 41.3 51.4 67.4 32.2 41.5 51.4 66.4 30.4 40.9 51.9 66.2
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Table 2 – Continued

Panel B: Non-normal Errors
δγ = 1/4 δγ = 1/2 δγ = 3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500
Size: αi = 0 for all i

GRS 60 5.5 N/A N/A N/A 5.4 N/A N/A N/A 5.2 N/A N/A N/A
100 4.4 N/A N/A N/A 5.4 N/A N/A N/A 5.3 N/A N/A N/A

Ĵα 60 6.5 6.9 5.9 6.6 6.0 6.9 6.5 6.3 6.3 7.9 6.4 7.6
100 5.6 6.7 6.4 7.2 6.6 6.2 7.0 7.8 7.8 7.3 6.7 6.9

SWPOET 60 18.7 27.2 37.8 56.8 21.6 26.5 34.1 51.6 22.8 27.5 32.2 48.0
100 11.7 17.2 21.6 33.4 30.7 20.5 22.8 31.7 30.6 21.3 23.8 31.2

SWLW 60 17.5 23.2 33.2 56.0 21.2 34.8 47.2 69.3 27.9 49.2 77.2 93.4
100 12.1 17.2 21.6 31.0 15.6 26.3 37.3 53.3 21.4 43.6 78.1 94.6

Fmax 60 0.3 0.2 0.4 0.2 0.2 0.4 0.1 0.1 0.2 0.2 0.2 0.1
100 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.1
Power: αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8, otherwise αi = 0

GRS 60 15.7 N/A N/A N/A 19.0 N/A N/A N/A 23.1 N/A N/A N/A
100 70.9 N/A N/A N/A 83.7 N/A N/A N/A 88.3 N/A N/A N/A

Ĵα 60 68.4 82.4 93.6 99.5 54.2 69.2 84.4 97.6 42.6 57.1 66.7 84.6
100 88.7 96.7 99.8 100.0 82.2 93.3 99.0 100.0 73.4 86.0 95.3 99.7

SWPOET 60 83.8 95.2 99.4 100.0 80.3 92.1 98.7 99.9 74.7 89.1 97.6 100.0
100 93.6 99.4 100.0 100.0 96.7 98.5 99.9 100.0 93.9 98.2 99.9 100.0

SWLW 60 70.4 81.9 93.8 99.7 77.4 90.4 97.1 99.9 84.9 96.1 99.7 100.0
100 87.0 94.8 99.0 99.9 93.6 98.6 99.8 100.0 97.3 99.7 100.0 100.0

Fmax 60 12.1 13.8 19.0 23.9 12.0 15.2 18.8 23.7 12.2 13.1 18.3 23.4
100 31.8 41.4 51.6 67.7 30.9 40.2 53.0 68.5 30.3 40.6 51.8 64.8

Table 3: Size and power of the Ĵα test for N = 1, 000, 2, 000 and 5, 000 in the case of
models with three factors

This table summarises the size and power of the Ĵα test in the case of models with three factors with
focus on large values of N . The data is generated as described in the notes to Table 2.

δγ = 1/4 δγ = 1/2 δγ = 3/5

(T,N) 1, 000 2, 000 5, 000 1, 000 2, 000 5, 000 1, 000 2, 000 5, 000

Panel A: Normal Errors
Size: αi = 0 for all i
T = 60 5.9 5.3 6.3 5.9 6.2 6.3 6.5 7.0 8.1
T = 100 4.8 4.8 4.3 7.3 6.4 6.8 7.0 7.0 7.2
Power: αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8, otherwise αi = 0

T = 60 100.0 100.0 100.0 99.2 100.0 100.0 92.6 98.5 100.0
T = 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Panel B: Non-normal Errors
Size: αi = 0 for all i
T = 60 6.3 7.6 7.8 7.7 8.4 9.5 7.5 8.6 9.3
T = 100 4.8 6.0 7.1 6.9 7.0 5.9 8.1 7.0 7.1
Power: αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8, otherwise αi = 0

T = 60 100.0 100.0 100.0 99.6 100.0 100.0 94.6 98.6 99.9
T = 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 4: Size of the Ĵ® test when u2it and u2jt are correlated for the pair (i; j) of ½ij = 0 with multivariate t-distributed errors

This table summarises the size and power of Ĵ® test when the errors follow multivariate t distribution with g degrees of freedom, and "2
it and "2

jt are correlated

even when "it and "jt are uncorrelated. Speci…cally, the data is generated as described in the notes to Table 2 except that only the …rst N° = bN±° c

errors are cross-correlated, where bAc is the largest integer part of A, and "it » IID tg=
p

(g=g ¡ 2) for i = 1; 2; :::; N ¡ Nc and all t with Nc = bN¸cc,

"it »
q

(g ¡ 2) =Â2
g;tzit, where zit » IIDN(0; 1) and Â2

g;t is a chi-squared random variate with g degrees of freedom, distributed independently of zit for

i = N ¡ Nc + 1; :::; N and all t. We set g = 8, which yields E
¡
"4
it

¢
¡ 3 = 1:5 so that ' · 1 +

¯
¯°2;"

¯
¯ = 2:5, and use f (N) = N ¡ 1 (or ± = 1). See also the notes

to Table 2.

±° = 1=4 ±° = 1=2 ±° = 3=5

(T;N) 50 100 200 500 1; 000 2; 000 5; 000 50 100 200 500 1; 000 2; 000 5; 000 50 100 200 500 1; 000 2; 000 5; 000

Panel A: ¸c = 1=2

Size: ®i = 0 for all i

60 5.4 5.9 6.7 4.9 5.1 5.4 6.0 6.9 5.8 4.7 6.3 5.9 5.9 5.2 6.8 5.2 6.3 4.6 6.6 6.6 7.4

100 6.5 5.2 5.3 5.4 5.5 4.6 5.2 5.8 6.0 5.3 5.0 5.7 6.0 5.4 5.7 5.7 6.1 5.7 6.3 5.5 6.2

Power: ®i » IIDN(0; 1) for i = 1; 2; :::; N® with N® = bN¸®c, ¸® = 0:8, otherwise ®i = 0

60 66.3 81.8 92.7 99.6 100.0 100.0 100.0 58.8 75.0 89.2 98.3 99.9 100.0 100.0 52.7 67.0 80.3 93.1 98.7 99.8 100.0

100 89.3 97.1 99.7 100.0 100.0 100.0 100.0 85.9 96.5 99.7 100.0 100.0 100.0 100.0 81.4 92.2 98.1 100.0 100.0 100.0 100.0

Panel B: ¸c = 3=5

Size: ®i = 0 for all i

60 5.6 5.6 6.1 4.7 4.9 4.8 5.5 6.2 5.9 5.5 5.2 5.4 5.4 5.7 6.2 6.5 6.4 5.6 6.5 6.1 6.8

100 5.4 5.2 5.9 5.9 4.9 4.7 5.2 6.1 5.4 6.1 5.4 6.2 5.3 5.6 5.8 6.0 5.6 5.7 6.0 6.0 6.3

Power: ®i » IIDN(0; 1) for i = 1; 2; :::; N® with N® = bN¸®c, ¸® = 0:8, otherwise ®i = 0

60 66.0 81.0 93.8 99.5 100.0 100.0 100.0 61.5 72.8 88.6 98.3 99.9 100.0 100.0 53.1 67.8 79.3 94.1 98.4 99.9 100.0

100 88.7 97.8 99.6 100.0 100.0 100.0 100.0 85.1 96.4 99.4 100.0 100.0 100.0 100.0 80.4 92.4 98.1 99.9 100.0 100.0 100.0

Panel C: ¸c = 4=5

Size: ®i = 0 for all i

60 5.2 6.1 5.8 6.8 5.8 7.7 9.1 6.0 6.6 5.2 6.3 6.3 7.0 7.9 6.6 6.6 6.1 6.3 6.1 6.8 6.9

100 6.6 4.9 5.9 5.3 6.3 6.1 7.4 6.8 6.6 7.0 4.8 6.2 6.4 6.2 7.3 6.9 5.3 5.7 6.2 6.8 6.7

Power: ®i » IIDN(0; 1) for i = 1; 2; :::; N® with N® = bN¸®c, ¸® = 0:8, otherwise ®i = 0

60 67.1 81.3 91.6 98.8 99.9 100.0 100.0 60.1 74.5 88.1 97.4 99.8 100.0 100.0 53.3 66.0 78.9 93.8 98.2 99.7 100.0

100 88.6 97.3 99.7 100.0 100.0 100.0 100.0 84.6 95.9 99.4 100.0 100.0 100.0 100.0 80.8 92.3 98.1 100.0 100.0 100.0 100.0
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Table 5: Size and power of Ĵα test with mixed spatial-factor models with the
value of spatial parameter ρε = 0.5

Data is generated using the same set up as in Table 2, except that an spatial autoregressive component
is added to the error generating process. Specifically, the error correlation matrix is given by R =

D
−1/2
σ VD−1/2σ , where Dσ = diag (σii), V = (σij), V = γγ′+ (IN − ρεW)

−1
(IN − ρεW′)

−1 with γ =(
γ1, γ2, ..., γNγ , 0, 0, ..., 0

)′
, γi for i ≤ Nγ = bNδγ c are drawn from uniform(0.7,0.9) distribution and

γi = 0 for i = Nγ+1, Nγ+2, ...., N , ρε is spatial coeffi cient such that 0 ≤ |ρε| < 1,W′= (w1,w2, ...,wN )
with τ ′Nwi = 1 and its diagonal elements being all zero. Observe that when Nγ = 0, errors possess
pure spatial autoregressive processes, and when ρε = 0 the DGP becomes identical to that for the
results reported in Table 2. We have chosen the value ρε = 0.5 and a rook form for W = (wij), namely,
all elements in W are zero except wi+1,i = wj−1,j = 0.5 for i = 1, 2, ..., N − 2 and j = 3, 4..., N , with
w1,2 = wN,N−1 = 1. For the purpose of comparison to Ĵα, we also provide results for Jα(0) test defined
by (55) with ρ2N = 0, which does not control for error cross-correlations, evaluated at. Panel A of the
table reports size and power of Ĵα and Jα(0) tests with normal errors, and Panel B reports size and
power with non-normal errors. All tests are conducted at the 5% significance level. Experiments are
based on 2,000 replications. See also the notes to Table 2.

Panel A: Normal Errors with ρε = 0.5

Size Power
(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000

Pure spatial models (γ = 0)

Ĵα 60 6.8 7.2 7.6 7.7 8.0 6.7 8.9 55.6 72.1 87.0 97.6 99.7 100.0 100.0
100 6.8 6.8 6.1 5.9 5.8 5.8 5.1 82.0 94.4 99.0 100.0 100.0 100.0 100.0

Jα(0) 60 10.1 10.5 10.5 11.1 10.8 8.9 10.6 63.9 78.4 91.4 98.3 99.8 100.0 100.0
100 10.9 10.7 9.6 9.9 9.4 9.0 9.7 88.1 96.6 99.4 100.0 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 1/4)

Ĵα 60 5.9 5.6 6.2 6.3 6.5 7.0 7.9 57.6 70.0 86.0 97.8 99.5 100.0 100.0
100 6.4 6.4 6.8 6.7 4.8 5.8 5.9 82.6 93.6 99.1 100.0 100.0 100.0 100.0

Jα(0) 60 9.5 9.7 9.8 9.3 9.2 9.5 9.3 66.4 77.6 89.6 98.6 99.7 100.0 100.0
100 10.5 12.1 10.9 10.4 8.9 9.6 9.9 87.5 96.2 99.6 100.0 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 1/2)

Ĵα 60 6.9 7.0 7.3 7.5 6.8 7.2 7.0 55.1 70.6 86.4 96.7 99.7 99.9 100.0
100 6.3 6.5 6.7 7.1 5.4 6.9 6.2 82.3 93.9 99.1 100.0 100.0 100.0 100.0

Jα(0) 60 10.9 11.1 10.5 10.7 10.4 10.0 9.1 65.1 79.2 90.7 98.0 99.8 100.0 100.0
100 10.5 10.7 11.0 11.5 9.4 11.5 10.6 88.1 96.2 99.6 100.0 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 3/5)

Ĵα 60 6.8 7.5 6.2 8.4 8.8 9.7 9.8 53.5 71.1 84.9 96.4 99.7 100.0 100.0
100 6.3 6.7 6.8 6.8 6.0 7.3 8.6 82.5 92.8 98.5 100.0 100.0 100.0 100.0

Jα (0) 60 10.8 12.2 10.1 12.1 11.8 12.4 11.6 63.7 79.0 89.9 97.8 99.9 100.0 100.0
100 11.0 11.3 11.2 11.0 10.8 11.2 12.2 89.3 96.0 99.4 100.0 100.0 100.0 100.0
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Table 5 – Continued

Panel B: Non-normal Errors with ρε = 0.5

Size Power
(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000

Pure spatial models (γ = 0)

Ĵα 60 7.8 7.2 7.8 8.7 8.8 9.1 10.1 58.9 72.6 88.4 97.5 99.7 100.0 100.0
100 7.2 6.8 6.9 6.4 6.3 7.2 7.3 82.2 93.1 99.1 99.9 100.0 100.0 100.0

Jα(0) 60 11.9 11.1 11.7 12.2 11.8 12.0 12.4 68.0 79.0 92.3 98.6 99.9 100.0 100.0
100 10.8 10.9 12.2 10.2 10.6 11.9 11.6 87.7 96.1 99.3 100.0 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 1/4)

Ĵα 60 7.5 6.8 8.1 7.3 8.2 8.6 10.1 57.9 72.4 87.4 97.8 99.5 100.0 100.0
100 6.9 6.5 7.2 5.4 7.7 7.8 6.8 82.5 93.8 98.9 100.0 100.0 100.0 100.0

Jα(0) 60 11.2 9.8 12.1 9.8 11.2 11.8 13.3 66.5 79.3 91.4 98.6 99.6 100.0 100.0
100 10.6 10.9 12.0 9.5 11.8 11.5 11.1 86.9 96.2 99.4 100.0 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 1/2)

Ĵα 60 7.5 7.9 8.1 8.5 8.2 9.4 11.2 55.8 71.7 85.9 97.0 99.6 99.9 100.0
100 7.9 7.1 8.2 6.7 6.5 7.6 7.3 80.0 94.2 98.7 100.0 100.0 100.0 100.0

Jα(0) 60 11.4 12.3 12.5 12.0 11.8 13.0 13.5 65.5 79.6 90.8 98.2 99.8 100.0 100.0
100 11.6 11.2 12.3 11.6 11.2 12.7 12.1 85.6 96.7 99.3 100.0 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 3/5)

Ĵα 60 7.0 7.0 7.5 8.3 10.3 9.5 12.5 53.9 71.5 85.6 96.4 99.5 100.0 100.0
100 6.7 7.5 7.3 6.5 8.4 7.7 8.6 81.3 92.0 98.7 100.0 100.0 100.0 100.0

Jα(0) 60 11.5 11.7 11.2 12.9 13.5 12.5 14.8 64.9 78.9 90.3 98.3 99.6 100.0 100.0
100 12.0 12.2 13.1 11.0 13.7 12.8 13.5 87.8 96.1 99.3 100.0 100.0 100.0 100.0
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Table 6: Size and power of Ĵα test with time-varying beta and mixed
spatial-factor model (spatial parameter ρε = 0.5)

The data generating process is yit = αi+
∑3
`=1 β`itf`t+uit, i = 1, 2, .., N ; t = 1, 2, ..., T , β`it = β`i+υ`it

with υ`it ∼ IIDN (0, 1), which are drawn independently over ` = 1, 2, 3, i and t. See Table 5 and the
notes to Table 2 for further details.

Panel A: Normal Errors
Size Power

(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000
Pure spatial models (γ = 0)

60 6.0 5.8 6.1 6.3 4.7 4.6 4.1 51.0 64.6 80.3 93.3 98.8 99.5 99.8
100 5.8 5.5 4.5 3.5 3.4 2.9 2.2 78.0 90.4 97.8 99.9 100.0 100.0 100.0
Mixed spatial-factor models (δγ = 1/4)

60 5.4 5.2 5.5 4.6 4.0 4.6 3.1 50.1 64.0 78.5 93.5 98.5 99.8 99.8
100 5.8 5.4 5.0 4.9 2.9 2.9 2.1 77.0 89.8 98.0 99.9 100.0 100.0 100.0
Mixed spatial-factor models (δγ = 1/2)

60 6.4 6.0 5.5 5.7 4.7 4.3 3.9 50.0 62.4 79.3 92.4 98.3 99.6 100.0
100 5.8 5.0 5.9 5.5 3.8 3.7 3.1 77.1 89.9 97.4 99.9 100.0 100.0 100.0
Mixed spatial-factor models (δγ = 3/5)

60 6.1 6.8 5.5 6.2 5.6 6.0 5.5 47.3 63.7 77.1 91.8 98.3 99.6 100.0
100 5.8 5.4 5.8 4.8 4.2 4.7 3.7 77.6 88.7 97.1 99.9 100.0 100.0 100.0

Panel B: Non-normal Errors
Pure spatial models (γ = 0)

60 7.1 6.2 6.1 6.4 5.2 5.8 4.7 52.7 65.6 80.3 94.1 98.4 99.6 100.0
100 5.9 5.7 5.8 4.4 3.8 3.9 2.8 77.7 90.4 97.9 99.9 100.0 100.0 100.0
Mixed spatial-factor models (δγ = 1/4)

60 6.5 5.1 6.1 5.4 5.7 4.5 4.2 51.3 64.1 80.1 93.5 98.1 99.8 100.0
100 5.8 5.6 6.1 4.0 4.9 4.2 2.6 76.7 90.1 97.5 99.9 100.0 100.0 100.0
Mixed spatial-factor models (δγ = 1/2)

60 6.5 6.5 6.9 6.7 5.3 5.8 5.3 48.8 64.0 78.3 91.9 97.9 99.5 100.0
100 6.6 6.3 5.9 4.8 4.2 4.6 3.0 73.8 90.5 97.2 99.8 100.0 100.0 100.0
Mixed spatial-factor models (δγ = 3/5)

60 6.2 6.9 5.7 5.7 8.2 6.2 6.2 47.3 64.2 77.6 92.4 97.4 99.1 99.9
100 6.2 6.8 6.3 4.8 5.6 4.7 3.8 76.2 88.5 96.8 100.0 100.0 100.0 100.0
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Table 7: Summary Statistics of p-values, departure from non-normality and
average pair-wise correlations of residuals

This table provides summary statistics for p-values of the Ĵα tests applied to residuals from CAPM
and FF regressions of securities in the S&P 500 index using rolling sixty months estimation win-
dows over the period from September 1989 to June 2015. The table also reports cross-sectional av-
erages of measures of departure from non-normality and average pair-wise correlations of the resid-
uals. Results reported in panel A of the table refer to CAPM regression residuals, ri,τt − rf,τt =

α̂iτ + β̂1,iτ (rm,τt − rf,τt) + ûi,τt, for t = 1, 2, ..., 60, and i = 1, 2, ..., Nτ , and the months ending in

τ =September 1989,..., June 2015. γ̂`τ = N−1τ
∑Nτ
i=1 γ̂`,iτ for ` = 1, 2, γ̂1,iτ = m̂3,iτ/m̂

3/2
2,iτ and

γ̂2,iτ = m̂4,iτ/m̂
2
2,iτ − 3 with m̂s,iτ = (60)

−1∑60
t=1 û

s
i,τt. Skewness statistic for testing γ1,iτ = 0 is

SKiτ = T γ̂21,iτ/3 ∼ χ21, and the Kurtosis statistic for testing γ2,iτ = 0 is KRiτ = T γ̂22,iτ/24 ∼ χ21.
Jarque and Bera (1987) statistic for testing γ1,iτ = γ2,iτ = 0 is SKiτ + KRiτ ∼ χ22. Rejection
frequency refers to the proportion of normality tests rejected out of the Nτ tests carried at the
end of each month, τ . ρ̂τ = 2

N(N−1)
∑N−1
i=1

∑N
j=i+1 ρ̂τ,ij , ρ̂

2
τ N,T = 2

N(N−1)
∑N−1
i=1

∑N
j=i+1 ρ̂

2
τ,ij with

ρ̂τ,ij = û′i.τ ûj.τ/(û
′
i.τ ûi.τ )1/2(û′j.τ ûj.τ )1/2, ûi.τ = (ûi,τ1, ûi,τ2..., ûi,τT )

′, and ρ̃2τ N,T is the MT esti-
mator defined by (56). Results reported in panel B of the table refer to FF regression residuals:
ri,τt − rf,τt = α̂iτ + β̂1,iτ (rm,τt − rf,τt) + β̂2,iτSMBtτ + β̂3iHMLtτ + ûi,τt, for t = 1, 2, ..., 60, and
i = 1, 2, ..., Nτ , and the month ending in τ =September 1989,..., June 2015.

Average skewness

& excess kurtosis

measures

Rejection frequency

for normality tests at τ

Average pair-wise

correlations

Nτ
p-value

of Ĵα
γ̂1τ γ̂2τ γ1,iτ = 0 γ2,iτ = 0

γ1,iτ = 0

γ2,iτ = 0
ρ̂τ ρ̂2τ N,T ρ̃2τ N,T

Panel A: CAPM regressions

Mean 479 0.52 0.20 1.20 0.24 0.29 0.32 0.02 0.03 0.01

Median 480 0.63 0.19 1.16 0.24 0.28 0.31 0.01 0.03 0.01

Min 464 0.00 -0.01 0.38 0.13 0.12 0.15 0.01 0.02 0.00

Max 487 1.00 0.37 2.16 0.35 0.46 0.47 0.08 0.05 0.02

stand. dev. 5.9 0.38 0.09 0.46 0.06 0.09 0.08 0.03 0.01 0.00

Panel B: Fama-French regressions

Mean 479 0.46 0.19 1.06 0.22 0.26 0.28 0.01 0.03 0.00

Median 480 0.50 0.20 1.02 0.23 0.25 0.28 0.01 0.03 0.00

Min 464 0.00 0.02 0.38 0.12 0.11 0.14 0.00 0.02 0.00

Max 487 0.98 0.34 1.91 0.31 0.40 0.42 0.03 0.03 0.01

stand. dev. 5.9 0.33 0.09 0.37 0.05 0.07 0.07 0.01 0.00 0.00
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Figure 1: Plots of p-value of the Ĵα test

This figure presents plots of the evolution of p-values of the Ĵα test based on CAPM and FF regressions
of securities in the S&P 500 index using five year estimation windows (sixty months) at the end of the
months from September 1989 to June 2015. Reported plots are the p-values of the Ĵα test, which are
computed using CAPM regressions, ri,τt − rf,τt = α̂iτ + β̂iτ (rm,τt − rf,τt) + ûi,τt and FF three factor
regressions, ri,τt−rf,τt = α̂iτ+β̂1,iτ (rm,τt − rf,τt)+β̂2,iτSMBtτ+β̂3iHMLtτ+ûi,τt, for t = 1, 2, ..., 60,
and i = 1, 2, ..., Nτ , of the month ends estimation windows τ =September 1989,..., June 2015.
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Figure 2: Plots of Hedge Fund Index relative to S&P 500 returns and p-values of
the Ĵα test based on CAPM regressions

This figure presents monthly rate of returns of Credit Suisse Core Long/Short Equity Hedge Fund
Index relative to S&P 500 returns, and p-values of the Ĵα test applied to CAPM regressions over
the period November 1994 to June 2015. The long/short return variable, r̃ht(12), is computed as
r̃ht(12) = 1

12

∑11
j=0 r̃h,t−j , where r̃ht = rht − rt, rht is the return on Credit Suisse Core Long/Short

Equity Hedge Fund Index, and rt is the return on S&P 500 index. π̂τ (12) = 1
12

∑11
j=0 π̂τ−j , where π̂τ

is the p-values of the Ĵα test at the end of month τ , computed using CAPM regressions estimated on
rolling samples of sixty months. See the notes to Table 7 for details of CAPM regressions.

Figure 3: Plots of Hedge Fund Index relative to S&P 500 returns and p-values of
the Ĵα test based on FF regressions

This figure presents monthly rate of return of Credit Suisse Core Long/Short Equity Hedge Fund
Index relative to S&P 500 return, and p-value of the Ĵα test based on Fama-French regressions over
the period November 1994 to June 2015. See the notes to Figure 2, and the notes to Table 7 for details
of Fama-French regressions.
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Appendices

Appendix A: Proofs of the theorems
In this appendix we provide proofs of the theorems set out in Section 4 of the paper. These proofs make use of
Lemmas which are provided, together with their proofs, in an Online Supplement available on request.

For further clarity and convenience we summarize some repeatedly used notations below:

MG = (mtt′) = IT −PG, PG = G
(
G′G

)−1
G′, G = (F, τT ) , v = Tr(MG) = T −m− 1, (A.1)

MF = (mF,tt′) = IT − F
(
F′F

)−1
F′, HF = hh′ = (htht′) (A.2)

with h = (ht) = MF τT , wT = Tr(HF ) = h′h = τ ′TMF τT ,

where F is a T ×m matrix, and τT = (1, 1, ..., 1)
′ is a T × 1 vector of ones. Also, before providing a proof of

Theorem 1, we state a theorem due to Kelejian and Prucha (2001) which is used to establish it.

Lemma 1 (Central Limit Theorem for Linear Quadratic Forms) Consider the following linear quadratic form

QN = ε
′Aε+ b′ε =

N∑
i=1

N∑
j=1

aijεiεj +

N∑
i=1

biεi

where {εi, i = 1, 2, ..., N} are real valued random variables, and aij and bi denote real valued coeffi cients of
the quadratic and linear forms. Suppose the following assumptions hold: Assumption KP1: εi, for i =
1, 2, ..., N , have zero means and are independently distributed across i. Assumption KP2: A is symmetric
and supi

∑N
j=1 |aij | < K. Also N−1

∑N
i=1 |bi|

2+ε0 < K for some ε0 > 0. Assumption KP3: supiE|εi|4+ε0 < K

for some ε0 > 0. Then, assuming that N−1V ar (QN ) ≥ c for some c > 0,

QN − E (QN )√
V ar (QN )

→d N(0, 1).

Proof. See Kelejian and Prucha (2001, Theorem 1, p. 227).

Proof of Theorem 1. Noting that HF = hh′, where h = (h1, h2, ..., hT )
′ = MF τT , we can write

z2i = w−1T ξ′iHF ξi

with wT = τ ′TMF τT . Then,

N∑
i=1

z2i = w−1T

N∑
i=1

ξ′iHF ξi = w−1T

(∑T

t=1
utht

)′
D−1σ

(∑T

t=1
utht

)
,

where Dσ = diag(σ11, σ22, ..., σNN ). Using (48)

N−1/2
N∑
i=1

z2i = w−1T

N∑
i=1

N−1/2ξ′iHF ξi

= w−1T

[
N−1/2

∑T

t=1
(Γvt + ηt)ht

]′
D−1σ

[∑T

t=1
(Γvt + ηt)ht

]
= aNT + 2bNT + cNT , (A.3)

where

aNT = w−1T N−1/2
(∑T

t=1
htv
′
tΓ
′
)

D−1σ

(∑T

t=1
htΓvt

)
,

bNT = w−1T N−1/2
(∑T

t=1
htv
′
tΓ
′
)

D−1σ

(∑T

t=1
htηt

)
, and

cNT = w−1T N−1/2
(∑T

t=1
htη
′
t

)
D−1σ

(∑T

t=1
htηt

)
. (A.4)

Consider the first term, aNT , and note that

aNT = w−1T N−1/2
∑T

t=1

∑T

r=1
hthrv

′
tΓ
′D−1σ Γvr

= w−1T N−1/2
∑T

t=1

∑T

r=1
hthr

(
N∑
i=1

γ̃′ivtv
′
rγ̃i

)
,
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where
γ̃i =

γi√
σii

=
γi√

γ′iγi + ση,ii
. (A.5)

Equivalently, letting dT = w
−1/2
T

∑T
1=1 htvt, and noting that for any conformable real symmetric positive

semi-definite matrices A and B, Tr (AB) ≤ Tr (A)λmax (B) (this result is repeatedly used below), we have

aNT = N−1/2
N∑
i=1

γ̃′i

[(
w
−1/2
T

∑T

1=1
htvt

)(
w
−1/2
T

∑T

t=1
htvt

)′]
= N−1/2

N∑
i=1

γ̃′idTd′T γ̃i

≤
(
N−1/2

N∑
i=1

γ̃′iγ̃i

)
λmax

(
dTd′T

)
≤
(
N−1/2

N∑
i=1

γ̃′iγ̃i

)(
d′TdT

)
.

But since ht are given constants such that
∑T
t=1 h

2
t = wT , and by assumption vt is IID(0, Ik), it then readily

follows that d′TdT →p 1, and hence

aNT = Op

(
N−1/2

N∑
i=1

γ̃′iγ̃i

)
.

Also, it is clear from (A.5) that |γ̃is| ≤ 1 and |γ̃is| ≤ |γis|, and

N−1/2
N∑
i=1

γ̃′iγ̃i = N−1/2
N∑
i=1

k∑
s=1

γ̃2is ≤ N
−1/2

k∑
s=1

(
N∑
i=1

|γ̃is|
)

≤ N−1/2
k∑
s=1

(
N∑
i=1

|γis|
)
≤ N−1/2 sup

s

N∑
i=1

|γis| ,

and hence by Assumption 2, N−1/2
∑N
i=1 γ̃

′
iγ̃i = O

(
Nδγ−1/2

)
, and overall aNT = Op

(
Nδγ−1/2

)
. Similarly,

bNT = w−1T N−1/2
(∑T

t=1
htv
′
tΓ
′
)

D−1σ

(∑T

t=1
htηt

)
= w−1T N−1/2

∑T

t=1

∑T

r=1
hthrv

′
tΓ
′D−1σ ηr

= w−1T N−1/2
∑T

t=1

∑T

r=1
hthr

N∑
i=1

(
ηir

σ
1/2
ii

)
γ̃′ivt

= N−1/2
(
w
−1/2
T

∑T

t=1
htv
′
t

)[
w
−1/2
T

∑N

i=1

∑T

t=1
htγ̃i

(
ηit

σ
1/2
ii

)]

= N−1/2
[
w
−1/2
T

∑T

t=1

∑N

i=1
ht
(
d′T γ̃i

)( ηit

σ
1/2
ii

)]
.

Since by Assumption, ηit and vt (and hence dT ) are independently distributed, it follows that E(bNT ) = 0.
Consider now V ar (bNT ), and note that for given values of γi we have (recall that ηit is independent over t and∑T
t=1 h

2
t = wT )

V ar (bNT ) = N−1w−1T
∑T

t=1

∑T

r=1

∑N

i=1

∑N

j=1
hthr

[
γ̃′iE

(
dTd′T

)
γ̃j
]
E

(
ηitηjr

σ
1/2
ii σ

1/2
jj

)

= N−1w−1T
∑T

t=1

∑N

i=1

∑N

j=1
h2t
(
γ̃′iE

(
dTd′T

)
γ̃j
)( ση,ij

σ
1/2
ii σ

1/2
jj

)

= N−1
∑N

i=1

∑N

j=1

(
γ̃′iE

(
dTd′T

)
γ̃j
)( ση,ij

σ
1/2
ii σ

1/2
jj

)
.

Also E (dTd′T ) = E
[(
w
−1/2
T

∑T
1=1 htvt

)(
w
−1/2
T

∑T
1=1 htv

′
t

)]
= Ik, and

V ar (bNT ) = N−1
∑N

i=1

∑N

j=1

(
γ̃′iγ̃j

)( ση,ij

σ
1/2
ii σ

1/2
jj

)
.

Further ∣∣∣∣∣ ση,ij

σ
1/2
ii σ

1/2
jj

∣∣∣∣∣ = |ση,ij |√
(γ′iγi + ση,ii)

(
γ′jγj + ση,jj

) =
∣∣ρη,ij∣∣√(

γ′iγi
ση,ii

+ 1
)(

γ′jγj
ση,jj

+ 1
) ≤ ∣∣ρη,ij∣∣ .
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Therefore, (recalling that supj,s
∣∣γ̃js∣∣ < K, and |γ̃is| ≤ |γis|)

V ar (bNT ) ≤ N−1
∑N

i=1

∑N

j=1

∣∣γ̃′iγ̃j∣∣ ∣∣ρη,ij∣∣ ≤ N−1∑N

i=1

∑N

j=1

∑k

s=1
|γ̃is|

∣∣γ̃js∣∣ ∣∣ρη,ij∣∣
≤ sup

j,s

∣∣γ̃js∣∣ [N−1∑k

s=1

∑N

i=1
|γ̃is|

(∑N

j=1

∣∣ρη,ij∣∣)]
≤ KN−1

∑k

s=1

∑N

i=1
|γis|

(∑N

j=1

∣∣ρη,ij∣∣) .
But by condition (51) in Assumption 4 and ση,ii > c > 0 imply supj

∑N
i=1

∣∣ρη,ij∣∣ < K (also see (52)), and by (47)

we have sups
∑N
i=1 |γis| = O

(
Nδγ

)
. Then it follows that V ar (bNT ) = O

(
Nδγ−1

)
, and bNT = O

(
Nδγ/2−1/2

)
.

Therefore, bNT is dominated by aNT and using these results in (A.3) we have

N−1/2
N∑
i=1

z2i = w−1T N−1/2
(∑T

t=1
htη
′
t

)
D−1σ

(∑T

t=1
htηt

)
+Op

(
Nδγ−1/2

)
. (A.6)

Now using (50) we can express the above as

N−1/2
N∑
i=1

z2i = w−1T N−1/2
(∑T

t=1
htε
′
η,tQ

′
η

)
D−1σ

(∑T

t=1
htQηεη,t

)
+Op

(
Nδγ−1/2

)
.

where εη,t ∼ IID(0, IN ). After some re-arrangement of the terms we now obtain

N−1/2
N∑
i=1

(
z2i − 1

)
= N−1/2w−1T

(∑T

t=1
htε
′
η,t

) (
Q′ηD

−1
σ Qη

) (∑T

t=1
htεη,t

)
+Op

(
Nδγ−1/2

)
qNT = N−1/2

[
x′TAxT − Tr (A)

]
+N−1/2 [Tr(A)−N ] +Op

(
Nδγ−1/2

)
. (A.7)

where
xT = w

−1/2
T

∑T

t=1
htεη,t, and A = Q′ηD

−1
σ Qη. (A.8)

First consider the deterministic component of qNT , and using (49) and under Assumption 4 we have

R = Γ̃Γ̃
′
+D−1/2σ QηQ

′
ηD
−1/2
σ , (A.9)

where Γ̃ = (γ̃1, γ̃2, ..., γ̃N )
′. Then

Tr (R) = N =
∑N

i=1
γ̃′iγ̃i + Tr (A) .

But, as before,

Tr
(
Γ̃Γ̃
′)

=
∑N

i=1
γ̃′iγ̃i =

∑N

i=1

∑k

s=1
γ̃2is (A.10)

≤
∑k

s=1

∑N

i=1
|γis| ≤ k sup

s

∑N

i=1
|γis| = O

(
Nδγ

)
.

Hence
N−1/2 [Tr(A)−N ] = O

(
Nδγ−1/2

)
,

and (A.7) can be written as

qNT = zNT +O
(
Nδγ−1/2

)
+Op

(
Nδγ−1/2

)
, (A.11)

where
zNT = N−1/2x′T ÃxT , with Ã = A−N−1Tr (A) IN . (A.12)

We now apply the Central Limit Theorem for Linear Quadratic Forms due to Kelejian and Prucha (2001, KP)
to zNT , which is reproduced for convenience as Lemma 1 above. We first establish the conditions required by
KP’s theorem (see Lemma 1). To this end we first note that E (xT ) = 0, and

V ar (xT ) = w−1T E

[(∑T

t=1
htεη,t

)(∑T

t=1
htεη,t

)′]
= w−1T

∑T

t=1
h2tE

(
εη,tε

′
η,t

)
= IN .

Denote the ith element of xT by xi,T and note that it is given by xi,T = w
−1/2
T

∑T
t=1 htεη,it = w

−1/2
T h′εη,i,

where εη,i = (εη,i1 εη,i2, ..., εη,iT )
′, with an abuse of the notation. Then xi,T = w

−1/2
T ε′η,iMF τT , and x2i,T =

38



w−1T ε′η,iHF εη,i, hence, for a given T , the elements of xT have zero means, a unit variance and are independently
distributed as required by KP’s theorem. Using results on the moments of quadratic forms it is also easily
established that E(x6i,T ) = w−3T E

(
ε′η,iHF εη,i

)3
= 15 + O(v−1) ≤ K uniformly over i (see Lemma 11), and

hence condition KP1 of the KP theorem (Lemma 1) is met. Consider now matrix Ã defined by (A.12) and
note that it is symmetric and we have∥∥∥Ã∥∥∥

∞
≤
∥∥A−N−1Tr (A) IN∥∥∞ ≤ ‖A‖∞ +N−1Tr (A)

and using (A.8) ∥∥∥Ã∥∥∥
∞
≤

∥∥Q′ηD−1σ Qη

∥∥
∞ +N−1Tr

(
Q′ηD

−1
σ Qη

)
≤

(
1

mini(σii)

)
‖Qη‖1 ‖Qη‖∞ +N−1Tr

(
Q′ηQη

)
λmax

(
D−1σ

)
≤

(
1

mini(σii)

)[
‖Qη‖1 ‖Qη‖∞ +N−1Tr

(
Q′ηQη

)]
.

But under condition (51) and noting that σii > c > 0, then∥∥∥Ã∥∥∥
∞
= sup

i

∑N

j=1
|ãij | < K,

and condition KP2 of Lemma 1 is met. To establish condition KP3, we note that

Tr
(
Ã
)
= 0, T r

(
Ã2
)
= Tr

(
A2)−N−1 [Tr (A)]2 .

Using (A.9), let B = D
−1/2
σ QηQ

′
ηD
−1/2
σ , and note that

Tr(R2) = Tr
(
B2)+ Tr

[(
Γ̃′Γ̃

)2]
+ 2Tr

(
Γ̃′BΓ̃

)
. (A.13)

Also
Tr
(
Γ̃′BΓ̃

)
≤ Tr

(
Γ̃′Γ̃

)
λmax (B) ,

and in view of (51) we have

λmax (B) = λmax
(
Q′ηD

−1
σ Qη

)
≤
∥∥(Q′ηD−1σ Qη

)∥∥
1
≤
(

1

mini(σii)

)
‖Qη‖1 ‖Qη‖∞ < K,

and hence (using (A.10)):

Tr
(
Γ̃′BΓ̃

)
= O

(
Nδγ

)
. (A.14)

Also (recalling that |γ̃is| ≤ |γis|)

Tr
(
Γ̃′Γ̃

)2
= Tr

(∑N

i=1
γ̃iγ̃

′
i

)2
=
∑N

i=1

∑N

j=1
Tr
(
γ̃iγ̃

′
iγ̃j γ̃

′
j

)
=

∑N

i=1

∑N

j=1

(
γ̃′iγ̃j

)2
=
∑k

s=1

∑k

s′=1

∑N

i=1

∑N

j=1

∣∣γ̃isγ̃jsγ̃is′ γ̃js′ ∣∣
≤

∑k

s=1

∑k

s′=1

∑N

i=1

∑N

j=1
|γis|

∣∣γjs∣∣ |γis′ | ∣∣γjs′ ∣∣
≤ k2

(
sup
i

∑N

i=1
|γis|

)2
= O

(
N2δγ

)
. (A.15)

Hence, using (A.14) and (A.15) in (A.13) we have

Tr
(
B2) = Tr(R2) +O

(
N2δγ

)
.

Also in view of (A.8)

Tr
(
B2) = Tr

[
D−1/2σ QηQ

′
ηD
−1/2
σ D−1/2σ QηQ

′
ηD
−1/2
σ

]
= Tr

[(
Q′ηD

−1
σ Qη

)2]
= Tr

(
A2) .

To summarize
Tr(A) =

√
N +O

(
Nδγ

)
, and Tr

(
A2) = Tr(R2) +O

(
N2δγ

)
,

which also yield

Tr
(
Ã2
)

= Tr
(
A2)−N−1 [Tr (A)]2

= Tr(R2) +O
(
N2δγ

)
−N−1

[√
N +O

(
Nδγ

)]2
= Tr(R2) +O

(
N2δγ

)
+O

(
N2δγ−1

)
− 1.
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Therefore,

N−1Tr
(
Ã2
)
= N−1Tr(R2) +O

(
N2δγ−1

)
, (A.16)

which is bounded in N under the assumptions that N−1Tr
(
R2
)
is bounded in N and 0 ≤ δγ < 1/2. Further-

more, it is readily seen that

N−1Tr
(
R2) = N−1

N∑
i=1

N∑
i=1

ρ2ij = 1 + (N − 1)ρ
2
N .

Finally, using (A.12)

V ar (zNT ) = N−1V ar
(
x′T ÃxT

)
= N−1E

[(
x′T ÃxT

)2]
.

Consider (
x′T ÃxT

)2
= w−2T

(
T∑
t=1

T∑
t′=1

htht′ε
′
η,tÃεη,t′

)2

= w−2T

T∑
t=1

T∑
t′=1

T∑
r=1

T∑
r′=1

htht′hrhr′
(
ε′η,tÃεη,t′

)(
ε′η,rÃεη,r′

)
.

Since, by assumption, εη,t are serially independent, then using the results on moments of the quadratic forms,
we have

E

[(
ε′η,tÃεη,t

)2]
=

N∑
i=1

N∑
j=1

N∑
i′=1

N∑
j′=1

ãij ãi′j′E (εη,itεη,jtεη,i′tεη,j′t)

= γ2,εη

N∑
i=1

ã2ii +

(
N∑
i=1

ãii

)2
+ 2

N∑
i=1

N∑
j=1

ãij ãji,

where γ2,εη = E(ε4η,it)− 3, and by assumption
∣∣∣γ2,εη ∣∣∣ < K. Also

E
[(
ε′η,tÃεη,t

)(
ε′η,rÃεη,r

)]
=
[
Tr
(
Ã
)]2

for t 6= r.

For r = t 6= t′ = r′,

E
[(
ε′η,tÃεη,t′

)(
ε′η,tÃεη,t′

)]
= E

[(
ε′η,t′Ãεη,t

)(
ε′η,tÃεη,t′

)]
= E

(
ε′η,t′ÃÃεη,t′

)
= Tr(Ã2).

Similarly, for r′ = t 6= t′ = r, we have E
[(
ε′η,tÃεη,t′

)(
ε′η,t′Ãεη,t

)]
= Tr(Ã2). Using these results

w2TE

[(
x′T ÃxT

)2]
=

(
T∑
t=1

h4t

)γ2,εη N∑
i=1

ã2ii +

(
N∑
i=1

ãii

)2
+ 2

N∑
i=1

N∑
j=1

ãij ãji


+

[
T∑
t=1

T∑
r=1

h2th
2
r −

(
T∑
t=1

h4t

)][
Tr
(
Ã
)]2

+ 2

[
T∑
t=1

T∑
r=1

h2th
2
r −

(
T∑
t=1

h4t

)]
Tr(Ã2).

But
(∑T

t=1

∑T
r=1 h

2
th

2
r

)
=
(∑T

t=1 h
2
t

)2
,
∑N
i=1 ãii = Tr(Ã) = 0,

∑N
i=1

∑N
j=1 ãij ãji = Tr(Ã2), and we have

V ar (zNT ) = N−1E

[(
x′T ÃxT

)2]
= γ2,εηw

−2
T

(
N−1

N∑
i=1

ã2ii

)(
T∑
t=1

h4t

)
+ 2w−2T

(
T∑
t=1

h2t

)2
N−1Tr(Ã2),

and, further noting that
∑T
t=1 h

2
t = wT , then

V ar (zNT ) = 2N
−1Tr(Ã2) +

γ2,εη

(∑T
t=1 h

4
t

)
w2T

(
N−1

N∑
i=1

ã2ii

)
,

and using (A.16)

V ar (zNT ) = 2N
−1Tr(R2) +

γ2,εη

(∑T
t=1 h

4
t

)
w2T

(
N−1

N∑
i=1

ã2ii

)
+O

(
N2δγ−1

)
,
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where by assumption N−1Tr
(
R2
)
is bounded in N . Also, using (S.15) in Lemma 8,

∑T
t=1 h

4
t = O(T ), and∣∣∣γ2,εη ∣∣∣ (∑T

t=1 h
4
t

)
w2T

(
N−1

N∑
i=1

ã2ii

)
≤ K

(∑T
t=1 h

4
t

)
w2T

(
N−1Tr(Ã2)

)
≤ K

T

[
N−1Tr(R2)

]
+O

(
T−1N2δγ−1

)
= O(T−1) +O

(
T−1N2δγ−1

)
.

Therefore
V ar (zNT ) = 2N

−1Tr(R2) +O(T−1) +O
(
N2δγ−1

)
. (A.17)

which is bounded for any N and T , so long as N−1Tr
(
R2
)
is bounded in N , and 0 ≤ δγ < 1/2. Also using

(A.11), and under the same conditions, and as N and T →∞, in any order,

lim
N,T→∞

V ar (qNT ) = 2ω
2 > 0,

as required. This result also ensures that condition KP3 of Lemma 1 is satisfied and therefore, we also have
qNT →d N(0, 2ω

2), as N and T →∞, in any order.

Proof of Theorem 2. We have

SNT = N−1/2
N∑
i=1

[
z2i

(
1− 1

σ−1ii σ̂ii

)]
, (A.18)

where z2i = ξ′iHF ξi/wT , with ξi = ui./σ
1/2
ii being the standardised error of the return equation (2) and

wT = τ ′TMF τT , and σ̂ii = û′i.ûi./T . Write Xi = σ−1ii σ̃ii and note that by assumption σii > 0, and by
construction only securities with σ̂ii > c > 0 are included in the Ĵα test, so that

SNT = N−1/2
N∑
i=1

[
z2i

(
1− 1

Xi

)]
, (A.19)

where Xi = ξ′iMGξi/v, with v = T − m − 1 and MG = (mtt′) , defined by (A.1). Also, by (35), E
(
t2i
)
=

E
(
z2i /Xi

)
= v/ (v − 2)+O

(
v−3/2

)
for each i, and by Lemma 11 E

(
z2i
)
= E (ξ′iHF ξi/wT ) = w−1T Tr (HF ) = 1,

for all i. Thus, we have

E (SNT ) = O
(√

N/v2
)
. (A.20)

Next, for all i = 1, 2, ..., N we have Xi > 0, and (A.19) can be written as

SNT = N−1/2
N∑
i=1

z2i

[
(1−Xi) +

(1−Xi)2

Xi

]
= S1,NT + S2,NT ,

where

S1,NT = N−1/2
N∑
i=1

z2i (1−Xi) , (A.21)

and

S2,NT = N−1/2
N∑
i=1

z2i (1−Xi)2

Xi
. (A.22)

But since Xi > c > 0, and z2i (1−Xi)2 ≥ 0, then

|S2,NT | ≤ c−1N−1/2
N∑
i=1

z2i (1−Xi)2 ,

and
E |S2,NT | ≤ c−1N1/2 sup

i
E
[
z2i (1−Xi)2

]
. (A.23)

But

E
[
z2i (1−Xi)2

]
= E

(
z2iX

2
i

)
− 2E

(
z2iXi

)
+ E

(
z2i
)

= v−2w−1T E
[(
ξ′iHF ξi

) (
ξ′iMGξi

)2]− 2v−1w−1T E
[(
ξ′iHF ξi

) (
ξ′iMGξi

)]
+ 1.

Now using results from Lemma 11 we have

E
[(
ξ′iHF ξi

) (
ξ′iMGξi

)]
= vwT +O(v),

E
[(
ξ′iHF ξi

) (
ξ′iMGξi

)2]
= v2wT +O(vwT ),
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which yields

E
[
z2i (1−Xi)2

]
= O

(
1

v

)
, uniformly across i. (A.24)

Using this result in (A.23) we obtain

E |S2,NT | ≤ c−1N1/2 sup
i
E
[
z2i (1−Xi)2

]
= O

(√
N

v

)
,

and by Markov inequality we have S2,NT →p 0, so long as N/T 2 → 0. Therefore, to establish SNT →p 0, it is
suffi cient to show that S1,NT →p 0. By Lemma 17 we have

N−1/2
N∑
i=1

z2i (Xi − 1) = N−1/2
N∑
i=1

z2η,i (Xη,i − 1) +Op
(
Nδγ−1/2

)
,

where z2η,i = η
′
iHFηi/ (wTση,ii) > 0, Xη,i = η

′
iMGηi/ (vση,ii) > 0. Using results on the moments of quadratic

forms, by Lemma 15, we have

N−1/2
N∑
i=1

E
[
z2η,i (Xη,i − 1)

]
=

∑
t h

2
tmtt

vwT
γ2,εηN

−1/2
N∑
i=1

N∑
`=1

q̃4η,i`,

where γ2,εη = E(ε4η,it) − 3 (and
∣∣∣γ2,εη ∣∣∣ < K by assumption), q̃η,i` = qη,i`/σ

1/2
η,ii with qη,i` being such that

Qη = (qη,i`), Qη defined by (50). But as 0 ≤ mtt ≤ 1 (MG = (mtt′)) by Lemma 8, v
−1w−1T

∑T
t=1 h

2
tmtt ≤

v−1w−1T
∑T
t=1 h

2
t = v−1 as

∑T
t=1 h

2
t = wT , and also that 0 ≤

∑N
`=1 q̃

4
η,i` ≤ 1, as

∑N
`=1 q̃

2
η,i` = 1 (since∑N

`=1 q
2
η,i` = ση,ii), and

∣∣∣γ2,εη ∣∣∣ ≤ K, we have
N−1/2

N∑
i=1

E
[
z2η,i (Xη,i − 1)

]
= O

(√
N/v

)
.

Furthermore,

V ar

[
N−1/2

N∑
i=1

z2η,i (Xη,i − 1)
]

=
1

N

∑
i

V ar
[
z2η,i (Xη,i − 1)

]
+
1

N

∑
i 6=j

Cov
[
z2η,i (Xη,i − 1) , z2η,j (Xη,j − 1)

]
.

We first note that

V ar
[
z2η,i (Xη,i − 1)

]
= E

[
z4η,i (Xη,i − 1)2

]
−
{
E
[
z2η,i (Xη,i − 1)

]}2
.

As has shown above,
E
[
z2η,i (Xη,i − 1)

]
= O

(
v−1

)
uniformly over i. Next consider

E
[
z4η,i (Xη,i − 1)2

]
= E

[
z4η,iX

2
η,i

]
− 2E

[
z4η,iXη,i

]
+ E

[
z4η,i
]
. (A.25)

But, using results on the moments of quadratic forms, by Lemma 11, we have

E
[
z4η,i
]
= 3 +O

(
v−1

)
, E
[
z4η,iXη,i

]
= 3 +O

(
v−1

)
and E

[
z4η,iX

2
η,i

]
= 3 +O

(
v−1

)
, (A.26)

uniformly over i. Substituting (A.26) into (A.25) we have

E
[
z4η,i (Xη,i − 1)2

]
= O

(
v−1

)
,

therefore,
V ar

[
z2η,i (Xη,i − 1)

]
= O

(
v−1

)
uniformly over i. We conclude that

1

N

∑
i

V ar
[
z2η,i (Xη,i − 1)

]
= O

(
v−1

)
.

Secondly, by Lemma 16,

1

N

∑
i 6=j

Cov
[
z2η,i (Xη,i − 1) , z2η,j (Xη,j − 1)

]
= O

(
T−1

)
+O(N/T 2).
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In sum, under Assumptions 1-4, SNT →p 0, so long as 0 ≤ δγ < 1/2, N/T 2 → 0 as N and T →∞, jointly.

Proof of Theorem 3. Under Assumptions 1-4, using Theorem 2 we haveN−1/2
∑N
i=1

(
z2i − t2i

)
/[2
(
1 + (N − 1)ρ2N

)
]1/2 →p

0 with z2i defined by (20), so long as (N − 1)ρ2N = O(1), N/T 2 → 0, and 0 ≤ δγ < 1/2, as N and T → ∞,
jointly. Under these conditions, (by Lemma 4) it implies that N−1/2

∑N
i=1

(
t2i − v

v−2

)
/[2
(
1 + (N − 1)ρ2N

)
]1/2

has the same limit distribution as N−1/2
∑N
i=1

(
z2i − 1

)
/[2
(
1 + (N − 1)ρ2N

)
]1/2, which is shown to be standard

normal by Theorem 1 and the desired result now follows, observing that limv→∞
(

v
v−2

)2
2(v−1)
v−4 = 2.

Proof of Theorem 4. Let ψNT =
1
N

∑N
i,j=1

(
ρ̃2ij − ρ2ij

)
, and note that

ψNT =
1

N

∑N
i,j=1

(
ρ̃ij + ρij

) (
ρ̃ij − ρij

)
,

and since
∣∣ρ̃ij∣∣ < 1 and ∣∣ρij∣∣ < 1, it also follows that

|ψNT | ≤
2

N

∑N
i,j=1

∣∣ρ̃ij − ρij∣∣ . (A.27)

Further, letting Iij = I
[∣∣√vρ̂ij∣∣ > cp(N)

]
, we have

ρ̃ij − ρij = ρ̂ijIij − ρij =
[
ρ̂ij − E

(
ρ̂ij
)]
× Iij +

[
E
(
ρ̂ij
)
− ρij

]
× Iij − ρij (1− Iij) ,

and hence

E |ψNT | ≤
2

N

∑N
i,j=1E

(∣∣ρ̂ij − E (ρ̂ij)∣∣× Iij)+ 2

N

∑N
i,j=1

∣∣E (ρ̂ij)− ρij∣∣E (Iij)
+
2

N

∑N
i,j=1

∣∣ρij∣∣E (1− Iij) . (A.28)

Now using (39) we note that

ρ̂ij =
u′i.MGuj.

(u′i.MGui.)
1/2 (u′j.MGuj.

)1/2 ,
where ûi. = MGui.. Also, since MG is an (T × T ) idempotent matrix of rank v = T −m− 1, there exists an
orthogonal T × T transformation matrix L (LL′ = IT ), defined by

LMGL′ =

(
Iv 0

0 0

)
. (A.29)

Hence, setting
ζi. = σ

−1/2
ii Lui., (A.30)

ρ̂ij can be written equivalently in terms of the first v elements of ζi. = (ζi1, ζi2, ..., ζiT )
′ as (see Lemma 19)

ρ̂ij =

∑v
t=1 ζitζjt(∑v

t=1 ζ
2
it

)1/2 (∑v
t=1 ζ

2
jt

)1/2 ,
where ζit =

∑T
t′=1 ltt′ξit′ , and ltt′ is the (t, t

′) element of L. Also as shown in Lemma 19, for each i, ζit’s are
independently distributed over t, and

E (ζit) = 0, E
(
ζ2it
)
= 1, E

(
ζitζjt

)
= ρij ,

κij(4, 0) = E(ζ4it)− 3, κij(0, 4) = E(ζ4it)− 3,
κij(3, 1) = E(ζ3itζjt)− 3ρij , κij(1, 3) = E(ζitζ

3
jt)− 3ρij ,

κij(2, 2) = E(ζ2itζ
2
jt)− 2ρij − 1.

Furthermore, by Lemma 19

E
(
ρ̂ij
)

= ρij +
aij
v
+O

(
v−2

)
, (A.31)

V ar
(
ρ̂ij
)

=
bij
v
+O

(
v−2

)
, (A.32)

where

aij = −
1

2
ρij(1− ρ

2
ij) +

1

8

{
3ρij [κij(4, 0) + κij(0, 4)]− 4 [κij(3, 1) + κij(1, 3)] + 2ρijκij(2, 2)

}
,
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and

bij = (1− ρ2ij)
2 +

1

4

{
ρ2ij [κij(4, 0) + κij(0, 4)]− 4ρij [κij(3, 1) + κij(1, 3)] + 2(2 + ρ2ij)κij(2, 2)

}
.

Hence, using (A.31),
∣∣E (ρ̂ij)− ρij∣∣ ≤ 1

v
|aij |+ O

(
v−2

)
, and we have the following bound on the second term

of (A.28):
1

N

∑N
i,j=1

∣∣E (ρ̂ij)− ρij∣∣E (Iij) ≤ 1

vN

∑N
i,j=1 |aij |+O

(
Nv−2

)
.

Furthermore, since κij are bounded, and by assumption
∑N
i,j=1

∣∣ρij∣∣ = O(N), we have

1

Nv

∑N
i,j=1 |aij |

≤ 1

2

1

Nv

∑N
i,j=1

∣∣ρij∣∣ ∣∣1− ρ2ij∣∣+ 3

8

1

Nv

∑N
i,j=1

∣∣ρij∣∣ |κij(4, 0) + κij(0, 4)|

+
1

4

1

Nv

∑N
i,j=1 |κij(3, 1) + κij(1, 3)|+

1

2Nv

∑N
i,j=1

∣∣ρij∣∣ |κij(2, 2)|
=

1

4

1

Nv

∑N
i,j=1 |κij(3, 1) + κij(1, 3)|+O(v−1). (A.33)

Also

1

Nv

∑N
i,j=1 |κij(3, 1) + κij(1, 3)|

≤ 1

Nv

∑N
i,j=1

∣∣E(ζ3itζjt) + E(ζitζ
3
jt)
∣∣+ 6

Nv

∑N
i,j=1

∣∣ρij∣∣
=

1

Nv

∑N
i,j=1

∣∣E(ζ3itζjt) + E(ζitζ
3
jt)
∣∣+O(v−1),

and as established in Lemma 20 (see (S.80) ) we have

1

Nv

∑N
i,j=1

∣∣E(ζ3itζjt) + E(ζitζ
3
jt)
∣∣ = O

(
v−1N2δγ−1

)
+O(v−1),

which if used in (A.33) yields

1

Nv

∑N
i,j=1 |aij | = O

(
v−1N2δγ−1

)
+O(v−1).

and overall for the second term of (A.28) we have

2

N

∑N
i,j=1

∣∣E (ρ̂ij)− ρij∣∣E (Iij) = O(v−1N2δγ−1) +O(v−1) +O
(
Nv−2

)
, (A.34)

which tends to zero if δγ ≤ 1/2, and N/v2 → 0, as N and v → ∞, jointly. To deal with the first and third
terms of (A.28) we need to distinguish between values of

∣∣ρij∣∣ that are strictly away from zero, namely those
values that satisfy the condition

∣∣ρij∣∣ > ρmin > 0, and those values that are zero or very close to zero. Note
that since by assumption

∑N
i,j=1

∣∣ρij∣∣ = O(N), then it is not possible for all values of
∣∣ρij∣∣ to be strictly away

from zero. To formalize the notation of
∣∣ρij∣∣ as being close to zero, we suppose that there exist integers N0

and v0 such that for all values of N > N0 and v > v0,
∣∣ρij∣∣ ≤ v−1/2cp(N). The non-zero values are defined by∣∣ρij∣∣ > v−1/2cp(N). In our analysis this is a natural categorization of

∣∣ρij∣∣, since v−1/2cp(N) → 0, as N and
T → 0.28 Given this categorization consider now the third term of (A.28) and note that
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N

∑N
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∣∣ρij∣∣E (1− Iij) ≤ 2

N
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+
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N

∑N
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[
(1− Iij)

∣∣∣∣∣ρij∣∣ > ρmin > T−1/2cp(N)
]

Then following a similar line of proof as in Lemma 6 of BPS (2016, supplement) we have (for some small ε > 0)

E
[
(1− Iij)

∣∣∣∣∣ρij∣∣ ≤ v−1/2cp(N)] ≤ Ke−(1−ε)2

c2p(N)

bij [1 + o(1)] ,

and

E
[
(1− Iij)

∣∣∣∣∣ρij∣∣ > v−1/2cp(N)
]

= Pr
[∣∣√vρ̂ij∣∣ ≤ cp(N) ∣∣∣∣∣ρij∣∣ > v−1/2cp(N)

]
≤ Ke

−1
2

v

[
|ρij |− cp(N)√

v

]2
bij [1 + o(1)] .

28See result (a) in Lemma 3 of BPS (2016, supplement).
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Hence,

2

N

∑N
i,j=1

∣∣ρij∣∣E (1− Iij) ≤ 2cp(N)

N
√
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∑N
i,j=1Ke
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bij [1 + o(1)]

+
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v
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2

c2p(N)

maxij(ϕιj) [1 + o(1)]

+KNe

−1
2

v

[
ρmin−

cp(N)√
v

]2
maxij(bij) [1 + o(1)] ,

where ϕij = bij(ρij = 0) = E(ζ2itζ
2
jt

∣∣ρij = 0). Finally, consider the first term of (A.28) and write it as

2

N

∑N
i,j=1E

[∣∣ρ̂ij − E (ρ̂ij)∣∣× Iij] = 2

N

∑N
i,j=1

√
V ar(ρ̂ij)E (|zij | × Iij) ,

where zij =
[
ρij − E(ρ̂ij)

]
/
√
V ar

(
ρ̂ij
)
, and V ar

(
ρ̂ij
)
is given by (A.32). Also E (|zij | × Iij) = E (|zij |) −

E [|zij | (1− Iij)] , and using results in Lemma 4 of BPS (2016, supplement) we have
2

N

∑N
i,j=1E

[∣∣ρ̂ij − E (ρ̂ij)∣∣× Iij]
≤ 2

N

[√
maxij bij√

v
+O

(
v−1
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×

∑N
i,j=1

[
φ

(
cp(N)−

√
vρij

bij +O (v−1)

)
+ φ

(
cp(N)−

√
vρij

bij +O (v−1)

)]
[1 + o(1)] .

Once again we need to distinguish between cases where
∣∣ρij∣∣ ≤ T−1/2cp(N) and

∣∣ρij∣∣ > ρmin > 0. We do not
require to know how many cases fall in one or the other category. Overall (noting that cp(N)/

√
v → 0) we have

2

N

∑N
i,j=1E

[∣∣ρ̂ij − E (ρ̂ij)∣∣× Iij] ≤ KN

[√
max bij√
v

+O
(
v−1
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×[

exp

(
−1
2

c2p(N)

maxij ϕij

)
+ exp

(
−1
2

vρ2min
maxij bij

)]
[1 + o(1)] .

Overall we require the following condition for ψNT →p 0:

Ncp(N)√
v

exp

(
−1
2

c2p(N)

maxij ϕij

)
→ 0. (A.35)

Note that since maxij bij < K, then

Ncp(N)√
v

exp

(
−1
2

vρ2min
maxij bij

)
→ 0, as N and v →∞.

A suffi cient condition for (A.35) to hold is given by δ > (1− d/2)maxij ϕij . This follows since (with v = Nd)

Ncp(N)√
v

exp

(
−1
2

c2p(N)

maxij ϕij

)
= exp

(
−1
2

c2p(N)

maxij ϕij
+ (1− d/2) log(N) + log [cp(N)]

)

= exp

− log(N)
 1
2

c2p(N)

maxij ϕij
− (1− d/2) log(N)− log [cp(N)]

log(N)


 .

But limN→∞ c2p(N)/ log(N) = 2δ, and log [cp(N)] / log(N)→ 0. Hence, condition (A.35) is met if
(
δ/maxij ϕij

)
−

(1− d/2) > 0, or equivalently if δ > (1− d/2)ϕ, where ϕ = maxij ϕij . But using (S.79) established in Lemma
20, and setting γi = 0, for all i, and ση,ij = 0, for all i 6= j, to ensure that ρij = 0, for all i 6= j, we have

ϕij = E(ζ2itζ
2
jt

∣∣ρij = 0) = γ2,εη

(
T∑
r=1

l4tr
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`=1
σ−1ii σ
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2
η,i`q

2
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)
+ σ−1ii σ

−1
jj ση,iiση,jj ,

where ltr is the (t, r) element of the T×T orthonormal matrix L defined by (A.29), qη,i` is such thatQη = (qη,i`),

Qη defined by (50). Also, |ση,ii/σii| ≤ 1,
∑T
r=1 l

4
tr ≤

(∑T
r=1 l

2
tr

)2
≤ 1,

∑N
`=1 q̃

2
η,i` =

∑N
`=1 q

2
η,i`/ση,ii = 1, and(∑N

`=1
σ−1ii σ

−1
jj q

2
η,i`q

2
η,j`

)
=
∣∣∣∑N

`=1
q̃2η,i`q̃

2
η,j`

∣∣∣ ≤ (∑N

`=1
q̃4η,i`

)1/2 (∑N

`=1
q̃4η,j`

)1/2
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Hence, supij ϕij ≤ 1 +
∣∣∣γ2,εη ∣∣∣, as required.

Proof of Theorem 5. By Theorem 3, Jα
(
ρ2N
)
→d N(0, 1) so long as N/T 2 → 0, and 0 ≤ δγ < 1/2, as

N → ∞ and T → ∞, jointly, where Jα(ρ2N ) and δγ are defined by (55) and (47), respectively. Since Theorem
4 ensures that Ĵα − Jα(ρ

2
N ) →p 0, as (N − 1)

(
ρ̃2N,T − ρ2N

)
→p 0 when d > 2/3, as N and v → ∞, and

δ > (1−d/2)ϕ, where ϕ ≤ 1+
∣∣∣γ2,εη ∣∣∣, under these conditions, Ĵα has the same limit distribution as Jα (ρ2N) (by

Lemma 4), which establishes the result.

Proof of Theorem 6. The steps in the proof are similar to the ones in deriving the limiting distribution
of Ĵα under the null hypothesis. First, Lemma 22 provides the proof of the result, under Assumptions 1-4,
and under the local alternatives (61), N−1/2

∑N
i=1

(
z2i,a − 1

)
→d N(φ

2, 2ω2), as N → ∞ and T → ∞, jointly,
where z2i,a defined by (S.97), ω

2 = 1 + limN→∞(N − 1)ρ2N , ρ2N is defined by (54). Also, by Lemma 23 we have
N−1/2

∑N
i=1

(
z2i,a − t2i

)
= op (1). Finally Ĵα − Jα = op (1), since the consistency result of the MT estimator

ρ̃2N,T given by Theorem 4 will not be affected by the introduction of local alternatives, as the MT estimator is
obtained based on the regression residuals of the alternative model. This completes the proof of Theorem 6.

Appendix B: Generating non-Gaussian errors

To generate non-normal correlated errors, u(r)it , with given skewness and kurtosis, we use the following procedure
(see Section M1.1 in Online Supplement for full details). For each replication, r,

1. We generate N random draws σ(r)ii , γ
(r)
1,i and γ

(r)
2,i , i = 1, 2, ..., N, as described in Section M1.1 and set

m
(r)
3,i =

[
σ
(r)
ii

]3/2
γ
(r)
1,i , and m

(r)
4,i =

[
σ
(r)
ii

]2 (
γ
(r)
2,i + 3

)
.

2. We then set m(r)
ε,1 = 0 and m

(r)
ε,2 = 1, and derive m

(r)
ε,3,i and m

(r)
ε,4,i as

m
(r)
ε,3 = Q

(r)−1
(3) m

(r)
3 , κ(r)ε = Q

(r)−1
(4) κ(r),

where , m
(r)
ε,3 = (m

(r)
ε,3,1,m

(r)
ε,3,2, ....,m

(r)
ε,3,N ), Q

(r)

(3) = Q(r)�Q(r)�Q(r), m
(r)
3 = (m

(r)
3,1,m

(r)
3,2, ....,m

(r)
3,N )

′,

κ
(r)
ε = (κ

(r)
ε1 , κ

(r)
ε2 , ..., κ

(r)
εN )
′, Q

(r)

(4) = Q(r)�Q(r)�Q(r)�Q(r), and κ(r) = (κ
(r)
1 , κ

(r)
2 , ..., κ

(r)
N )
′ with κ(r)εi =

m
(r)
ε,4,i − 3 and κ

(r)
i = m

(r)
4,i − 3σ

2(r)
ii , Q(r)= D(r)1/2P

(r)

, with D(r) = diag(σ
(r)
11 , σ

(r)
22 , ..., σ

(r)
NN )

′ and P(r)

being a Cholesky factor of correlation matrix R(r). The correlation matrix, R, is defined by (64). The
operator � denotes the Hadamard or element-wise multiplication.

3. Following Fleishman (1978), we then generate εit, t = 1, 2, ..., T as (suppressing the superscript r for
notational convenience)

εit = ai + biυit + ciυ
2
it + diυ

3
it, i = 1, 2, ..., N,

where υit ∼ IIDN(0, 1) and the coeffi cients ai, bi, ci and di are determined so that E(εit) = 0, E(ε2it) = 1,
E(ε3it) = mε,3,i and E(ε4it)− 3 = κεi. This involves solving the following system of equations for ai, bi, ci
and di:

ai + ci = 0,

b2i + 6bidi + 2c
2
i + 15d

2
i = 1,

2ci(b
2
i + 24bidi + 105d

2
i + 2) = mε,3,i,

24[bidi + c2i (1 + b2i + 28bidi) + d2i (12 + 48bidi + 141c
2
i + 225d

2
i )] = κεi.

4. Finally, we set u(r)it =
∑N
j=1 q

(r)
ij ε

(r)
jt , where q

(r)
ij is the (i, j) element of Q(r), and ε(r)jt is the r

th draw from
the DGP in step 3 above.

Appendix C: Data sources and their descriptions
We downloaded price and dividend data on all 500 securities included in the S&P 500 index at close of
each month from September 1989 to June 2015 (inclusive) using Datastream.29 For example, the code
LS&PCOMP1210 will give the 500 constituents of S&P 500 index as of December 2010.To construct our security
return data, the security price (P ) and dividend yield (DY ) are obtained from Datastream, as specified the

29We could only download data for 499 securities on September 30, 2008, and it is confirmed on Standard &
Poor’s website that the S&P 500 index on this day was based on 499 securities.
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table below. We adopted the following rules in selecting individual securities for inclusion in our analysis. At
the end of each month under consideration, we downloaded historical return series on all 500 securities included
in the S&P 500 index at the time. We then dropped all securities with less than 60 months of observations
and/or with five consecutive zeros in the middle of sample periods.

Variable Description Source (Code)

Pit
Price of security i at the market close of the last day of

the month (t), adjusted for subsequent capital actions.
Datastream (LS&PCOMP, P)

DYit

Dividend per share as a percentage of the share price

based on an anticipated annual dividend and excludes

special or once-off dividends.

Datastream (LS&PCOMP, DY)

Pt S&P 500 price index at close of the final day of the month (t). Datastream (S&PCOMP, PI)

DYt ‘Dividend yield’on S&P 500 as a percentage of Pt.
Datastream (S&PCOMP, DY,

up to Oct. 2012, S&PCOMZ,

DY, Nov. 2012 onwards)

SMBt
Average return in per cent on the three small portfolios

minus the average return on the three big portfolios.

Ken French’s data library

(up to Jan. 2016)

HMLt
Average return in per cent on two value portfolios minus

the average return on two growth portfolios.

Ken French’s data library

(up to Jan. 2016)

rit
Monthly return of security i in month t in per cent,

computed as 100(Pit − Pi,t−1)/Pi,t−1 +DYit/12.
Datastream

rft
One-month US treasury bill rate in per cent in month t

as the risk-free asset return from Ibbotson Associates.

Ken French’s data library

(up to Jan. 2016)

rmt
Value-weight return on all NYSE, AMEX, and NASDAQ

stocks (from CRSP) in per cent.

Ken French’s data library

(up to Jan. 2016)

rt
Monthly return of S&P 500 portfolio at month t

in per cent, computed as 100(Pt − Pt−1)/Pt−1 +DYt/12.
Datastream

rht
Monthly rate of return of Dow Jones Credit Suisse Core

Long/Short Equity Hedge Fund (the end of the month)

Credit Suisse (ROR), up to May

2016 http://www.hedgeindex.com

r̃ht rht − rt.
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Supplement to "Testing for Alpha in Linear Factor Pricing Models with a Large
Number of Securities"

by

M. Hashem Pesaran and Takashi Yamagata

This supplement consists of two parts. The first part establishes a number of lemmas used in the proofs of
theorems in Section 4 of the paper. The second part provides additional documentation of the Monte Carlo
experiments, specifically regarding the simulation of multivariate non-Gaussian random variables, details of the
alternative test statistics considered in Section 5, and additional Monte Carlo results.

Notations
We use K and c to denote finite and small positive constants. If {ft}∞t=1 is any real sequence and {gt}

∞
t=1

is a sequences of positive real numbers, then ft = O(gt), if there exists a positive finite constant K such
that |ft| /gt ≤ K for all t. ft = o(gt) if ft/gt → 0 as t → ∞. For two N × N matrices A = (aij) and
B = (bij), the Hadamard product A � B = B � A is an N × N matrix with elements given by aijbij . The
minimum and maximum eigenvalues of matrix A is denoted by λmin(A) and λmax(A), respectively, its trace

by Tr(A), its maximum absolute column and row sum matrix norms by ‖A‖∞ = max1≤i≤N
{∑N

j=1 |aij |
}
,

and,‖A‖1 = max1≤j≤N
{∑N

i=1 |aij |
}
, respectively, its Frobenius and spectral norms by ‖A‖F =

√
Tr(A′A),

and ‖A‖ = λ
1/2
max(A

′A), respectively. For an N × 1 dimensional vector, α, ‖α‖ = (α′α)1/2. We set

MG = (mtt′) = IT −PG, PG = G
(
G′G

)−1
G′, G = (F, τT ) , v = Tr(MG) = T −m− 1, (S.1)

MF = (mF,tt′) = IT − F
(
F′F

)−1
F′, HF = hh′ = (htht′) (S.2)

with h = (ht) = MF τT , wT = Tr(HF ) = h′h = τ ′TMF τT ,

where F is a T×m matrix, and τT = (1, 1, ..., 1)
′ is a T×1 vector of ones. To simplify the algebra all derivations

are made conditional on F.

S1 Statement of lemmas and their proofs
Lemma 2 (Moments of linear functions) Consider w =

∑N
i=1 aiεi, which is a linear combination of indepen-

dently distributed random variables, εi, for i = 1, 2, ..., N , with mean zero and a unit variance, and the weights,
ai, that satisfy

∑N
i=1 a

2
i = 1. Then, the r

th moment of w exists if εi has the rth moment.

Proof. We first note that since
∑N
i=1 a

2
i = 1, then it must be that |ai| ≤ 1, and hence |ai|r ≤ |ai| , for r ≥ 1.

Therefore, ∑N

i=1
a3i ≤

∑N

i=1
|ai|3 ≤

∑N

i=1
a2i = 1,

∑N

i=1
a4i ≤

∑N

i=1
a2i = 1,

or more generally,
∑N
i=1 |ai|

r ≤ 1, for r = 2, 3, ..... Consider now moments of w, and note that E(w) = 0,

E(w2) =
∑N
i=1 a

2
i = 1,

E(w3) = E
(∑N

i=1
aiεi

)3
=

N∑
i=1

N∑
j=1

N∑
`=1

aiaja`E (εiεjε`) =

(
N∑
i=1

a3i

)
E
(
ε3i
)
≤ sup

i
E
(
ε3i
)
,

E(w4) = E

(
N∑
i=1

aiεi

)4
=

N∑
i=1

N∑
j=1

N∑
`=1

N∑
n=1

aiaja`anE (εiεjε`εn) = 3
∑
i 6=j

a2i a
2
jE
(
ε2i
)
E
(
ε2j
)
+
∑
i

a4iE
(
ε4i
)

= 3

( N∑
i=1

a2iE(ε
2
i )

)2
−
(

N∑
i=1

a4i
[
E(ε2i )

]2)+( N∑
i=1

a4iE
(
ε4i
))

= 3

(
N∑
i=1

a2iE(ε
2
i )

)2
+

N∑
i=1

a4i

{
E
(
ε4i
)
− 3

[
E(ε2i )

]2}
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= 3 +

N∑
i=1

a4i
[
E
(
ε4i
)
− 3
]
≤ 3 + sup

i

[
E
(
ε4i
)
− 3
]( N∑

i=1

a4i

)
≤ 3 + sup

i

[
E
(
ε4i
)
− 3
]
.

Note that E (εri ) need not be the same across i, it is only required that E (ε
r
i ) < K <∞.

E(w5) = E

(
N∑
i=1

aiεi

)5
=

N∑
i=1

N∑
j=1

N∑
`=1

N∑
n=1

N∑
p=1

aiaja`anapE (εiεjε`εnεp)

= 10
∑
i 6=j

a2i a
3
jE
(
ε2i
)
E
(
ε3j
)
+
∑
i

a5iE
(
ε5i
)

= 10

[(
N∑
i=1

a2iE
(
ε2i
))( N∑

i=1

a3iE
(
ε3i
))
−

N∑
i=1

a5iE
(
ε2i
)
E
(
ε3i
)]
+
∑
i

a5iE
(
ε5i
)

= 10

(
N∑
i=1

a3iE(ε
3
i )

)
+

N∑
i=1

a5i
[
E(ε5i )− 10E(ε3i )

]

≤ 10 sup
i
E(ε3i )

N∑
i=1

a3i + sup
i

[
E(ε5i )− 10E(ε3i )

] N∑
i=1

a5i

≤ 10 sup
i
E(ε3i ) + sup

i

[
E(ε5i )− 10E(ε3i )

]
and

E(w6) = E

(
N∑
i=1

aiεi

)6
=

N∑
i=1

N∑
j=1

N∑
`=1

N∑
n=1

N∑
p=1

N∑
q=1

aiaja`anapaqE (εiεjε`εnεpεq)

= 15
∑
i 6=j 6=`

a2i a
2
ja

2
`E
(
ε2i
)3
+ 10

∑
i 6=j

a3i a
3
jE
(
ε3i
)2
+ 15

∑
i6=j

a4i a
2
jE
(
ε4i
)
E
(
ε2j
)
+
∑
i

a6iE
(
ε6i
)

= 15


(

N∑
i=1

a2i

)3
− 3

[(
N∑
i=1

a4i

)(
N∑
i=1

a2i

)
−

N∑
i=1

a6i

]
−

N∑
i=1

a6i

E
(
ε2i
)3

+10

( N∑
i=1

a3i

)2
−

N∑
i=1

a6i

E (ε3i )2 + 15
[(

N∑
i=1

a4i

)(
N∑
i=1

a2i

)
−

N∑
i=1

a6i

]
E
(
ε4i
)
E
(
ε2j
)

+

N∑
i=1

a6iE(ε
6
i ).

Again noting that E(ε2i ) = 1 and
∑N
i=1 a

2
i = 1, we have, after some simplifications,

E(w6) = 15 + 10

(
N∑
i=1

a3i
[
E(ε3i )

])2
+ 15

N∑
i=1

a4i
[
E(ε4i )− 3

]
+[

N∑
i=1

a6iE(ε
6
i ) + 30

N∑
i=1

a6i − 10
N∑
i=1

a6i
[
E(ε3i )

]2 − 15 N∑
i=1

a6iE(ε
4
i )

]

≤ 15 + 15 sup
i

[
E(ε4i )− 3

] N∑
i=1

a4i + 10 sup
i

[
E(ε3i )

]2( N∑
i=1

a3i

)2
+

sup
i

[
E(ε6i )− 10

[
E(ε3i )

]2 − 15 [E(ε4i )− 3]− 15] N∑
i=1

a6i

≤ 15 + 15 sup
i

[
E(ε4i )− 3

]
+ 10 sup

i

[
E(ε3i )

]2
+ sup

i

{
E(ε6i )− 10

[
E(ε3i )

]2 − 15 [E(ε4i )− 3]− 15} .
The processes can be continued for higher order moments.

Lemma 3 Under Assumptions 1-4,

(i) ξit = uit/σ
1/2
ii ∼ IID(0, 1) for all t and E(|ξit|r) ≤ K <∞, where uit is defined by (2) and σii = V ar (uit),

and;
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(ii) η̃it = ηit/σ
1/2
η,ii ∼ IID(0, 1) for all t and E(|η̃it|r) ≤ K < ∞, where ηit is defined by (2) and ση,ii =

V ar (ηit), for all i and t, r = 1, 2, ..., 8.

Proof. We have uit =
∑N

j=1
qijεjt, for i = 1, 2, ..., N, t = 1, 2, ..., T , where εjt is defined by (50), and qij

is the (i, j) element of Q which is defined by (50). Note that εit is IID(0, 1) across i and t, E(ε8it) exists,

ξit = uit/σ
1/2
ii =

∑N

j=1
q̃2ijεjt, where q̃ij = qij/σ

1/2
ii = qij/

(∑N

j=1
q2ij

)1/2
, and

∑N

j=1
q̃2ij = 1. Then applying

Lemma 2 to
∑N

j=1
q̃ijεjt yields the required result. For part (ii), a similar discussion for η̃it =

∑N

j=1
q̃η,ijεη,jt

will lead to the required result, where εη,jt is defined by (50), q̃η,ij = σ
1/2
η,ii = qη,ij/

(∑N

j=1
q2η,ij

)1/2
,
∑N

j=1
q̃2η,ij =

1, qη,ij is the (i, j) element of Qη which is defined by (50).

Lemma 4 Consider the sequences of random variables {XN} and {YN}. If XN − YN →p 0, and YN →d Z,
then XN →d Z.

Proof. See Rao (1973, p.122).

Lemma 5 (Lieberman 1994) Let Φ be a T × T symmetric matrix and Γ a positive definite T × T matrix, and
suppose that ξ ∼ IID(0, IT ), where ξ = (ξ1, ξ2, ..., ξT )′. Denote the pth cumulant of ξ′Γξ by κp, and the m+1
order, m + r degree generalized cumulant of (ξ′Φξ)r(ξ′Γξ) by κrm, and assume that the following conditions
hold:

• Condition 1: For p = 1, 2, ..., κp = O(T ).

• Condition 2: For r = 1, 2, ..., κr0 = E(ξ′Φξ)r = O(T r).

• Condition 3: For r,m = 1, 2, ..., κrm = O(T `), with ` ≤ r.

Then the Laplace approximate expansion for the rth moment of ξ′Φξ/ξ′Γξ is given by

E

[(
ξ′Φξ

ξ′Γξ

)r]
=
E[(ξ′Φξ)r]

[E(ξ′Γξ)]r
+ ψrT +O(T−2), (S.3)

where

ψrT =
r(r + 1)

2

{
E [(ξ′Φξ)r]κ2
[E(ξ′Γξ)]r+2

}
− r

{
κr1

[E(ξ′Γξ)]r+1

}
, (S.4)

and
κr1 = E[(ξ′Φξ)rξ′Γξ]− E[(ξ′Φξ)r]E(ξ′Γξ). (S.5)

Proof. See Lieberman (1994).

Lemma 6 (Moments of products of quadratic forms under non-Gaussianity): Suppose that ξ ∼ IID(0, IT ),
where ξ = (ξ1, ξ2, ..., ξT )

′, with γ1 = E(ξ3t ), γ2 = E(ξ4t )−3, γ3 = E(ξ5t )−10γ1, γ4 = E
(
ξ6t
)
−15γ2−10γ21−15

and γ6 = E
(
ξ8t
)
− 28γ4 − 56γ3γ1 − 35γ22 − 210γ2 − 280γ21 − 105 for all t = 1, 2, ..., T, and suppose that Aj ,

j = 1, 2, 3, 4 are T × T real symmetric matrices, and τT is a T × 1 vector of ones. Then

E
(
ξ′A1ξ

)
= Tr(A1), (S.6)

E
(
ξ′A1ξ ξ

′) = γ1τ
′ (I�A1)

′

E
[(
ξ′A1ξ

) (
ξ′A2ξ

)]
= γ2Tr [(A1 �A2)] + Tr (A1)Tr(A2) + 2Tr (A1A2) , (S.7)

E
[(
ξ′A1ξ

) (
ξ′A2ξ

)
ξ
]
= γ3 (I�A1 �A2) τ + γ1{4 [I� (A1A2)] τ

+2A1 (I�A2) τ+2A2 (I�A1) τ+Tr (A1) (I�A2) τ+Tr (A2) (I�A1) τ}

E
[(
ξ′A1ξ

) (
ξ′A2ξ

) (
ξ′A3ξ

)]
= γ4Tr (A1 �A2 �A3) + γ2Tr (A1)Tr (A2 �A3) (S.8)

+γ2Tr (A2)Tr (A1 �A3) + γ2Tr (A3)Tr (A1 �A2) + 4γ2Tr [A1 � (A2A3)]

+4γ2Tr [A2 � (A1A3)] + 4γ2Tr [A3 � (A1A2)] + 2γ
2
1

[
τ ′T (IT �A1)A2 (IT �A3) τT

]
+2γ21

[
τ ′T (IT �A1)A3 (IT �A2) τT

]
+ 2γ21

[
τ ′T (IT �A2)A1 (IT �A3) τT

]
+4γ21

[
τ ′T (A1 �A2 �A3) τT

]
+ Tr (A1)Tr (A2)Tr (A3) + 2Tr (A1)Tr (A2A3)

+2Tr (A2)Tr (A1A3) + 2Tr (A3)Tr (A1A2) + 8Tr (A1A2A3) ,
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E
[(
ξ′A1ξ

) (
ξ′A2ξ

) (
ξ′A3ξ

) (
ξ′A4ξ

)]
= Tr (A1)Tr (A2)Tr (A3)Tr (A4) (S.9)

+2[Tr (A1)Tr (A2)Tr (A3A4) + Tr (A1)Tr (A3)Tr (A2A4) + Tr (A1)Tr (A4)Tr (A2A3)

+Tr (A2)Tr (A3)Tr (A1A4) + Tr (A2)Tr (A4)Tr (A1A3) + Tr (A3)Tr (A4)Tr (A1A2)]

+4[Tr (A1A2)Tr (A3A4) + Tr (A1A3)Tr (A2A4) + Tr (A1A4)Tr (A2A3)]

+8[Tr (A1)Tr (A2A3A4) + Tr (A2)Tr (A1A3A4) + Tr (A3)Tr (A1A2A4) + Tr (A4)Tr (A1A2A3)]

+16[Tr (A1A3A4A2) + Tr (A1A4A2A3) + Tr (A1A4A3A2)]

+γ2fγ2 + γ4fγ4 + γ6fγ6 + γ21fγ21
+ γ22fγ22

+ γ1γ3fγ1γ3 .

Expressions for fγ2 , fγ4 , fγ6 , fγ21 , fγ22 and fγ1γ3 are provided in Bao and Ullah (2010).

Proof. For (S.6) and (S.7), see Ullah (2004, Appendix A.5). Result (S.8) was provided to us through a private
communication by Yong Bao. Result (S.9) is given in Bao and Ullah (2010).

Lemma 7 Let A be a real symmetric T × T matrix. Then λmin(A) ≤ att ≤ λmax(A), where att is the tth

diagonal element of A.

Proof. See Theorem 14 in Chapter 11 of Magnus and Neudecker (1999, p.211-212).

Lemma 8 Denote the (t, r) elements of matrices MF , MG, and PG (defined by (S.2) and (S.1)), by mF,tr,
mtr and ptr, respectively, and denote tth element of h = MF τT by ht =

∑T
r=1mF,tr. Then, under Assumption

1, for all t we have

0 ≤ mF,tt =
∑T

r=1
m2
F,tr ≤ 1, (S.10)

0 ≤ mtt =
∑T

r=1
m2
tr ≤ 1, (S.11)

0 ≤ ptt =
∑T

r=1
p2tr ≤ 1, (S.12)∣∣∣∑T

r=1
mF,tr

∣∣∣ = |ht| ≤ K <∞, (S.13)∑T

r=1
mtr = 0, (S.14)

and for any finite p ∑T

t=1

(∑T

r=1
mF,tr

)p
=
∑T

t=1
hpt = O (v) . (S.15)

Proof. (S.10), (S.11) and (S.12) follow immediately using Lemmas 7, since MF , MG and PG are idempotent
and real symmetric matrices, with eigenvalues that are either one or zero. Next we note that

MF τT = τT − F

(
F′F

T

)−1
F′τT
T

,

where by Assumption 1 all elements of
(
F′F
T

)−1
and F′τT

T
are bounded. Let wF,T =

(
F′F
T

)−1
F′τT
T
, and note

that the m elements of wF,T , being the OLS estimates of the coeffi cients in the regression of 1 on ft, are bounded,
and hence

∑m
`=1 |wF,T,`|

2 ≤ K <∞, for all T . Then, the tth element of MF τT can be written as∑T

r=1
mF,tr = 1− f ′twF,T = 1−

∑m

`=1
ft,`wF,T,`.

∣∣∣∑T

r=1
mF,tr

∣∣∣ ≤ 1 + ∣∣∣∑m

`=1
ft,`wF,T,`

∣∣∣ ,
and by Assumption 1,

∑m
`=1 |ft,`|

2 ≤ K <∞ , and hence for all t we have∣∣∣∑m

`=1
ft,`wF,T,`

∣∣∣ ≤√∑m

`=1
|ft,`|2

√∑m

`=1
|wF,T,`|2 ≤ K <∞.

Therefore, we have
∣∣∣∑T

r=1mF,tr

∣∣∣ ≤ K < ∞, as required. (S.14) follows from MGτT = 0. Finally, (S.15)

follows from (S.13) since
∑T
t=1(

∑T
r=1mF,tr)

p ≤
∑T
t=1 |

∑T
r=1mF,tr|p ≤

∑T
t=1K

p = O(v), for p finite.

Lemma 9 Suppose that Aj = (aj,tr), for j = 1, 2, 3, 4 are T × T real symmetric matrices, and τT is a T × 1
vector of ones. Then,

Tr (A1 �A2 �A3 �A4) =
∑T

t=1
a1,tta2,tta3,tta4,tt, (S.16)

τ ′TA1A2A3τT =
∑T

t=1

∑T

r=1

∑T

v=1

∑T

u=1
a1,tra2,rva3,vu, (S.17)

and
τ ′T (A1�A2) τT = Tr

(
A1A

′
2

)
=
∑T

t=1

∑T

r=1
a1,tra2,tr. (S.18)
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Proof. (S.16) and (S.17) follow from direct derivations and (S.18) see Magnus and Neudecker (1999; p.46).

Lemma 10 Consider the matrices MG, PG and HF , defined by (S.2) and (S.1), and v = T −m − 1. Then,
under Assumption 1 we have

Tr (HF �HF �MG) = O (v) , (S.19)

Tr (HF �MG) = O (v) , (S.20)

Tr (HF �HF ) = O (v) , (S.21)

Tr (MG �MG) = O (v) , (S.22)

Tr (PG �PF ) = O(1), (S.23)

Tr (PG �HF ) = O(v1/2), (S.24)

τ ′T (IT �HF )HF (IT �MG) τT = O
(
v2
)
, (S.25)

τ ′T (IT �HF )MG (IT �HF ) τT = O(v3/2), (S.26)

τ ′T (HF �MG �MG) τT = O(v3/2), τ ′T (HF �HF �MG) τT = O(v3/2), (S.27)

τ ′T (HF �HF ) τT = O(v2), τ ′T (HF �MG) τT = 0, τ
′
T (MG �MG) τT = v,

Tr
(
MG �H2

F

)
= O

(
v2
)
, τ ′T

(
IT �H2

F

)
(IT �MG) τT = O

(
v2
)
,

τ ′T (IT �HF ) (HF �MG) τT = 0, τ
′
T (IT �MG) (HF �MG) τT = 0 (S.28)

Tr (HF �MG �MG) = O (v) ,

τ ′T (HF �HF )MG (IT �MG) τT = O
(
v2
)
, τ ′T (HF �MG)HF (IT �MG) τT = 0,

τ ′T (HF �MG)MG (IT �HF ) τT = 0f , τ ′T (MG �MG)HF (IT �HF ) τT = O
(
v2
)
,

T r (HF �HF �MG �MG) = O (v) ,

τ ′T (IT �HF )MG (IT �MG) τT = O(v3/2), , τ ′T (IT �MG)HF (IT �MG) τT = O(v2),

τ ′T (IT �HF )MG (IT �HF ) τT = O(v3/2), τ ′T (IT �HF )HF (IT �MG) τT = O(v2),

T r
[
H2
F (MG �MG)

]
= O(v5/2), Tr [MG (HF �HF )] = O(v3/2),

τ ′T (IT �HF ) (HF �MG) (IT �MG) τT = O(v3/2),

τ ′T (IT �HF ) (MG �MG) (IT �HF ) τT = O(v3/2),

τ ′T (IT �MG) (HF �HF ) (IT �MG) τT = O(v2),

τ ′T (HF �HF �MG �MG) τT = O(v3/2),

τ ′T (IT �HF )HF (IT �MG �MG) τT = O(v2), τ ′T (IT �HF )MG (IT �HF �MG) τT = O(v3/2),

τ ′T (IT �MG)HF (IT �HF �MG) τT = O(v2), τ ′T (IT �MG)MG (IT �HF �HF ) τT = O(v3/2),

τ ′T (IT �HF ) (HF �MG �MG) τT = O(v3/2), τ ′T (IT �MG) (HF �HF �MG) τT = O(v3/2),

T r (HF �HF �HF ) = O (v) , τ ′T (IT �HF )HF (IT �HF ) τT = O
(
v2
)
,

τ ′T (HF �HF �HF ) τT = O
(
v2
)
,

T r (MG �MG �MG) = O(v), T r (MG �MG �MG �MG) = O(v)

Tr [(I�MG)MG] = O(v), Tr [(MG �MG)MG] = O(v)

τ ′T (MG �MG �MG) τT = O (v) , τ ′T (MG �MG �MG �MG) τT = O (v)

τ ′T (IT �MG)MG (IT �MG) τT = O(v3/2), τ ′T (MG �MG)MG (IT �MG) τT = O(v3/2)

τ ′T (IT �MG)MG (IT �MG �MG) τT = O(v3/2), τ ′T (IT �MG) (MG �MG �MG) τT = O(v),

τ ′T (IT �MG) (MG �MG) (IT �MG) τT = O(v), τ ′T (IT �MG) (IT �MG) τT = O(v).

Proof. Denote the (t, r) element of matrices MF , MG and PG by mF,tr, mtr and ptr, respectively, and

observe that the (t, r) element of HF = hh′ is
(∑T

l=1mF,tl

)(∑T
l=1mF,rl

)
= hthr. The proofs below follow

straightforwardly from application of Lemmas 8 and 9, and making use of Cauchy-Schwarz inequality, and the
fact that MGMF = MG, MGHF = 0. First

Tr (HF �HF �MG) =
∑
t

h4tmtt ≤
∑
t

h4t = O (v) ,
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as 0 ≤ mtt ≤ 1 (by Lemma 8) and
∑
t h

4
t = O(v). Similarly, we have

Tr (HF �MG) =
∑
t

h2tmtt = O (v) , T r (HF �HF ) =
∑
t

h4t = O (v) ,

and
Tr (MG �MG) =

∑
t

m2
tt ≤

∑T

t=1
mtt = O (v) .

Result (S.23) follows since Tr (PG �PF ) =
∑T
t=1 pF,ttptt ≤

∑T
t=1 ptt = m+ 1, recalling that 0 ≤ pF,tt ≤ 1 by

(S.12).

Tr (PG �HF ) =
∑
t

p2tth
2
t ≤

√∑T

t=1
p2tt

√∑T

t=1
h4t = O(v1/2),

since 0 ≤ p2tt ≤ ptt ≤ 1, then
∑T
t=1 p

2
tt ≤

∑T
t=1 ptt = m + 1. Further, using (S.17) in Lemma 9 and results in

Lemma 8 we have ∣∣τ ′T (IT �HF )HF (IT �MG) τT
∣∣ ≤∑

t

∣∣h3t ∣∣∑
r

|hrmrr| = O(v2).

Similarly, noting that
∑
rm

2
tr = mtt and 0 ≤ mtt ≤ 1 and that 0 ≤

∑
rm

4
tr ≤

∑
rm

2
tr ≤ 1, we have∣∣τ ′T (IT �HF )MG (IT �HF ) τT

∣∣ ≤∑
t

h2t
∑
r

∣∣mtrh
2
r

∣∣ ≤∑
t

h2t

√∑
r

m2
tr

√∑
r

h4r (S.29)

≤
∑
t

h2t

√∑
r

h4r = O(v3/2),

∣∣τ ′T (IT �MG)HF (IT �MG) τT
∣∣ ≤∑

t

|mttht|
∑
r

|mrrhr| ≤
∑
t

|ht|
∑
r

|hr| = O(v2)

∣∣τ ′T (HF �MG �MG) τT
∣∣ ≤ ∑

t

∑
r

∣∣hthrm2
tr

∣∣ ≤∑
t

|ht|
√∑

r

m4
tr

√∑
r

h2r

≤
∑
t

|ht|
√∑

r

h2r = O
(
v3/2

)
.

Also
τ ′T (HF �HF �MG) τT = τ

′
T (IT �HF )MG (IT �HF ) τT = O(v3/2). (S.30)

Using (S.18) we have
τ ′T (HF �HF ) τT = Tr

(
H2
F

)
= [Tr (HF )]

2 = O(v2),

τ ′T (HF �MG) τT = Tr (HFMG) = 0,

and
τ ′T (MG �MG) τT = Tr (MG) = v.

Also
Tr
(
MG �H2

F

)
= Tr (HF )Tr (MG �HF ) = O

(
v2
)
,

and

τ ′T
(
IT �H2

F

)
(IT �MG) τT = Tr (HF ) τ

′
T (IT �HF ) (IT �MG) τT = Tr (HF )Tr (MG �HF ) = O

(
v2
)
.

Since
∑
r hrmtr = 0 for any t 6= r

τ ′T (IT �HF ) (HF �MG) τT =
∑
r

∑
t

h3thrmtr = 0,

τ ′T (IT �MG) (HF �MG) τT =
∑
r

∑
t

mtththrmtr = 0.

Similarly to the above derivations, we have

Tr (HF �MG �MG) =
∑
t

m2
tth

2
t = O (v) ,

∣∣τ ′T (HF �HF )MG (IT �MG) τT
∣∣ ≤∑

t

∑
u

∑
r

∣∣h2th2umurmrr

∣∣
≤
∑
t

∑
u

h2th
2
u

√∑
r

m2
ur ≤

∑
t

h2t
∑
u

h2u = O
(
v2
)
,
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and noting MG and HF are symmetric and MGHF = 0,
∑
t hrhtmtu for any t 6= r and t 6= u

τ ′T (HF �MG)HF (IT �MG) τT =
∑
t

∑
u

∑
r

hth
2
umtuhrmrr = 0

τ ′T (HF �MG)MG (IT �HF ) τT =
∑
t

∑
u

∑
r

hthumtumurh
2
r = 0

∣∣τ ′T (MG �MG)HF (IT �HF ) τT
∣∣ ≤∑

u

∑
t

m2
tu |hu|

∑
r

∣∣h3r∣∣
=
∑
u

muu |hu|
∑
r

∣∣h3r∣∣ = O
(
v2
)
,

T r (HF �HF �MG �MG) =
∑
t

m2
tth

4
t = O (v) ,

∣∣τ ′T (IT �HF )MG (IT �MG) τT
∣∣ ≤∑

t

h2t
∑
r

|mtr|mrr

≤
∑
t

h2t

√∑
r

m2
tr

√∑
r

m2
rr ≤

∑
t

h2t

√∑
r

mrr = O
(
v3/2

)
,

∣∣τ ′T (IT �MG)HF (IT �MG) τT
∣∣ ≤∑

t

|mttht|
∑
r

|hrmrr| = O
(
v2
)
,

∣∣τ ′T (IT �HF )MG (IT �HF ) τT
∣∣ ≤∑

t

∑
r

h2t |mtr|h2r

≤
∑
t

h2t

√∑
r

m2
tr

√∑
r

h4r ≤
∑
t

h2t

√∑
r

h4r = O
(
v3/2

)
,

∣∣τ ′T (IT �HF )HF (IT �MG) τT
∣∣ ≤∑

t

∣∣h3t ∣∣∑
r

|hr|mrr = O
(
v2
)
,

T r
[
H2
F (MG �MG)

]
= Tr (HF )Tr [HF (MG �MG)] = Tr (HF ) τ

′
T (HF �MG �MG) τT = O

(
v5/2

)
,

T r [MG (HF �HF )] = τ
′
T (HF �HF �MG) τT = O

(
v3/2

)
,

∣∣τ ′T (IT �HF ) (HF �MG) (IT �MG) τT
∣∣ ≤∑

r

∑
t

∣∣h3thrmtrmrr

∣∣
≤

∑
t

∣∣h3t ∣∣√∑
r

h2r

√∑
r

m2
tr = O

(
v3/2

)
,

τ ′T (IT �HF ) (MG �MG) (IT �HF ) τT =
∑
r

∑
t

h2tm
2
trh

2
r

≤
∑
t

h2t

√∑
r

h4r = O
(
v3/2

)
= O

(
v3/2

)
,

τ ′T (IT �MG) (HF �HF ) (IT �MG) τT =
∑
t

mtth
2
t

∑
r

h2rmrr = O
(
v2
)
,

τ ′T (HF �HF �MG �MG) τT =
∑
t

∑
r

h2th
2
rm

2
tr = O

(
v3/2

)
∣∣τ ′T (IT �HF )HF (IT �MG �MG) τT

∣∣ ≤∑
t

∣∣h3t ∣∣∑
r

h2r = O
(
v2
)
,

∣∣τ ′T (IT �HF )MG (IT �HF �MG) τT
∣∣ ≤∑

t

h2t
∑
r

∣∣mtrh
2
rmrr

∣∣
≤

∑
t

h2t

√∑
r

h4r = O
(
v3/2

)
,

∣∣τ ′T (IT �MG)HF (IT �HF �MG) τT
∣∣ ≤∑

t

|mttht|
∑
r

∣∣h3rmrr

∣∣ = O
(
v2
)
,
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∣∣τ ′T (IT �MG)MG (IT �HF �HF ) τT
∣∣ ≤∑

t

mtt

∑
r

∣∣mtrh
4
r

∣∣
≤

∑
t

mtt

√∑
r

m2
tr

√∑
r

h8r ≤
∑
t

mtt

√∑
r

h8r = O
(
v3/2

)
,

∣∣τ ′T (IT �HF ) (HF �MG �MG) τT
∣∣ ≤∑

t

∣∣h3t ∣∣∑
r

∣∣m2
trhr

∣∣ ≤∑
t

∣∣h3t ∣∣√∑
r

h2r = O
(
v3/2

)
,

∣∣τ ′T (IT �MG) (HF �HF �MG) τT
∣∣ ≤∑

t

mtth
2
t

∑
r

∣∣mtrh
2
r

∣∣ ≤∑
t

h2t

√∑
r

h4r = O
(
v3/2

)
,

T r (HF �HF �HF ) =
∑
t

h6tt = O(v)

∣∣τ ′T (IT �HF )HF (IT �HF ) τT
∣∣ ≤∑

t

∣∣h3t ∣∣∑
r

∣∣h3r∣∣ = O
(
v2
)
,

τ ′T (HF �HF �HF ) τT = τ
′
T (IT �HF )HF (IT �HF ) τT = O

(
v2
)
,

T r (MG �MG �MG) =
∑
t

m3
tt = O(v), T r (MG �MG �MG �MG) =

∑
t

m4
tt = O(v)

Tr [(I�MG)MG] =
∑
t

m2
tt = O(v), |Tr [(MG �MG)MG]| ≤

∑
t

∑
r

∣∣m3
tr

∣∣ ≤∑
t

mtt = O(v)

∣∣τ ′T (MG �MG �MG) τT
∣∣ ≤ ∑

t

∑
r

∣∣m3
tr

∣∣ ≤∑
t

mtt = O (v) ,

τ ′T (MG �MG �MG �MG) τT =
∑
t

∑
r

m4
tr ≤

∑
t

mtt = O (v)

∣∣τ ′T (IT �MG)MG (IT �MG) τT
∣∣ ≤∑

t

∑
r

|mttmtrmrr| ≤
∑
t

√
mtt

√∑
r

mrr = O(v3/2),

∣∣τ ′T (MG �MG)MG (IT �MG) τT
∣∣ ≤∑

t

∑
r

∑
u

∣∣m2
tumurmrr

∣∣ ≤∑
r

∑
u

|muumurmrr| = O(v3/2)

∣∣τ ′T (IT �MG)MG (IT �MG �MG) τT
∣∣ ≤ ∑

t

∑
r

∣∣mttmtrm
2
rr

∣∣ = O(v3/2),

∣∣τ ′T (IT �MG) (MG �MG �MG) τT
∣∣ ≤ ∑

t

∑
r

∣∣mttm
3
tr

∣∣ = O(v),

τ ′T (IT �MG) (MG �MG) (IT �MG) τT =
∑
t

∑
r

mttm
2
trmrr ≤

∑
t

∑
r

mttm
2
tr = O(v)

τ ′T (IT �MG) (IT �MG) τT =
∑
t

m2
tt = O(v).

Lemma 11 Suppose that ξ ∼ IID(0, IT ), where ξ = (ξ1, ξ2, ..., ξT )
′, with γ1 = E(ξ3t ), γ2 = E(ξ4t ) − 3,

γ3 = E(ξ5t )−10γ1, γ4 = E
(
ξ6t
)
−15γ2−10γ21−15 and γ6 = E

(
ξ8t
)
−28γ4−56γ3γ1−35γ22−210γ2−280γ21−105

for all t = 1, 2, ..., T . Consider the matrices MG, PG and HF = hh′, defined by (S.2) and (S.1), wT = τ ′TMF τT
and v = T −m− 1. Then, under Assumptions 1 and 4, we have

E
(
ξ′HF ξ

)
= Tr(HF ) = wT , E

(
ξ′MGξ

)
= Tr(MG) = v,

E
[(
ξ′MGξ

)2]
= γ2Tr (MG �MG) + v (v + 2) = v (v + 2) +O (v) ,

E
[(
ξ′HF ξ

) (
ξ′MGξ

)]
= γ2Tr (MG �HF ) + v(τ ′TMF τT ) = vwT +O (v) ,

E
[(
ξ′HF ξ

)2]
= γ2Tr (HF �HF ) + 3

(
τ ′TMF τT

)2
= 3w2T +O (v) ,

E
[(
ξ′HF ξ

)2 (
ξ′MGξ

)]
= γ4Tr (HF �HF �MG) + 2γ2Tr (HF )Tr (HF �MG)

+γ2Tr (MG)Tr (HF �HF ) + 4γ2Tr
[
MG �H2

F

]
+ 4γ21

[
τ ′T (IT �HF )HF (IT �MG) τT

]
+2γ21

[
τ ′T (IT �HF )MG (IT �HF ) τT

]
+ 4γ21

[
τ ′T (HF �HF �MG) τT

]
+ 3 [Tr (HF )]

2 Tr (MG)

= 3w2T v +O
(
v2
)
,
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E
[(
ξ′HF ξ

) (
ξ′MGξ

)2]
= γ4Tr (HF �MG �MG) + γ2Tr (HF )Tr (MG �MG)

+2γ2Tr (MG)Tr (HF �MG) + 4γ2Tr (HF �MG) + 4γ
2
1

[
τ ′T (IT �HF )MG (IT �MG) τT

]
+2γ21

[
τ ′T (IT �MG)HF (IT �MG) τT

]
+ 4γ21

[
τ ′T (HF �MG �MG) τT

]
+Tr (HF ) [Tr (MG)]

2 + 2Tr (HF )Tr (MG) = wT v
2 +O

(
v2
)
,

E
[(
ξ′HF ξ

)3]
= γ4Tr (HF �HF �HF ) + 15γ2Tr (HF )Tr (HF �HF )

+6γ21
[
τ ′T (IT �HF )HF (IT �HF ) τT

]
+ 4γ21

[
τ ′T (HF �HF �HF ) τT

]
+ 15 [Tr (HF )]

3

= 15w3T +O
(
v2
)
,

E
[(
ξ′MGξ

)3]
= γ4Tr (MG �MG �MG) + 3γ2vTr (MG �MG)

+12γ2Tr (MG �MG) + 6γ
2
1

[
τ ′T (IT �MG)MG (IT �MG) τT

]
+4γ21

[
τ ′T (MG �MG �MG) τT

]
+ v3 + 6v2 + 8v = v3 +O(v2)

E
[(
ε′HF ε

)2 (
ε′MGε

)2]
= [Tr (HF )]

2 [Tr (MG)]
2

+2 [Tr (HF )]
2 Tr (MG) + 2 [Tr (MG)]

2 Tr
(
H2
F

)
+ 4Tr

(
H2
F

)
Tr (MG)

+γ2fγ2 + γ4fγ4 + γ6fγ6 + γ21fγ21
+ γ22fγ22

+ γ1γ3fγ1γ3

= 3w2T v
2 +O

(
v3
)
,

where

fγ2 = [Tr (HF )]
2 Tr (MG �MG) + 4Tr (HF )Tr (MG)Tr (HF �MG) + [Tr (MG)]

2 Tr (HF �HF )

+2τ ′T (HF �HF ) τTTr (MG �MG) + 2τ
′
T (MG �MG) τTTr (HF �HF )

+8Tr (HF )Tr (HF �MG) + 8Tr (MG)Tr
(
MG �H2

F

)
+ 16τ ′T

(
IT �H2

F

)
(IT �MG) τT

= O
(
v3
)
,

fγ4 = 2Tr (HF )Tr (HF �MG �MG) + 2Tr (MG)Tr (HF �HF �MG)

+4Tr (HF �HF �MG) + 4Tr
(
MG �MG �H2

F

)
= O

(
v2
)
,

fγ6 = Tr (HF �HF �MG �MG) = O (v) ,

fγ21
= 8τ ′T (IT �HF )MG (IT �MG) τTTr (HF ) + 4τ

′
T (IT �MG)HF (IT �MG) τTTr (HF )

4τ ′T (IT �HF )MG (IT �HF ) τTTr (MG) + 8τ
′
T (IT �HF )HF (IT �MG) τTTr (MG)

8τ ′T (IT �HF )MG (IT �HF ) τT + 8τ
′
T (IT �MG)H

2
F (IT �MG) τT

8τ ′T (HF �MG �MG) τTTr (HF ) + 8τ
′
T (HF �HF �MG) τTTr (MG)

+16τ ′T (HF �HF )MG (IT �MG) τT + 32τ
′
T (HF �MG)HF (IT �MG) τT

+32τ ′T (HF �MG)MG (IT �HF ) τT + 16τ
′
T (MG �MG)HF (IT �HF ) τT

+16Tr
[
H2
F (MG �MG)

]
+ 16Tr [MG (HF �HF )]

= O
(
v3
)
,

fγ22
= Tr (HF �HF )Tr (MG �MG) + 2 [Tr (HF �MG)]

2

+16τ ′T (IT �HF ) (HF �MG) (IT �MG) τT

+4τ ′T (IT �HF ) (MG �MG) (IT �HF ) τT

+4τ ′T (IT �MG) (HF �HF ) (IT �MG) τT

+8τ ′T (HF �HF �MG �MG) τT

= O
(
v2
)
,

fγ1γ3 = 4τ ′T (IT �HF )HF (IT �MG �MG) τT + 8τ
′
T (IT �HF )MG (IT �HF �MG) τT

+8τ ′T (IT �MG)HF (IT �HF �MG) τT + 4τ
′
T (IT �MG)MG (IT �HF �HF ) τT

+16τ ′T (IT �HF ) (HF �MG �MG) τT + 16τ
′
T (IT �MG) (HF �HF �MG) τT

= O
(
v2
)
,
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and

E
[(
ξ′MGξ

)4]
= [Tr (MG)]

4 + 12 [Tr (MG)]
2 Tr (MG) + 12 [Tr (MG)]

2

+32Tr (MG)Tr (MG) + 48Tr (MG)

γ2gγ2 + γ4gγ4 + γ6gγ6 + γ21gγ21
+ γ22gγ22

+ γ1γ3gγ1γ3

= v4 +O(v3),

with

gγ2 = 6 [Tr(MG)]
2 Tr (MG �MG) + 12τ

′
T (MG �MG) τTTr (MG �MG)

+48Tr(MG)Tr (MG �MG) + 96Tr [(IT �MG)MG] + 48τ
′
T (IT �MG) (IT �MG) τT ,

gγ4 = 4Tr(MG)Tr (MG �MG �MG) + 24Tr (MG �MG �MG) ,

gγ6 = Tr (MG �MG �MG �MG) ,

gγ21
= 24τ ′T (IT �MG)MG (IT �MG) τTTr (MG) + 48τ

′
T (IT �MG)MG (IT �MG) τT

+16τ ′T (MG �MG �MG) τTTr (MG) + 96τ
′
T (MG �MG)MG (IT �MG) τT

+96Tr [(MG �MG)MG] ,

gγ22
= 3 [Tr (MG �MG)]

2 + 24τ ′T (IT �MG) (MG �MG) (IT �MG) τT

+8τ ′T (MG �MG �MG �MG) τT ,

gγ1γ3 = 24τ
′
T (IT �MG)MG (IT �MG �MG) τT + 32τ

′
T (IT �MG) (MG �MG �MG) τT .

Proof. These results are obtained by using the results established in Lemmas 6 and 10, together with the fact
that E(ξrt ) for r = 1, 2, ..., 8 are time invariant (which is ensured by Assumption 4), and noting that MGHF = 0
(since MFMG = MG and MGτT = 0), Hj

F = HF [Tr(HF )]
j−1 for j > 1.

Lemma 12 Suppose that ξ ∼ IID(0, IT ), where ξ = (ξ1, ξ2, ..., ξT )
′, with γ1 = E(ξ3t ), γ2 = E(ξ4t ) − 3,

γ3 = E(ξ5t ) − 10γ1 and γ4 = E
(
ξ6t
)
− 15γ2 − 10γ21 − 15 for all t = 1, 2, ..., T . Consider the matrices MG, PG

and HF , defined by (S.2) and (S.1), and v = T −m− 1. Then, under Assumptions 1 and 4 we have

κ2 = E
[
(ξ′MGξ)

2]− [E(ξ′MGξ)
]2
= γ2Tr (MG �MG) + 2v = O(v), (S.31)

κ11 = E[(ξ′HF ξ)
(
ξ′MGξ

)
]− E(ξ′HF ξ)E(ξ

′MGξ)

= γ2Tr [(MG �HF )] = O(v), (S.32)

and

κ21 = E
[(
ξ′HF ξ

)2 (
ξ′MGξ

)]
− E[(ξ′HF ξ)

2]E(ξ′MGξ)

= 6γ2
(
τ ′TMF τT

)
Tr (MG �HF ) + 4γ

2
1

[
τ ′T (IT �HF )HF (IT �MG) τT

]
+6γ21

[
τ ′T (IT �HF )MG (IT �HF ) τT

]
+O(v) = O(v2). (S.33)

Proof. The results (S.31) and (S.32) follow immediately from Lemmas 11 and 10, together with the fact
that E(ξrt ) for r = 1, 2, 3, 4 are time invariant, which is ensured by Assumption 4. The result (S.33) follows
using Lemmas 11 and 10 and the equality (S.30), noting that Tr

(
H2
F

)
= [Tr (HF )]

2, and Tr
(
MG �H2

F

)
=

Tr (HF )Tr (MG �HF ) , since H2
F = Tr (HF )HF .

Lemma 13 Suppose εt = (εit), where εit ∼ IID (0, 1), with γ1,ε = E(ε3it), γ2,ε = E(ε4it)− 3, γ3,ε = E(ε5it)−
10γ1,ε and γ4,ε = E

(
ε6it
)
− 15γ2,ε − 10γ21,ε − 15, and qi = (qi`). Then,

E
(
ε′tqiq

′
iεt
)
=
∑

`
q2i`, E

(
ε′tqiq

′
jεt
)
=
∑

`
qi`qj`, (S.34)

E
(
ε′tqiq

′
iεtε

′
tqi
)
= γ1,ε

∑
`
q3i`, E

(
ε′tqjq

′
jεtε

′
tqi
)
= γ1,ε

∑
`
qi`q

2
j`,

E
[(
ε′tqiq

′
iεt
)2]

= γ2,ε

(∑
`
q4i`

)
+ 3

(∑
`
q2i`

)2
,

E
[(
ε′tqiq

′
jεt
)2]

= γ2,ε

(∑
`
q2i`q

2
j`

)
+
(∑

`
q2i`

)(∑
`
q2j`

)
+ 2

(∑
`
qi`qj`

)2
,

E
[(
ε′tqiq

′
iεt
) (
ε′tqiq

′
jεt
)]
= γ2,ε

(∑
`
q3i`qj`

)
+ 3

(∑
`
q2i`

)(∑
`
qi`qj`

)
,

E
[
q′iεt

(
ε′tqiq

′
iεt
) (
ε′tqjq

′
jεt
)]

= γ3,ε
∑

`
q3i`q

2
j` + γ1,ε

[
6
(∑

`
qi`qj`

)(∑
`
q2i`qj`

)
+3
(∑

`
q2i`

)(∑
`
qi`q

2
j`

)
+
(∑

`
q2j`

)(∑
`
q3i`

)]
, (S.35)
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E
[
q′iεt

(
ε′tqjq

′
jεt
)2]

= γ3,ε
∑

`
qi`q

4
j` + γ1,ε

[
4
(∑

`
qi`
)(∑

`
q4j`

)
+4
(∑

`
qi`qj`

)(∑
`
q3j`

)
+ 2

(∑
`
q2j`

)(∑
`
q2j`qi`

)]
, (S.36)

E
[(
ε′tqiq

′
iεt
)2 (

ε′tqjq
′
jεt
)]
= γ4,ε

(∑
`
q4i`q

2
j`

)
+ 6γ2,ε

(∑
`
q2i`

)(∑
`
q2i`q

2
j`

)
(S.37)

+γ2,ε

(∑
`
q4i`

)(∑
`
q2j`

)
+ 8γ2,ε

(∑
`
qi`qj`

)(∑
`
q3i`qj`

)
+ 4γ21,ε

(∑
`
q3i`

)(∑
`
qi`q

2
j`

)
+6γ21,ε

(∑
`
q2i`qj`

)2
+ 3

(∑
`
q2i`

)2 (∑
`
q2j`

)
+ 12

(∑
`
q2i`

)(∑
`
qi`qj`

)2
, (S.38)

E
[(
ε′tqiq

′
iεt
) (
ε′tqiq

′
jεt
) (
ε′tqjq

′
jεt
)]
= γ4,ε

(∑
`
q3i`q

3
j`

)
+ 5γ2,ε

∑
`
q2i`

(∑
`
qi`q

3
j`

)
(S.39)

+5γ2,ε
∑

`
qi`qj`

(∑
`
q2i`q

2
j`

)
+ 5γ2,ε

∑
`
q2j`

(∑
`
q3i`qj`

)
+ 2γ21,ε

(∑
`
q3i`

)(∑
`
q3j`

)
+2γ21,ε

(∑
`
q2i`qj`

)(∑
`
qi`q

2
j`

)
+ 2γ21,ε

(∑
`
q2i`qj`

)(∑
`
qi`q

2
j`

)
+4γ21,ε

(∑
`
q2i`qj`

)2
+ 2

(∑
`
qi`qj`

)3
+ 13

(∑
`
q2i`

)(∑
`
q2j`

)(∑
`
qi`qj`

)
.

Proof. Applying Lemma 6, the results follow.

Lemma 14 Let γ̃is = γis/σ
1/2
ii and q̃η,i` = qη,i`/σ

1/2
η,ii, where γis is the s

th element of the k×1 vector of factor
loadings, γi, defined by (46), σii = γ

′
iγi + ση,ii, and qη,i` is the (i, `) element of Qη, where Qη is defined by

(50).

(a) For any finite M , νp and rp, p = 1, 2, ...,M , at least one of νp is non-zero and at least one of rp is
non-zero, then

N∑
i=1

N∑
j=1

M∏
p

(∑k

s=1
γ̃
νp
is γ̃

rp
js

)
= O

(
N2δγ

)
.

(b) Further, for any finite L, νh and rh, h = 1, 2, ..., L, where νh ≥ 0 and rh ≥ 0,
N∑
i=1

N∑
j=1

L∏
h

(∑N

`=1
q̃
νh
η,i`q̃

rh
η,j`

) M∏
p

(∑
s
γ̃
νp
is γ̃

rp
js

)
= O

(
N2δγ

)
.

(c) Further, for any finite u ≥ 1 and ν ≥ 1,
N∑
i=1

N∑
j=1

(∑N

`=1
q̃uη,i`q̃

ν
η,j`

) L∏
h

(∑N

`=1
q̃
νh
η,i`q̃

rh
η,j`

)
= O (N) .

Proof. Consider part (a) first. Noting that |γ̃is| ≤ 1 for all i and s, |γ̃is|
νp ≤ |γ̃is| and sups

∑N
i=1 |γ̃is| =

O
(
Nδγ

)
by (47), we have

N∑
i=1

N∑
j=1

M∏
p

∣∣∣∑
s
γ̃
νp
is γ̃

rp
js

∣∣∣ ≤ N∑
i=1

N∑
j=1

M∏
p

∑
s
|γ̃is|

νp
∣∣γ̃js∣∣rp

≤
N∑
i=1

N∑
j=1

M∏
p

∑
s
|γ̃is|

∣∣γ̃js∣∣ ≤ N∑
i=1

N∑
j=1

M∏
p

k

(
sup
s
|γ̃is| sup

s

∣∣γ̃js∣∣)

≤
N∑
i=1

N∑
j=1

kM
(
sup
s
|γ̃is| sup

s

∣∣γ̃js∣∣)M ≤ kM
(
sup
s

N∑
i=1

|γ̃is|
)(

sup
s

N∑
j=1

∣∣γ̃js∣∣
)

= O
(
N2δγ

)
,

as required. Now consider part (b). By Cauchy-Schwarz

N∑
i=1

N∑
j=1

L∏
h

∣∣∣∑N

`=1
q̃
νh
η,i`q̃

rh
η,j`

∣∣∣ M∏
p

∣∣∣∑k

s=1
γ̃
νp
is γ̃

rp
js

∣∣∣
≤

N∑
i=1

N∑
j=1

L∏
h

∣∣∣∣∣
√∑N

`=1
|q̃η,i`|2νh

√∑N

`=1
|q̃η,j`|2rh

∣∣∣∣∣
M∏
p

∣∣∣∑k

s=1
γ̃
νp
is γ̃

rp
js

∣∣∣ ,
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but, as
∑N
`=1 |q̃η,i`|

2 = 1,
∑N
`=1 |q̃η,i`|

2 ≥
∑N
`=1 |q̃η,i`|

r for r ≥ 2, together with part (a) we have

N∑
i=1

N∑
j=1

L∏
h

∣∣∣∣∣
√∑N

`=1
|q̃η,i`|2νh

√∑N

`=1
|q̃η,j`|2rh

∣∣∣∣∣
M∏
p

∣∣∣∑k

s=1
γ̃
νp
is γ̃

rp
js

∣∣∣
≤

N∑
i=1

N∑
j=1

kM
(
sup
s

N∑
i=1

|γ̃is|
)(

sup
s

N∑
j=1

∣∣γ̃js∣∣
)
= O

(
N2δγ

)
.

Observe that the result holds when all of νh and/or all of rh are zero. Now consider part (c). Similarly, using
Cauchy-Schwarz

N∑
i=1

N∑
j=1

∣∣∣∑N

`=1
q̃uη,i`q̃

ν
η,j`

∣∣∣ L∏
h

∣∣∣∑N

`=1
q̃
νh
η,i`q̃

rh
η,j`

∣∣∣
≤

N∑
i=1

N∑
j=1

∑N

`=1
|q̃η,i`|u |q̃η,j`|ν

L∏
h

√∑N

`=1
|q̃η,i`|2νh

√∑N

`=1
|q̃η,j`|2rh

≤
∑N

`=1

N∑
i=1

|q̃η,i`|u
N∑
j=1

|q̃η,j`|ν

but
∑N
`=1 q̃

2
η,i` = 1 implies |q̃η,i`| ≤ 1, hence, |q̃η,i`|r ≤ |q̃η,i`| for r ≥ 1, we have

∑N

`=1

N∑
i=1

|q̃η,i`|u
N∑
j=1

|q̃η,j`|ν ≤
∑N

`=1

N∑
i=1

|q̃η,i`|
N∑
j=1

|q̃η,j`|

≤ N

(
sup
`

N∑
i=1

|q̃η,i`|
)(

sup
`

N∑
j=1

|q̃η,j`|
)
= O (N) ,

as required, where the final line follows from sup`
∑N
i=1 |q̃η,i`| ≤ K for all i (by (51)).

Lemma 15 Consider the regression model (2), and suppose that Assumptions 1 and 4 hold. Let z2η,i =
η′iHFηi/ (wTση,ii) and Xη,i = η′iMGηi/ (vση,ii), where ηi = (ηi1, ηi2, ..., ηiT )

′, wT = τ ′TMF τT , and HF =

(htht′), MF and MG are defined by (S.2), and v = T−m−1. Denote η̃it = ηit/σ
1/2
η,ii, and set Dση = diag (ση,ii),

so that D
−1/2
ση ηt = η̃t = Q̃ηεη,t, where Q̃η = D

−1/2
ση Qη, and q̃′η,i = (q̃η,i1, q̃η,i2, ..., q̃η,iN ) is the i

th row of Q̃η.
Also, set ρη,ij = Cov

(
η̃it, η̃jt

)
, γ1,εη = E

(
ε3η,it

)
and γ2,εη = E

(
ε4η,it

)
− 3. Then we have

E
(
z2η,i
)
= 1, E (Xη,i) = 1, (S.40)

ϕη,ij = E
(
η̃2itη̃

2
jt

)
= 1 + 2ρ2η,ij + γ2,εη

N∑
`=1

q̃2η,i`q̃
2
η,j`, (S.41)

E
(
z2η,iz

2
η,j

)
=
(
1 + 2ρ2η,ij

)
+ γ2,εη

(∑
t h

4
t

w2T

)( N∑
`=1

q̃2η,i`q̃
2
η,j`

)
, (S.42)

E (Xη,iXη,j) = 1 +
2ρ2η,ij
v

+ γ2,εη

(∑
tm

2
tt

v2

) N∑
`=1

q̃2η,i`q̃
2
η,j`, (S.43)

E
(
z2η,iXη,i

)
= 1 +

∑
t h

2
tmtt

vwT

(
γ2,εη

∑
`
q̃4η,i`

)
, (S.44)

E
(
z2η,iXη,iz

2
η,j

)
=

(
1 + 2ρ2η,ij

)
+

∑
t h

2
tmtt

vwT
γ2,εη

(∑
`
q̃4η,i`

)
+

∑
t h

4
t

w2T
γ2,εη

(∑
`
q̃2η,i`q̃

2
η,j`

)
+

(
1

w2T v

∑
t

∑
r

h3thrmrr + 3
1

w2T v

∑
t

∑
r

h2th
2
rmtr

)
γ21,εη

(∑
`
q̃η,i`q̃

2
η,j`

)(∑
`
q̃3η,i`

)
+2

(
1

w2T v

∑
t

∑
r

h3thrmrr + 2
1

w2T v

∑
t

∑
r

h2th
2
rmtr

)
γ21,εη

(∑
`
q̃2η,i`q̃η,j`

)2
+

(
1

wT v

∑
t

h2tmtt

)[
γ2,εη

(∑
`
q̃2η,i`q̃

2
η,j`

)]
+4ρη,ij

(
1

wT v

∑
t

h2tmtt

)[
γ2,εη

(∑
`
q̃3η,i`q̃η,j`

)]
+O

(
T−2

)
, (S.45)
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E
(
z2η,iXη,iz

2
η,jXη,j

)
=

(
1 + 2ρ2η,ij

)
+

(∑
t h

2
tmtt

vwT

)
γ2,εη

(∑
`
q̃4η,j` +

∑
`
q̃4η,i`

)
+

∑
t h

4
t

w2T
γ2,εη

(∑
`
q̃2η,i`q̃

2
η,j`

)
+2ρ2η,ij

(
− 1

w2T

∑
t

h4t −
18

vwT

∑
t

h2tmtt −
2

v2

∑
t

m2
tt +

1

v

)

+2ρ4η,ij

(
2

v
− 2

v2

∑
t

m2
tt

)

+

(
2

v2wT

∑
t

∑
r

hrhtmrrmtt +
1

v2wT

∑
t

∑
r

h2tmrrmtr +
2

vw2T

∑
t

∑
r

h3rhtmtt

)
×γ21,εη

[(∑
`
q̃2η,i`q̃η,j`

)(∑
`
q̃3η,j`

)
+
(∑

`
q̃3η,i`

)(∑
`
q̃η,i`q̃

2
η,j`

)]
+γ21,εηρη,ij

(
4

v2wT

∑
t

∑
r

hrhtmrrmtt

)(∑
`
q̃3η,j`

)(∑
`
q̃3η,i`

)
+

(
4

1

v2wT

∑
t

∑
r

hrhtm
2
rt +

1

v2wT

∑
t

∑
r

h2tmrrmtr + 2
1

vw2T

∑
t

∑
r

h3rhtmtt

)

×
{(∑

`
q̃η,i`q̃

2
η,j`

)2
+
(∑

`
q̃2η,i`q̃η,j`

)2}
+

(
4

1

v2wT

∑
t

∑
r

hrhtmrrmtt + 16
1

v2wT

∑
t

∑
r

hrhtm
2
rt + 8

1

v2wT

∑
t

∑
r

h2tmrrmtr

)
×γ21,εηρη,ij

(∑
`
q̃2η,i`q̃η,j`

)(∑
`
q̃η,i`q̃

2
η,j`

)

+ρη,ij

(
4
1

vwT

∑
t

h2tmtt

)[
γ2,εη

(∑
`
q̃3η,i`q̃η,j`

)
+ 3ρη,ij

]
+

(
2
1

vwT

∑
t

h2tmtt +
1

v2

∑
t

m2
tt

)

×
[
γ2,εη

(∑
`
q̃2η,i`q̃

2
η,j`

)
+ 2ρ2η,ij

]
+ 2ρ2η,ij

1

w2T

∑
t

h4t

+ρ2η,ij

(
2
1

v2

∑
t

m2
tt

)[
γ2,εη

(∑
`
q̃2η,i`q̃

2
η,j`

)
+
(
1 + 2ρ2η,ij

)]
+ρη,ij

(
4
1

vwT

∑
t

h2tmtt

)[
γ2,εη

(∑
`
q̃3η,i`q̃η,j`

)
+ 3ρη,ij

]
+O

(
T−2

)
. (S.46)

Proof. First, E
(
z2η,i
)
= 1 since E (η′iHFηi/ση,ii) = Tr (HF ) = wT and E (Xη,i) = 1 since E (η′iMGηi/ση,ii) =

Tr (MG) = v (see Lemma 11). Noting that η̃it = ε
′
η,tq̃η,i we have

ϕη,ij = E
(
η̃2itη̃

2
jt

)
= E

[(
ε′η,tq̃η,iq̃

′
η,iεη,t

) (
ε′η,tq̃η,j q̃

′
η,jεη,t

)]
,

and since εη,t ∼ IID(0, IN ), then using (S.7) in Lemma 6, and noting that
∑
` q̃η,i`q̃η,j` = q̃′η,iq̃η,j = ρη,ij , and∑N

`=1 q̃
2
η,i` = q̃′η,iq̃η,i = 1, we have

ϕη,ij = γ2,εηTr
(
q̃η,iq̃

′
η,i � q̃η,j q̃

′
η,j

)
+ Tr

(
q̃η,iq̃

′
η,i

)
Tr
(
q̃η,j q̃

′
η,j

)
+Tr

(
q̃η,iq̃

′
η,iq̃η,j q̃

′
η,j

)
,

which establishes (S.41). Next, noting z2η,i = η̃
′
iHF η̃i =

∑
t

∑
t′ htt′

(
ηit/σ

1/2
η,ii

)(
ηit′/σ

1/2
η,ii

)
=
∑
t

∑
t′ htt′ η̃itη̃it′

and η̃it = ε
′
η,tq̃η,i, we have

E
(
z2η,iz

2
η,j

)
=

1

w2T

∑
t

∑
t′

∑
r

∑
r′

htht′hrhr′E
[(
ε′η,tq̃η,iq̃

′
η,iεη,t′

) (
ε′η,rq̃η,j q̃

′
η,jεη,r′

)]
,

and note that there are the following combinations of indices {t, t′, r, r′} to take into account. There is one
t = t′ = r = r′, and three relevant pairs, t = t′ and r = r′ (t 6= r), t = r′ and t′ = r (t 6= r), and t = r and
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t′ = r′ (t 6= t′). Thus,

E
(
z2η,iz

2
η,j

)
=

1

w2T

∑
t

h4tE
[(
ε′η,tq̃η,iq̃

′
η,jεη,t

)2]
(for t = t′ = r = r′)

+
1

w2T

∑
t 6=r

h2th
2
rE
[(
ε′η,tq̃η,iq̃

′
η,iεη,t

) (
ε′η,rq̃η,j q̃

′
η,jεη,r

)]
(for t′ = t, r′ = r, t 6= r)

+
1

w2T

∑
t 6=r

hthrhrhtE
[(
ε′η,tq̃η,iq̃

′
η,jεη,t

) (
ε′η,rq̃η,iq̃

′
η,jεη,r

)]
(for r′ = t, t′ = r, t 6= r)

+
1

w2T

∑
t 6=t′

htt′htt′E
[(
ε′η,tq̃η,iq̃

′
η,jεη,t

) (
ε′η,t′ q̃η,iq̃

′
η,jεη,t′

)]
(for r = t, r′ = t′, t 6= t′).

Hence

E
(
z2η,iz

2
η,j

)
=

1

w2T

∑
t

h4tE
[(
ε′η,tq̃η,iq̃

′
η,jεη,t

)2]
+

1

w2T

∑
t6=r

h2th
2
rE
[(
ε′η,tq̃η,iq̃

′
η,iεη,t

) (
ε′η,rq̃η,j q̃

′
η,jεη,r

)]
+2

1

w2T

∑
t6=t′

h2th
2
t′E

[(
ε′η,tq̃η,iq̃

′
η,jεη,t

) (
ε′t′ q̃η,iq̃

′
η,jεt′

)]
.

Observing that the ordering of htht′hrhr′ is arbitrary, we have

E
(
z2η,iz

2
η,j

)
=

1

w2T

∑
t

h4tE
[(
ε′η,tq̃η,iq̃

′
η,jεη,t

)2]
+
1

w2T

∑
t6=r

h2th
2
r

{
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)
E
(
ε′η,rq̃η,j q̃

′
η,jεη,r

)
+ 2

[
E
(
ε′η,tq̃η,iq̃

′
η,jεη,t

)]2}
.

Also note that E
(
ε′η,tq̃η,iq̃

′
η,jεη,t

)2
is given by (S.41), E

(
ε′η,tq̃η,iq̃

′
η,iεη,t

)
= 1 and E

(
ε′η,tq̃η,iq̃

′
η,jεη,t

)
= ρη,ij ,

and
∑
t6=r h

2
th

2
r =

∑
t

∑
r h

2
th

2
r −

∑
t h

4
t = w2T −

∑
t h

4
t . Then, after some simplifications we obtain

E
(
z2η,iz

2
η,j

)
=

∑
t h

4
t

w2T

(
γ2,εη

N∑
`=1

q̃2η,i`q̃
2
η,j` + 1 + 2ρ

2
η,ij

)
+

∑
t

∑
r h

2
th

2
r −

∑
t h

4
t

w2T

(
1 + 2ρ2η,ij

)
= 1 + 2ρ2η,ij +

∑
t h

4
t

w2T
γ2,εη

(
N∑
`=1

q̃2η,i`q̃
2
η,j`

)
,

as required. Next, similarly,

E (Xη,iXη,j) =
1

v2

∑
t

∑
t′

∑
r

∑
r′

mtt′mrr′E
[(
ε′η,tq̃η,iq̃

′
η,iεη,t′

) (
ε′η,rq̃η,j q̃

′
η,jεη,r′

)]
=

1

v2

∑
t

m2
ttE

[(
ε′η,tq̃η,iq̃

′
η,jεη,t

)2]
+
1

v2

∑
t 6=r

mttmrrE
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)
E
(
ε′η,rq̃η,j q̃

′
η,jεη,r

)
+
1

v2
2
∑
t6=r

m2
trE

[
E
(
ε′η,tq̃η,iq̃

′
η,jεη,r

)]2
= 1 +

2ρ2η,ij
v

+

∑
tm

2
tt

v2

(
γ2,εη

N∑
`=1

q̃2η,i`q̃
2
η,j`

)
.

Next consider

E
(
z2η,iXη,i

)
=

1

vwT

∑
t

∑
t′

∑
r

∑
r′

htt′mrr′E
[(
ε′η,tq̃η,iq̃

′
η,iεη,t′

) (
ε′η,rq̃η,iq̃

′
η,iεη,r′

)]
=

1

vwT

∑
t

h2tmttE
[(
ε′η,tq̃η,iq̃

′
η,iεη,t

)2]
+

1

vwT

(∑
t

∑
r

h2tmrr + 2
∑
t

∑
r

hthrmtr − 3
∑
t

h2tmtt

)[
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)]2
.

But
∑
t

∑
r hthrmtr = Tr (MGHF ) = 0,

∑
t

∑
r h

2
tmrr = vwT , and E

[(
ε′η,tq̃η,iq̃

′
η,iεη,t

)2]
= γ2,εη

∑N
`=1 q̃

4
η,i`+

3, E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)
= 1 by Lemma 13 we have

E
(
z2η,iXη,i

)
= 1 +

∑
t h

2
tmtt

vwT
γ2,εη

N∑
`=1

q̃4η,i`.
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Next, consider

E
(
z2η,iXη,iz

2
η,j

)
= w−2T v−1

∑
t

∑
t′

∑
r

∑
r′

∑
u

∑
u′

htht′hrhr′muu′E
[(
ε′η,tq̃η,iq̃

′
η,iεη,t′

) (
ε′η,rq̃η,j q̃

′
η,jεη,r′

) (
ε′η,uq̃η,iq̃

′
η,iεη,u′

)]
.

In addition to the case of t = t′ = r = r′ = u = u′, three combinations of six indices {t, t′, r, r′, u, u′} are to
be considered: three pairs, two of threes, and fours and twos, which are with superscripts (2, 2, 2), (3, 3) and
(4, 2), respectively. As the groups’ordering does not matter when the number of group members are the same,
we have

(
6!
2!4!

) (
4!
2!2!

)
1
3!
= 15 different combinations of (2, 2, 2),

(
6!
3!3!

)
1
2!
= 10 of (3, 3), and 6!

2!4!
= 15 of (4, 2).

After considering of all the combinations, and observing that the ordering of htht′hrhr′ and {u, u′} in muu′ is
arbitrary (as MG is symmetric), after some algebra, we have

E
(
z2η,iXη,iz

2
η,j

)
=

(
A(2,2,2) + 2B(2,2,2)

) [
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)]2
E
(
ε′η,rq̃η,j q̃

′
η,jεη,r

)
+2
(
A(2,2,2) + 5B(2,2,2)

)
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

) [
E
(
ε′η,rq̃η,iq̃

′
η,jεη,r

)]2
+
(
A(3,3) + 3B(3,3)

)
E
(
ε′η,tq̃η,iq̃

′
η,jεη,tε

′
η,tq̃η,j

)
E
(
q̃′η,iεη,rε

′
η,rq̃η,iq̃

′
η,iεη,r

)
+2
(
A(3,3) + 2B(3,3)

) [
E
(
ε′η,tq̃η,iq̃

′
η,iεη,tε

′
η,tq̃η,j

)]2
+
(
A(2,4) + 4B(2,4) + C(2,4)

)
E
[(
ε′η,tq̃η,iq̃

′
η,iεη,t

) (
ε′η,tq̃η,j q̃

′
η,jεη,t

)]
E
(
ε′η,rq̃η,iq̃

′
η,iεη,r

)
+4
(
B(2,4) + C(2,4)

)
E
[(
ε′η,tq̃η,iq̃

′
η,iεη,t

) (
ε′η,tq̃η,iq̃

′
η,jεη,t

)]
E
(
ε′η,rq̃η,iq̃

′
η,jεη,r

)
+C(2,4)E

[(
ε′η,tq̃η,iq̃

′
η,iεη,t

)2]
E
(
ε′η,rq̃η,j q̃

′
η,jεη,r

)
+w−2T v−1

∑
t

h4tmttE
[(
ε′η,tq̃η,iq̃

′
η,iεη,t

)2 (
ε′η,tq̃η,j q̃

′
η,jεη,t

)]
where

A(2,2,2) = w−2T v−1
∑
t6=r 6=u

h2th
2
rmuu, B(2,2,2) = w−2T v−1

∑
t 6=r 6=u

h2thrhumru, (S.47)

A(3,3) = w−2T v−1
∑
t6=r

h3thrmrr, B(3,3) = w−2T v−1
∑
t 6=r

h2th
2
rmtr, (S.48)

A(2,4) = w−2T v−1
∑
t6=r

h4tmrr, B(2,4) = w−2T v−1
∑
t6=r

h3thrmtr, C(2,4) = w−2T v−1
∑
t6=r

h2th
2
rmtt, (S.49)

and noting that
∑
t 6=r 6=u h

2
th

2
rmuu =

∑
t

∑
r

∑
u h

2
th

2
rmuu−

∑
t

∑
r h

4
tmrr−

∑
t

∑
r h

2
th

2
rmtt−

∑
t

∑
r h

2
th

2
rmrr+

2
∑
t h

4
tmtt,

A(2,2,2) = 1− w−2T
∑
t

h4t − 2w−1T v−1
∑
t

h2tmtt +O(T−2),

since
∑
t h

2
t = wT and

∑
tmtt = v, and

∑
t h

4
tmtt ≤

∑
t h

4
t = O(T ), and noting that, as MG and HF are

symmetric and MGHF = 0,
∑
t hrhtmtu for any t 6= r and t 6= u we have

B(2,2,2) = −w−1T v−1
∑
t

h2tmtt +O
(
T−2

)
,

A(3,3) = w−2T v−1
∑
t

∑
r

h3thrmrr +O
(
T−2

)
, B(3,3) = w−2T v−1

∑
t

∑
r

h2th
2
rmtr +O

(
T−2

)
A(2,4) = w−2T

∑
r

h4t +O
(
T−2

)
, B(2,4) = O

(
T−2

)
, C(2,4) = w−1T v−1

∑
t

h2tmtt +O
(
T−2

)
.

Using the result in Lemma 13 and noting that E
(
|η̃it|8

)
is uniformly bounded by Lemma 3, we have

E
(
z2η,iXη,iz

2
η,j

)
= 1 + 2ρ2η,ij +

1

wT v

∑
t

h2tmtt

[
γ2,εη

(∑
`
q̃4η,i`

)]
+

(
1

w2T v

∑
t

∑
r

h3thrmrr + 3
1

w2T v

∑
t

∑
r

h2th
2
rmtr

)
γ21,εη

(∑
`
q̃η,i`q̃

2
η,j`

)(∑
`
q̃3η,i`

)
+2

(
1

w2T v

∑
t

∑
r

h3thrmrr + 2
1

w2T v

∑
t

∑
r

h2th
2
rmtr

)
γ21,εη

(∑
`
q̃2η,i`q̃η,j`

)2
+

(
1

w2T

∑
r

h4t +
1

wT v

∑
t

h2tmtt

)[
γ2,εη

(∑
`
q̃2η,i`q̃

2
η,j`

)]
+4ρη,ij

(
1

wT v

∑
t

h2tmtt

)[
γ2,εη

(∑
`
q̃3η,i`q̃η,j`

)]
+O

(
T−2

)
.
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Next consider

E
(
z2η,iXη,iz

2
η,jXη,j

)
= w−2T v−2

∑
t

∑
t′

∑
r

∑
r′

∑
ν

∑
ν′

∑
u

∑
u′

htht′hrhr′mνν′muu′

×E
[(
ε′η,tq̃η,iq̃

′
η,iεη,t′

) (
ε′η,rq̃η,j q̃

′
η,jεη,r′

) (
ε′η,ν q̃η,iq̃

′
η,iεη,ν′

) (
ε′η,uq̃η,j q̃

′
η,jεη,u′

)]
.

In addition to the case of t = t′ = r = r′ = ν = ν′ = u = u′, five combinations of eight indices
{t, t′, r, r′, ν, ν′, u, u′} are to be considered, which are subscripted by (2, 6), (3, 5), (4, 4) , (2, 3, 3), (4, 2, 2),
and (2, 2, 2, 2). As the groups’ordering does not matter when the number of group members are the same, we
have 8!

2!6!
= 28 of different combinations of (2, 6), 8!

3!5!
= 56 of (3, 5), 8!

4!4!
1
2!
= 35 of (4, 4), 8!

2!6!

(
6!
3!3!

1
2!

)
= 280

of (2, 3, 3), 8!
4!4!

(
4!
2!2!

1
2!

)
= 210 of (4, 2, 2), and 8!

2!6!
6!
2!4!

4!
2!2!

1
4!
= 105 of (2, 2, 2, 2), respectively. After considering

of all the combinations, and observing that the ordering of htht′hrhr′ and {u, u′} of muu′ are arbitrary, after
tedious algebra, we have

E
(
z2η,iXη,iz

2
η,jXη,j

)
=
(
A(2,2,2,2) + 4C(2,2,2,2) + 4E(2,2,2,2)

) [
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)]2 [
E
(
ε′η,rq̃η,j q̃

′
η,jεη,r

)]2
+2
(
A(2,2,2,2) +B(2,2,2,2) + 10C(2,2,2,2) + 16D(2,2,2,2) + 8E(2,2,2,2)

) [
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)]2 [
E
(
ε′η,rq̃η,iq̃

′
η,jεη,r

)]2
+2
(
2B(2,2,2,2) + 8D(2,2,2,2) + 2E(2,2,2,2)

) [
E
(
ε′η,rq̃η,iq̃

′
η,jεη,r

)]4
+
(
E(2,2,4) + 2G(2,2,4)

)
E
[(
ε′η,tq̃η,j q̃

′
η,jεη,t

)2] [
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)]2
+
(
4C(2,2,4) + 8D(2,2,4) + 4E(2,2,4) + 4F(2,2,4) + 8G(2,2,4) + 8H(2,2,4) + 12I(2,2,4)

)
×E

[(
ε′η,tq̃η,j q̃

′
η,jεη,t

) (
ε′η,tq̃η,j q̃

′
η,iεη,t

)]
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)
E
(
ε′η,tq̃η,iq̃

′
η,jεη,t

)
+
(
A(2,2,4) + 8C(2,2,4) + 2E(2,2,4) + 16H(2,2,4) + 8I(2,2,4) + J(2,2,4)

)
×E

[(
ε′η,tq̃η,j q̃

′
η,jεη,t

) (
ε′η,tq̃η,iq̃

′
η,iεη,t

)]
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)
E
(
ε′η,tq̃η,j q̃

′
η,jεη,t

)
+
(
2B(2,2,4) + 16D(2,2,4) + 16F(2,2,4) + 4G(2,2,4) + 16H(2,2,4) + 16I(2,2,4) + 2J(2,2,4)

)
×E

[(
ε′η,tq̃η,j q̃

′
η,jεη,t

) (
ε′η,tq̃η,iq̃

′
η,iεη,t

)] [
E
(
ε′η,tq̃η,iq̃

′
η,jεη,t

)]2
+
(
4C(2,2,4) + 8D(2,2,4) + 4E(2,2,4) + 4F(2,2,4) + 8G(2,2,4) + 8H(2,2,4) + 12I(2,2,4)

)
×E

[(
ε′η,tq̃η,iq̃

′
η,jεη,t

) (
ε′η,tq̃η,iq̃

′
η,iεη,t

)]
E
(
ε′η,tq̃η,iq̃

′
η,jεη,t

)
E
(
ε′η,tq̃η,j q̃

′
η,jεη,t

)
+
(
E(2,2,4) + 2G(2,2,4)

)
E
[(
ε′η,tq̃η,iq̃

′
η,iεη,t

)2] [
E
(
ε′η,tq̃η,j q̃

′
η,jεη,t

)]2
+
(
2A(3,3,2) + C(3,3,2) + 9D(3,3,2) + 8E(3,3,2) + 2G(3,3,2) + 2I(3,3,2)

)
×
[
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)
E
(
ε′η,rq̃η,iq̃

′
η,iεη,rε

′
η,rq̃η,j

)
E
(
q̃′η,jεη,uε

′
η,uq̃η,j q̃

′
η,jεη,u

)
+E

(
ε′η,tq̃η,j q̃

′
η,jεη,t

)
E
(
ε′η,rq̃η,iq̃

′
η,iεη,rε

′
η,rq̃η,i

)
E
(
q̃′η,iεη,uε

′
η,uq̃η,j q̃

′
η,jεη,u

)]
+
(
4A(3,3,2) + 8D(3,3,2) + 4J(3,3,2)

)
E
(
ε′η,tq̃η,iq̃

′
η,jεη,t

)
E
(
ε′η,rq̃η,iq̃

′
η,iεη,rε

′
η,rq̃η,i

)
E
(
q̃′η,jεη,uε

′
η,uq̃η,j q̃

′
η,jεη,u

)
+
(
4B(3,3,2) + C(3,3,2) + 5D(3,3,2) + 16E(3,3,2) + 4F(3,3,2) + 2G(3,3,2) + 4I(3,3,2)

)
×
{
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

) [
E
(
ε′η,rq̃η,j q̃

′
η,jεη,rε

′
η,rq̃η,i

)]2
+ E

(
ε′η,tq̃η,j q̃

′
η,jεη,t

) [
E
(
ε′η,rq̃η,iq̃

′
η,iεη,rε

′
η,rq̃η,j

)]2}
+
(
4A(3,3,2) + 16B(3,3,2) + 8C(3,3,2) + 24D(3,3,2) + 48E(3,3,2) + 8F(3,3,2) + 16H(3,3,2) + 20J(3,3,2)

)
×E

(
ε′η,tq̃η,iq̃

′
η,jεη,t

)
E
(
ε′η,rq̃η,iq̃

′
η,jεη,rε

′
η,rq̃η,i

)
E
(
q̃′η,iεη,uε

′
η,uq̃η,j q̃

′
η,jεη,u

)
+
(
A(2,6) + 4B(2,6) + C(2,6)

)
E
[
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

) (
ε′η,tq̃η,j q̃

′
η,jεη,t

)2]
E
(
ε′η,rq̃η,iq̃

′
η,iεη,r

)
+4
(
A(2,6) + 2B(2,6) +D(2,6)

)
E
[
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

) (
ε′η,tq̃η,iq̃

′
η,jεη,t

) (
ε′η,tq̃η,j q̃

′
η,jεη,t

)]
E
(
ε′η,rq̃η,iq̃

′
η,jεη,r

)
+
(
A(2,6) + 4B(2,6) + C(2,6)

)
E
[
E
(
ε′η,tq̃η,iq̃

′
η,iεη,t

)2 (
ε′η,tq̃η,j q̃

′
η,jεη,t

)]
E
(
ε′η,rq̃η,j q̃

′
η,jεη,r

)
+2
(
B(3,5) + C(3,5)

)
E
(
ε′η,rq̃η,iq̃

′
η,iεη,rε

′
η,rq̃η,i

)
E
[
q̃′η,iεη,t

(
ε′η,tq̃η,j q̃

′
η,jεη,t

)2]
+2
(
A(3,5) + 5B(3,5) + C(3,5) + 4D(3,5) + E(3,5)

)
×E

(
ε′η,rq̃η,iq̃

′
η,iεη,rε

′
η,rq̃η,j

)
E
[(

q̃′η,jεη,t
) (
ε′η,tq̃η,j q̃

′
η,jεη,t

) (
ε′η,tq̃η,iq̃

′
η,iεη,t

)]
+2
(
A(3,5) + 5B(3,5) + C(3,5) + 4D(3,5) + E(3,5)

)
×E

(
ε′η,rq̃η,iε

′
η,rq̃η,j q̃

′
η,jεη,r

)
E
[(

q̃′η,iεη,t
) (
ε′η,tq̃η,iq̃

′
η,iεη,t

) (
ε′η,tq̃η,j q̃

′
η,jεη,t

)]
+2
(
B(3,5) + C(3,5)

)
E
[(
ε′η,tq̃η,iq̃

′
η,iεη,t

)2
ε′η,tq̃η,j

]
E
[
q̃′η,jεη,r

(
ε′η,rq̃η,j q̃

′
η,jεη,r

)]
+B(4,4)E

[(
ε′η,rq̃η,iq̃

′
η,iεη,r

) (
ε′η,rq̃η,iq̃

′
η,iεη,r

)]
E
[(
ε′η,tq̃η,j q̃

′
η,jεη,t

) (
ε′η,tq̃η,j q̃

′
η,jεη,t

)]
+4
(
2C(4,4) +D(4,4) +B(4,4)

)
E
[(
ε′η,rq̃η,iq̃

′
η,iεη,r

) (
ε′η,rq̃η,iq̃

′
η,jεη,r

)]
E
[(
ε′η,tq̃η,iq̃

′
η,jεη,t

) (
ε′η,tq̃η,j q̃

′
η,jεη,t

)]
+
(
A(4,4) +B(4,4) + 8C(4,4) + 8D(4,4)

) {
E
[(
ε′η,rq̃η,iq̃

′
η,iεη,r

) (
ε′η,rq̃η,j q̃

′
η,jεη,r

)]}2
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+v−2w−2T
∑
t

h4tm
2
ttE

[(
ε′η,tq̃η,iq̃

′
η,iεη,t

)2 (
ε′η,tq̃η,j q̃

′
η,jεη,t

)2]
,

where

A(2,2,2,2) = w−2T v−2
∑

t6=r 6=ν 6=u

h2th
2
rmννmuu, B(2,2,2,2) = w−2T v−2

∑
t6=r 6=ν 6=u

h2th
2
rm

2
νu (S.50)

C(2,2,2,2) = w−2T v−2
∑

t6=r 6=ν 6=u

h2thrhνmrνmuu, D(2,2,2,2) = w−2T v−2
∑

t6=r 6=ν 6=u

h2thrhνmνumur,

E(2,2,2,2) = w−2T v−2
∑

t6=r 6=ν 6=u

htuhrhνmrνmtu,

A(2,2,4) = w−2T v−2
∑
t6=r 6=u

h4tmrrmuu, B(2,2,4) = w−2T v−2
∑
t 6=r 6=u

h4tm
2
ru,

C(2,2,4) = w−2T v−2
∑
t6=r 6=u

h3thrmtrmuu, D(2,2,4) = w−2T v−2
∑
t6=r 6=u

h3thumtrmru,

E(2,2,4) = w−2T v−2
∑
t6=r 6=u

h2th
2
rmttmuu, F(2,2,4) = w−2T v−2

∑
t 6=r 6=u

h2th
2
rm

2
tu

G(2,2,4) = w−2T v−2
∑
t6=r 6=u

h2thrhumttmru, H(2,2,4) = w−2T v−2
∑
t6=r 6=u

h2thrhumtrmtu,

I(2,2,4) = w−2T v−2
∑
t6=r 6=u

hthuh
2
rmttmtu, J(2,2,4) = w−2T v−2

∑
t 6=r 6=u

h2rh
2
um

2
tt,

A(3,3,2) = w−2T v−2
∑
u6=r 6=t

h2uhrhtmrrmtt, B(3,3,2) = w−2T v−2
∑
u6=r 6=t

h2uhrhtm
2
rt,

C(3,3,2) = w−2T v−2
∑
u6=r 6=t

h2uh
2
tmrrmtr, D(3,3,2) = w−2T v−2

∑
u6=r 6=t

h2rhuhtmurmtt,

E(3,3,2) = w−2T v−2
∑
u6=r 6=t

h2rhuhtmrtmut, F(3,3,2) = w−2T v−2
∑
u6=r 6=t

h3rhumutmtt,

G(3,3,2) = w−2T v−2
∑
u6=r 6=t

h3rhtmuumtt, H(3,3,2) = w−2T v−2
∑
u6=r 6=t

h3rhtm
2
ut,

I(3,3,2) = w−2T v−2
∑
u6=r 6=t

h2rh
2
tmuumtr, J(3,3,2) = w−2T v−2

∑
u6=r 6=t

h2rh
2
tmtumur, (S.51)

A(2,6) = w−2T v−2
∑
t 6=r

h2th
2
rm

2
rr, B(2,6) = w−2T v−2

∑
t6=r

hth
3
rmtrmrr,

C(2,6) = w−2T v−2
∑
t 6=r

h4rmttmrr, D(2,6) = w−2T v−2
∑
t6=r

h4rm
2
tr,

A(3,5) = w−2T v−2
∑
t 6=r

h3thrm
2
rr, B(3,5) = w−2T v−2

∑
t6=r

h2th
2
rmtrmrr,

C(3,5) = w−2T v−2
∑
t 6=r

hth
3
rmttmrr, D(3,5) = w−2T v−2

∑
t6=r

hth
3
rm

2
tr,

E(3,5) = w−2T v−2
∑
t 6=r

h4rmrtmtt,

A(4,4) = w−2T v−2
∑
t6=r

h4rrm
2
tt, B(4,4) = w−2T v−2

∑
t 6=r

h2rh
2
tmrrmtt,

C(4,4) = w−2T v−2
∑
t6=r

h3rhtmrtmtt, D(4,4) = w−2T v−2
∑
t6=r

h2rh
2
tm

2
rt. (S.52)

But observing that the ordering of indices in htht′hrhr′ and {u, u′} of muu′ are arbitrary, and noting that as
MG and HF are symmetric and MGHF = 0,

∑
t

∑
r

∑
u hrhtmtu for any t 6= r and t 6= u, a similar discussion

for the proof of Lemma 10 will give

A(2,2,2,2) = 1−
1

w2T

∑
t

h4t − 4
1

vwT

∑
t

h2tmtt −
1

v2

∑
t

m2
tt +O(T−2), (S.53)
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B(2,2,2,2) =
1

v
− 1

v2

∑
t

m2
tt +O(T−2),

C(2,2,2,2) = −
1

vwT

∑
t

h2tmtt +O(T−2),

D(2,2,2,2) = O(T−2), E(2,2,2,2) = O(T−2),

so that (
A(2,2,2,2) + 4C(2,2,2,2) + 4E(2,2,2,2)

)
= 1− 1

w2T

∑
t

h4t −
8

vwT

∑
t

h2tmtt −
1

v2

∑
t

m2
tt +O(T−2).

Next
A(3,3,2) =

1

v2wT

∑
t

∑
r

hrhtmrrmtt +O(T−2),

B(3,3,2) =
1

v2wT

∑
t

∑
r

hrhtm
2
rt +O(T−2),

C(3,3,2) =
1

v2wT

∑
t

∑
r

h2tmrrmtr+O(T
−2),

D(3,3,2) = O(T−2), E(3,3,2) = O(T−2), F(3,3,2) = O(T−2),

G(3,3,2) =
1

vw2T

∑
t

∑
r

h3rhtmtt+O(T
−2),

H(3,3,2) = O(T−2), I(3,3,2) = O(T−2), J(3,3,2) = O(T−2),

A(2,2,4) =
1

w2T

∑
t

h4t+O(T
−2),

B(2,2,4) = O(T−2),C(2,2,4) = O(T−2), D(2,2,4) = O(T−2),

E(2,2,4) =
1

vwT

∑
t

h2tmtt+O(T
−2),

F(2,2,4) = O(T−2), G(2,2,4) = O(T−2), H(2,2,4) = O(T−2), I(2,2,4) = O(T−2),

J(2,2,4) =
1

v2

∑
t

m2
tt +O(T−2). (S.54)

Since the functions with subscripts (2, 6), (3, 5) and (4, 4) are all O(T−2), and v−2w−2T
∑
t h

4
tm

2
tt ≤ v−2w−2T

∑
t h

4
tm

2
tt

∑
t h

4
t =

O(T−3), noting that E
(
ε8η,it

)
is uniformly bounded, using the results in Lemma 13 we have

E
(
z2η,iXη,iz

2
η,jXη,j

)
= 1 + 2ρ2η,ij +

(
1

vwT

∑
t

h2tmtt

)
γ2,εη

(∑
`
q̃4η,j` +

∑
`
q̃4η,i`

)
+2ρ2η,ij

(
− 1

w2T

∑
t

h4t −
18

vwT

∑
t

h2tmtt −
2

v2

∑
t

m2
tt +

1

v

)

+2ρ4η,ij

(
2

v
− 2

v2

∑
t

m2
tt

)

+

(
2

v2wT

∑
t

∑
r

hrhtmrrmtt +
1

v2wT

∑
t

∑
r

h2tmrrmtr +
2

vw2T

∑
t

∑
r

h3rhtmtt

)
×γ21,εη

[(∑
`
q̃2η,i`q̃η,j`

)(∑
`
q̃3η,j`

)
+
(∑

`
q̃3η,i`

)(∑
`
q̃η,i`q̃

2
η,j`

)]
+γ21,εηρη,ij

(
4

v2wT

∑
t

∑
r

hrhtmrrmtt

)(∑
`
q̃3η,j`

)(∑
`
q̃3η,i`

)
+

(
4

1

v2wT

∑
t

∑
r

hrhtm
2
rt +

1

v2wT

∑
t

∑
r

h2tmrrmtr + 2
1

vw2T

∑
t

∑
r

h3rhtmtt

)

×
[(∑

`
q̃η,i`q̃

2
η,j`

)2
+
(∑

`
q̃2η,i`q̃η,j`

)2]
+

(
4

1

v2wT

∑
t

∑
r

hrhtmrrmtt + 16
1

v2wT

∑
t

∑
r

hrhtm
2
rt + 8

1

v2wT

∑
t

∑
r

h2tmrrmtr

)
×γ21,εηρη,ij

(∑
`
q̃2η,i`q̃η,j`

)(∑
`
q̃η,i`q̃

2
η,j`

)
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+ρη,ij

(
4
1

vwT

∑
t

h2tmtt

)[
γ2,εη

(∑
`
q̃3η,i`q̃η,j`

)
+ 3ρη,ij

]
+

(
1

w2T

∑
t

h4t + 2
1

vwT

∑
t

h2tmtt +
1

v2

∑
t

m2
tt

)
×
[
γ2,εη

(∑
`
q̃2η,i`q̃

2
η,j`

)
+ 2ρ2η,ij

]
+ρ2η,ij

(
2
1

v2

∑
t

m2
tt

)[
γ2,εη

(∑
`
q̃2η,i`q̃

2
η,j`

)
+
(
1 + 2ρ2η,ij

)]
+ρη,ij

(
4
1

vwT

∑
t

h2tmtt

)[
γ2,εη

(∑
`
q̃3η,i`q̃η,j`

)
+ 3ρη,ij

]
+O

(
T−2

)
.

Lemma 16 Consider the regression model (2), and suppose that Assumptions 1-4 hold. Let z2η,i =
η′iHF ηi
ση,iiwT

and

Xη,i =
η′iMGηi
ση,iiv

where wT = τ ′TMF τT , where ηi = (ηi1, ηi2, ..., ηiT )
′, wT = h′h with h = MF τT , and HF =

hh′ = (htht′), MF = (mF,tt′), and MG = (mtt′) are defined by (S.2), and v = T −m− 1. Then we have

N−1
∑
i6=j

Cov
[
z2η,i (Xη,i − 1) , z2η,j (Xη,j − 1)

]
= O

(
T−1

)
+O

(
N

T 2

)
.

Proof. First, consider N−1
∑
i6=j Cov

(
z2η,i, z

2
η,j

)
. Using Lemma 15, we have E

(
z2η,i
)
= 1 and

E
(
z2η,iz

2
η,j

)
= 1 + 2ρ2η,ij + γ2,εη

(∑
t h

4
t

w2T

)( N∑
`=1

q̃2η,i`q̃
2
η,j`

)
,

where ρη,ij = Cov
(
η̃it, η̃jt

)
, γ1,εη = E

(
ε3η,it

)
and γ2,εη = E

(
ε4η,it

)
− 3, η̃it = ηit/σ

1/2
η,ii, and q̃′η,i is the i

th row

of Q̃η = D
−1/2
ση Qη, with Dση = diag (ση,ii). Thus,

N−1
∑
i6=j

Cov
(
z2η,i, z

2
η,j

)
= N−1

∑
i6=j

2ρ2η,ij +

∑
t h

4
t

w2T
γ2,εηN

−1∑
i 6=j

(∑
`
q̃2η,i`q̃

2
η,j`

)
,

but, since by Lemma 14
∑
i6=j
∑
`

∣∣q̃2η,i`q̃2η,j`∣∣ = O (N), by assumption
∣∣∣γ2,εη ∣∣∣ ≤ K, and

∑
t h

4
t = O (v) by

Lemma 8, we have∣∣∣∣∣∣
∑
t h

4
t

w2T
γ2,εηN

−1∑
i 6=j

(∑
`
q̃2η,i`q̃

2
η,j`

)∣∣∣∣∣∣ ≤
∑
t h

4
t

w2T

∣∣∣γ2,εη ∣∣∣N−1∑
i6=j

∑
`

∣∣q̃2η,i`q̃2η,j`∣∣
= O

(
T−1

)
,

and
N−1

∑
i6=j

Cov
(
z2η,i, z

2
η,j

)
= N−1

∑
i6=j

2ρ2η,ij +O
(
T−1

)
. (S.55)

Next, using Lemma 15 we have

N−1
∑
i 6=j

Cov
(
z2η,iXη,i, z

2
η,j

)
= N−1

∑
i6=j

[
E
(
z2η,iXη,iz

2
η,j

)
− E

(
z2η,iXη,i

)
E
(
z2η,j
)]

= N−1
∑
i6=j

2ρ2η,ij +

∑
t h

4
t

w2T
γ2,εηN

−1∑
i 6=j

(∑
`
q̃2η,i`q̃

2
η,j`

)

+γ21,εη

(
1

w2T v

∑
t

∑
r

h3thrmrr + 3
1

w2T v

∑
t

∑
r

h2th
2
rmtr

)
N−1

∑
i 6=j

(∑
`
q̃η,i`q̃

2
η,j`

)(∑
`
q̃3η,i`

)

+2γ21,εη

(
1

w2T v

∑
t

∑
r

h3thrmrr + 2
1

w2T v

∑
t

∑
r

h2th
2
rmtr

)
N−1

∑
i 6=j

(∑
`
q̃2η,i`q̃η,j`

)2
+γ2,εη

(
1

w2T

∑
r

h4t +
1

wT v

∑
t

h2tmtt

)
N−1

∑
i6=j

(∑
`
q̃2η,i`q̃

2
η,j`

)

+4γ2,εη

(
1

wT v

∑
t

h2tmtt

)
N−1

∑
i6=j

[
ρη,ij

(∑
`
q̃3η,i`q̃η,j`

)]
+O

(
NT−2

)
.
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But the second term is O(T−1) as above. Consider the third term. Using Lemma 10 we have

1

w2T v

∑
t

∑
r

∣∣h3thrmrr

∣∣ = O
(
T−1

)
,
1

w2T v

∑
t

∑
r

∣∣h2th2rmtr
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In a similar manner, the fourth term is O
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)
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)
, since
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By symmetry
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Next, consider
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∑
i6=j

Cov
(
z2η,iXη,i, z

2
η,jXη,j

)
= N−1

∑
i 6=j

[
E
(
z2η,iXη,iz

2
η,jXη,j

)
− E

(
z2η,iXη,i

)
E
(
z2η,jXη,j

)]
.

Since E
(
z2η,iXη,i

)
= 1 +

∑
t h

2
tmtt

vwT

(
γ2,εη

∑
` q̃

4
η,i`

)
from Lemma 15,

E
(
z2η,iXη,i

)
E
(
z2η,jXη,j

)
= 1+

∑
t h

2
tmtt

vwT
γ2,εη

(∑
`
q̃4η,i` +

∑
`
q̃4η,i`

)
+

(∑
t h

2
tmtt

vwT

)2
γ22,εη

(∑
`
q̃4η,i`

)(∑
`
q̃4η,j`

)
,

and together with (S.46) we have

N−1
∑
i6=j

Cov
(
z2η,iXη,i, z

2
η,jXη,j

)
= N−1

∑
i6=j

2ρ2η,ij +

∑
t h

4
t

w2T
γ2,εηN

−1∑
i 6=j

(∑
`
q̃2η,i`q̃

2
η,j`

)

−
(∑

t h
2
tmtt

vwT

)2
γ22,εηN

−1∑
i 6=j

(∑
`
q̃4η,i`

)(∑
`
q̃4η,j`

)

+2

(
− 1

w2T

∑
t

h4t −
18

vwT

∑
t

h2tmtt −
2

v2

∑
t

m2
tt +

1

v

)
N−1

∑
i 6=j

ρ2η,ij

+2

(
2

v
− 2

v2

∑
t

m2
tt

)
N−1

∑
i 6=j

ρ4η,ij

S20



+

(
2

v2wT

∑
t

∑
r

hrhtmrrmtt +
1

v2wT

∑
t

∑
r

h2tmrrmtr +
2

vw2T

∑
t

∑
r

h3rhtmtt

)
×γ21,εηN

−1∑
i6=j

[(∑
`
q̃2η,i`q̃η,j`

)(∑
`
q̃3η,j`

)
+
(∑

`
q̃3η,i`

)(∑
`
q̃η,i`q̃

2
η,j`

)]

+γ21,εη

(
4

v2wT

∑
t

∑
r

hrhtmrrmtt

)
N−1

∑
i 6=j

ρη,ij

(∑
`
q̃3η,j`

)(∑
`
q̃3η,i`

)

+

(
4

1

v2wT

∑
t

∑
r

hrhtm
2
rt +

1

v2wT

∑
t

∑
r

h2tmrrmtr + 2
1

vw2T

∑
t

∑
r

h3rhtmtt

)

×N−1
∑
i 6=j

[(∑
`
q̃η,i`q̃

2
η,j`

)2
+
(∑

`
q̃2η,i`q̃η,j`

)2]

+

(
4

1

v2wT

∑
t

∑
r

hrhtmrrmtt + 16
1

v2wT

∑
t

∑
r

hrhtm
2
rt + 8

1

v2wT

∑
t

∑
r

h2tmrrmtr

)
×γ21,εηN

−1∑
i 6=j

ρη,ij

(∑
`
q̃2η,i`q̃η,j`

)(∑
`
q̃η,i`q̃

2
η,j`

)

+

(
4
1

vwT

∑
t

h2tmtt

)γ2,εηN−1∑
i6=j

ρη,ij

(∑
`
q̃3η,i`q̃η,j`

)
+ 3N−1

∑
i 6=j

ρ2η,ij


+

(
2
1

vwT

∑
t

h2tmtt +
1

v2

∑
t

m2
tt

)

×

γ2,εηN−1∑
i 6=j

(∑
`
q̃2η,i`q̃

2
η,j`

)
+ 2N−1

∑
i 6=j

ρ2η,ij

+ 2 1
w2T

∑
t

h4tN
−1∑

i 6=j

ρ2η,ij

+

(
2
1

v2

∑
t

m2
tt

)
N−1

∑
i 6=j

ρ2η,ij

[
γ2,εη

(∑
`
q̃2η,i`q̃

2
η,j`

)
+
(
1 + 2ρ2η,ij

)]

+ρη,ij

(
4
1

vwT

∑
t

h2tmtt

)
N−1

∑
i 6=j

ρη,ij

(
γ2,εη

(∑
`
q̃3η,i`q̃η,j`

)
+ 3ρη,ij

)
+O

(
NT−2

)
.

As established earlier, the second term is O(T−1). Noting that 0 <
∑
t h

2
tmtt ≤ wT , and also

∑
` q̃

4
η,i` ≤ 1, we

have ∣∣∣∣∣∣
(∑

t h
2
tmtt

vwT

)2
γ22,εηN

−1∑
i 6=j

(∑
`
q̃4η,i`

)(∑
`
q̃4η,j`

)∣∣∣∣∣∣ ≤
(∑

t h
2
tmtt

vwT

)2
γ22,εηN = O

(
NT−2

)
.

In a similar manner, noting that (from Lemma 10)

0 <
1

v2

∑
t

m2
tt = O

(
T−1

)
,

1

v2wT

∑
t

∑
r

|hrhtmrrmtt| = O
(
T−1

)
,

1

v2wT

∑
t

∑
r

∣∣hrhtm2
rt

∣∣ = O
(
T−3/2

)
,

1

v2wT

∑
t

∑
r

∣∣h2tmrrmtr

∣∣ = O
(
T−3/2

)
,
2

vw2T

∑
t

∑
r

h3rhtmtt = O
(
T−1

)
,

and (from Lemma 14)∑
i6=j

ρ2η,ij = O (N) ,
∑
i6=j

ρ4η,ij = O (N) ,
∑
i 6=j

∣∣∣∑
`
q̃2η,i`q̃η,j`

∣∣∣ ∣∣∣∑
`
q̃3η,j`

∣∣∣ = O (N) ,
∑
i6=j

∣∣∣∑
`
q̃η,i`q̃

2
η,j`

∣∣∣ ∣∣∣∑
`
q̃3η,i`

∣∣∣ = O (N) ,

∑
i 6=j

∣∣ρη,ij∣∣ ∣∣∣∑
`
q̃3η,j`

∣∣∣ ∣∣∣∑
`
q̃3η,i`

∣∣∣ = O (N) ,
∑
i 6=j

[(∑
`
q̃η,i`q̃

2
η,j`

)2
+
(∑

`
q̃2η,i`q̃η,j`

)2]
= O (N) ,

∑
i 6=j

∣∣ρη,ij∣∣ ∣∣∣∑
`
q̃2η,i`q̃η,j`

∣∣∣ ∣∣∣∑
`
q̃η,i`q̃

2
η,j`

∣∣∣ = O (N) ,
∑
i6=j

∣∣ρη,ij∣∣ ∣∣∣∑
`
q̃3η,i`q̃η,j`

∣∣∣ = O (N) ,

and by assumption
∣∣∣γ1,εη ∣∣∣ ≤ K and

∣∣∣γ2,εη ∣∣∣ ≤ K, we have
N−1

∑
i 6=j

Cov
(
z2η,iXη,i, z

2
η,jXη,j

)
= N−1

∑
i 6=j

2ρ2η,ij +O
(
T−1

)
+O

(
NT−2

)
. (S.58)

S21



Using (S.55), (S.56), (S.57), and (S.58), we conclude
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as required, since the terms N−1
∑
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2
η,ij will cancel out.

Lemma 17 Consider the return regressions, (2), and suppose that Assumptions 1-4 hold. Let z2i = ξ
′
iHF ξi/wT >
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where

Ai =
γ̃′iV

′HFVγ̃i
wT

+ 2

(
ση,ii
σii

)1/2
γ̃′iV

′HF η̃i
wT

,

with γ̃i = (γ̃i1, γ̃i2, ..., γ̃ik)
′ = γi/σ

1/2
ii , and η̃i = ηi/σ

1/2
η,ii. Similarly,

Xi =
ξ′iMGξi

v
=

1

σii

u′i.MGui.
v

=

(
ση,ii
σii

Xη,i +Bi

)
, (S.60)

where
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and since 1− ση,ii/σii = γ′iγi/σii, then (after some algebra) we have

1√
N

N∑
i=1

z2i (1−Xi)−
1√
N

N∑
i=1

ση,ii
σii

z2η,i (1−Xη,i)

=

[(
ση,ii
σii

)
z2η,iXη,i +AiXη,i

] (
γ̃′iγ̃i

)
−
[
AiBi +

(
ση,ii
σii

)
z2η,iBi

]
+Ai (1−Xη,i)

= DN,1 +DN,2 +DN,3,

where

DN,1 =
1√
N

N∑
i=1

[(
ση,ii
σii

)
z2η,iXη,i +AiXη,i

] (
γ̃′iγ̃i

)
,

DN,2 = − 1√
N

N∑
i=1

[
AiBi +

(
ση,ii
σii

)
z2η,iBi

]
, and

DN,3 =
1√
N

N∑
i=1

Ai (1−Xη,i) .

Noting that 0 < ση,ii
σii
≤ 1 and supi |γ̃is| ≤ 1, we have

|DN,1| ≤
1√
N

N∑
i=1

(∣∣z2η,i∣∣+ |Ai|) |Xη,i| (γ̃′iγ̃i) .
S22



Also since HF = hh′, h = MF τT , and noting that for any conformable real symmetric positive semi-definite
matrices A and B, Tr (AB) ≤ Tr (A)λmax (B) ≤ Tr (A)Tr (B) (this result is repeatedly used below), we have
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, (S.61)

and therefore
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and taking expectations of both sides and noting that γ̃i and h are non-stochastic then
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and by Markov theorem DN,1 = Op
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≤ 1, note that

|AiBi| ≤
(
γ̃′iγ̃i

)2
λmax

(
v−1V′MGV

)
λmax

(
w−1T V′HFV

)
+2
(
γ̃′iγ̃i

)
λmax

(
w−1T V′HFV

) ∣∣∣∣ γ̃′iV′MGη̃i
v

∣∣∣∣
+2
(
γ̃′iγ̃i

)
λmax

(
v−1V′MGV

) ∣∣∣∣ γ̃′iV′HF η̃i
wT

∣∣∣∣
+4
γ̃′iV

′HF η̃iη̃
′
iMGVγ̃i

vwT

≤
(
γ̃′iγ̃i

)2
λmax

(
v−1V′MGV

)
λmax

(
w−1T V′HFV

)
+2
(
γ̃′iγ̃i

)
λmax

(
w−1T V′HFV

) ∣∣∣∣ γ̃′iV′MGη̃i
v

∣∣∣∣
+2
(
γ̃′iγ̃i

)
λmax

(
v−1V′MGV

) ∣∣∣∣ γ̃′iV′HF η̃i
wT

∣∣∣∣
+

4

vwT

(
γ̃′iγ̃i

) (
η̃′iMGVV′HF η̃i

)
,

and hence (again noting that η̃i and V are distributed independently and MGHF = MGMF τT τ
′
TMF = 0)

E |AiBi| ≤
(
γ̃′iγ̃i

)2
E
{[
Tr
(
v−1V′MGV

)] [
Tr
(
w−1T V′HFV

)]}
+2
(
γ̃′iγ̃i

)
E

[
λmax

(
w−1T V′HFV

) ∣∣∣∣ γ̃′iV′MGη̃i
v

∣∣∣∣]
+2
(
γ̃′iγ̃i

)
E

[
λmax

(
v−1V′MGV

) ∣∣∣∣ γ̃′iV′HF η̃i
wT

∣∣∣∣] ,
where

E

[
λmax

(
w−1T V′HFV

) ∣∣∣∣ γ̃′iV′MGη̃i
v

∣∣∣∣]
≤ E

[
λmax

(
w−1T V′HFV

) ∣∣∣∣ γ̃′iV′MGVγ̃i
v

∣∣∣∣1/2X1/2
η,i

]
≤

(
γ̃′iγ̃i

)1/2
E
(
X
1/2
η,i

)
E
[
Tr
(
w−1T V′HFV

)
Tr
(
v−1V′MGV

)1/2]
and

E

[
λmax

(
v−1V′MGV

) ∣∣∣∣ γ̃′iV′HF η̃i
wT

∣∣∣∣]
≤ E

[
λmax

(
v−1V′MGV

) ∣∣∣∣ γ̃′iV′HFVγ̃i
wT

∣∣∣∣1/2 zη,i
]

≤
(
γ̃′iγ̃i

)1/2
E (zη,i)E

[
Tr
(
v−1V′MGV

)
Tr
(
w−1T V′HFV

)1/2]
,
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so that

E |AiBi| ≤
(
γ̃′iγ̃i

)2
E
{[
Tr
(
v−1V′MGV

)] [
Tr
(
w−1T V′HFV

)]}
+2
(
γ̃′iγ̃i

)3/2
E
(
X
1/2
η,i

)
E
[
Tr
(
w−1T V′HFV

)
Tr
(
v−1V′MGV

)1/2]
+2
(
γ̃′iγ̃i

)3/2
E (zη,i)E

[
Tr
(
v−1V′MGV

)
Tr
(
w−1T V′HFV

)1/2]
.

Since
Tr
(
w−1T V′HFV

)
= w−1T

∑
`

∑
t

∑
s

hthsvt`vs`,

noting that all the elements of V are independent of each other by assumption, we have

E
[
Tr
(
w−1T V′HFV

)]2
= w−2T

∑
`

∑
`′

∑
t

∑
s

∑
t′

∑
s′

hthsht′hs′E (vt`vs`vt′`′vs′`′) .

= w−2T k
∑
t

h4tE
(
v4t`
)
+ w−2T k2

∑
t

h4t
[
E
(
v2t`
)]2

+w−2T k2
∑
t

∑
s

h2th
2
s

[
E
(
v2t`
)]2

+w−2T 2k
∑
t

∑
s

h2th
2
s

[
E
(
v2t`
)]2

= w−2T
∑
t

h4tk
[
E
(
v4t`
)
+ k
]
+ k (k + 2) , (S.62)

since
∑
t h

4
tw
−2
T = O(T−1), E

(
v2t`
)
= 1, and w−2T

∑
t

∑
s h

2
th

2
s = 1, which is bounded as E

(
v4s`
)
≤ K (by

assumption). Similarly, as
Tr
(
v−1V′MGV

)
= v−1

∑
`

∑
t

∑
s

mtsvt`vs`,

we have
E
[
Tr
(
v−1V′MGV

)]
= k,

E
[
Tr
(
v−1V′MGV

)2]
= v−2

∑
`

∑
`′

∑
t

∑
s

∑
t′

∑
s′

hthsht′hs′E (vt`vs`vt′`′vs′`′) . (S.63)

= v−2
∑
t

m2
ttk
[
E
(
v4t`
)
+ k
]
+ k (k + 2) ,

as v−2
∑
tm

2
tt ≤ v−2

∑
tmtt = v−1 and v−2

∑
t

∑
sm

2
ts = v−1, which is bounded. Using these results, we have

E
{[
Tr
(
v−1V′MGV

)] [
Tr
(
w−1T V′HFV

)]}
≤

(
E
{[
Tr
(
v−1V′MGV

)]2})1/2 (
E
{[
Tr
(
w−1T V′HFV

)]2})1/2 ≤ K,
E
(
X
1/2
η,i

)
E
[
Tr
(
w−1T V′HFV

)
Tr
(
v−1V′MGV

)1/2]
≤ E

(
X
1/2
η,i

)(
E
{[
Tr
(
w−1T V′HFV

)]2})1/2
k1/2 ≤ K

as E
(
X
1/2
η,i

)
≤ K since E (Xη,i) = 1,

E (zη,i)E
[
Tr
(
v−1V′MGV

)
Tr
(
w−1T V′HFV

)1/2]
≤ E (zη,i)

(
E
{[
Tr
(
v−1V′MGV

)]2})1/2
k1/2

≤ K

as E (zη,i) ≤ K since E
(
z2η,i
)
= 1, so that

E |AiBi| ≤ K
[(
γ̃′iγ̃i

)2
+
(
γ̃′iγ̃i

)3/2]
.

Further, as 0 < ση,ii
σii
≤ 1,

∣∣z2η,iBi∣∣ ≤ ∣∣z2η,i∣∣ ∣∣∣∣ γ̃′iV′MGVγ̃i
v

∣∣∣∣+ 2 ∣∣∣∣z2η,i γ̃′iV′MGη̃i
v

∣∣∣∣
≤ γ̃′iγ̃i

∣∣z2η,i∣∣ ∣∣∣∣λmax(V′MGV

v

)∣∣∣∣+ 2 ∣∣z2η,i∣∣ ∣∣∣∣ γ̃′iV′MGη̃i
v

∣∣∣∣
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and taking expectation we have

E
∣∣z2η,iBi∣∣ ≤ γ̃′iγ̃iE

(
z2η,i
)
E
[
Tr
(
v−1V′MGV

)]
+
(
γ̃′iγ̃i

)1/2 (
E
∣∣z2η,i∣∣2)1/2 [E (v−2η̃′iMGVV′MGη̃i

)]1/2
but as E

∣∣z2η,i∣∣2 is bounded (see Lemma 15), E [Tr (v−1V′MGV
)]
= k,

E
(
v−2η̃′iMGVV′MGη̃i

)
= v−2Tr

[
E
(
η̃iη̃

′
i

)
MGE

(
VV′

)
MG

]
= v−1,

we have
E
∣∣z2η,iBi∣∣ ≤ K [(γ̃′iγ̃i)+ (γ̃′iγ̃i)1/2] .

Thus

|DN,2| ≤
1√
N

N∑
i=1

(
|AiBi|+

∣∣z2η,iBi∣∣)
≤ 1√

N
K

N∑
i=1

[(
γ̃′iγ̃i

)2
+
(
γ̃′iγ̃i

)3/2
+ γ̃′iγ̃i +

(
γ̃′iγ̃i

)1/2]
= O(Nδγ−1/2).

Similarly, for DN,3,

|DN,3| ≤
1√
N

N∑
i=1

|Ai (1−Xη,i)| ≤
1√
N

N∑
i=1

(|Ai|+ |AiXη,i|) .

Noting 0 < ση,ii
σii
≤ 1 and HF = hh′,

E |Ai| ≤ E
∣∣w−1T γ̃′iV

′HFV′γ̃i
∣∣+ 2E ∣∣w−1T γ̃′iV

′HF η̃i
∣∣

≤
(
γ̃′iγ̃i

)
E
[
λmax

(
w−1T V′HFV

)]
+ 2

[
E
∣∣w−1T γ̃′iV

′HFVγ̃i
∣∣]1/2 (E ∣∣z2η,i∣∣)1/2

≤
(
γ̃′iγ̃i

)
E
[
Tr
(
w−1T V′HFV

)]
+ 2

(
γ̃′iγ̃i

)1/2 {
E
[
Tr
(
w−1T V′HFV

)]}1/2 (
E
∣∣z2η,i∣∣)1/2

≤ K
[(
γ̃′iγ̃i

)
+
(
γ̃′iγ̃i

)1/2]
,

as E
[
Tr
(
w−1T V′HFV

)]
= k and E

∣∣z2η,i∣∣ = E
(
z2η,i
)
= 1. Similarly, noting the independence between V and

ηi,

E |AiXη,i| ≤
(
γ̃′iγ̃i

)
E
[
Tr
(
w−1T V′HFV

)]
E (Xη,i)

+2
(
γ̃′iγ̃i

)1/2 [
E
(
X2
η,i

)]1/2 {
E
(
w−2η̃′iHFVV′HF η̃i

)}1/2
= K

[(
γ̃′iγ̃i

)
+
(
γ̃′iγ̃i

)1/2]
,

as E
(
v−2η̃′iHFVV′HF η̃i

)
E
(
X2
η,i

)
is bounded (by Lemma 15) and

E
(
w−2η̃′iHFVV′HF η̃i

)
= w−2Tr

[
E
(
η̃iη̃

′
i

)
HFE

(
VV′

)
HF

]
= w−2Tr

(
H2
F

)
= 1.

Thus,

|DN,3| ≤
1√
N

N∑
i=1

K
[(
γ̃′iγ̃i

)
+
(
γ̃′iγ̃i

)1/2]
= O(Nδγ−1/2).

Finally,

1√
N

N∑
i=1

(
1− ση,ii

σii

)
E
∣∣z2η,i (1−Xη,i)∣∣ ≤ 1√

N

N∑
i=1

(
γ̃′iγ̃i

) [(
E
∣∣z2η,i∣∣2)1/2 (E |1−Xη,i|2)1/2]

= O

(
1√
N

N∑
i=1

(
γ̃′iγ̃i

))
= O

(
Nδγ−1/2

)
,

as E
∣∣z2η,i∣∣2 ≤ K and E |Xη,i|2 ≤ K from Lemma 15. Therefore, we have

1√
N

N∑
i=1

z2i (1−Xi) =
1√
N

N∑
i=1

z2η,i (1−Xη,i) +Op
(
Nδγ−1/2

)
,

as required.
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Lemma 18 Consider the regression model (8), and suppose that Assumptions 1-4 hold. Under H0 : αi = 0, in
(2) for all i,

θ2N − (N − 1)ρ2N → 0 (S.64)

as N and T → ∞, so long as 0 < δγ < 1/2, and N/T 2 → 0, where θ2N , ρ
2
N , and δγ are defined by (29), (54)

and (6), respectively.

Proof. Theorem 1 ensures thatN−1/2
∑
i

(
z2i − 1

)
/
[
2(1 + (N − 1)ρ2N

]1/2 →d N (0, 1) for
[
2(1 + (N − 1)ρ2N

]
=

O (1). Then, Theorem 2 ensures that N−1/2
∑
i

(
t2i − z2i

)
→p 0, so long as δγ < 1/2 and N/T 2 → 0 as N and

T → ∞, which ensures that (from Lemma 21) V ar
(
N−1/2

∑
i t
2
i

)
=

[(
v
v−2

)2
2(v−1)
(v−4) +O

(
v−1

)] (
1 + θ2N

)
=

O (1) and V ar
(
N−1/2

∑
i t
2
i

)
−V ar

(
N−1/2

∑
i z

2
i

)
→ 0, since

(
v
v−2

)2
2(v−1)
(v−4) = 2+O

(
v−1

)
, which establishes

the required result.

Lemma 19 Consider the panel regression model (2), and suppose that Assumptions 1-4 hold. Denote the OLS
residuals from the regression of yit on G = (τT ,F) by ûi. = (ûi1, ûi2, ..., ûiT )

′, and denote the correlation
coeffi cient of ûi. and ûj. by

ρ̂ij =
û′i.ûj.

(û′i.ûi.)
1/2 (û′j.ûj.)1/2 . (S.65)

Then

ρ̂ij =

∑v
t=1 ζitζjt(∑v

t=1 ζ
2
it

)1/2 (∑v
t=1 ζ

2
jt

)1/2 , (S.66)

where v = T −m− 1,

ζit =

T∑
t′=1

ltt′ξit′ , (S.67)

ξit = uit/σ
1/2
ii , ltt′ is the (t, t

′) element of the T × T orthonormal matrix L (LL′ = IT ), defined by

LMGL′ =

(
Iv 0

0 0

)
. (S.68)

Then

E
(
ρ̂ij
)

= ρij +
aij
v
+O

(
v−2

)
, (S.69)

V ar
(
ρ̂ij
)

=
bij
v
+O

(
v−2

)
, (S.70)

where ρij = E
(
ζitζjt

)
= E

(
ξitξjt

)
,

aij = −
1

2
ρij(1− ρ

2
ij) +

1

8

{
3ρij [κij(4, 0) + κij(0, 4)]− 4 [κij(3, 1) + κij(1, 3)] + 2ρijκij(2, 2)

}
, (S.71)

bij = (1− ρ2ij)
2 +

1

4

{
ρ2ij [κij(4, 0) + κij(0, 4)]− 4ρij [κij(3, 1) + κij(1, 3)] + 2(2 + ρ2ij)κij(2, 2)

}
, (S.72)

and

κij(4, 0) = E(ζ4it)− 3, κij(0, 4) = E(ζ4it)− 3, (S.73)

κij(3, 1) = E(ζ3itζjt)− 3ρij , κij(1, 3) = E(ζitζ
3
jt)− 3ρij , (S.74)

κij(2, 2) = E(ζ2itζ
2
jt)− 2ρij − 1. (S.75)

Proof. First note that ûi. = [IT −G (G′G)
−1

G]ui. = MGui., and

ρ̂ij =
û′i.ûj.

(û′i.ûi.)
1/2 (û′j.ûj.)1/2 =

u′i.MGuj.

(u′i.MGui.)
1/2 (u′j.MGuj.

)1/2 .
Also, since MG is an (T × T ) idempotent matrix of rank v = T − m − 1, there exists an orthogonal T × T
transformation matrix L (LL′ = IT ), defined by (S.68). Hence, setting

ζi. = σ
−1/2
ii Lui., (S.76)

then ρ̂ij can be written equivalently in terms of the first v elements of ζi. = (ζi1, ζi2, ..., ζiT )
′ as

ρ̂ij =

∑v
t=1 ζitζjt(∑v

t=1 ζ
2
it

)1/2 (∑v
t=1 ζ

2
jt

)1/2 .
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Noting that

ζit = σ
−1/2
ii

T∑
t′=1

ltt′uit′ =

T∑
t′=1

ltt′ξit′ , (S.77)

it now follows that (under Assumption 4), E (ζit) = 0 and E
(
ζ2it
)
= 1, ρij = E

(
ζitζjt

)
, for all i,j, and t; and

for each i, ζit’s are independently distributed over t. Note that
∑T
t′=1 l

2
tt′ = 1, where ltt′ is the (t, t

′) element
of L. Now consider

E
(
ζ6it
)
= E

(
T∑
t′=1

ltt′ξit′

)6
, for t = 1, 2, ..., v, (S.78)

and recall that by Lemma 3, ξit are independent over t with, E(ξit) = 0, E(ξ2it) = 1, and E
(
ξ8it
)
< K < ∞.

Then application of Lemma 2 to (S.78) ensures that E
(
ζ6it
)
< K < ∞, uniformly over i and t, as required.

Results (S.69) and (S.70) now follow immediately from Proposition 1 in Bailey, Pesaran and Smith (2016).

Lemma 20 Consider ζit defined by ζit = σ
1/2
ii

∑T
t′=1 ltt′uit′ , where ltt′ is the (t, t

′) element of the orthonormal
matrix, L, defined by (S.68), and uit = γ′ivt + ηit. Let γ2,v = E

(
v4st
)
− 3, and γ2,εη = E

(
ε4η,it

)
− 3, and

suppose that Assumptions 1-4 hold. Then

σ−1ii σ
−1
jj E

(
ζ2itζ

2
jt

)
= γ2,v

(
T∑
r=1

l4tr

)(∑
s
γ2isγ

2
js

)
+ 2

(
γ′iγj

)2
+
(
γ′iγi

) (
γ′jγj

)
(S.79)

+
(
γ′iγi

)
ση,jj +

(
γ′jγj

)
ση,ii + 4

(
γ′iγj

)
ση,ij +

+γ2,εη

(
T∑
r=1

l4tr

)(∑
`
q2η,i`q

2
η,j`

)
+ 2σ2η,ij + ση,iiση,jj ,

and
1

Nv

∑N
i,j=1

∣∣E(ζ3itζjt) + E(ζitζ
3
jt)
∣∣ = O

(
v−1N2δγ−1

)
+O(v−1). (S.80)

Proof. Under Assumption 4, η̃it = σ
−1/2
ii ηit = σ

−1/2
ii q′η,iεη,t, where qη,i is the ith row of Qη. Also note that

q′η,iqη,j = ση,ij , for all i and j, and supj
∑N
i=1 |qη,ij | < K. Then using these results in (S.67) we have

ζit = σ
−1/2
ii

(
γ′idt,T + q′η,igt,T

)
,

where dt,T =
∑T
t′=1 ltt′vt′ = (d1,t,T , d2,t,T , ..., dk,t,T )

′, and gt,T =
∑T
t′=1 ltt′εη,t′ = (g1,t,T , g2,t,T , ..., gN,t,T )

′.
But since

∑T
t′=1 l

2
tt′ = 1,

∑T
t′=1 ltt′ lst′ = 0 for all t 6= s, vt ∼ IID(0, Ik) and εη,t ∼ IID(0, IN ) by assumption,

then it follows that dt,T ∼ IID(0, Ik), and gt,T ∼ IID(0, IN ). Since vst, for s = 1, 2, ..., k and εi,η,t, for
i = 1, 2, ..., N are assumed to have at least finite fourth order moments, then by Lemma 2 we also have
E(d4i,t,T ) < K and E(g4i,t,T ) < K. We now write ζit as

ζit = ait + bit,

where

ait = γ̃′idt,T =

k∑
s=1

γ̃isds,t,T , and bit = q̃′η,igt,T ,

γ̃i = γi/σ
1/2
ii , q̃η,i = qη,i/σ

1/2
ii ,

and hence

σii = γ′iγi + ση,ii, σ̃η,ii = ση,ii/σii ≤ 1,
E (ζit) = 0, E

(
ζ2it
)
= 1, q̃′η,iq̃η,i = σ̃η,ii ≤ 1, q̃′η,iq̃η,j = ση,ij/σ

1/2
ii σ

1/2
jj = σ̃η,ij .

It is clear that ait and bjt′ are distributed independently for all i, j, t and t
′. Then

E
(
ζ2itζ

2
jt

)
= E

[
(ait + bit)

2 (ajt + bjt)
2]

= E
[(
a2it + 2aitbit + b2it

) (
a2jt + 2ajtbjt + b2jt

)]
= E

(
a2ita

2
jt

)
+ E

(
a2it
)
E
(
b2jt
)
+ 4E (aitajt)E (bitbjt)

+E
(
a2jt
)
E
(
b2it
)
+ E

(
b2itb

2
jt

)
.

Also (using results in Lemma 6),

E (aitajt) = γ̃
′
iγ̃j , E (bitbjt) = q̃′η,iq̃η,j ,
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E
(
a2ita

2
jt

)
= γ2,d

(∑k

s=1
γ̃2isγ̃

2
js

)
+
(
γ̃′iγ̃i

) (
γ̃′j γ̃j

)
+ 2

(
γ̃′iγ̃j

)2
,

E
(
b2itb

2
jt

)
= γ2,g

(∑N

`=1
q̃2η,i`q̃

2
η,j`

)
+
(
q̃′η,iq̃η,i

) (
q̃′η,j q̃η,j

)
+ 2

(
q̃′η,iq̃η,j

)2
,

where γ2,d = E(d4s,t,T )− 3, and γ2,g = E(g4i,t,T )− 3. Hence,

E
(
ζ2itζ

2
jt

)
= γ2,d

(∑k

s=1
γ̃2isγ̃

2
js

)
+
(
γ̃′iγ̃i

) (
γ̃′j γ̃j

)
+ 2

(
γ̃′iγ̃j

)2
(S.81)

+
(
γ̃′iγ̃i

) (
q̃′η,j q̃η,j

)
+ 4

(
γ̃′iγ̃j

)
E
(
q̃′η,iq̃η,j

)
+
(
γ̃′j γ̃j

) (
q̃′η,iq̃η,i

)
+γ2,g

(∑N

`=1
q̃2η,i`q̃

2
η,j`

)
+
(
q̃′η,iq̃η,i

) (
q̃′η,j q̃η,j

)
+ 2

(
q̃′η,iq̃η,j

)2
,

Further we note that

E(d4s,t,T ) = E

(
T∑
r=1

ltrvsr

)4
=

T∑
r=1

T∑
r′=1

T∑
p=1

T∑
p′=1

ltrltr′ ltpltp′E(vsrvsr′vspvsp′)

=

T∑
r=1

l4trE(v
4
sr) + 3

T∑
r 6=p

l2trl
2
tpE(v

2
sr)E(v

2
sp)

=

T∑
r=1

l4trE(v
4
sr) + 3

(
T∑
r=1

l2tr

)[
E(v2sr)

]2 − 3 T∑
r=1

l4tr
[
E(v2sr)

]2
and since

∑T
r=1 l

2
tr = 1 and E(v

2
sr) = 1, we have

γ2,d = E(d4s,t,T )− 3 =
T∑
r=1

l4tr
[
E
(
v4sr
)
− 3
]
=

(
T∑
r=1

l4tr

)
γ2,v,

where γ2,v = E(v4sr)−3. Similarly, γ2,g =
(∑T

r=1 l
4
tr

)
γ2,εη , where γ2,εη = E

(
ε4η,it

)
−3. Then, the result (S.79)

follows by substituting these expressions for γ2,d and γ2,g in (S.81). Consider now E
(
ζ3itζjt

)
. Again using

results in Lemma 6, we have

E
(
a3itajt

)
= E

[(
d′t,T γ̃iγ̃

′
idt,T

) (
d′t,T γ̃iγ̃

′
jdt,T

)]
= γ2,dTr

[(
γ̃iγ̃

′
i

)
�
(
γ̃iγ̃

′
j

)]
+ 3

(
γ̃′iγ̃i

) (
γ̃′iγ̃j

)
E
(
b3itbjt

)
= E

[(
g′t,T q̃η,iq̃

′
η,igt,T

) (
g′t,T q̃η,iq̃

′
η,jgt,T

)]
= γ2,gTr

[(
q̃η,iq̃

′
η,i

)
�
(
q̃η,iq̃

′
η,j

)]
+ 3

(
q̃′η,iq̃η,i

) (
q̃′η,j q̃η,i

)
E
(
a2it
)
E (bjtbit) =

(
γ̃′iγ̃i

)
q̃′η,iq̃η,j ; E (aitajt)E

(
b2jt
)
= σ̃η,ii

(
γ̃′iγ̃j

)
where as before γ2,d = E(d4i,t,T )− 3,and γ2,g = E(g4i,t,T )− 3. Hence

E
(
ζ3itζjt

)
= γ2,d

k∑
s=1

γ̃3isγ̃js + 3
(
γ̃′iγ̃i

) (
γ̃′iγ̃j

)
+γ2,g

N∑
s=1

q̃3η,isq̃η,js + 3
(
q̃′η,iq̃η,i

) (
q̃′η,iq̃η,j

)
+3
(
γ̃′iγ̃i

)
q̃′η,iq̃η,j + 3σ̃η,ii

(
γ̃′iγ̃j

)
,

or since q̃′η,iq̃η,j = σ̃η,ij

E
(
ζ3itζjt

)
= γ2,d

k∑
s=1

γ̃3isγ̃js + 3
(
γ̃′iγ̃i

) (
γ̃′iγ̃j

)
+γ2,g

N∑
s=1

q̃3η,isq̃η,js + 3σ̃η,iiσ̃η,ij

+3
(
γ̃′iγ̃i

)
σ̃η,ij + 3σ̃η,ii

(
γ̃′iγ̃j

)
,

and ∣∣∣∣∣∑
i,j

E
(
ζ3itζjt

)∣∣∣∣∣ ≤ ∣∣γ2,d∣∣ k∑
s=1

∑
i,j

|γ̃is|
3
∣∣γ̃js∣∣+ 3∑

i,j

(
γ̃′iγ̃i

) ∣∣γ̃′iγ̃j∣∣+ 3σ̃η,ii∑
i,j

∣∣γ̃′iγ̃j∣∣
∣∣γ2,g∣∣ N∑

s=1

∑
i,j

|q̃η,is|3 |q̃η,js|+ 3
∑
i,j

σ̃η,ii |σ̃η,ij |+ 3
∑
i,j

(
γ̃′iγ̃i

)
|σ̃η,ij | .
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But γ̃′iγ̃j =
∑k
s=1 γ̃isγ̃js, and recall that

∣∣γ2,d∣∣ < K,
∣∣γ2,g∣∣ < K, supj

∑N
i=1 |q̃η,ij | < K, |γ̃is| ≤ 1, and σ̃η,ii ≤ 1.

Also

k∑
s=1

∑
i,j

|γ̃is|
3
∣∣γ̃js∣∣ ≤ k∑

s=1

(∑
i

|γ̃is|
)2

= O
(
N2δγ

)
,

∑
i,j

(
γ̃′iγ̃i

) ∣∣γ̃′iγ̃j∣∣ ≤ sup
i

(
γ̃′iγ̃i

) k∑
s=1

∑
i,j

|γ̃is|
∣∣γ̃js∣∣ = O

(
N2δγ

)
,

σ̃η,ii
∑
i,j

∣∣γ̃′iγ̃j∣∣ ≤ k∑
s=1

∑
i,j

|γ̃is|
∣∣γ̃js∣∣ = k∑

s=1

(∑
i

|γ̃is|
)2

= O
(
N2δγ

)
,

σ̃η,ij =
(
ση,ij/σ

1/2
η,iiσ

1/2
η,jj

)(σ1/2η,iiσ
1/2
η,jj

σ
1/2
ii σ

1/2
jj

)
= σ̃

1/2
η,iiσ̃

1/2
η,jjρη,ij ,

|σ̃η,ij | ≤
∣∣ρη,ij∣∣ , and by assumption ∑

i,j

∣∣ρη,ij∣∣ = O(N).

k∑
s=1

∑
i,j

|q̃η,is|3 |q̃η,js| ≤
k∑
s=1

∑
i,j

|q̃η,is|2 |q̃η,js| ≤
k∑
s=1

∑
i

|q̃η,js| < K

∑
i,j

σ̃η,ii |σ̃η,ij | ≤
∑
i,j

∣∣ρη,ij∣∣ = O(N),

∑
i,j

(
γ̃′iγ̃i

)
|σ̃η,ij | ≤ sup

i

(
γ̃′iγ̃i

)∑
i,j

|σ̃η,ij | = O(N).

Hence ∣∣∣∣∣∑
i,j

E
(
ζ3itζjt

)∣∣∣∣∣ ≤ O (N2δγ
)
+O(N),

and
N−1

∑
i,j

E
(
ζ3itζjt

)
= O

(
N2δγ−1

)
+O(1).

Similarly N−1
∑
i,j E

(
ζ3jtζit

)
= O

(
N2δγ−1

)
, and overall

1

Nv

∑N
i,j=1

∣∣E(ζ3itζjt) + E(ζitζ
3
jt)
∣∣ = O

(
v−1N2δγ−1

)
+O(v−1),

as required.

Lemma 21 Consider the regression model (8), and suppose that Assumptions 1-4 hold. Then for each i

E
(
t2i
)
=

v

v − 2 +O(v−3/2), (S.82)

and

V ar
(
t2i
)
=

(
v

v − 2

)2
2 (v − 1)
(v − 4) +O(v−1), (S.83)

where t2i is defined by (23), and v = T −m− 1.

Proof. Below we use matrices G, MF , MG, PG, HF , which are defined by (S.2) and (S.1), and also γ1,i =

E(ξ3it), γ2,i = E(ξ4it)−3, γ3,i = E(ξ5it)−10γ1,i, γ4,i = E(ξ6it)−10γ21,i−15γ2,i−15 for all t, where ξit = uit/σ
1/2
ii ,

and by assumption E(ξ6it) < K. Furthermore,(
τ ′TMF τT

)−1
= O(v−1). (S.84)

Using (23), we can write

t2i =
v

τ ′TMF τT

(
ξ′iHF ξi
ξ′iMGξi

)
, (S.85)

where ξi = (ξi1, ξi2, ..., ξiT )
′, with ξi ∼ IID(0, IT ) for all i (see Lemma 3). Using a slightly extended version of

Laplace approximation of moments of the ratio of quadratic forms by Lieberman (1994), that allows Γ defined
in Lemma 5 to be a positive semi-definite matrix, and substituting Φ = HF and Γ = MG into Lemma 5, we
have (conditional on F)

E
(
t2i
)
=

v

τ ′TMF τT

[
E (ξ′iHF ξi)

E (ξ′iMGξi)
+ ψi,1v

]
+O(v−2), (S.86)

S30



where

ψi,1v =

[
E(ξ′iHF ξi)κi,2
[E(ξ′iMGξi)]

3

]
−
[

κi,11
[E(ξ′iMGξi)]

2

]
,

κi,2 = E
[
(ξ′iMGξi)

2]− [E(ξ′iMGξi)
]2
,

and
κi,11 = E[(ξ′iHF ξi)

(
ξ′iMGξi

)
]− E(ξ′iHF ξi)E(ξ

′
iMGξi).

Using Lemmas 11 and 12, it is easily seen that

v

τ ′TMF τT

E (ξ′iHF ξi)

E (ξ′iMGξi)
= 1

and

vψi,1v
τ ′TMF τT

=
v

τ ′TMF τT

(
E(ξ′iHF ξi)κi,2
[E(ξ′iMGξi)]

3
− κi,11
[E(ξ′iMGξi)]

2

)
=

v

τ ′TMF τT

(
(τ ′TMF τT )

[
γ2,iTr (MG �MG) + 2v

]
v3

−
γ2,iTr (MG �HF )

v2

)

=
2

v
+ γ2,iKv,

where

Kv =
1

v

[
Tr (MG �MG)

v
− Tr (MG �HF )

τ ′TMF τT

]
. (S.87)

Noting that MG = IT − PG with PG = G (G′G)
−1

G′, where G = (F, τT ), the first term of (S.87) can be
written as

Tr (MG �MG)

v
=

1

v
Tr [(IT −PG)� (IT −PG)] (S.88)

=
1

v
[T − 2Tr (PG) + Tr (PG �PG)] = 1−

Tr (PG)

v
+
Tr (PG �PG)

v
.

Similarly, for the second term of (S.87) we have

Tr (MG �HF )

τ ′TMF τT
=

1

τ ′TMF τT
Tr [(IT −PG)�HF ] (S.89)

=
1

τ ′TMF τT
[Tr (HF )− Tr (PG �HF )] = 1−

Tr (PG �HF )

τ ′TMF τT
.

Substituting (S.88) and (S.89) into (S.87), then using Tr (PG �PG) = O(1) and Tr (PG �HF ) = O(v1/2),
which are established by (S.23) and (S.24) in Lemma 10, we have

Kv =
1

v3/2
v1/2Tr (PG �HF )

τ ′TMF τT
+
1

v2
Tr (PG �PG)−

1

v2
Tr (PG) =

S0v
v3/2

+O(v−2),

where

S0v =
v1/2Tr (PG �HF )

(τ ′TMF τT )
,

which is O(1) by (S.24) and (S.84), so that

E
(
t2i
)
= 1 +

2

v
+ γ2,i

S0v
v3/2

+O(v−2). (S.90)

However, since
v

v − 2 −
(
1 +

2

v

)
=

4

v (v − 2) = O(v−2),

and using Lemma 12 ensures that the three conditions in Lieberman’s lemma are satisfied. Result in Lieberman
(1994; p.683) now implies that the last term can be rewritten as v−2W0,iv, where W0,iv is a function of γ`,i, F,
and v, for ` = 1, 2, 3, 4. Since under Assumption 4, supi |γ`,i| ≤ K <∞, for ` = 1, 2, 3, 4, all i, then

E
(
t2i
)
=

v

v − 2 + γ2,i
S0v
v3/2

+
W0,iv

v2
=

v

v − 2 +O(v−3/2), (S.91)

which establishes (S.82). To prove (S.83), we first note that

E
(
t4i
)
=

v2

(τ ′TMF τT )
2E

[(
ξ′iHF ξi
ξ′iMGξi

)2]
. (S.92)
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But by Lemmas 5 and 11 we have

E
(
t4i
)
=

v2

(τ ′TMF τT )
2

E
[
(ξ′iHF ξi)

2
]

[E (ξ′iMGξi)]
2 +O(v−1)

 = 3 +
γ2,iTr (HF �HF )

(τ ′TMF τT )
2 +O(v−1). (S.93)

Since Tr (HF �HF ) = O(v) by Lemma 11, Lemma 5 implies that the last two terms can be rewritten as
v−1W1,iv, whereW1,iv is a function of γ`,i, F, and v, with ` = 1, 2, 3, 4. Again under Assumption 2, supi |γ`,i| ≤
K <∞, for ` = 1, 2, 3, 4 and all i, we obtain

E
(
t4i
)
= 3 +O(v−1). (S.94)

Using (S.91) and (S.94), and noting that[
3−

(
1 +

2

v

)2]
−
(

v

v − 2

)2
2 (v − 1)
(v − 4) = O(v−1),

then for each i we have

V ar
(
t2i
)
= E

(
t4i
)
−
[
E
(
t2i
)]2

=

(
v

v − 2

)2
2 (v − 1)
(v − 4) +O(v−1),

which completes the proof.

Lemma 22 Consider the regression model (2), and let z2i,a = α̂2iwT /σii, where wT = τ
′
TMF τT , HF and MF

are defined by (S.2), and α̂i is the OLS estimate of αi given by (11). Suppose that Assumptions 1-4 hold, and
N−1Tr

(
R2
)
is bounded in N , where R =

(
ρij
)
. Then under the local alternatives defined by (61)

N−1/2
N∑
i=1

(
z2i,a − 1

)
→d N(φ

2, 2ω2), (S.95)

as N →∞ and T →∞, jointly, where

φ2 = lim
N→∞

1

N

N∑
i=1

ς2i
σii

, and ω2 = lim
N→∞

N−1Tr
(
R2) = 1 + lim

N→∞
(N − 1)ρ2N ,

σij = E(uitujt), Corr(uitujt) = ρij , and ρ
2
N is defined by (54).

Proof. Using (11) and (12), we first note that

z2i,a =
(
w
1/2
T α̃i + w

−1/2
T τ ′TMF ξi

)2
,

where ξi is defined by (34), and α̃i = αi/σ
1/2
ii , and under (61)

α̃i =
ς̃i

N1/4v1/2
, (S.96)

where ς̃i = ςi/σ
1/2
ii are given and bounded. Then

z2i,a = z2i + wT α̃
2
i + 2α̃iτ

′
TMF ξi, (S.97)

where z2i = ξ
′
iHF ξi/wT . Hence

1√
N

N∑
i=1

(
z2i,a − 1

)
=

1√
N

N∑
i=1

(
z2i − 1

)
+ φ2NT + 2bNT , (S.98)

where

φ2NT =
wT√
N

N∑
i=1

α̃2i =
wT
v

(
N−1

N∑
i=1

ς̃2i

)
, (S.99)

and

bNT =
1

v1/2N3/4

N∑
i=1

ς̃iτ
′
TMF ξi. (S.100)

Also, for given values of |ςi| < K, φ2NT ≥ 0, and we have

lim
N,T→∞

(
φ2NT

)
= φ2 = lim

N→∞

(
1

N

N∑
i=1

ς̃2i

)
≥ min

i
(1/σii) lim

N→∞

(
1

N

N∑
i=1

ς2i

)
. (S.101)
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Since σii > 0, then φ2 > 0, if N−1
∑N
i=1 ς

2
i tends to strictly positive limit. Consider now bNT , and note that

for given values of ςi we have
S1

bNT =
1

v1/2N3/4

N∑
i=1

ς̃iτ
′
TMF ξi =

1

v1/2N3/4

N∑
i=1

ς̃iτ
′
TMF

(
Vγi + ηi

σ
1/2
ii

)

=
1

v1/2N3/4

N∑
i=1

ς̃iτ
′
TMFVγ̃i +

1

v1/2N3/4

N∑
i=1

(
ση,ii
σii

)1/2
ς̃iτ
′
TMF η̃i,

b1,NT + b2,NT ,

where γ̃i = γi/σ
1/2
ii , and η̃i = ηi/σ

1/2
η,ii. For given values of ς̃i, it is easily seen that E (b1,NT ) = 0, and

V ar (b1,NT ) =
1

vN3/2

N∑
i=1

N∑
j=1

ς̃iς̃jτ
′
TMFE

(
Vγ̃iγ̃

′
jV
′)MF τT ,

=
1

vN3/2

N∑
i=1

N∑
j=1

ς̃iς̃j γ̃
′
jMF τT τ

′
TMF γ̃i =

1

vN3/2

N∑
i=1

N∑
j=1

ς̃iς̃j γ̃
′
jMF τT τ

′
TMF γ̃i

≤ λmax (MF τT τ
′
TMF )

vN3/2

N∑
i=1

N∑
j=1

ς̃iς̃j γ̃
′
j γ̃i ≤

(wT
v

)
N−3/2

(
N∑
i=1

ς̃iγ̃i

)(
N∑
j=1

ς̃j γ̃j

)′
.

However,
∣∣∣∑N

i=1 ς̃iγ̃i

∣∣∣ ≤ Kk sups∑N
i=1 |γ̃is| = O

(
Nδγ

)
, and since wT /v = O(1), then V ar (b1,NT ) = O

(
N2δγ−3/2

)
,and

b1,NT →p 0, if δγ < 3/4. Similarly, E (b2,NT ) = 0, and

V ar (b2,NT ) =
1

vN3/2

N∑
i=1

N∑
j=1

(
ση,ii
σii

ση,jj
σjj

)1/2
ς̃iς̃jτ

′
TMFE

(
η̃iη̃

′
j

)
MF τT

=
1

vN3/2

N∑
i=1

N∑
j=1

(
ση,ii
σii

ση,jj
σjj

)1/2
ρη,ij ς̃iς̃jτ

′
TMF τT

=
(wT
v

) 1

N3/2

N∑
i=1

N∑
j=1

(
ση,ii
σii

ση,jj
σjj

)1/2
ρη,ij ς̃iς̃j

Hence

E
(
b2NT

)
=
τ ′TMF τ

N3/2v

N∑
i=1

N∑
j=1

ςiςjρij

σ
1/2
ii σ

1/2
jj

.

But since |ςi| < K, and 0 < σii < K, for all i, and τ ′TMF τ = O(v), then

V ar (b2,NT ) ≤ K
(

1

N3/2

N∑
i=1

N∑
j=1

∣∣ρij∣∣
)
≤ K

(
1

N1/2
sup
i

N∑
j=1

∣∣ρij∣∣
)
= O

(
Nδγ−1/2

)
,

and V ar (b2,NT )→ 0, if δγ < 1/2. Hence, bNT →p 0, and in view of (S.98) 1√
N

∑N
i=1

(
z2i,a − 1

)
and 1√

N

∑N
i=1

(
z2i − 1

)
+

φ2 will have the same asymptotic distributions as N and T → ∞, jointly and mN = o(N1/2). But in
view of (53), 1√

N

∑N
i=1

(
z2i − 1

)
→d N(0, 2ω2), and therefore it also follows that under local alternatives

1√
N

∑N
i=1

(
z2i,a − 1

)
→d N(φ

2, 2ω2).

Lemma 23 Consider the regression model (2), and let z2i,a = wT α̂
2
i /σii, where wT = τ

′
TMF τT , HF and MF

are defined by (S.2), and α̂i is the OLS estimate of αi given by (11). Suppose that Assumptions 1-4 hold, and
N−1Tr

(
R2
)
is bounded in N , where R =

(
ρij
)
. Then under the local alternatives defined by (61)

SNT = N−1/2
N∑
i=1

(
z2i,a − t2i

)
→p 0,

if N/T 2 → 0 and 0 ≤ δγ < 1/2, as N →∞ and T →∞, jointly.

Proof. As with the proof of Theorem 2, we first note that

z2i,a − t2i =
wT α̂

2
i

σii
− wT α̂

2
i

v−1y′i.MGy′i.
= z2i,a

(
1− 1

Xi

)
,

S1The same results follow if ςi are random but distributed independently of ξi.
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where Xi = ξ′iMGξi/v, v = T −m− 1, ξit = uit/σ
1/2
ii . Using (S.97), we note that

z2i,a = z2i + gi,

gi = wT α̃
2
i + 2α̃iτ

′
TMF ξi

where α̃i = ς̃i
N1/4v1/2

, and ς̃i = ςi/σ
1/2
ii . Consider

SNT = N−1/2
N∑
i=1

[
z2i,a

(
1− 1

σ−1ii σ̃ii

)]
.

Write Xi = σ−1ii σ̃ii and note that by assumption σii > 0, and by construction only securities with σ̃ii > c > 0
are included in the Ĵα test. Hence, for all i = 1, 2, ..., N we have Xi > 0, and (A.18) can be written as

SNT = N−1/2
N∑
i=1

z2i,a

[
(1−Xi) +

(1−Xi)2

Xi

]
= S1,NT + S2,NT ,

where

S1,NT = N−1/2
N∑
i=1

z2i,a (1−Xi) ,

and

S2,NT = N−1/2
N∑
i=1

z2i,a (1−Xi)2

Xi
.

But since Xi > c > 0, and z2i,a (1−Xi)2 ≥ 0, then

|S2,NT | ≤ c−1N−1/2
N∑
i=1

z2i,a (1−Xi)2 ,

and
E |S2,NT | ≤ c−1N1/2 sup

i
E
[
z2i,a (1−Xi)2

]
.

E
[
z2i,a (1−Xi)2

]
≤ E

∣∣z2i (1−Xi)2∣∣+ E
∣∣gi (1−Xi)2∣∣ . (S.102)

From (A.24) we have

E
[
z2i (1−Xi)2

]
= O

(
1

v

)
, (S.103)

uniformly across i. Next,

E
∣∣gi (1−Xi)2∣∣ ≤ wT α̃2iE [(1−Xi)2]+ 2E ∣∣α̃iτ ′TMF ξi (1−Xi)

2
∣∣ ,

but by Lemma 11 we have
E
[
(1−Xi)2

]
= E

(
X2
i

)
− 1 = O(v−1),

as E
[
(ξ′iMGξi)

2
]
= v2 +O (v), so that

wT α̃
2
iE
[
(1−Xi)2

]
= O(α̃2i ).

Next

E
∣∣α̃iτ ′TMF ξi (1−Xi)

2
∣∣ ≤ |α̃i|

[
E
(
ξ′iHF ξi

)]1/2 {
E
[
(1−Xi)4

]}1/2
= |α̃i|w1/2T

{
E
[
(1−Xi)4

]}1/2
.

Noting that, since, by Lemma 11, E
[
(ξ′iMGξi)

r]
= vr + O

(
vr−1

)
and E (ξ′iMGξi) = v, we have E (Xr

i ) =

1 +O
(
v−(r−1)

)
for r = 2, 3, 4 and E (Xi) = 1 uniformly over i,

E(1−Xi)4 = E
(
X4
i

)
− 4E

(
X3
i

)
+ 6E

(
X2
i

)
− 4E (Xi) + 1 = O(v−1).

Thus, E
∣∣α̃iτ ′TMF ξi (1−Xi)

2
∣∣ = O (|α̃i|) = O

(
N−1/4v−1/2

)
and

E
∣∣gi (1−Xi)2∣∣ = O

(
|α̃i|2

)
+O (|α̃i|) = O (|α̃i|) = O

(
N−1/4v−1/2

)
. (S.104)

Substituting (S.103) and (S.104) into (S.102), we have

E
[
z2i,a (1−Xi)2

]
= O

(
1

v

)
+O

(
N−1/4v−1/2

)
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uniformly across i, so that

E |S2,NT | ≤ c−1N1/2 sup
i
E
[
z2i,a (1−Xi)2

]
= O

(√
N

v

)
+O

(
N1/4

v1/2

)
.

By Markov inequality we have S2,NT →p 0, so long as N/T 2 → 0. Therefore, to establish SNT →p 0, it is
suffi cient to show that S1,NT →p 0. Now

S1,NT = N−1/2
N∑
i=1

z2i,a (1−Xi)

= N−1/2
N∑
i=1

z2i (1−Xi)−N−1/2
N∑
i=1

gi (Xi − 1) .

Consider

N−1/2
N∑
i=1

gi (Xi − 1) =
(wT
v

)
N−1

N∑
i=1

ς̃2i (Xi − 1) + 2v−1/2N−3/4
N∑
i=1

ς̃iτ
′
TMF ξi (Xi − 1) . (S.105)

By (S.60), Xi =
ση,ii
σii

Xη,i +Bi, where Bi =
γ̃′iV

′MGVγ̃i
v

+ 2
(
ση,ii
σii

)1/2
γ̃′iV

′MGη̃i
v

, and we have

N−1/2
N∑
i=1

ς̃2i (Xi − 1) = KN−1/2
N∑
i=1

ς̃2i

[
Xη,i − 1 +

(
ση,ii
σii
− 1
)
Xη,i +Bi

]

= KN−1/2
N∑
i=1

ς̃2i
[
(Xη,i − 1)−

(
γ̃′iγ̃i

)
Xη,i +Bi

]
.

First, as supi |ς̃i| ≤ K and 0 < ση,ii
σii
≤ 1,

N−1/2
N∑
i=1

E
∣∣ς̃2iBi∣∣ ≤ KN−1/2 N∑

i=1

E |Bi| ,

but

N−1/2
N∑
i=1

E |Bi| ≤ KN−1/2
N∑
i=1

∣∣v−1γ̃′iV′MGVγ̃i
∣∣+ 2KN−1/2 N∑

i=1

∣∣v−1γ̃′iV′MGη̃i
∣∣

≤ KN−1/2
N∑
i=1

(
γ̃′iγ̃i

)
E
∣∣Tr (v−1V′MGV

)∣∣
+2KN−1/2

N∑
i=1

[
E
(
v−2γ̃′iV

′MGη̃iη̃
′
iMGVγ̃i

)]1/2
= KN−1/2

N∑
i=1

k
(
γ̃′iγ̃i

)
+ 2v−1k

(
γ̃′iγ̃i

)1/2
= O

(
Nδγ−1/2

)
,

since E (V′V) = Ik, V and η̃i are independent, E
∣∣Tr (v−1V′MGV

)∣∣ = k and

E
(
v−2γ̃′iV

′MGη̃iη̃
′
iMGVγ̃i

)
≤ v−2

(
γ̃′iγ̃i

)
Tr
[
E
(
V′MGη̃iη̃

′
iMGV

)]
= v−2

(
γ̃′iγ̃i

)
Tr (MG) = v−1

(
γ̃′iγ̃i

)
.

Similarly, noting E |Xη,i| = E (Xη,i) = 1,

N−1/2
N∑
i=1

E
∣∣ς̃2i (γ̃′iγ̃i)Xη,i∣∣ ≤ KN−1/2

N∑
i=1

(
γ̃′iγ̃i

)
E |Xη,i|

= KN−1/2
N∑
i=1

(
γ̃′iγ̃i

)
= O

(
Nδγ−1/2

)
.

Hence,

KN−1/2
N∑
i=1

ς̃2i (Xi − 1) = KN−1/2
N∑
i=1

ς̃2i (Xη,i − 1) +Op
(
Nδγ−1/2

)
.
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Next, E
[
N−1/2

∑N
i=1 ς̃

2
i (Xη,i − 1)

]
= 0 and

E


[
N−1/2

N∑
i=1

ς̃2i (Xη,i − 1)
]2 = N−1

N∑
i=1

N∑
j=1

ς̃2i ς̃
2
jE (Xη,iXη,j − 1) .

Noting E (Xη,iXη,j) = 1 +
2ρ2η,ij
v

+ γ2,εη

(∑
tm

2
tt

v2

)∑N
`=1 q̃

2
η,i`q̃

2
η,j` (from (S.43)), we have

N−1
N∑
i=1

N∑
j=1

ς̃2i ς̃
2
j

[
2ρ2η,ij
v

+ γ2,εη

(∑
tm

2
tt

v2

) N∑
`=1

q̃2η,i`q̃
2
η,j`

]
,

but
∑N
`=1 q̃

2
η,i`q̃

2
η,j` ≤ 1 and ρ2η,ij ≤ 1, for all i, j, and also

∑
tm

2
tt ≤

∑
tmtt = v, we have

E


[
N−1/2

N∑
i=1

ς̃2i (Xη,i − 1)
]2 ≤ N−1

N∑
i=1

N∑
j=1

v−1ς̃2i ς̃
2
j

(
2 +

∣∣∣γ2,εη ∣∣∣)
= O (N/v) .

Therefore, KN−1/2
∑N
i=1 ς̃

2
i (Xη,i − 1) = Op

(√
N/v

)
. Thus,

(wT
v

)
N−1

N∑
i=1

ς̃2i (Xη,i − 1) = Op
(
Nδγ−1

)
+Op

(
v−1/2

)
. (S.106)

Next, using (S.60) and noting ξi = Vγ̃i +
(
ση,ii
σii

)1/2
ηi we have

N−3/4
N∑
i=1

v−1/2ς̃iτ
′
TMF ξi (Xi − 1)

= N−3/4
N∑
i=1

v−1/2ς̃iτ
′
TMF

[
Vγ̃i +

(
ση,ii
σii

)1/2
η̃i

] [
(Xη,i − 1)−

(
γ̃′iγ̃i

)
Xη,i +Bi

]
.

Noting supi |ς̃i| ≤ K, v−1Tr [E (V′HFV)] = k (wT /v), MF τT = h, HF = hh′ and E |Xη,i|2 ≤ K by (S.43),
we have

N−3/4
N∑
i=1

E
∣∣∣v−1/2ς̃iτ ′TMFVγ̃i (Xη,i − 1)

∣∣∣ ≤ N−3/4K

N∑
i=1

E
∣∣∣v−1/2τ ′TMFVγ̃i (Xη,i − 1)

∣∣∣
≤ N−3/4K

N∑
i=1

(
γ̃′iγ̃i

)1/2 {
v−1Tr

[
E
(
V′HFV

)]}1/2 (
E |Xη,i − 1|2

)1/2
≤ KN−3/4

N∑
i=1

(
γ̃′iγ̃i

)1/2(kwT
v

)1/2
= O

(
Nδγ−3/4

)
.

Similarly

N−3/4
N∑
i=1

(
γ̃′iγ̃i

)
E
∣∣∣v−1/2ς̃iτ ′TMFVγ̃iXη,i

∣∣∣ ≤ N−3/4K
N∑
i=1

(
γ̃′iγ̃i

)3/2 {
v−1Tr

[
E
(
V′HFV

)]}1/2 (
E |Xη,i|2

)1/2
≤ KN−3/4

N∑
i=1

(
γ̃′iγ̃i

)3/2(kwT
v

)1/2
= O

(
Nδγ−3/4

)
.

N−3/4
N∑
i=1

E
∣∣∣v−1/2ς̃iτ ′TMFVγ̃iBi

∣∣∣ ≤ KN−3/4
N∑
i=1

E
∣∣∣v−3/2τ ′TMFVγ̃iγ̃

′
iV
′MGVγ̃i

∣∣∣
+2KN−3/4

N∑
i=1

E
∣∣∣v−3/2τ ′TMFVγ̃iγ̃

′
iV
′MGη̃i

∣∣∣ .
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First, by (S.63), noting that E
{[
v−1Tr (V′MGV)

]2}
= v−2

∑
tm

2
ttk
[
E
(
v4t`
)
+ k
]
+ k (k + 2) ≤ K, we have

N−3/4
N∑
i=1

E
∣∣∣v−3/2τ ′TMFVγ̃iγ̃

′
iV
′MGVγ̃i

∣∣∣
≤ N−3/4

N∑
i=1

{
E
∣∣v−1γ̃′iV′HFVγ̃i

∣∣}1/2 {E ∣∣v−1γ̃′iV′MGVγ̃i
∣∣2}1/2

≤ N−3/4
N∑
i=1

(
γ̃′iγ̃i

)1/2 {
E
∣∣v−1Tr (V′HFV

)∣∣}1/2 (γ̃′iγ̃i){E ([v−1Tr (V′MGV
)]2)}1/2

≤ KN−3/4
N∑
i=1

(
γ̃′iγ̃i

)3/2(kwT
v

)1/2
= O

(
Nδγ−3/4

)
.

Similarly

N−3/4
N∑
i=1

E
∣∣∣v−3/2τ ′TMFVγ̃iγ̃

′
iV
′MGη̃i

∣∣∣
≤ N−3/4

N∑
i=1

(
E
∣∣v−1γ̃′iV′HFVγ̃i

∣∣)1/2 (E ∣∣v−2γ̃′iV′MGη̃iη̃
′
iMGV′γ̃i

∣∣)1/2
≤ N−3/4

N∑
i=1

(
γ̃′iγ̃i

)1/2 (
E
∣∣v−1Tr (V′HFV

)∣∣)1/2 (γ̃′iγ̃i)1/2 {v−2Tr [E (VV′
)
MGE

(
η̃iη̃

′
i

)
MG

]}1/2
= N−3/4

N∑
i=1

(
γ̃′iγ̃i

) [
k
(wT
v

)
+ v−1

]1/2
= O

(
v−1/2Nδγ−3/4

)
.

Next, noting that |ς̃i| < K, 0 < ση,ii
σii
≤ 1, E

∣∣z2η,i∣∣ = 1 and E |Xη,i − 1|2 ≤ K, we have
N−3/4

N∑
i=1

E

∣∣∣∣∣v−1/2ς̃iτ ′TMF

(
ση,ii
σii

)1/2
η̃i (Xη,i − 1)

∣∣∣∣∣ ≤ N−3/4K

N∑
i=1

E
∣∣∣v−1/2τ ′TMF η̃i (Xη,i − 1)

∣∣∣
≤ N−3/4K

N∑
i=1

{(wT
v

)
E
∣∣z2η,i∣∣}1/2 (E |Xη,i − 1|2)1/2

= O
(
N−1/2

)
.

Similarly

N∑
i=1

(
γ̃′iγ̃i

)
E

∣∣∣∣∣v−1/2ς̃iτ ′TMF

(
ση,ii
σii

)1/2
η̃iXη,i

∣∣∣∣∣ ≤ N−3/4K

N∑
i=1

(
γ̃′iγ̃i

) [(wT
v

)
E
∣∣z2η,i∣∣]1/2 (E |Xη,i|2)1/2

≤ KN−3/4
N∑
i=1

(
γ̃′iγ̃i

) (wT
v

)1/2
= O

(
Nδγ−3/4

)
.

N−3/4
N∑
i=1

E

∣∣∣∣∣v−1/2ς̃iτ ′TMF

(
ση,ii
σii

)1/2
η̃iBi

∣∣∣∣∣ ≤ KN−3/4
N∑
i=1

E
∣∣∣v−3/2τ ′TMF η̃iγ̃

′
iV
′MGVγ̃i

∣∣∣
+2KN−3/4

N∑
i=1

E
∣∣∣v−3/2τ ′TMF η̃iγ̃

′
iV
′MGη̃i

∣∣∣ .
First, by (S.63), noting that E

([
v−1Tr (V′MGV)

]2)
= v−2

∑
tm

2
ttk
[
E
(
v4t`
)
+ k
]
+ k (k + 2) ≤ K, we have

N−3/4
N∑
i=1

E
∣∣∣v−3/2τ ′TMF η̃iγ̃

′
iV
′MGVγ̃i

∣∣∣
≤ N−3/4

N∑
i=1

[(wT
v

)
E
∣∣z2η,i∣∣]1/2 (E ∣∣v−1γ̃′iV′MGVγ̃i

∣∣2)1/2
≤ N−3/4

N∑
i=1

[(wT
v

)
E
∣∣z2η,i∣∣]1/2 (γ̃′iγ̃i) (E {[v−1Tr (V′MGV

)]2})1/2
≤ KN−3/4

N∑
i=1

(
γ̃′iγ̃i

) (wT
v

)1/2
= O

(
Nδγ−3/4

)
.
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N−3/4
N∑
i=1

E
∣∣∣v−3/2τ ′TMF η̃iγ̃

′
iV
′MGη̃i

∣∣∣
≤ N−3/4

N∑
i=1

[(wT
v

)
E
∣∣z2η,i∣∣]1/2 (E ∣∣v−2γ̃′iV′MGη̃iη̃

′
iMGV′γ̃i

∣∣)1/2
≤ N−3/4

N∑
i=1

{(wT
v

)
E
∣∣z2η,i∣∣}1/2 (γ̃′iγ̃i)1/2 (E {v−2Tr [E (VV′

)
MGE

(
η̃iη̃

′
i

)
MG

]})1/2
≤ KN−3/4

N∑
i=1

(
γ̃′iγ̃i

)1/2 (wT
v

)1/2
v−1 = O

(
v−1/2Nδγ−3/4

)
.

To sum, we have

N−3/4
N∑
i=1

v−1/2ς̃iτ
′
TMF ξi (Xi − 1) = O

(
Nδγ−3/4

)
+O

(
N−1/2

)
. (S.107)

Substituting the results (S.106) and (S.107) into (S.105),

N−1/2
N∑
i=1

gi (Xi − 1) = O
(
Nδγ−3/4

)
+O

(
N−1/2

)
+O

(
v−1/2

)
.

Finally, by applying Theorem 2,

N−1/2
N∑
i=1

z2i (1−Xi) = Op
(
Nδγ−1/2

)
+Op

(
T−1/2

)
+Op(

√
N/T ),

thus,

S1,NT = Op
(
Nδγ−1/2

)
+Op(

√
N/T ) +Op

(
T−1/2

)
+Op

(
N−1/2

)
,

which establishes the required result.
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M1 Monte Carlo Supplement

M1.1 Simulating multivariate non-Gaussian random variates

The objective is to generate N random variables ui, i = 1, 2, ..., N such that (in population) E(ui) = 0,
E(u2i ) = σii, E(u3i ) = m3i, E(u4i ) = m4i and E(uiuj) = ρij , i 6= j for i, j = 1, 2, ...., N .

The problem of generating multivariate non-normal random variables have been addressed in the
literature by Vale and Maurelli (1983) and further discussed by Harwell and Serlin (1989) and Headrick
and Sawilowsky (1999). Following Fleishman (1978), Vale and Maurelli (1983, VM) propose generating
ui as,

ui = ai + biεi + ciε
2
i + diε

3
i , i = 1, 2, ..., N,

where εi ∼ IIDN(0, 1) and E(εiεj) = ρε,ij . The unknown parameters ai,bi, ci, di, ρε,ij are obtained
using the following relationships (see equations (2)-(5) in VM)

ai + ci = 0, (M.1)

b2i + 6bidi + 2c2i + 15d2i = σii, (M.2)

2ci(b
2
i + 24bidi + 105d2i + 2) = m3i, (M.3)

24[bidi + c2i (1 + b2i + 28bidi) + d2i (12 + 48bidi + 141c2i + 225d2i )] = m4i, (M.4)

for i = 1, 2, ..., N , and (see equation (11) in VM)

ρij = ρε,ij(bibj + 3bidj + 3dibj + 9didj) + ρ2ε,ij(2cicj) + ρ3ε,ij(6didj), (M.5)

for i 6= j = 1, 2, ..., N.
The VM procedure is shown to work reasonably well for non-extreme values of skewness and kurtosis

and when N is small. But even if one follows VM’s two step procedure where the equations (M.1)-(M.4)
are solved first, the procedure still requires solving a large number of cubic equations, and hoping that
the solution of (M.5) for ρε,ij lies in the admissible range of [−1, 1]. No proof is provided that such a
solution exists.

In what follows we propose a new more compact algorithm for generation of non-normal correlated
random variables as a generalization of the standard Cholesky factor approach used routinely to gen-
erate correlated normal random variables. Let u = (u1, u2, ..., uN )

′, ε = (ε1, ε2, ..., εN )′, and write each ui
as a linear combination of ε

ui =
∑N

j=1
qijεj , for i = 1, 2, ..., N,

or in matrix notation u = Qε, where qij is the (i, j) element of Q.
We begin by generating εj , j = 1, 2, ..., N, as independent draws from non-normal distributions

with E(εj) = 0, E(ε2j ) = 1, E(ε3j ) = mε,3j and E(ε4j ) = mε,4j . Note also that ρij is determined by Q

and is given by the (i, j) element of QQ′ scaled by σ1/2ii σ
1/2
jj , where σii =

∑N

j=1
q2ij . For given values

of ρij and σii, Q can be obtained as the Cholesky factor of E(uu′) = V. In such a case Q can be a
lower or an upper triangular matrix with strictly positive diagonal elements. It is assumed that V is
non-singular, and as a result Q will also be non-singular.

Consider now the problem of generating ε′js such that E(u3i ) = mi3 and E(u4i ) = mi4 . To this end
note that

m2i = σii = E(u2i ) =
∑N

j=1
q2ij , for i = 1, 2, ..., N,

m3i = E(u3i ) = E

∑
j

∑
j′

∑
`

∑
`′

qijqij′qi`εjεj′ε`

 =
∑N

j=1
q3ijmε,3j , for i = 1, 2, ..., N,

and

m4i = E(u4i ) = E

∑
j

∑
j′

∑
`

∑
`′

qijqij′qi`qi`′εjεj′ε`ε`′

 .

M1



But since ε′js are independent draws with mean 0 and a unit variance we have

E (εjεj′ε`ε`′) = mε,4j , if j = j′ = ` = `′

= 1, if j = j′ and ` = `′ or if j = ` and j′ = `′ or if j = `′ and j′ = `

= 0 otherwise.

Hence, it readily follows that

m4i =

N∑
j=1

q4ijmε,4j + 3
∑
j 6=`

q2ijq
2
i`. (M.6)

But ∑
j 6=`

q2ijq
2
i` =

N∑
j=1

N∑
`=1

q2ijq
2
i` −

N∑
j=1

q4ij =

 N∑
j=1

q2ij

2

−
N∑
j=1

q4ij = σ4i −
N∑
j=1

q4ij .

Therefore, (M.6) can be written as

m4i − 3σ2ii =
∑N

j=1
q4ij (mε,4j − 3) .

Let κεj = mε,4j − 3 and κi = m4i − 3σ4i , and write the above relations in matrix notation, namely

κu = Q(4)κε,

where κ = (κ1, κ2, ..., κN)′, κε = (κε1, κε2, ..., κεN )′ and Q(4) = Q�Q�Q�Q, where � is the
Hadamard matrix operator (or element-wise operator). Similarly, for the third moments we have

m3 = Q(3)mε,3,

where m3 = (m3,1,m3,2, ....,m3,N ), and mε,3 = (mε,3,1,mε,3,2, ....,mε,3,N ). Since Q is a triangular
matrix with strictly positive diagonal elements it follows that Q(3) and Q(4) are also non-singular and
hence invertible. Thus

mε,3 = Q−1(3)m3 (M.7)

κε = Q−1(4)κu. (M.8)

Denoting σ = (σ11, σ22, ..., σNN )′ we also have σ = Q(2)τN .
Having computed mε,3i and mε,4i we can now generate εi as

εi = ai + biυi + ciυ
2
i + diυ

3
i , i = 1, 2, ..., N, (M.9)

where υi ∼ IIDN(0, 1) and the coeffi cients ai, bi, ci and di are determined so that E(εi) = 0, E(ε2i ) = 1,
E(ε3i ) = mε,3i and E(ε4i ) = mε,4i, using Fleishman’s formula

ai + ci = 0, (M.10)

b2i + 6bidi + 2c2i + 15d2i = 1, (M.11)

2ci(b
2
i + 24bidi + 105d2i + 2) = mε,3i, (M.12)

24[bidi + c2i (1 + b2i + 28bidi) + d2i (12 + 48bidi + 141c2i + 225d2i )] = κεi. (M.13)

Accordingly, in order to mimic as far as possible the main characteristics of observed security

returns, for each replication, r, we generate σ(r)ii , γ
(r)
1,i , γ

(r)
2,i ,

{
β
(r)
`,i , for ` = 1, 2, 3

}
, as random draws

from their respective empirical distributions. For example, to generate σ(r)ii over r and i, we first place
the estimates σ̂ii,τ , for i = 1, 2, ..., Nτ , and τ = 1, 2, ..., 265, that lie in the 2.5% to 97.5% quantile range,
into 10 bins and then randomly select a bin with probability equal to the proportion of the estimates
in each bin, and then draw randomly a value for σ(r)ii from the selected bin. This procedure is repeated
over i = 1, 2, ..., N and replications r = 1, 2, ..., R.
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M1.2 Details of the test statistics considered in the MC experiments in
Section 5

Standardised Wald tests, SWLW and SWPOET

First we present how to compute the estimates of N × N variance matrix V which is used to
construct the feasible versions of the Standardised Wald statistic defined by (17). We considered two
estimates, proposed by Ledoit and Wolf (2004), and the POET estimates of Fan et al (2013, FLM).

Ledoit and Wolf (2004, LW) considered a shrinkage estimator for regularisation which is based on
a linear combination of the covariance matrix, V̂ , and an identity matrix IN , and provide formulae for
the appropriate weights. The LW shrinkage is expressed as

V̂ LW = ρ̂1IN + ρ̂2V̂ , (M.14)

with the estimated weights given by

ρ̂1 = mT b
2
T /d

2
T , ρ̂2 = a2T /d

2
T

where

mT = N−1 tr
(
V̂
)
, d2T = N−1 tr

(
V̂
2
)
−m2

T ,

a2T = d2T − b2T , b2T = min(b̄2T , d
2
T ),

and

b̄2T =
1

NT 2

T∑
t=1

∥∥∥ûtû′t − V̂ ∥∥∥2
F

=
1

NT 2

T∑
t=1

tr
[(
ûtû

′
t

) (
ûtû

′
t

)]
− 2

NT 2

T∑
t=1

tr
(
û′tV̂ ût

)
+

1

NT
tr
(
V̂
2
)
,

and noting that
∑T
t=1 tr

(
û′tV̂ ût

)
= T

∑T
t=1 tr

(
V̂
2
)
, we have

b̄2T =
1

NT 2

T∑
t=1

(
N∑
i=1

û2it

)2
− 1

NT
tr
(
V̂
2
)
,

with ût = (û1t, û2t, . . . , ûNt)
′. V̂LW is positive definite by construction. Thus, the inverse V̂−1LW exists

and is well conditioned.
Extending the CL approach, FLM propose the POET estimator

V̂POET =
(
σ̂ijsτ ij [|σ̂ij | ≥ τ ij ]

)
, i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N, (M.15)

where τ ij > 0 is an entry-dependent adaptive threshold such that τ ij =
√
ϕ̂ijω̂T ,with ϕ̂

2
ij = T−1

∑T
i=1(ûitûjt−

σ̂ij)
2 and ω̂T = Ĉ

√
log (N) /T , for some constant Ĉ > 0, setting a lower bound on the cross-validation

grid when searching for C such that the minimum eigenvalue of their threshold estimator is positive,

λmin

(
V̂POET

)
> 0. The consistency rate of the CL estimator is C0mN

√
log (N) /T under the spectral

norm of the error matrix
(
V̂POET − V

)
.

We perform a grid search for the choice of C over a specified range: C = {c : Cmin ≤ c ≤ Cmax}.
We set Cmin = 0 and Cmax = 4, and impose increments of c/N . In each point of this range, c, we
use ûit, i = 1, 2, . . . , N, t = 1, 2, . . . , T and select the N × 1 column vectors ût = (û1t, û2t, . . . , ûNt)

′
,

t = 1, 2, . . . , T which we randomly reshuffl e over the t-dimension. This gives rise to a new set of N × 1

column vectors û
(s)
t =

(
û
(s)
1t , û

(s)
2t , . . . , û

(s)
Nt

)′
for the first shuffl e s = 1. We repeat this reshuffl ing S

times in total where we set S = 20 (as suggested by FLM). We consider this to be suffi ciently large. In

each shuffl e s = 1, 2, . . . , S, we divide û(s) =
(
û
(s)
1 , û

(s)
2 , . . . , û

(s)
T

)
into two subsamples of size N × T1

and N × T2, where T2 = T − T1 where we set T1 = 2T
3 and T2 = T

3 . Let V̂
(s)
POET1 =

(
σ̂
(s)
1,ij

)
, with

elements σ̂(s)1,ij = T−11
∑T1
t=1 û

(s)
it û

(s)
jt , and V̂

(s)
2 =

(
σ̂
(s)
2,ij

)
with elements σ̂(s)2,ij = T−12

∑T
t=T1+1

û
(s)
it û

(s)
jt ,

i, j = 1, 2, . . . , N, denote the sample covariance matrices generated using T1 and T2 respectively, for
each split s. We threshold V̂

(s)
POET1 as in (M.15) using I (.) as the thresholding function, where both

ϕ̂ij and ωT are adjusted to

ϕ̂
(s)
1,ij =

1

T1

∑T1
t=1(û

(s)
it û

(s)
jt − σ̂

(s)
1,ij)

2,
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and

ωT1 (c) = c

√
log (N)

T1
.

Then (M.15) becomes

V̂
(s)
POET1 (c) =

(
σ̂
(s)
1,ijI

[∣∣∣σ̂(s)1,ij∣∣∣ ≥ τ (s)1,ij (c)
])

for each c, where

τ
(s)
1,ij (c) =

√
ϕ̂
(s)
1,ijωT1 (c) > 0,

and ϕ̂(s)1,ij and ωT1 (c) are defined above.
The following is then computed

Ĝ (c) =
1

S

S∑
s=1

∥∥∥V̂(s)
POET1 (c)− V̂

(s)
POET2

∥∥∥2
F
, (M.16)

for each c, and
Ĉ = arg min

Cpd+ε≤c≤Cmax
Ĝ (c) , (M.17)

where Cpd is the lowest c such that λmin
(
V̂POET (Cpd)

)
> 0 (To ensure that the threshold estimator

is positive definite) and ε is a small positive constant. We do not conduct thresholding on the diagonal
elements of the covariance matrices which remain intact.

Gungor and Luger (2009) SS and WS tests
These tests allow the error distribution to be non-normal but require it to be conditionally symmet-

ric around zero.M1 These tests are relatively easy to compute and are applicable even when N > T .
However, they are constructed for models with a single factor and their validity is established only
under N < T .

The SS test is based on the sign statistic

SSN =
∑N

i=1
S2i , (M.18)

where

Si =

[∑T
t=1 I (zit > 0)

]
− T /2√

T /4
,

I (A) is the indicator function as defined by (56),

zit =

(
yi,t+T
ft+T

− yit
ft

)(
ft − ft+T
ftft+T

)
, t = 1, 2, ..., T ,

T is the nearest integer part of T/2. The WS test is based on the Wilcoxon signed rank statistic

WSN =
∑N

i=1
W2
i , (M.19)

where

Wi =

[∑T
t=1 I (zit > 0)Rank(|zit|)

]
− T (T + 1) /4√

T (T + 1) (2T + 1) /24
,

Rank(|zit|) is the rank (natural number) of |zit| when |zi1|, |zi2|, ..., |ziT | are placed in an ascending
order of magnitude. Gungor and Luger (2009) show that under the null hypothesis, αi = 0 for all i, both
Si and Wi statistics have limiting (as T → ∞) standard normal distributions. Under the additional
assumption that the errors in the CAPM regressions are cross-sectionally independent, conditional on
the values of the single factor (f1, f2, ..., fT ), SSN and WSN follow χ2N distributions.

Gungor and Luger (2016) Fmax test

M1See equation (13) in Gungor and Luger (2009) for the definition of SS and WS test statistics.
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Their test is based on the F -statistic

Fi =
RRSSi − URSSi

URSSi/ (T −m− 1)
,

where RRSSi and URSSi are restricted (imposing αi = 0 for all i) and unrestricted sum of squared
residuals of the ith regression. They consider various versions of the test, and recommend the use of
the maximum test

Fmax = max
1≤i≤N

Fi,

which we will consider in our Monte Carlo exercise.M2 They claim that their resampling test procedure
is robust against non-normality and cross-sectional dependence in specific errors. Their test is effectively
based on wild bootstrap resampling in such a way that the sample residual cross-sectional correlation
will be preserved, and unconsidered nuisance parameters are dealt with introduction of bounds test.
Their test procedure is computable where N > T and it allows the error distribution to be non-normal.

Specifically, their test procedure is as follows:

1. Obtain the N × 1 bth bootstrap error vector u
(b)
t = ũtχt, where ũt = (ũ1t, ũ2t, ..., ũNt)

′ is the
residual vector consisting of the restricted regression (imposing no intercept), yit = f ′tβ̃i + ũit,
and χt is IID random variable over t which takes +1 or -1 with 1/2 chance, b = 1, 2, ..., B − 1.
Then, obtain the bootstrap sample using y

(b)
t = f ′tβ̃i + u

(b)
t .

2. Compute the liberal p-value (pL) and the conservative p-value (pC), where pC = B−RC+1
B

and pL = B−RL+1
B with RC = 1 +

∑B−1
b=1 I

[
Fmax > F

(b)
Cmax

]
+
∑B−1
b=1 I

[
Fmax = F

(b)
Cmax

]
×

I [UB > Ub], RL = 1+
∑B−1
b=1 I

[
Fmax > F

(b)
Lmax

]
+
∑B−1
b=1 I

[
Fmax = F

(b)
Lmax

]
×I [UB > Ub], where

Ub ∼ i.i.d.Uniform[0, 1], b = 1, 2, ..., B, F (b)Cmax = max1≤i≤N F
(b)
i,C , with F

(b)
i,C =

RRSSi−URSS(b)i
URSS

(b)
i /(T−m−1)

,

F
(b)
Lmax = max1≤i≤N F

(b)
i,L with F

(b)
i,L =

RRSS
(b)
i −URSS

(b)
i

URSS
(b)
i /(T−m−1)

, RRSSi =
∑T
t=1 ũ

2
it, RRSS

(b) and

URSS(b) are bootstrap restricted and unrestricted sum of squared residuals.

3. Follow the bounds test procedure: "Reject" H0 if conservative bootstrap p-value, pC ≤ α,
"accept" H0 if liberal bootstrap p-value, pL > α, otherwise "inconclusive", where α is the
significance level.

M2We are grateful to Richard Luger for sharing the code to compute the resampling test discussed in Gungor
and Luger (2016).
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M1.3 Supplementary Monte Carlo results

Table M1: Frequencies of Inconclusive Results of Gungor and Luger (2016) test
for Table 2

Panel A: Normal Errors
δγ = 1/4 δγ = 1/2 δγ = 3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: αi = 0 for all i

Fmax 60 3.3 3.1 4.6 2.7 3.2 3.7 4.3 3.5 4.2 3.0 3.4 3.7
(Inconclusive) 100 4.2 3.8 4.0 3.9 3.6 3.9 3.9 3.8 3.7 3.8 4.3 3.3

Power: αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8 otherwise αi = 0

Fmax 60 29.3 35.9 40.3 45.5 30.6 34.1 39.6 44.5 27.4 36.3 38.9 46.0
(Inconclusive) 100 39.0 40.0 36.7 29.1 36.8 39.0 37.7 29.4 37.0 39.9 35.8 29.3

Panel B: Non-normal Errors
δγ = 1/4 δγ = 1/2 δγ = 3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: αi = 0 for all i

Fmax 60 4.2 3.7 4.8 5.2 4.5 4.8 4.0 4.9 4.3 3.8 4.8 5.1
(Inconclusive) 100 4.4 3.6 5.0 3.8 4.3 4.0 4.4 5.0 4.5 3.9 4.8 5.0

Power: αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8 otherwise αi = 0

Fmax 60 31.1 35.8 40.1 46.0 30.7 34.9 39.8 46.5 28.6 34.5 39.6 45.5
(Inconclusive) 100 37.3 39.1 37.7 28.6 39.0 38.8 35.8 27.9 37.5 38.9 36.1 31.7

See notes to Table 2 in the body paper.
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Table M2: Size of the Ĵα test using the estimator of (N − 1)ρ2N,T based on the
elements in V̂POET

This table summarises the size of the Ĵα test using the estimator of (N − 1)ρ2N,T based on the
elements in POET estimator of V proposed by FLM. Specifically, the test statistic is defined by

N−1/2
∑N
i=1

(
t2i − v

v−2

)
/{
(

v
v−2

)√
2(v−1)
(v−4)

[
1 + (N − 1)ρ̂2POET

]
}, where ρ̂2POET = 2

N(N−1)
∑N
i=2

∑i−1
j=1 ρ̂

2
POET,ij

with ρ̂POET,ij =
σ̂POET,ij√

σ̂POET,ii
√
σ̂POET,jj

where V̂POET = {σ̂POET,ij}. The data is generated as described
in the notes to Table 2. Values of the tests are compared to a positive one-sided critical value of the
standard normal distribution. The test is conducted at the 5% significance level. Experiments are
based on 2,000 replications.

δγ = 1/4 δγ = 1/2 δγ = 3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Normal Errors

T = 60 7.6 5.6 6.2 5.3 10.3 9.5 9.4 10.1 12.5 12.2 15.0 17.1

T = 100 6.8 5.3 5.5 5.6 6.8 9.5 9.3 9.7 9.0 14.0 15.7 15.7

Non-normal Errors

T = 60 6.7 7.0 6.1 6.9 10.4 10.9 11.6 11.8 13.6 15.0 14.6 18.1

T = 100 5.8 6.9 6.7 7.5 8.2 10.2 11.3 12.6 11.9 14.5 15.3 16.2

Table M3: Size of the Ĵα test using the mean 1 in the place of v/(v − 2) to
standardise t2i

This table summarises the size of Ĵα test using the mean 1 to standardise. Specifically, the test statistic

is defined by N−1/2
∑N
i=1

(
t2i − 1

)
/{
(

v
v−2

)√
2(v−1)
(v−4)

[
1 + (N − 1)ρ̃2N,T

]
}. The data is generated as

described in the notes to Table 2. Values of the tests are compared to a positive one-sided critical value
of the standard normal distribution. The test is conducted at the 5% significance level. Experiments
are based on 2,000 replications.

δγ = 1/4 δγ = 1/2 δγ = 3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Normal Errors

T = 60 8.4 8.8 9.9 14.8 7.5 8.4 9.5 11.7 8.0 8.0 8.6 8.8

T = 100 7.4 7.6 8.5 10.3 7.7 8.2 8.2 7.8 6.9 7.7 7.5 8.4

Non-normal Errors

T = 60 7.4 9.0 10.3 15.1 8.2 8.1 9.0 13.1 7.5 8.7 8.8 10.1

T = 100 7.9 7.9 8.5 10.2 6.9 7.0 8.7 8.1 7.1 8.1 7.7 7.3
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Table M4: Size and power of SS and WS tests in the case of models with a single
factor

The data is generated as yit = αi + β1if1t + uit, i = 1, 2, .., N ; t = 1, 2, ..., T , f1t = µf1 + ρf1f1,t−1 +√
h1t ζ1t, h1t = µh1 + ρ1h1h1,t−1 + ρ2h1ζ

2
1,t−1, ζ1t ∼ IIDN(0, 1), t = −49, ..., 0, 1, ..., T with f1,−50 =

h1,−50 = 0, µf1 = 0.53, ρf1 = 0.06, µh1 = 0.89, ρ1h1 = 0.85, ρ2h1 = 0.11. For the size of the test, αi = 0

for all i, and for the power of the test, αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8,
otherwise αi = 0, where bAc is the largest integer part of A. We generate the idiosyncratic errors,
ut = (u1t, u2t, ..., uNt)

′, according to ut = Qεt, where εt = (ε1t, ε2t, ..., εNt)
′, andQ = D1/2P withD =

diag(σ21, σ
2
2, ..., σ

2
N )′ and P being a Cholesky factor of correlation matrix of ut, R, which is an N ×N

matrix used to calibrate the cross correlation of returns. R = IN +bb′−B̌2,where b = (b1, b2, ...., bN )′,
B̌ = diag(b), we draw the first and the last Nγ (< N) elements of b as Uniform(0.7, 0.9), and set
the remaining middle elements to 0. We set Nγ = bNδγ c. We examine δγ = 1/4, 1/2 and 3/5. For
non-normal case, uit are generated following steps 1-4 of the procedure in Appendix B. SS and WS
are the signed and singed rank tests of Gungor and Luger (2009), which are distributed as χ2N and
applicable for one-factor model (see Section M1.2 for more details) All tests are conducted at the 5%
significance level. Experiments are based on 2,000 replications.

Panel A: With Single Factor, Normal Errors
δγ = 1/4 δγ = 1/2 δγ = 3/5

(T,N) 50 100 200 500 50 100 200 500 50 100 200 500

Size: αi = 0 for all i

SS 60 4.3 5.2 4.3 5.1 7.0 7.7 8.5 7.8 9.1 9.7 12.6 12.4

100 4.5 4.7 5.3 5.1 7.4 7.9 8.3 7.7 10.5 10.0 11.5 12.2

WS 60 4.3 4.8 4.4 4.6 7.6 8.2 9.0 8.6 9.8 9.9 13.1 13.2

100 3.8 5.3 5.2 5.1 7.9 8.1 8.1 7.8 10.4 11.4 12.9 13.4

Power: αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8 otherwise αi = 0.

SS 60 20.8 26.2 34.9 47.9 22.2 25.5 35.2 48.9 21.1 28.2 35.4 45.7

100 36.6 47.0 62.8 80.7 35.1 45.6 59.9 77.9 35.3 44.5 56.8 72.6

WS 60 23.4 32.3 43.0 59.2 25.4 30.8 40.4 58.2 25.5 32.4 41.3 52.1

100 44.3 58.7 74.0 90.3 42.0 55.3 70.9 87.6 41.5 51.9 67.2 83.3

Panel B: With Single Factor, Non-normal Errors
Size: αi = 0 for all i

SS 60 10.3 13.8 19.9 33.4 11.8 14.0 18.5 33.4 11.8 17.4 22.8 32.2

100 16.3 23.7 35.2 63.3 15.5 21.3 33.8 57.2 18.4 24.5 32.6 49.9

WS 60 8.3 11.5 16.5 24.9 12.7 12.7 16.9 26.8 13.1 16.5 19.1 28.7

100 14.0 18.3 27.1 51.6 16.0 18.6 28.2 44.1 17.2 20.8 28.3 39.0

Power: αi ∼ IIDN(0, 1) for i = 1, 2, ..., Nα with Nα = bNλαc, λα = 0.8 otherwise αi = 0.

SS 60 31.8 43.5 57.7 83.2 30.6 42.1 57.0 79.8 29.2 41.0 54.8 74.1

100 55.9 73.6 90.6 99.2 51.5 67.1 88.0 98.8 50.6 64.7 81.8 97.5

WS 60 33.3 46.2 62.6 87.1 32.2 44.6 61.2 81.5 32.3 43.3 55.8 76.1

100 59.1 77.2 92.6 99.6 55.4 70.5 90.7 99.3 52.5 68.3 84.6 98.0

M8



Table M5: Size and power of Ĵα test with mixed spatial-factor models with the
value of spatial parameter ρε = 0.8

DGP is identical to that for the results reported in Table 5 except ρε = 0.8. Also see notes to Table 2.

Panel A: Normal Errors with ρε = 0.8

Size Power
(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000

Pure spatial models (γ = 0)

Ĵα 60 6.6 7.0 7.3 7.8 7.5 6.6 7.3 38.6 52.1 68.9 86.8 96.5 99.2 99.8
100 7.0 7.1 6.9 6.4 5.5 5.6 5.7 68.1 82.8 94.5 99.5 100.0 100.0 100.0

Jα(0) 60 15.8 18.5 17.8 19.1 18.4 16.5 19.0 61.4 73.6 87.6 95.1 99.2 99.8 99.9
100 18.3 17.4 16.7 17.1 16.7 16.5 17.6 84.9 94.3 98.5 100.0 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 1/4)

Ĵα 60 5.8 6.0 6.5 7.0 5.7 7.3 6.6 39.4 51.3 67.5 87.4 96.4 99.5 100.0
100 7.0 7.8 6.7 7.1 5.4 6.0 6.1 66.6 81.6 94.8 99.4 100.0 100.0 100.0

Jα(0) 60 16.3 16.4 16.3 17.7 16.5 16.9 16.8 61.8 72.4 84.7 95.6 98.6 100.0 100.0
100 17.2 18.9 17.6 17.4 15.3 18.1 17.8 84.8 93.5 98.8 100.0 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 1/2)

Ĵα 60 6.6 7.6 6.9 7.1 6.0 6.7 5.8 39.1 50.7 66.6 85.8 95.6 98.8 100.0
100 6.8 6.1 7.2 6.7 6.1 6.9 6.3 66.4 83.1 94.4 99.6 100.0 100.0 100.0

Jα(0) 60 17.2 17.9 16.8 18.9 18.0 17.7 16.5 60.0 72.9 86.1 95.2 99.4 99.8 100.0
100 17.5 17.6 17.6 19.4 17.0 18.9 18.6 85.3 94.5 98.6 100.0 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 3/5)

Ĵα 60 6.4 7.5 5.8 7.6 7.8 7.9 7.5 38.2 51.3 67.5 85.2 96.2 99.3 99.9
100 6.8 6.4 7.0 7.0 5.5 6.4 5.9 67.9 82.4 94.3 99.7 100.0 100.0 100.0

Jα (0) 60 15.7 18.7 16.8 19.5 17.3 19.1 18.3 60.0 74.1 85.6 95.4 99.1 99.9 100.0
100 17.5 17.3 18.2 17.3 17.7 17.7 18.1 86.2 93.5 98.8 100.0 100.0 100.0 100.0

Table M5 – Continued

Panel B: Non-normal Errors with ρε = 0.8

Size Power
(T,N) 50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000

Pure spatial models (γ = 0)

Ĵα 60 8.9 7.5 7.5 6.9 8.1 8.0 8.6 35.5 45.3 60.0 78.7 91.4 97.0 99.7
100 7.3 6.0 7.0 6.4 7.1 6.4 6.4 57.8 72.1 89.2 97.8 99.8 100.0 100.0

Jα(0) 60 18.7 18.2 18.4 18.3 18.1 20.3 20.2 57.1 66.0 79.0 91.9 97.1 99.5 99.8
100 16.6 17.1 18.5 18.9 18.8 20.2 17.9 78.9 88.7 96.5 99.7 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 1/4)

Ĵα 60 7.4 6.4 8.4 7.1 7.0 7.4 7.5 35.9 43.0 58.7 77.5 89.3 97.0 99.7
100 6.3 6.3 7.1 5.4 6.2 7.1 6.9 58.3 73.6 87.5 98.4 99.6 100.0 100.0

Jα(0) 60 16.5 16.2 19.6 18.1 18.0 19.1 19.2 56.4 65.0 79.8 92.3 96.9 99.4 99.9
100 16.3 16.6 17.7 17.5 19.0 18.8 19.0 77.2 88.4 96.4 99.7 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 1/2)

Ĵα 60 8.2 6.9 7.3 7.0 7.0 8.3 7.6 32.9 43.3 57.7 77.8 90.9 97.1 99.7
100 6.8 6.7 7.0 7.1 6.5 7.1 7.0 55.7 73.5 88.1 98.2 99.8 100.0 100.0

Jα(0) 60 16.7 16.8 18.8 18.8 21.2 20.5 20.1 54.5 66.1 78.0 91.0 97.2 99.3 100.0
100 17.8 17.0 18.3 18.8 19.9 19.1 20.5 76.9 89.5 97.0 99.8 100.0 100.0 100.0

Mixed spatial-factor models (δγ = 3/5)

Ĵα 60 7.2 7.9 6.4 6.4 8.4 7.4 7.8 31.8 44.0 58.1 76.9 89.8 96.9 99.6
100 7.2 6.6 7.9 6.6 6.9 7.0 6.7 58.0 73.0 86.7 98.5 99.7 100.0 100.0

Jα(0) 60 16.7 18.0 18.0 18.9 20.9 18.6 19.9 54.5 67.0 79.2 91.0 96.5 99.0 100.0
100 17.7 16.4 18.7 18.1 19.2 19.3 18.6 77.9 88.9 96.0 99.8 100.0 100.0 100.0
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