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Abstract

The paper analyzes volatility of the electricity prices in the Japanese day-ahead
market using realized volatility. We use several jump tests to decompose total re-
alized variation into jump and continuous components. Then, we estimate several
HAR models that show the time-dependence structure of the volatility. Our re-
sults show that even though that market is narrow, it is relevant to identify jumps
in volatility. Besides, modeling residuals improve estimation results. The time-
dependent structure of the prices is present in volatility as well.

1 Introduction

Two decades ago, the electricity sector worldwide used to be organized as a vertically in-
tegrated industry in which prices were set on a cost-of-service regulation. In this setting,
prices used to change on a yearly basis.1 Deregulation has implied the launching of pool
markets in which selling bids and purchase orders meet to determine the equilibrium
price and quantity for each time interval of the following day. There is a considerable
and increasing amount of trading in both the spot and derivative markets that have
emerged depending on the maturity of the market.

The nature of electricity makes the market price more sensitive to demand and supply
changes. The resulting high level of price volatility and ocasional price jumps experienced
in these markets has allowed the development of instruments to hedge market agents
against risk involved. In this respect, empirical evidence shows that volume traded is

∗Email: aitor.ciarreta@ehu.eus. I would like to thank financial support from Ministerio de Economía
y Competitividad under research ECO2015-64467-R and from Dpto. de Educación, Universidades e
Investigación del Gobierno Vasco under research grant IT-783-13. I would like to thank the Institute of
Social and Economic Research, University of Osaka, for financial aid.
†Email: peru.muniain@ehu.eus.
‡Email: ainhoa.zarraga@ehu.eus.
1Most of the countries updated prices according to the inflation rate observed the year before.
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negative correlated with price variation.2 Power suppliers and retailers seek to manage
their portfolios in this volatile environment. Understanding price volatility is important
for agents to design their bidding strategies optimally. Development of intraday markets
and financial contracts for future delivery of power is the result of agents seeking to
effectively manage risk associated to short-term day-ahead transactions. Thus, electric-
ity markets, as other financial markets, are evolving to allow participants to develope
effective risk management strategies. The more electricity markets evolve the larger the
amount of risk that has to be managed and controlled by market agents.

Models that incorporate the stochastic nature of volatility have developed rapidly
following initial works by Hull and White (1987) and Hull (2000). Applications to
electricity prices can be found in Deng (1999), Escribano et al (2011), Lucia and Schwartz
(2002), Skantze et al. (2000), Geman and Roncoroni (2006) among others.

Our interest is to use the information contained in within-day prices to analyze and
forecast volatility. Variation of asset prices is measured by the sum of squared returns
over defined time periods. The mathematics behind is based on the quadratic variation
process (Back, 1991). Increments of the risk premium are associated to increments of
quadratic variation in asset pricing theory. The estimation of quadratic variation using
realized volatility measures was initially discussed in the works of Andersen and Boller-
slev (1998), Comte and Renault (1998), and Bandorff-Nielsen and Shephard (2002).
Since then, the estimation of daily volatility using realized measures relying on high
frequency intraday data has stimulated a growing field of volatility modeling and esti-
mation.

The development of nonparametric methods for volatility estimation by Bandorff-
Nielsen and Shephard (2004) offer the possibility to estimate separately the diffusive
and the jump components of the price process using realised and bipower variation.
Huang and Tauchen (2005) and Andersen et al. (2007) showed that jumps play an
important role in the movement of prices. Since then, non-parametric jump tests using
realised measures have been proposed attending the particular features of the stochastic
process. All of them consider jumps as rare events and try to extract the jumps from
the continuous part of the volatility. The literature has grown rapidly since the works by
Barndorff-Nielsen and Shephard (BNS, 2006). Further developments by Andersen et al.
(ABD, 2007), Lee and Mykland (LM, 2008), Ait-Sahalia and Jacod (2008), Jiang and
Oomen (JO, 2008), Corsi et al (CPR, 2010), Podolskij and Ziggel (2010) and Andersen
et al. (ABD, 2012), among others have been also proposed, simulated and tested.

There are not that many applications of realized volatility to electricity markets. The
are several characteristics of the data generating process to consider when modelling
realized volatility in electricity prices. First, the non-storability nature of electricity
(except for hydroelectric generation) which forces prices to be highly dependent on spot
demand and supply conditions. Second, strong seasonal effects, mostly observed yearly,
weekly and daily periodic cycles. Third, presence of frequent price spikes coupled with

2Examples of the negative and significant correlation between price volatility (measured by the
daily standard deviation) and quantity traded are −0.0494 in the Japanese market, −0.1889 in EPEX-
Germany, −0.3662 in EPEX-Switzerland, and −0.1709 in the Spanish-Portuguese market.
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non-Gaussian characteristics of the implied probability distribution of the day-ahead
prices. Therefore, proper statistical modelling of spot prices is necessary for optimal
valuation of financial products and optimal physical assets management in the electricity
sector.

Although each estimator has its own properties, there is no single method which is
preferred to the rest. Two select the best model we use two approaches: (1) In-sample
goodness of fit and (2) a test for bias in the estimation.

Several studies using Heterogenous Autorregressive (HAR) estimation to different
specifications of realized volatility models in electricity markets are present in the liter-
ature. Ciarreta and Zarraga (2016) for the sequential intraday market, Qu at el (2016)
propose a logistic beta smooth transition heterogeneous autoregressive (LSTHAR) model
of realized volatility outperforms other HAR models based on Corsi (2009). To our
knowledge, there are not studies on the Japanese market using statistical models of
price formation and volatility.

Several contributions are in the paper. First, we propose a departure from the exist-
ing literature on how seasonality is removed in the returns. We smooth the time series of
prices using a robust non-linear smoother by Velleman (1980). The smooth technique is
easy to implement. Second, once seasonality is removed, we decompose realized volatility
following BNS (2006), ABD (2007), CPR (2010) and ABD-LM (2012). At this point we
propose a modified version of the ABD-LM test in which the local volatility is estimated
using a kernel approach. We propose a discrete Weibull distribution. Then, we estimate
the bias of the different decomposition statistics following Fang et al. (2012). And third,
a minor contribution which is the study of volatility in the Japanese electricity market
that has not been addressed before, basically because the market only trades 2% of the
total consumption.

The paper is organized as follows. In Section 2, we review the time series process
model and the nonparametric tests based on realized measures. Section 3 briefly de-
scribes the Japanese electricity market structural, characteristics and regulation. Sec-
tion 4 describes the data. Section 5 reports empirical results and discusses the model
selection criteria. Section 5 proposes new lines of research. Section 6 concludes.

2 Methodology

2.1 Jump tests

Assume the dynamics of the (logarithmic) prices follow a jump-diffusion process which
contains a non-stochastic component and a stochastic component of the form

dpt = µtdt+ σtdWt + dJt

where µt is the drift, σt is the diffusion parameter, Wt is a standard Brownian motion
and Jt is the jump process such that Jt =

∑Nt
j=1 ctj , where ctj is the size of the jump

and Nt is the number of jumps up to time t. Jumps are assumed to be countable rare
events that migh happen along the path of the continuous price process. The quadratic
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variation of the process (QVt) has a continuous part corresponding to the integrated
volatility or integrated variance (IVt), which is the continuous component, and the sum
of the squares of the jump sizes, which is the discontinuous or jump component. Thus
QVt is the sum of both components,

QVt =

∫ t

0
σ2
sds+

Nt∑
j=1

c2
tj .

Assume we divide the time interval [0, t] into M subintervals with length ∆ = 1/M
where M is taken constant for each t (as ∆ → 0 frequency of interavals increases).
Overall, there are T trading periods observed with the same time interval. Therefore,
following Andersen and Bollerslev (1998), realized volatility for day t, RVt, is defined as
the sum of the squares of intraday returns,

RVt =

M∑
j=1

r2
t,j ,

where rt,j is the intraday log-price difference at j, rt,j = pt,j − pt,j−1, which is the usual
definition of return in financial markets.3 Under the null of absence of jumps, QVt is
consistently estimated by RVt. Therefore, RVt is taken as a measure for the unobserved
volatility of a high-frequency time series.

IVt captures the continuous, predictable component of RVt and it can be estimated
using different methods. In this paper, we use several jump test statistics that have
been proved to converge to a normal distribution when M →∞. Hence, if the statistic
exceeds the critical value Φ1−α, day t is classified as a jump day. For a chosen significance
level α, the jump component of volatility at day t is obtained as:

JVt = IZt>Φ1−α(RVt − ÎV t),

where Zt is the jump test statistic and ÎV t the corresponding estimator of IVt obtained
with each method, and IZt>Φ1−α is 1 if Zt > Φ1−α, and 0 otherwise. The Zt test statitic
is the one proposed by Huang and Tauchen (2005) which is a class of Hausman (1978) -

type of test. To ensure JVt > 0 it is defined as JVt = max
(
RVt − ÎV t, 0

)
. Once jump

variation (JVt) is estimated, the continuous component of the total variation, CVt, is
given by the difference between the two, CVt = RVt − JVt.

In this paper, existing non-parametric jump-robust type estimators are grouped into
two categories. The first category includes those jump tests that enable us to estimate
JVt and CVt from total RVt, these are BNS (2006), Andersen, Dobrev and Schaumburg
(2009), and CPR (2010). The second category includes those tests that do not allow us

3As we show in the descriptive statistics, in the Japanese market, the minimum pt,j is strictly positive.
Therefore, we can define realized volatility in terms of returns. However, in many electricity markets
pt,j can be zero or negative thus either up-scaling logarithmic transformations of prices are considered
or the price process is taken as such, and realized volatility is defined in terms of price differences.
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to directly estimate JVt and CVt from total RVt but only identify jump-times, these are
ABD, (2007), and LM, (2008) and JO, (2008).

I. Tests based on multipower variation:
BNS (2006) test is based on the use of the realised bipower variation. They proof

(Theorem 1) how IVt can be consistently estimated using bipower variation (BVt). The
1, 1-order BVt process, if it exists, is defined as4

BVt = µ2
1

M

(M − 1)

M∑
j=2

|rj ||rj−1|,

where µ1 = E |u| =
√

2/
√
π. Following Huang and Tauchen (2005), the test statistic,

called ZBNSt , is based on the difference between RVt and the jump-robust measure of
variance, BVt, to detect significant jumps:

ZBNSt =
√
M

(RVt −BVt)/RVt√(
π2

4 + π − 5
)

max[1, TQt/BV 2
t ]

The denominator represents the effect of integrated quarticity, which can be estimated
using the tripower quarticity,

TQt = 1.74

(
M2

M − 2

) M∑
j=3

(|rj ||rj−1||rj−2|)4/3

As the sampling frequency increases, ∆→ 0, the impact of jumps is reduced because
jump-returns are multiplied by adjacent non-jump returns. In finite samples, it can
be shown that BVt is upward biased in the presence of jumps and as a result the jump
component is underestimated. Besides, BVt is also affected by zero returns, thus reducing
its value and consequently detecting more jumps when returns are zero or close to zero.

ABD, (2012) propose two jump-robust consistent estimators of IV using the nearest
neighbour truncation. These are the MinRVt and MedRVt estimators.

MinRVt = 2.75

(
M

M − 2

) M∑
j=2

min(|rt,j |, |rt,j−1|)2

MedRVt = 1.42

(
M

M − 2

)M−1∑
j=2

med(|rt,j−1|, |rt,j |, |rt,j+1|)2

The MinRVt is exposed to zero returns and is less effi cient than the MedRVt estimator
which is based on the median on blocks of three consecutive returns. These two esti-
mators can be used to construct the jump test statistic following Huang and Tauchen
(2005):

4BNS (2004) extend the properties of BVt for the products of k-lag length absolute returns for k ≥ 1.
Because we want to make our results comparable for the different tests, we restrict to the case of k = 1.
Taking k > 1 allows for correction for serial correlation. For instance, Ullrich (2012) analyzes the case
from k = 1 to k = 8.

5



ZMinRV
t =

√
M

(RVt −MinRVt)/RVt√
1.81 max

[
1, MinRQt

MinRV 2t

] L−→ N (0, 1)

ZMedRV
t =

√
M

(RVt −MedRVt)/RVt√
0.96 max

[
1, MedRQt

MedRV 2t

] L−→ N (0, 1)

where the estimator of the integrated quarticities in the denominators are

MinRQt = 2.21
M2

M − 1

M∑
j=2

min(|rt,j |, |rt,j−1|)4

MedRQt = 0.92
M2

M − 2

M−1∑
j=2

med(|rt,j−1|, |rt,j |, |rt,j+1|)4,

respectively. ABD (2012) argue that increasing the block length to any k > 1 in the
estimation of IVt reduces effi ciency. Therefore, we restrict all the jump tests for the IV
estimators based on adjacent returns.5

CPR, (2010) propose a consistent and nearly unbiased estimator of IVt based on
threshold bipower variation:

CTBPVt = 1.57
M∑
j=2

Z1(rj , ϑj)Z1(rj−1, ϑj−1),

where the function Z1 is defined as:

Z1(rj , ϑj) =

{
|rj | if r2

j ≤ ϑj
1.094ϑ

1/2
j if r2

j > ϑj

which depends on the returns and the value of the threshold ϑj = c2
ϑV̂

Z
j . The local

volatility estimate, V̂ Z
j , is estimated following an iterative process using a Gausssian

kernel as

V̂ Z
j =

L∑
i=−L,i 6=−1,0,1

K
(
i
L

)
r2
j+iI{r2j+i≤c2υV̂ Z−1j }

L∑
i=−L,i 6=−1,0,1

K
(
i
L

)
I{r2j+i≤c2υV̂ Z−1j }

for Z = 1, 2, ...

5 In the appendix we also report results for both estimators taking one block jump although results
should be taken cautiously due to data frequency.
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As they suggest, we consider cϑ = 3 and the number of iterations needed to converge
depends on the process itself.6 The choice of the threshold does not affect the robustness
of the IVt estimator, and its impact on estimation is marginal. The corresponding jump
test statistic is also based on Huang and Tauchen (2005):

ZCTBPVt =
√
M

(RVt − CTBPVt)/RVt√(
π2

4 + π − 5
)
max

[
1, CTTriPVt

CTBPV 2t

]
where CTTriPVt = 1.74M

∑M
j=3

∏3
k=1 Z4/3(rj−k+1, ϑj−k+1) and Z4/3 is defined in the

original paper. The test statistic is more powerful than those based on multipower
variation, but it is also affected by zero returns.

II. Tests based on jump-time identification:
The ABD-LM (The test compares standardized returns to a threshold. The null

hypothesis is that there are no jumps at each time. The test is able to identify the exact
time i and the number of jumps within an intraday trading day t. The local volatility
is estimated computing the bipower variation at each time interval, BVt,i, choosing a
window size K.

σ̂2
t,i =

BVt,i
K − 2

=
π

2

1

K − 2

i−1∑
j=i−K+2

|rt,j ||rt,j−1|

Thus, the standardized return is ςt,i = rt,j/σ̂t,i.
Since it is constructed using the bipower variation of BNS (2006), the distribution

of ςt,i is asymptotically standard normal when there are no jumps. The jump test is
constructed using a threshold based on Gaussian extreme value theory max (ςt,i)

max (zj)− Cn
Sn

L−→ξ

and P (ξ) = exp (− exp (−x)), where

Cn =
(2 log n)1/2

0.8
− log π + log (log n)

1.6 (2 log n)1/2
,

Sn =
1

0.8 (2 log n)1/2
.

The choice ofK usually considers the number of trading days and the number of inter-
vals within the trading day. When a jump occurs the size is rt,j and the jump component
is defined as the sum of intraday squared returns, JLMt =

∑M
j=1 r

2
t,jI{ςt,i>ς}. Further-

more, JLMt is decomposed into positive and negative jumps, JLM+
t =

∑M
j=1 r

2
t,jI{rt,j>0∧ςt,i>ς}

6 In the empirical application we use several kernel density functions: Normal, Parzen, cosine and
Epannechnikov. The choice of cϑ determines the jump detection. Choosing larger values of cϑ reduces
the percentage of detected jumps. We have also tried with cϑ = {4, 5, 6}.
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and JLM+
t =

∑M
j=1 r

2
t,jI{rt,j<0∧ςt,i>ς} (Patton and Sheppard, 2015). This statistic is

only used for jump detection and cannot be used to decompose RV into JV and CV .
JO (2008) test uses SwVt (M) which is a function of the difference between arithmetic,

Rt,j = (pt,j+1 − pt,j) /pt,j , and logarithmic, rt,j = log pt,j+1 − log pt,j , intraday returns

SwVt (M) = 2

M∑
j=1

(Rt,j − rt,j) .

In the absence of jumps the difference between SwVt (M) and RVt is zero,

lim
M→∞

(SwVt −RVt) =

{
0 if no jumps in [0, t]

2
∫ t

0 (exp (Ju)− Ju − 1) dqu −
∫ t

0 J
2
udqu if there are jumps in [0, t]

Thus, jumps are captured in a exponential way. The corresponding JO test statistic is

nBVt√
Ω̂SwVt

(
1− RVt

SwVt

)
L−→ N (0, 1) where Ω̂SwVt = 3.05

M3

M − 3

M−4∑
i=0

4∏
k+1

|rt,i+k|3/2

The statistic takes very large values in the presence of high returns. Therefore, the
statistic tends to overeject the null hypothesis of absence of jumps, that is jumps are
usually over-identified. This statistic is only used for jump detection and cannot be used
to decompose RV into JV and CV .

2.2 Realized volatility models

We propose to estimate several heterogenoeus autoregressive (HAR) models based on the
initial work by Corsi (2009) for the RVt (HAR-RV). The HAR-RV model is a parsimo-
neous model because it reduces the number of parameters to be estimated. In particular,
we propose the linear regression equation

RVt = β0 +
3∑
i=1

βiRVi,t−1 + εt

where RV1,t−1 = RVt−1, RV2,t−1 = 1
7

∑7
t=1RVt−1 and RV3,t−1 = 1

30

∑30
t=1RVt−1. Then,

with the decomposition into continuous and jump components for the different tests, we
build the corresponding HAR-CV-JV model,

RVt = θ0 +

3∑
i=1

θiCVi,t−1 +

3∑
i=1

λiJVi,t−1 + εt

where CV1,t−1 = CVt−1, CV2,t−1 = 1
7

∑7
t=1CVt−1, CV3,t−1 = 1

30

∑30
t=1CVt−1, JV1,t−1 =

JVt−1, JVw,t−1 = 1
7

∑7
t=1 JVt−1 and JVm,t−1 = 1

30

∑30
t=1 JVt−1. These models are esti-

mated by ordinary least squares with heteroscedasticity and autocorrelation-corrected
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consistent standard errors to control for volatility clustering usually observed in time
series analysis.

The assumption of identically and independently distributed Gaussian errors is tested.
As Corsi et al. (2008) and Ciarreta and Zarraga (2016) show residuals can often show
volatility clustering and probability distributions with excess kurtosis and skewness.
Thus, we test for the presence of GARCH structures using the Ljung-Box (1978) sta-
tistic. Out of the several GARCH models proposed in the literature, we propose the
following: GARCH(1,1) and EGARCH(1,1). The error term εt is written as εt = σtut
where ut are independet and identically random standard normal distributed variables.
The GARCH(1,1) models volatility as

σ2
t = α0 + α1ε

2
t−1 + α2σ

2
t−1

where α0 > 0, α1 ≥ 0, α2 ≥ 0 and α1 + α2 < 1 to ensure that the variance is positive
and the process is stationary. The asymmetric EGARCH(1,1) is given by

log σ2
t = δ0 + δ1

|εt−1|
σt−1

+ δ2 log σ2
t−1 + δ3

εt−1

σt−1

where there are no restrictions on the sign of the coeffi cients. The coeffi cient δ3 captures
the asymmetric response of the volatility due to shocks of different sign: δ3 > 0 indicates
an inverse leverage effect; δ3 < 0 indicates a direct leverage effect.

2.3 Bias in the volatility measures

We investigate the unbiasedness of the volatility measures following Jin and Maheu
(2010) and Fang et al. (2012). We use daily data and estimate the following equation

r̃d = µ+ βσd,V εd

where r̃d = rd −
∑Nd

j=1 χd,j are the de-jumped returns, r̃d, which are equal to the return

on day d, rd, and
∑Nd

j=1 χd,j is the jump component. The jump component is the sum
of all jumps within day d, Nd, of magnitude χd,j . Finally, µ is the drift, σd,V is the
volatility on day d estimated using volatility measure V (BNS, ABD, ALM and CPR),
εd is a Gaussian perturbation. The estimated parameter β is expected to be one in the
case of no-bias, and greater (less) than one when V incorporates a downward (upward)
bias.

3 Japanese electricity market structure and regulatory frame-
work

The Japanese electricity industry used to be organized around 10 local monopolies.
These local monopolies are vertically integrated Electricity Power Companies (EPCOs)
that comprise generation, transmission and distribution. In addition, Japan has two
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types of frequency zones, 50Hz and 60Hz, that are linked. EPCOs controll the bulk
of the generation capacity. The process of liberation from these formerly vertically-
integrated fully-regulated electricity firms started in Japan in 1995 when the Electricity
Utility Industry Law (EUIL) was passed that promoted the entrance of Independent
Power Producers (IPPs). The target of the EUIL was to promote competition. Besides,
it opened the possiblity of competitive bidding system creating a wholesale market. At
the same time, the electricity rate system was revised, with the introduction of the
yardstick assessment method for rate revision approval7, optional contract provisions,
fuel cost adjustment system, and management effi ciency review.

Further liberalization steps were taken in 2005 when the Japanese Electric Power
Exchange (JEPX) was launched in April. JEPX operates as a pool and calculates the
system marginal price for each of the areas.8 In the absence of congestions in the
transmission grid, the price is the same. This is quite often the case in the areas that
operate with the same frequency. The bidding is done by a uniform price auction system.
Under this system, a bid is made for the combination of price and quantity of each
product. A point of intersection where the buying and selling conditions comply with
each other is sought, and the price and contract quantity are decided at this point. The
purpose of a power exchange is to increase liquidity and flexibility in electricity trading,
allowing market participants to fit their positions closer to delivery. The amount of
electricity traded through JEPX has significantly increased although it remains at low
levels (below 2%).

There exists still a prominent position of these incumbents in the market. Table 1
illustrates this fact by showing the capacity mix of the EPCOs in 2013.

7Under yardstick regulation the performance a regulated utility is compared against of a group of
comparable utilities (Shleifer, 1985). Thus, the price cap of each utility is determined in a way that can
endup in losses. This system is expected to promote effi ciency through cost cutting.

8The exchange operator does not open a real price trading. It opens a system marginal price for the
operating regions and a virtual one for the whole country (asumming no restrictions in the network and
no differences in the frequencies).

10



TABLE 1. Capacity mix of EPCOs in 2013 (GW).
EPCO Frq. TH NU HY RES Total
1. Hokkaido 50 4.21 2.07 1.65 0.03 7.96
2. Tohoku 50 12.03 3.27 2.43 0.23 17.96
3. Tokyo 50 44.28 1.26 9.86 0.05 55.45

4. Chubu 60 24.02 3.62 5.50 0.03 33.17
5. Hokuriku 60 4.40 1.75 1.92 0.01 8.08
6. Kansai 60 19.41 8.93 8.23 0.11 36.68
7. Chugoku 60 7.80 0.82 2.91 0.01 11.54
8. Shikoku 60 3.45 2.02 1.15 0.01 6.63
9. Kyusyu 60 10.21 4.70 3.58 0.21 18.70

Total 129.81 28.44 37.23 0.69 207.38

Frq stands for frequency (Hz). Source FEPC (2014). TH, Thermal

NU, Nuclear; HY, Hydroelectric; RES, Renewable.

The total installed capacity of EPCOs is 208 GW which represents around two thirds
of the total installed capacity in the country. Limited transmission capacity between
frequency zones (1200 MW) prevents prices to be exactly the same between zones. Gen-
eration mix has been diversified with a twofold target: (1) Reduction of carbon emissions
to comply with international agreements, and (2) reduce dependence from international
imports and fuel sources. Table 2 reports generation from different energy sources to
total generation mix.

TABLE 2. Generation mix in 2013 (%)
NU CO LNG OIL HY RES

2009 27.0 28.0 27.0 9.0 8.0 1.0
2010 28.6 25.0 29.3 7.5 8.5 1.1
2011 10.7 25.0 39.5 14.4 9.0 1.4
2012 1.7 27.6 42.5 18.3 8.4 1.6
2013 1.0 30.3 43.2 14.9 8.5 2.2

Source FEPC (2014). NU, Nuclear; CO, Coal;

LNG, Liquified Natural Gas; OIL, Oil-fired,

HY, Hydroelectric; RES, Renewable.

Generation mix is dominated by thermal plants which makes the country highly
dependent on imports of fossil fuels. Only around 10% of total generation is from
renewable sources. The perspectives to increase the share from hydroelectric sources
is quite limited and up to the limit the country can reach, so it is not expected to
significantly increase in the future. Renewable generation has not received the support
as in other OECD countries such as Spain and Germany. The Fukushima Daiichi nuclear
power plant accident in March of 2011 evidenced many problems of the electricity supply
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system that had to be corrected urgently. There exists little competition and strong price
control. Little flexibility in changing the existing energy mix; hard to increase the ratio
of renewable energy. Therefore, a deep electricity reform started to be promotting in
a short-term horizon. Three regulatory advances in this line should be remarked: (1)
Legal unbundling of the network by 2020, (2) retail liberalization by April 1st, 2016,
and (3) renewable generation and distributed power generation promotion. Thus, smart
metering should be fully accomplished in order to be successful to achieve (1) and (2)
goals.

4 Data and descriptive statistics

Our data consists of 30 minute day-ahead price intervals for each day (48 intra-day
observations). Data covers the period from April 2, 2005 until December 31, 2015.
Therefore, we have 188, 448 half-hourly observations. Table 3 reports basic descriptive
statistics of the price as well as by season and day of the week.9

TABLE 3: Descriptive statistics of prices per season and day of the week
Wtr Spr Sum Aut Mo Tu Wd Th Fr All

Min. 4 3.30 2.95 4.34 2.95 4.00 3.99 3.78 3.83 2.95
Max. 42 35 60 39.23 39.67 44.92 43.67 55.00 60.00 60.00
Mean 11.90 10.89 10.93 11.09 11.50 11.66 11.64 11.72 11.67 11.20
Median 11.50 10.22 10.10 10.24 10.91 11.00 11.00 11.00 11.00 10.52
St. Dv. 4.67 4.07 5.02 4.08 4.56 4.72 4.72 4.86 4.87 4.49
Sk 1.07 0.59 1.68 0.91 0.89 1.06 1.09 1.44 1.41 1.18
Kt (Ex.) 5.60 2.84 9.98 4.62 4.73 5.57 5.63 8.74 8.73 6.84
J-B 5·106 7·105 2·107 7·106 5·106 6·106 5·106 9·106 1·107 8·107

Min, minimum; Max., maximum; St. Dv., Standard deviation; Sk, Skewness; Kt (Ex), Excess kurtosis

J-B, Jarque-Bera test of normality.

The mean price is 11.20 U/kWh with a standard deviation of 4.49 U/kWh, the
minimum price is 2.95 U/kWh and the maximum price is 60 U/kWh. Thus, the range
of the price is quite large since large prices can be up to five times the mean price.
Several seasonal effects are observed. Mean and median prices are higher in winter than
in the rest of the seasons, probably due to house heating. Although air-conditioning
consumption is high in summer it is not reflected in significantly higher prices than in
other seasons maybe due to lower economic activity that offsets consumption. Day of
the week seasonality is observed with lower mean, median and volatility of prices during
weekends and Monday. The coeffi cient of skewness is positive and in many cases greater

9Descriptive statistics are also available for each zone upon request. For example, in the island
of Honshu, the average prices in the Tohoku and Tokyo zones are 11.49 ¥/kWh and 11.44 ¥/kWh,
respectively, whereas the average prices in Hokuriku, Chobu, Kansai and Chugoku zones are around
11.18 ¥/kWh. The rest of descriptive statistics follow a similar pattern.
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than 1, thus the distribution is highly right-skewed. In all cases there is significant excess
of kurtosis which indicates that the distribution of prices is leptokurtic. Jarque Bera
test confirms that the distribution of prices is not normal.

Figure 1(a) plots the estimated kernel density against the standard normal ditribution
to confirm the tests. Figure 1(b) plots the time series of prices.

[Insert Figure 1(a) and 1(b)]

Figure 1(a) shows how the distribution of prices is skewed to the left and bimodal.
Figure 1(b) shows important price jumps in 2007/09/20, 2007/09/21, 2013/08/22, 2014/02/14,
2014/07/25 and 2014/08/04 to 07. These larger prices are observed mostly during peak
demand hours.

There exists a positive correlation between larger prices and traded quantities as
demand effect dominates. However, this is not necesarily the case for returns. We
control for return seasonality using two different filtering approaches. The first ap-
proach used by Chan et al. (2008), Ullrich (2012) and Ciarreta and Zarraga (2016),
where the medians of the returns are subtracted from the returns for each month of
the year, m, day of the week, d, and half-hour, hh, of the day to take into account
the seasonal pattern effect observed in the descriptive analysis of the prices, rt,(m,d,hh).
Therefore, the de-median returns are defined as r∗1t,j = rt,j − rt,(m,d,hh). The second
approach (REFERENCES) is using a nonlinear median smooth of size p and obtain
r∗2t,j = median (rt,j−p, ..., rt,j−1, rt,j , rt,j+1, ..., yt,j+p). For p = 1 is the usual definition
of median. Both approaches yield to similar results since both are based on the same
underlying median smoothing theory. Alternatively we could have filtered the data to
remove the trend, τ , and cyclical components, c, r̃t,i = τ t,i+ ct,i. The trend may be non-
stationary, contain a deterministic or stochstic trend. We do not obtain large differences
for the different filtering methods this is why we stick to the first approach.10

Table 4 reports descriptive statistics of the de-median returns r∗1t,j as a whole and
also by season and day of the week.

TABLE 4: Descriptive statistics of returns per season and day of week
Wtr Spr Sum Aut Mo Tu Wd Th Fr All

Min. -0.713 -0.551 -0.768 -0.719 -0.749 -0.719 -0.768 -0.653 -0.715 -0.768
Max. 0.613 0.488 0.889 0.608 0.696 0.755 0.680 0.856 0.889 0.889
Mean -0.000 -0.000 -0.002 0.000 -0.000 -0.001 -0.000 -0.000 -0.000 -0.000
Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
St. Dv. 0.053 0.056 0.073 0.053 0.061 0.063 0.064 0.063 0.063 0.060
Sk 0.272 0.114 0.046 0.278 0.246 -0.003 -0.031 0.344 0.274 0.128
Kt (Ex.) 18.95 14.92 21.84 18.76 19.65 20.34 21.24 20.14 20.90 21.43
JB 4·105 2·105 6·105 5·105 3·105 3·105 3·105 3·105 3·105 3·105

On average adjusted returns are slightly negative. The largest return is 0.889 ob-
served in summer which corresponds to a ratio of 2.5 between two consecutive prices

10 In Appendix 1 we report summary statistics of the filtered returns for different filtering methods.
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(Friday 21, September, 2007 at half-hour 27). Thus, spikes are not as severe as those ob-
served in other electricity markets worldwide.11 The percentage of zero returns is larger
during weekends when market transactions are lower. There is no significant correlation
between returns and quantity traded. Figure 2(a) plots the estimated kernel density
against a standard normal ditribution of the returns and Figure 2(b) the time series of
the returns.

[Insert Figure 2(a) and 2(b)]

Figure 2(a) clearly shows the excess of kurtosis and flatter than the normal distri-
bution whereas Figure 2(b) shows the presence of return spikes above and below zero.
Extreme returns are also associated frequently with price spikes as it is the case for the
days 2007/09/20, 2007/09/21, and 2013/08/22, although not for the rest of the days.

Risk managers do not like volatility because it involves complex hedging strategies
and increases the risk of failures. Indeed, this is shown by the negative correlation
between RVt, defined in terms of the adjusted returns is used as our estimator of IVt,
and total quantity sold (−0.1462).12 Table 5 summarizes the descriptive statistics of
RV .

TABLE 5: Descriptive statistics of RV
Min. 0.0031
Max. 2.4296
Mean 0.1728
Median 0.1189
St. Dv. 0.1840
Sk 3.6120
Kt (Ex.) 25.2898
J-B 2.6·106

There exists skewness and excess of kurtosis, besides de Jarque-Bera test confirms
thar the distribution is not normal. Figure 3(a) plots the estimated kernel density and
the standard normal ditribution and Figure 3(b) plots the time series of the RV .

[Insert Figure 3(a) and 3(b)]

Figure 3(a) shows how a visual inspection of the distribution of RV is not normal.
Figure 3(b) shows that there are few days when RV presents sharp spikes. In particular,
larger values are computed for 2007/09/20 and 2007/09/21, and also for 2011/08/19,
2011/08/31, 2013/08/21, 2013/08/29, 2015/08/04, and 2015/08/05. Thus, larger RV is
found during summer time days. Thus, a visual inspection justifies to test the presence
of jumps using the tests proposed in Section 2. In order to restrict jumps, we choose

11For instance, in the EPEX day-ahead the ratio can be 25 times larger when prices are positive or in
the Iberian market can be up to 7 times larger.
12 In empirical applications two transformations are often used. One is the square root of the real-

ized variance called properly realized volatility (see BNS, 2004)
√
RV , and another is the logarithmic

transformation, logRV . These transformations are used to smooth the time series. However, in our
application we restrict to RV because some of the tests are not suitable for any of these transformations.
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α = 0.01 as the significance level to detect jumps. For the BNS, MIN and MED tests,
we choose 1-order processes. For the CPR test, we report results for the Gaussian kernel
and L = 100. Finally, for the ABD-LM we have that K =

√
365 · 48 = 132. Table 6

reports the percentage of days with jumps detected by the different tests for adjacent
returns and filtered returns.13

TABLE 6: Percentage of jump days
BNS MIN MED CPR ABD-LM JO

% days 42.61 8.99 2.96 68.37 13.75 33.11

Note that the BNS test detects many jump days, 42.61% of the days are classified
as jump days. By construction of the CPR test detects even more jump days.14 On
the contrary, the MIN and MED tests are more conservative and detect around one fith
and one tenth of jump days, respectively. ABD-LM and JO detect jump days inbetween
the other tests. This is probably the result of having 25% of the observations with zero
returns that tends to over-represent zero values in the calculations of BVt and TQt.15

Figure 4 plots JV for the different tests.

[Insert Figure 4(a)] [Insert Figure 4(b)]
[Insert Figure 4(c)] [Insert Figure 4(d)]
[Insert Figure 4(e)] [Insert Figure 4(f)]

Before we turn to the estimation of the models, we test for bias of the different
intraday volatility measures used in this paper. The estimated equation of the returns
against the different jump measures provides a test of the biasedness of the different
approaches to the decomposition between continuous and jump components. Table 7
reports estimation results.

TABLE 7: Test for Bias
BNS MIN MED CPR ABD-LM RV

µ̂ 0.0012 −0.0123 −0.0204∗∗∗ 0.0109∗∗∗ 0.0022 −0.0259∗∗∗

β̂ 0.6074∗∗∗ 0.551∗∗∗ 0.566∗∗∗ 0.5812∗∗∗ 0.6016∗∗∗ 0.5756∗∗∗
∗∗∗ Significant at 1% level.

In all cases there is an upward bias in the volatility measures. The closest to no-boas
(β̂ = 1) is the BNS test followed by ABD-LM.

13Appendix 2 reports different jump detection results considering several specifications of the filtered
returns and products of k-spaced adjacent returns. We have also analyzed other kernel functions for the
CPR test but results do not change significantly.
14We have implemented the CPR test for values of L = {25, 50, 150}. For instance in the case of

L = 150, the percentage of jump days is 70.45. We have also considered cϑ = 4 and cϑ = 5 and the
percentage of jump days reduces to 59.60% and 55.11%, respectively.
15We have also considered the serial autocorrelation of the returns and using the staggered version of

BNS the percentage of jump days decreases substantially. However, we continue considering this version
in order to make results more comparable.
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5 Estimation Results

We estimate the different HAR models with and without the decompositions. Results
are shown in Table 8 below.

TABLE 8: HAR model estimation results
RV CV-JV

BNS CPR MIN MED ABD-LM
β̂0 0.0209∗∗∗ θ̂0 0.0186∗∗∗ 0.0185∗∗∗ 0.0210∗∗∗ 0.0212∗∗∗ 0.0144∗∗∗

β̂1 0.3417∗∗∗ θ̂1 0.3717∗∗∗ 0.3717∗∗∗ 0.3309∗∗∗ 0.3346∗∗∗ 0.3418∗∗∗

β̂2 0.3037∗∗∗ θ̂2 0.2919∗∗∗ 0.2913∗∗∗ 0.2969∗∗∗ 0.3040∗∗∗ 0.2612∗∗∗

β̂3 0.2334∗∗∗ θ̂3 0.2673∗∗∗ 0.2673∗∗∗ 0.2545∗∗∗ 0.2380∗∗∗ 0.2471∗∗∗

λ̂1 0.2936∗∗∗ 0.2936∗∗∗ 0.4122∗∗∗ 0.4921∗∗∗ 0.3011∗∗∗

λ̂2 0.3173∗∗∗ 0.3172∗∗∗ 0.3949∗∗∗ 0.3103∗∗∗ 0.3170∗∗∗

λ̂3 0.1971∗∗ 0.1970∗∗ 0.0372 0.0863 0.1812∗∗∗

adj-R2 0.3786 0.3796 0.3796 0.3798 0.3798 0.3805
AIC −3977.8 −3981.0 −3981.0 −3982.6 −3982.6 −3981.1
∗∗∗ Significant at 1% level. ∗∗ Significant at 5% level.

We only report the estimation results of the CPR test when the Gaussian-normal
kernel is considered because results for the other kernel functions are very similar. Note
that all the coeffi cients are positive and significant at the 1% level for the CV and
showing strong volatility persistance. It is observed that the magnitude of the effect on
RVt is larger from the previous day followed by the weekly and monthly average realized
volatilities. This is due to the presence of volatility clusters decreasing over longer
horizons. Considering the decomposition, it also shows high volatility persistance. In
the case of the jump component, weekly effect is larger in magnitude than the previous
day effect, and the monthly average effect is clearly smaller in accordance with the short-
term jump effect. Overall, based on adjusted R2 and AIC criteria the best model is the
one that decomposes the realized volatility based on the approach by ABD (2010).

The error terms are analyzed in each of the estimated models in order to determine
the presence of GARCH structures. In the case of RV, the Ljung-Box statistic on the
correlations of the residuals and squares of residuals do not reject the hypothesis of the
existence of GARCH effects in the residuals. Thus, we estimate the HAR-GARCH and
HAR-EGARCH models for RV.
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TABLE 9: HAR-GARCH model estimation results
RV CV-JV

BNS CPR MIN MED ABD-LM
β̂0 0.0105∗∗∗ θ̂0 0.0064∗∗∗ 0.0059∗∗∗ 0.0021∗∗∗ 0.0069∗∗∗ 0.0061∗∗∗

β̂1 0.3351∗∗∗ θ̂1 0.3668∗∗∗ 0.3676∗∗∗ 0.3475∗∗∗ 0.3413∗∗∗ 0.3268∗∗∗

β̂2 0.3876∗∗∗ θ̂2 0.3881∗∗∗ 0.3886∗∗∗ 0.3938∗∗∗ 0.4106∗∗∗ 0.3901∗∗∗

β̂3 0.1416∗∗∗ θ̂3 0.2472∗∗∗ 0.2565∗∗∗ 0.2244∗∗∗ 0.2098∗∗∗ 0.2341∗∗∗

λ̂1 0.2995∗∗∗ 0.3108∗∗∗ 0.3125∗∗∗ 0.3626∗∗∗ 0.3005∗∗∗

λ̂2 0.4340∗∗∗ 0.4273∗∗∗ 0.4956∗∗∗ 0.4045∗∗∗ 0.4245∗∗∗

λ̂3 0.1170∗∗ 0.1316∗∗∗ −0.016 −0.042 0.1133∗∗

α̂0 0.0004∗∗∗ α̂0 0.0004∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗

α̂1 0.2088∗∗∗ α̂1 0.2244∗∗∗ 0.0004∗∗∗ 0.2201∗∗∗ 0.2181∗∗∗ 0.2044∗∗∗

α̂2 0.7904∗∗∗ α̂2 0.7789∗∗∗ 0.7982∗∗∗ 0.7820∗∗∗ 0.7837∗∗∗ 0.7689∗∗∗

AIC −6613.262 −6618.556 −6620.366 −6612.484 −6612.484 −6611.511
∗∗∗ Significant at 1% level. ∗∗ Significant at 5% level.

Note that α̂0 > 0, α̂1 ≥ 0, α̂2 ≥ 0 and α̂1 + α̂2 < 1. According to the AIC the
best model is the ABD-LM. Note that estimated coeffi cients do not much different in
magnitude with respect to the simple HAR model. The significance of the GARCH
parameters indicates that it is relevant to model volatility in the error term.

Finally, results from the HAR-EGARCH estimation are reported in Table 10.

TABLE 10: HAR-EGARCH model estimation results
RV CV-JV

BNS CPR Min Med ABD-LM
β̂0 0.0016 θ̂0 0.0000 0.0000 −0.0002 −0.0005 0.0000

β̂1 0.3517∗∗∗ θ̂1 0.3366∗∗∗ 0.3426∗∗∗ 0.3276∗∗∗ 0.3167∗∗∗ 0.3355∗∗∗

β̂2 0.5112∗∗∗ θ̂2 0.3627∗∗∗ 0.3558∗∗∗ 0.3734∗∗∗ 0.3836∗∗∗ 0.3427∗∗∗

β̂3 0.1267 θ̂3 0.3398∗∗∗ 0.3433∗∗∗ 0.3247∗∗∗ 0.3103∗∗∗ 0.3298∗∗∗

λ̂1 0.2972∗∗∗ 0.3174∗∗∗ 0.2834∗∗∗ 0.3524∗∗∗ 0.2962∗∗∗

λ̂2 0.4087∗∗∗ 0.4207∗∗∗ 0.4570∗∗∗ 0.3897∗∗∗ 0.4066∗∗∗

λ̂3 0.1848∗∗∗ 01711∗∗∗ 0.0005 −0.0721 0.1748∗∗∗

δ̂0 −0.1376∗∗∗ δ̂0 −0.1601∗∗∗ −0.1548∗∗∗ −0.1619∗∗∗ −0.1625∗∗∗ −0.1500∗∗∗

δ̂1 0.0878∗∗∗ δ̂1 0.0585∗∗∗ 0.0614∗∗∗ 0.0633∗∗∗ 0.0521∗∗∗ 0.0577∗∗∗

δ̂2 0.2777∗∗∗ δ̂2 0.3349∗∗∗ 0.3278∗∗∗ 0.3368∗∗∗ 0.3494∗∗∗ 0.3348∗∗∗

δ̂3 0.9614∗∗∗ δ̂3 0.9545∗∗∗ 0.9559∗∗∗ 0.9542∗∗∗ 0.9536∗∗∗ 0.9544∗∗∗

AIC −6604.21 −6608.55 −6608.56 −6615.468 −6617.979 −6608.58
∗∗∗ Significant at 1% level. ∗∗ Significant at 5% level.

We have estimated 15 non-nested models. To evaluate the in-sample performance of
the models we select as preferred model the one with the minimum AIC value. In this
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case, the best model is the HAR-GARCH-CV-JV with CPR Gaussian decomposition,
followed by the HAR-GARCH-CV-JV with BNS decomposition. Thus, it is clearly
relevant to decompose RV into continuous and jump component. We are interested
in testing the robustness of our model. For that reason we also consider the Model
Confidence Set approach by Hansen et al (2011).

6 Conclusions, policy implications and further research

The liberalization of the Japanese electricity market has implied the launching of a half-
hourly Day-ahead market. Electricity subject to competitive market transactions is still
marginal compare to the bulk of electricity consumed. However, the government follow-
ing recommendations from regulatory agencies is trying to push further liberalization.
As it happens in more developed electricity markets worldwide this trend tends to push
prices down but volatility increases. As a response, agents implement hedging strategies
following the experience of financial mrkets.

In this paper, we have shown how despite being marginal, there is volatility in the
market that can be modelled using realized volatility. After implementing several test
statistics, we show that there are jumps in volatility that can be best identified using
the BNS approach. Using the HAR estimation, the nature of the price process is such
that volatility depends on its own past. Including GARCH effects improves estimation
results. Our results call for further research on the liberalization process of the Japanese
electricity market. Even though we have identified the best model to explain volatility,
differences in the jump detection call for further research on this initial part.
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Appendix: Filtering returns, realized volatility and jumps

TABLE #: Descriptive statistics of returns
r∗1t,j r∗2t,j(p = 1) r∗2t,j(p = 2) r̃t,j

Min. −0.768 −0.9851 −0.8659 −0.7520
Max. 0.889 0.9337 0.9729 0.7528
Mean −0.0008 0.0003 0.0005 0.0000
Median 0.0000 0.0000 0.0000 0.0000
St. Dv. 0.060 0.0605 0.0635 0.0570
Sk 0.128 0.4199 0.4910 0.4056
Kt (Ex.) 21.43 26.34 24.33 15.75

TABLE #: Descriptive statistics of RV
r∗1t,j r∗2t,j(p = 1) r∗2t,j(p = 2) r̃t,j

Min. 0.0031 0.0000 0.0012 0.0007
Max. 2.4296 2.5393 2.7758 2.5278
Mean 0.1728 0.1758 0.1937 0.1561
Median 0.1189 0.1172 0.1325 0.1068
St. Dv. 0.1840 0.1921 0.2082 0.1645
Sk 3.6120 3.3284 3.527 3.6179
Kt (Ex.) 25.2898 22.8928 24.7908 28.6389

TABLE #: Percentage of jump days
BNS MIN MED CPR ABD-LM JO

r∗1t,j k = 1 42.61 8.99 2.96 68.37 13.75 33.11

k = 2
r∗2t,j(p = 1) k = 1 49.41 3.59 2.54

k = 2
r∗2t,j(p = 2) k = 1 61.11 7.54 2.17

k = 2
r̃t,j k = 1 14.70 3.67 3.93

k = 2

22



Technical appendix: Kernel functions
A kernel density estimate is constucted using a weighted sum of values calculated

using a kernel function K (x) such that

f̂K =
1

q · h

n∑
i=1

wiK

(
x−Xi

h

)

where q =
∑n

i=1wi, h = 0.9m
n1/5

with m = min
(√

σ2
x,

iqrx
1.349

)
. Call z = x−Xi

h then K (z)

can be one of these functions:

Cosine K (z) =

{
1 + cos (2πz) if |z| < 1

0 otherwise

Epanechnikov K (z) =

{
3
4

(1− 1
5
z2)√

5
if |z| <

√
5

0 otherwise

Gaussian K (z) = 1√
2π

exp
(
− z2

2

)
Parzen K (z) =


4
3 − 8z2 + 8 |z|3 if |z| ≤ 1

2
8(1−|z|)3

3 if 1
2 < |z| ≤ 1

0 otherwise

Weibull K (z) = (1− p)z
β

− (1− p)(1+z)β
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Technical appendix: Regression with Newey—West standard errors
The Newey-West standard errors for coeffi cients estimated by OLS regression. The

error structure is assumed to be heteroskedastic and possibly autocorrelated up to some
lag,

β̂OLS =
(
X ′X

)−1
X ′y

V̂ ar
(
β̂OLS

)
=

(
X ′X

)−1
X ′Ω̂X

(
X ′X

)−1

The coeffi cients β̂ are those of OLS linear regression (y = β′X + e). The variance
estimates of the estimated coeffi cients are calculated as

X ′Ω̂X = X ′Ω̂0X =
n

n− k

n∑
i=1

ê2
ix
′
ixi

where n is the number of observations, k the number of regressors, and êi = yi−xiβ̂OLS .
If lags are included in the estimation then

X ′Ω̂X = X ′Ω̂0X +
n

n− k

m∑
l=1

(
1− l

m+ 1

) n∑
t=l+1

êtêt−l
(
x′txt−l + x′t−lxt

)
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Technical appendix: Ljung-Box statistic
The Box-Ljung test (1978) is a diagnostic tool used to test the lack of fit of a time se-

ries model. The test is applied to the residuals of a time series after fitting an ARMA(p,q)
model to the data. The test examines m autocorrelations of the residuals. If the auto-
correlations are very small, we conclude that the model does not exhibit significant lack
of fit. In general, the Box-Ljung test test the null hypothesis that the model does not
exhibit lack of fit against the alternative hypothesis that the model exhibits lack of fit.
Given a time series Y of length T , the test statistic is defined as:

Q = T (T + 2)
m∑
k=1

r̂2
k

T − k

where r̂k is the estimated autocorrelation of the series at lag k andm the number of lags q.
The null hypothesis is rejected if Q > X2

1−α,h, being X
2
1−α,h the chi-square distribution

with h = m − p − q degrees of freedom and significance level α. The following table
summarizes the Box-Ljung statistic for all the estimated models for q = 20:

ε̂ ε̂2

HAR GARCH EGARCH HAR GARCH EGARCH
RV q = 20 216.35 117.44 131.83 1024.72 1097.55 75.61

q : 0.01 > Q 5 6 7 0 18 18
CV+JV

BNS q = 20 217.96 131.66 133.61 1055.71 94.44 81.75
q : 0.01 > Q 4 7 7 0 18 18

CPR q = 20 217.71 130.20 132.38 1029.81 95.51 81.62
q : 0.01 > Q 5 7 7 0 18 18

Min q = 15 214.98 132.34 134.13 1005.96 103.59 87.32
q : 0.01 > Q 5 7 7 0 18 18

Med q = 15 211.79 131.55 133.48 1012.82 100.94 85.97
q : 0.01 > Q 5 7 7 0 18 18
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Appendix: Quadratic Variation
First, variation of a real-valued continuous function f defined on an interval [a, b] ⊂

R is a measure of the arclength of the curve with parametric equation x 7→ f(x) for
x ∈ [a, b]. Thus, total variation of a real valued function f defined on an interval
[a, b] ⊂ R is defined as

V (f) = sup
P

np∑
i=1

|f (xi)− f (xi−1)|

where the supremum runs over the set of all partitions of [a, b], P =
{
p =

{
x0, ..., xnp

}
\p is a partition of [a, b]

}
.

If f is a differentiable function then V (f) can be expressed as an integral,

V (f) =

∫ b

a
|f (x)| dx

Quadratic variation is a kind of variation process used to analyze stochastic
processes such as martingales and semimartingales. Suppose now that yt is a real-valued
continuous stochastic process defined on a probability space (Ω, F, P ), the quadratic
variation of the process, denoted as [y]t, is defined as the sum of the squares of the
differences of two consecutive numbers of the partition of t,

[y]t = lim
‖p‖→0

n∑
i=1

(
yti − yti−1

)2
where ‖p‖ is the norm or mesh of the partition. Recall that a partition of an interval
t on the real line is a finite sequence xt = (xti)

i=n
i=1 such that xt0 < xt1 < ... < xtn

where the norm is max
{∣∣xti − xti−1∣∣ : i = 1, ..., n

}
. A process yt has a finite varation if

prob
{∣∣xti − xti−1∣∣ <∞} = 1 for every i = 1, ..., n. Note that by the definition it implies

that the quadratic variation exists for all continuous finite variation processes and is
zero. Instead suppose that yt is a real-valued non-continuous stochastic process defined
on a probability space (Ω, F, P ). If yt is a cadlag finite variation process then yt has left
limit and it is right continuous, the quadratic variation can be expressed as

[y]t =
∑

0<s≤t
(∆ys)

2

It is important to relate quadratic variation to Ito processes. An Itô process is defined
to be an adapted stochastic process that can be expressed as the sum of an integral with
respect to Brownian motion, W , and an integral with respect to time of a predictable
component, µ,

yt = y0 +

∫ t

0
µsds+ +

∫ t

0
σsdWs

The quadratic variation of the process is

[y]t =

∫ t

0
σsds
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Write the Ito process in the form of a differential equation:

dyt = µtytdt+ σtytdWt

then, by Ito’s lemma, the stochastic process of any function G (y, t) is

dG (y, t) =

(
µyt

∂G

∂y
+
∂G

∂t
+

1

2
σ2y2∂

2G

∂y2

)
dt+ σyt

∂G

∂y
dWt

where
(
µyt

∂G
∂y + ∂G

∂t + 1
2σ

2y2 ∂2G
∂y2

)
dt is the non-stochastic component and σyt ∂G∂y dWt is

the stochastic component. Now let us consider the process with jumps,

dyt = µtytdt+ σtytdWt + dJt
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Figure 4(a): Time series of JV using BNS

0
.2

.4
.6

.8
1

1
.2

1
.4

J
V

0 500 1000 1500 2000 2500 3000 3500 4000
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