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Abstract
In this paper, we propose a robust approach against heteroskedasticity, error

serial correlation and slope heterogeneity for large linear panel data models. First,
we establish the asymptotic validity of the Wald test based on the widely used
panel heteroskedasticity and autocorrelation consistent (HAC) variance estimator
of the pooled estimator under random coe¢ cient models. Then, we show that a
similar result holds with the proposed bias-corrected principal component-based es-
timators for models with unobserved interactive e¤ects. Our new theoretical result
justi�es the use of the same slope estimator and the variance estimator, both for
slope homogeneous and heterogeneous models. This robust approach can signi�-
cantly reduce the model selection uncertainty for applied researchers. In addition,
we propose a novel test for the correlation and dependence of the random coe¢ cient
with covariates. The test is of great importance, since the widely used estimators
and/or its variance estimators can become inconsistent when the variation of coef-
�cients depends on covariates, in general. The �nite sample evidence supports the
usefulness and reliability of our approach.
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1 Introduction

The recently increasing availability of panel data sets in which both cross-section dimen-
sion N and times series dimension T are large has produced opportunities to develop
statistical methods to exploit richer information, while presenting associated technical
challenges. In particular, controlling cross-sectional dependence, heterogeneity in para-
meters and distributions, and serial dependence has been a main focus of the literature.
The cerebrated �xed e¤ects model permits intercept to be cross-sectionally heteroge-

neous whilst slope coe¢ cients are constant across cross-section units and time. Hansen
(2007) has shown that, under mild conditions, the heteroskedasticity and autocorrela-
tion consistent (HAC) variance estimator of Arellano (1987), which is originally proposed
for a short panel �xed e¤ects estimator, will be asymptotically valid for large panels.
Greenaway-McGrevy et al. (2012) propose to use the HAC estimator for the pooled
principal component based (PC) estimator for the model with unobserved interactive
e¤ects.
The random-coe¢ cient model, in which the slope coe¢ cients are allowed to vary with

the cross-sectional units, has attracted great attention in recent years.1 It can control
di¤erences in behaviour across cross-section units which are not captured by the control
variables. For such models, the estimate of interest is often the population average of
slope coe¢ cients. Interestingly, if the cross-sectional variation of slopes in the random
coe¢ cient model is independent of covariates, the �xed e¤ects estimator is consistent
to the population average of slope coe¢ cients. A non-parametric variance-covariance
estimator for such pooled estimators has been implicitly proposed in Pesaran (2006),
in which the population variation of slopes is replaced by its sample counterpart �the
variation of the estimates of cross-section speci�c slopes. The evidence has shown that
the variance estimator behaves very well in �nite samples.
There are some issues about this variance estimator for our robust approach. First,

for the choice between the HAC and this variance estimator, the practitioner would
like to know if there is slope heterogeneity or not. Second, the computation of the
variance estimator requires a calculation of the individual slope estimates, and this can
be costly when N and T are very large. Third, some estimation methods, such as Bai�s
(2009) estimator, do not permit slope heterogeneity models, and making use of statistics
involving individual slope estimates might not be asymptotically justi�ed.
In this paper, we propose a robust approach against heteroskedasticy, error serial

correlation and slope heterogeneity for large linear panel data models. First, we establish
the asymptotic validity of the Wald test based on the panel HAC variance estimator for
the pooled estimator under random coe¢ cient models. Then, we show that a similar
result holds with the bias-corrected PC estimators for models with interactive e¤ects,
which extend the results in Westerlund and Urbain (2015) and Reese and Westerlund
(2018). Our new theoretical result justi�es the use of the same slope estimator and the
variance estimator, both for slope homogeneous and heterogeneous models. This robust
approach is expected to substantially reduce the model selection uncertainty for applied
researchers.
Another main contribution of this paper is a novel test for the correlation and de-

pendency of the random coe¢ cient on covariates. We extend the test proposed by

1See Hsiao and Pesaran (2008) for an excellent survey of random coe¢ cient panel data models.
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Wooledridge (2010) by robustifying against (uncorrelated) random coe¢ cients, proposing
a Lagrange Multiplier test along with a Wald test, and developing them for the models
with unobservable interactive e¤ects. The test is of great importance, since the widely
used estimators and/or its variance estimators can become inconsistent when the varia-
tion of coe¢ cients is correlated or dependent with covariates, in general.
We have examined the �nite sample performance of the estimators, tests of linear

restrictions, and the LM tests for correlated random coe¢ cients. The evidence illustrates
the usefulness of our approach. In particular, for the estimation of the models with
unobserved interactive e¤ects, the size of the proposed robust Wald test using the bias-
corrected PC estimators and Bai�s (2009) estimator is very close to the nominal level,
under both slope homogeneity and slope heterogeneity, while maintaining satisfactory
power. Also, the LM tests for correlated random coe¢ cients have correct size under
both slope homogeneity and slope heterogeneity due to pure random coe¢ cients, while
exhibiting high power when the random coe¢ cients depend on covariates.
The paper is organised as follows. The robust Wald test is proposed for standard linear

panel data models in Section 2, then for the models with unobserved interactive e¤ects
in Section 3. A test for correlation of slopes with covariates is proposed in Section 4. The
�nite sample performance of the proposed bias-corrected estimator, the associated Wald
test and the correlation test is investigated using the Monte Carlo method in Section 5.
Section 6 contains some concluding remarks. Proofs of the main results are contained in
Appendix, and the proofs of associated Lemmas and full experimental results are found
in Online Appendices.
Notations: kAk = [tr (A0A)]1=2, �max (A) (�min (A)) is the maximum (minimum)

eigenvalue of square matrix A, �!p�denotes convergence in probability, �!d�denotes
convergence in distribution, � is an upper bound which is a �nite positive constant, �min

is an lower bound which is a �nite positive constant strictly above zero, N denotes the
number of cross-section units and T denotes the number of time-series observations of
panel data, �NT = min

np
N;
p
T
o
, (N; T )!1 denotes N and T go to in�nity jointly,

MA = I�A (A0A)�1A0, where A has full column rank.

2 Benchmark Panel Data Model

Consider a panel data model with cross-sectionally heterogeneous slopes:

y�it = x
�0
it�i + f

00
t �

0
i + "it; (1)

i = 1; 2; :::; N , t = 1; 2; :::; T , x�it is a k � 1 vector of observed covariates, f0t is a r � 1
vector of time-variant but cross-sectionally invariant regressor, �0i is a r�1 factor loading
vector, which is time-invariant but cross-sectionally variant, and "it is disturbances. The
k � 1 slope coe¢ cients are generated as

�i = � + �i, (2)

where �i is independently distributed random vector across i, with E (�i) = 0. When
�i = 0 for all i, it reduces to the homogeneous slope model. Throughout the paper, our
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interest is in the estimation and testing of the linear restrictions of �. Now stuck the T
equations of (1) to form

y�i = X
�
i�i + F

0�0i + "i, (3)

where y�i = (y�i1; y
�
i2; :::; y

�
iT )

0, X�
i = (x�i1;x

�
i2; :::;x

�
iT )

0, F0 = (f01 ; f
0
2 ; :::; f

0
T )
0, and "i =

("i1; "i2; :::; "iT )
0.

In this section, we assume F0 is observed.2 Consider the projection matrix MF0 =
I� F0 (F00F0)�1F00. By Frisch�Waugh�Lovell theorem, denoting yi =MF0y

�
i and Xi =

MF0X
�
i , the model of interest can be equivalently written as

3

yi = Xi�i + �f";i, �f";i = F
0�0i + "i. (4)

Remark 1 For the discussion below, we restrict f0t to be time varying and �
0
i to be cross-

sectionally varying, without loss of generality. When f0t = f
0 or �0i = �

0, interactive ef-
fects will reduce to �i = f00�

0
i and �t = f

00
t �

0, which are additive individual e¤ects and time
e¤ects, respectively. For notational simplicity, we do not include these e¤ects on top of
interactive e¤ects, but all the discussion below will hold by replacing fy�it;x�0itg with trans-
formed variables f�y�it; �x�0itg, where �y�it = (y�it � �y�i � �y�t + �y�) and �x�it = (x�it � �x�i � �x�t + �x�)
with �y�i = T�1

PT
t=1 y

�
it, �y

�
t = N�1PN

i=1 y
�
it, �y

� = N�1PN
i=1 �y

�
i , and �x

�
i , �x

�
t and �x

� are
de�ned analogously.

We can rewrite the equation (4) as4

yi = Xi� + ui, ui = Xi�i + �f";i. (5)

The pooled estimator of � is given by

�̂ =

 
NX
i=1

X0
iXi

!�1 NX
i=1

X0
iyi. (6)

To analyse the asymptotic properties of �̂, we extend the assumptions in Hansen
(2007) to accommodate random coe¢ cient models as follows:

Assumption A1: fx0it; "itg is independent across i = 1; 2; :::; N for all t, a strong mixing
sequence in t with � of size �3s=(s�4) for s > 4, with E j"itj4+4� � � <1, E jxithj8+8� �
� <1 for all i; t; h = 1; 2; :::; k and E ("ijXi) = 0; k�k � �; f�ig is independent across
i = 1; 2; :::; N and of f"ig for all i, E j�ihj

4+4� � � <1 and E (�ijXi) = 0.

Assumption A2: (Identi�cation): AiT = T�1E (X0
iXi) is uniformly positive de�nite

and A = limN;T!1ANT , with ANT = N
�1PN

i=1AiT , is �xed and positive de�nite.

Assumption A3: (Variance Matrix 1): BiT = T�1E (X0
i�""iXi) and �""i = E ("i"0ijXi)

are uniformly positive de�nite and B = limN;T!1BNT , with BNT = N�1PN
i=1BiT , is

�xed and positive de�nite.

2In the next section, we consider the case in which F0 is not observable.
3Of course, as X0

iF
0�0i = X

�0
i MF0F

0�0i = 0, we could replace �f";i in (4) by "i. We prefer �f";i here
as it will ease the discussions in the next section.

4Clearly, in this section, �f";i in (5) can be replaced by "i.
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Assumption A4: (Variance Matrix 2): CiT = T�2E (X0
iXi
��;iX

0
iXi) and 
��;i =

E (�i�
0
ijXi) are uniformly positive de�nite andC = limN;T!1CNT , withCNT = N�1PN

i=1CiT ,
is �xed and positive de�nite.

Assumption A1 allows serial dependence in fx0it; "itg but assumes independence across
i. The random coe¢ cient is independent across i. Both the idiosyncratic errors and
random coe¢ cient are assumed to be uncorrelated with xit. Assumption A2 is a fairly
standard identi�cation condition. Assumption A3 allows conditional heteroskedasticity
across i and t. Assumption A4 permits a conditionally heteroskedastic random coe¢ cient
process.
For later use, let us de�ne the sample counterpart of ANT and AiT de�ned in As-

sumption A2:

�ANT = N
�1

NX
i=1

�AiT , �AiT = T
�1X0

iXi. (7)

Substituting (4) into (6) gives

�̂ � � =

 
NX
i=1

X0
iXi

!�1 NX
i=1

X0
iui (8)

= �A�1
NT

 
1

NT

NX
i=1

X0
i"i +

1

N

NX
i=1

�AiT�i

!
.

Let us consider the asymptotic properties of the �rst term of the second equality in
(8). We state the following theorem, which is proven by Hansen (2007):

Theorem 1 Consider model (5). Under Assumptions A1-A3, as (N; T )!1,

�A�1
NT

1p
NT

NX
i=1

X0
i"i !d N

�
0;A�1BA�1� (9)

where �ANT , A, and B are de�ned in (7), Assumptions A2 and A3, respectively.

This is a very useful result, since, in the absence of slope heterogeneity �i, even
when the dimension of �""i = E ("i"

0
ijXi) is unbounded as T ! 1 (but �max (�""i) �

� with serially correlated errors), the theorem tells us that the use of the celebrated
heteroskedasticity and autocorrelation consistent (HAC) variance estimator of Arellano
(1987) for short panel models will be asymptotically justi�ed for large panels.
The next theorem states the asymptotic properties of the �rst term of the second

equality in (8).

Theorem 2 Consider model (5). Under Assumptions A1, A2 and A4, as (N; T )!1,

�A�1
NT

1p
N

NX
i=1

�AiT�i !d N
�
0;A�1CA�1� (10)

where �ANT and �AiT are de�ned in (7), A and C are de�ned in Assumptions A2 and A4,
respectively.
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As discussed in Pesaran (2006) and Reese andWesterlund (2018), the pooled estimator
�̂ is consistent to the centred value � under the random coe¢ cient assumption, and the
variation of �̂ due to the dispersion of slope coe¢ cients dominates the variation due to
the linear function of idiosyncratic errors. The following corollary of these two theorems
clarify this point:

Corollary 1 Consider model (5). Under Assumptions A1-A4, as (N; T )!1,
p
N
�
�̂ � �

�
!d N

�
0;A�1CA�1� (11)

whilst under slope homogeneity, �i = 0 for all i,
p
NT

�
�̂ � �

�
!d N

�
0;A�1BA�1� , (12)

where �̂ is de�ned by (6), A, B and C are de�ned in Assumptions A2, A3 and A4,
respectively.

In view of this, Pesaran (2006) proposes to estimate the variance of �̂ under random
coe¢ cient assumption by

~VNT

�
�̂
�
= N�1 �A�1

NT
�CNT �A

�1
NT , (13)

where

�CNT = N
�1

NX
i=1

�AiT

�
�̂i � �̂

��
�̂i � �̂

�0
�AiT , (14)

�̂i = (X
0
iXi)

�1X0
iyi and �̂ = N

�1PN
i=1 �̂i. The idea is to approximate the unobserved

slope heterogeneity �i by its sample counterparts, �̂i � �̂. The empirical evidence has
proven that this estimator works well in �nite samples.5 There are some issues with this
variance estimator for our robust approach. First, because it is di¤erent from the HAC
variance estimator assuming slope homogeneity, at the choice the practitioner would like
to know if there is slope heterogeneity or not. Second, the computation of the variance
estimator requires a calculation of the individual slope estimates, and this can be costly
when N and T are large. Third, some estimation methods, such as Bai�s (2009) esti-
mator, do not permit slope heterogeneity models and computation of statistics involving
individual slope estimates might not be justi�ed. In practice we do not necessarily have
a priori information on whether slopes are homogeneous or heterogeneous, which may
make the choice of the variance estimator subject to uncertainty.6

We propose a simple robust approach against such a choice. Based on the above
discussion, under slope heterogeneity we have

1

NT 2

NX
i=1

E (X0
iuiu

0
iXi) =

1

NT 2

NX
i=1

E (X0
iXi
��;iX

0
iXi) +

1

NT 2

NX
i=1

E (X0
i�""iXi)

=
1

NT 2

NX
i=1

E (X0
iXi
��;iX

0
iXi) +O

�
T�1

�
. (15)

5See experimental results in Pesaran (2006), for example.
6Pesaran and Yamagata (2008) and Su and Chen (2013), for example, propose slope homogeneity

tests, which can guide such a choice.
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This suggests a new alternative estimator of C:

ĈNT = N
�1

NX
i=1

ĈiT , ĈiT =
X0
iûiû

0
iXi

T 2
; (16)

where ûi = yi �Xi�̂.
Under homogeneous slopes (�i = 0 for all i),

1
NT

PN
i=1E (X

0
iuiu

0
iXi) =

1
NT

PN
i=1E (X

0
i�""iXi)

as ui = "i, hence, following Hansen (2007), we propose the following estimator of B:

B̂NT = N
�1

NX
i=1

B̂iT , B̂iT =
X0
iûiû

0
iXi

T
. (17)

We summarise the asymptotic properties of the estimators ĈNT and B̂NT in the following
proposition:7

Proposition 1 Consider the model (4) and the pooled estimator �̂, which is de�ned by
(6). Under Assumptions A1-A4, under slope heterogeneity ĈNT!pC, whilst under slope
homogeneity (�i = 0 for all i) B̂NT !p B, as (N; T ) ! 1, where ûi = yi �Xi�̂, ĈNT

and B̂NT are de�ned by (16) and (17), and C and B are de�ned in Assumptions A3 and
A4.

This proposition implies that the use of a widely employed HAC variance estimator
for short panel data models,

V̂NT

�
�̂
�
=

 
NX
i=1

X0
iXi

!�1 " NX
i=1

X0
iûiû

0
iXi

# 
NX
i=1

X0
iXi

!�1
; (18)

is asymptotically justi�ed for large panel data models under both slope homogeneity and
slope heterogeneity.
When there is strong evidence that coe¢ cients are heterogeneous, an alternative

pooled estimator, such as a mean group estimator, may be preferred. In this paper
we are more in line with the robust approach, which is widely employed in the literature
- avoiding uncertainty in specifying and estimating �nuisance�parameters for potential
e¢ ciency gain. As will be discussed in the next section, this approach turns out to be
useful for some popular estimation methods, in particular, estimation of linear panel data
models with unobserved interactive e¤ects.
We close this section by presenting a result for the Wald test based on the proposed

robust variance estimator of �̂.

Theorem 3 Consider testing q linearly independent restrictions of �, H0 : R� = r
against H1 : R� 6= r, where R is a q � k �xed matrix of full row rank. Consider the
model (4) and the Wald test statistic

WNT =
�
R�̂ � r

�0 n
R
h
V̂NT

�
�̂
�i
R0
o�1 �

R�̂ � r
�
, (19)

where �̂ and V̂NT

�
�̂
�
are de�ned by (6) and (18), respectively. Suppose that Assump-

tions A1-A4 hold. Then, under the H0, for both heterogenous slopes and homogeneous
slopes (�i = 0 for all i), WNT !d �

2
q; as (N; T )!1.

7The proof of the consistency of B̂NT is given by Hansen (2007).
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3 Models with Unobserved Interactive E¤ects

When F0 is unobserved, it should be replaced with a suitable estimator, and in this case
a further careful analysis is required. In particular, using estimated variables will result
in some asymptotic biases in the pooled estimator, as discussed in Pesaran (2006), Bai
(2009) and Westerlund and Urbain (2015), among others. Here we follow the discussion
in Westerlund and Urbain (2015) and Reese and Westerlund (2018). Our theoretical
contributions to this strand of literature are: (i) establishing the consistency of a bias-
corrected estimator both under homogeneous and heterogeneous slopes;8 (ii) showing
the limit distribution of the Wald test statistic based on the HAC variance estimator
both under homogeneous and heterogeneous slopes,9 and; (iii) proposing a new test for
correlation and dependence of the random coe¢ cients with the regressors (in the next
section).
In this section we assume that X�

i has a linear factor structure,
10

X�
i = F

0�00i +Vi: (20)

By combining (4) and (20), we have a system of m = k + 1 equations:

Z�i = F
0G0

i + Ei (21)

where Z�i = (y
�
i ;X

�
i ),G

0
i =

�
�00i �i+�

0
i ;�

00
i

�
, Ei = (Vi�i + "i;Vi). For later usage, de�ne

�0
N = N

�1
NX
i=1

G0
iG

00
i : (22)

In line with Bai (2009) and Norkute et al (2018), we replace Assumptions A1-A4 with
the followings:

Assumption B1 (idiosyncratic error in y): (i) "it is independently distributed across
i; (ii) E ("it) = 0 and E j"itj8+� � � <1; (iii) T�1

PT
s=1

PT
t=1E j"is"itj

1+� � � <1; (iv)
E
���N�1=2PN

i=1 ["is"it � E ("is"it)]
���4 � � < 1 for every t and s;

(v) N�1T�2
PN

i=1

PT
t=1

PT
s=1

PT
r=1

PT
w=1 jcov ("is"it; "ir"iw)j � � < 1; (vi) �"";i =

E ("i"
0
i) is positive de�nite and its largest eigenvalue is bounded, uniformly every i and

T .

Assumption B2 (idiosyncratic error in x): (i) v`it is independently distributed across
i and group-wise independent from "it; (ii) E (v`it) = 0 and E jv`itj8+� � � < 1; (iii)
T�1

PT
s=1

PT
t=1E jv`isv`itj

1+� � � < 1; (iv) E
���N�1=2PN

i=1 [v`isv`it � E (v`isv`it)]
���4 �

8Westerlund and Urbain (2015; supplement) only prove the consistency of the bias-corrected estimator
under the slope homogeneity. Pesaran (2006) and Reese and Westerlund (2015) provide a proof of
consistency of the non-bias-corrected pooled estimator.

9Theorem 2 in Reese and Westerlund (2015) shows the limit distribution of the pooled estimator
allowing weak factors, but does not discuss estimation of asymptotic variance and associated Wald test,
nor bias-correction.
10Bai (2009) does not impose such a structure and this generality introduces two extra bias terms. In

the Monte Carlo section, we apply our approach to Bai�s non-linear estimator.
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� <1 for every `, t and s; (v)N�1T�2
PN

i=1

PT
t=1

PT
s=1

PT
r=1

PT
w=1 jcov (v`isv`it; v`irv`iw)j �

� < 1; (vi) the largest eigenvalue of E (v`iv0`i) is bounded uniformly for every `, i and
T .

Assumption B3 (factor components): (i) E kf0t k
4 � � <1 and T�1

PT
t=1 f

0
t f
00
t !p

�f as T ! 1 which is a �xed positive de�nite matrix, f0t is group-wise independent
from vit and "it; (ii) denoting H0

i =
�
�00i ;�

0
i

�0
, E (H0

i ) = 0, H0
i is independent across

i, E kH0
i k
4 � � < 1 and N�1PN

i=1H
00
i H

0
i !p 
H =

�

0
�� !0��

!00�� !0��

�
, which is a �xed

positive de�nite matrix, H0
i is group-wise independent from vit and "it; (iii) �0

N !p �
0

as N !1, which is a �xed positive de�nite matrix.
Assumption B4 (random coe¢ cient): �i is independent across i, E (�i) = 0,
E(�i�

0
i) = �
��;i which is a �xed positive de�nite matrix uniformly for every i, E k�ik

4 �
� <1 and k�k4 � � <1, and �i is group-wise independent of "it, vit and H0

i .

Assumption B5 (identi�cation and Variance Matrices): ~AiT = T�1E (V0
iVi),

~BiT = T
�1E (V0

i"i"
0
iVi) and ~CiT = T

�2E (V0
iVi�i�

0
iV

0
iVi) are uniformly positive de�nite

and ~A = limN;T!1N
�1PN

i=1
~AiT , ~B = limN;T!1N

�1PN
i=1
~BiT and ~C = limN;T!1N

�1PN
i=1
~CiT

are �xed and positive de�nite.

Idiosyncratic errors "it and vit are independent groups of each other, independent
over i, but allowed to be serially correlated as structured by Assumptions B1 and B2.
Assumption B3 implies there are r factors, and the factor loadings �0i and �

0
i have

mean zero without loss of generality and are allowed to be correlated with each other.
Assumption B4 implies that the random coe¢ cients can be heteroskedastic but should
be independent of all other cross-section varying variables. Assumption B5 corresponds
to Assumptions A2-A4 in Section 2.
For any invertible r � r matrix R, de�ne

F = F0R, Gi = R
�1G0

i , (23)

such that T�1F0F = Ir and
PN

i=1GiG
0
i is diagonal. Then,MF =MF0, so thatMFF

0 =
MF0F = 0. The solutions to the minimisation problem,

arg min
F�F ;Gi�G

1

NT

mX
`=1

NX
i=1

TX
t=1

(zit` � f 0tgi`)
2
;

subjectto T�1F0F = Ir and
NX
i=1

GiG
0
i being diagonal, (24)

with z�it` being (t; `)th element of Z
�
i , are given by F̂, which is

p
T times the eigenvectors

corresponding to the r largest eigenvalues of the T � T matrix N�1PN
i=1 Z

�
iZ

�0
i , and

Ĝi = F̂
0Z�i =T , thus, Êi =MF̂Z

�
i .
11

11In the standard literature, factor loadings and the idiosyncratic errors in factor models are assumed
to be independent (e.g. Bai and Ng, 2002). Under slope heterogeneity, due to the presence of �i in gi1
and ei1, they are uncorrelated but not independent. As is shown in Lemma B.3, this does not change the
convergence rate of the factor estimators. For example, under both slope heterogeneity and homogeneity,

T�1=2
F̂� F0R = Op

�
��1NT

�
.
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De�ning the transformed variables

ŷi =MF̂y
�
i , X̂i =MF̂X

�
i ; (25)

the pooled estimator is obtained as

�̂PC =

 
NX
i=1

X̂0
iX̂i

!�1 NX
i=1

X̂0
iŷi. (26)

Noting that X̂0
iŷi= X̂

0
iy
�
i and ui = X

�
i�i + �f";i, we have

�̂PC � � =

 
NX
i=1

X̂0
iX̂i

!�1 NX
i=1

X̂iui

=

 
NX
i=1

X̂0
iX̂i

!�1 " NX
i=1

X�0
i MF̂X

�
i�i +

NX
i=1

X�0
i MF̂�f";i

#
. (27)

As discussed in Bai (2009) and Westerlund and Urbain (2015), there will be asymp-
totic bias under homogeneous slopes when N=T ! c 2 (0;�]. Greenaway-McGrevy et al
(2012) consider the same model with serially correlated errors, but do not derive asymp-
totic bias. We extend the results of Westerlund and Urbain, proposing a bias-correction
which is asymptotically justi�ed with both homogeneous slopes and heterogeneous slopes.

Proposition 2 Consider model (5). Under Assumptions B1-B5, as (N; T ) ! 1 and
N=T ! c 2 (0;�],

1p
NT

NX
i=1

X�0
i MF̂�f";i =

1p
NT

NX
i=1

V0
i"i +

r
T

N
�NT + op (1) (28)

where

�NT = �
1

N

NX
i=1

�0i
�
�0
N

��1
g01i�

2
"i +

1

N

NX
i=1

�0i
�
�0
N

��1 1
N

NX
j=1

G0
j
�
EE;jG

00
j

!�
�0
N

��1
�0i

� 1
N

NX
i=1

�
V E;iG
00
i

�
�0
N

��1
�0i ; (29)

g01i is the �rst column vector of G
0
i ,

�2"i = E
�
T�1"0i"i

�
, �
EE;i = E

�
T�1E0iEi

�
, �
V E;i = E

�
T�1V0

iEi
�
. (30)

Observe that, under slope heterogeneity, G0
i and Ei are functions of �i. This is the

reason why the expression of the bias is di¤erent from that in Westerlund and Urbain
(2015).12 Based on Proposition 2, we propose to use the following bias-corrected estima-
tor:

~�PC = �̂PC �
1

N
ĉNT ; (31)

12It is easily seen that, under slope homogeneity, the bias-term �NT and that of Westerlund and Urbain
(2015, Theorem 1) are asymptotically the same.
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where

ĉNT =

 
1

NT

NX
i=1

X̂0
iX̂i

!�1
�̂NT ; (32)

�̂NT = �
1

N

NX
i=1

�̂i�̂
�1
N ĝ1i�̂

y2
ui +

1

N

NX
i=1

�̂i�̂
�1
N

 
1

N

NX
j=1

Ĝj
̂EE;jĜ
0
j

!
�̂�1
N �̂

y
i (33)

� 1
N

NX
i=1


̂V E;iĜ
0
i�̂

�1
N �̂

y
i

with

�̂0i =
F̂0X�

i

T
, �̂N = N

�1
NX
i=1

ĜiĜ
0
i, Ĝi =

F̂0Z�i
T
, ĝ1i =

F̂0y�i
T

(34)

�̂y2ui =
û0PC;iMF̂ûPC;i

T
, 
̂EE;i =

Ê0iÊi
T
, Êi =MF̂Z

�
i (35)

�̂
y
i =

F̂0ûPC;i
T

, 
̂V E;i =
V̂0
iÊi
T

, V̂i =MF̂X
�
i , (36)

ûPC;i = y
�
i �X�

i �̂PC . This estimator is di¤erent from those proposed by Westerlund and
Urbain (2015), to allow slope heterogeneity. Note that the probability limit of estimators

with superscript �y�, �̂y2ui and �̂
y
i , will be di¤erent for the slope heterogeneous case, because

they are functions of ui = X�0
i �i + �f";i. The following proposition shows that ĉNT

is consistent to the bias given by (29) under slope homogeneity, and the limit of ĉNT
remains bounded under slope heterogeneity.

Proposition 3 Under Assumptions B1-B5, as (N; T )!1 and N=T ! c 2 (0;�],

ĉNT � c!p 0 (37)

where c =
�

1
NT

PN
i=1V

0
iVi

��1
�yNT ,

�yNT = �
1

N

NX
i=1

�0i
�
�0
N

��1
g01i�

2
ui

+
1

N

NX
i=1

�0i
�
�0
N

��1 1
N

NX
j=1

G0
j
�
EE;iG

00
j

!�
�0
N

��1 �
�0i + �

0
i�i
�

� 1
N

NX
i=1

�
V E;iG
00
i

�
�0
N

��1 �
�0i + �

0
i�i
�

(38)

with
�2ui = �

2
"i + tr

�
~AiT

�
��;i

�
. (39)
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Remark 4 Under slope homogeneity, �i = 0 for all i, it is easily seen that �̂NT ��NT =
op (1), as �̂NT � �

y
NT = op (1) and �

y
NT � �NT = op (1), thus, the limiting distribution

of
p
NT

�
~�PC � �

�
is centred at zero. Under slope heterogeneity, �̂NT � �

y
NT = op (1),

where E
�yNT2 is bounded, hence, the limiting distribution of pN �~�PC � �� is centred

at zero.

Now we are ready to state the asymptotic normality result of the bias corrected
estimator under slope homogeneity:

Theorem 4 Under Assumptions B1-B5, under homogeneous slopes (�i = 0 for all i),
as (N; T )!1 and N=T ! c 2 (0;�],

p
NT

�
~�PC � �

�
!d N

�
0; ~A�1~B~A

�1�
. (40)

where ~A and ~B are de�ned in Assumption B5.

Next, consider the case of slope heterogeneity. Noting that ui = X�0
i �i + �f";i, by

Proposition 2 and Lemma B.11, we have

1p
NT

NX
i=1

X�0
i MF̂ui =

1p
N

NX
i=1

X�0
i MF0X

�
i

T
�i +

1p
NT

NX
i=1

X�0
i MF̂�f";i + op (1)

=
1p
N

NX
i=1

V0
iVi

T
�i + op (1) . (41)

Together with Proposition 3, the asymptotic normality of the bias-corrected estimator
under slope heterogeneity is established in the following theorem:

Theorem 5 Under Assumptions B1-B5, as (N; T )!1 and N=T ! c 2 (0;�],
p
N
�
~�PC � �

�
!d N

�
0; ~A�1~C~A

�1�
(42)

where ~A and ~C are de�ned in Assumption B5.

We propose the heteroskedasticity, autocorrelation and slope heterogeneity robust
variance estimator for the model with unobserved interactive e¤ects, which is given by

V̂PC =

 
NX
i=1

X̂0
iX̂i

!�1 NX
i=1

X̂0
iûPC;iû

0
PC;iX̂i

! 
NX
i=1

X̂0
iX̂i

!�1
; (43)

where ûPC;i = y�i � X�
i �̂PC . The asymptotic justi�cation of the use of this variance

estimator is established in the following theorem.13

13Replacing ûi in (43) with ~ui = y�i �X�
i
~�PC will not alter the results.
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Theorem 6 Consider testing q linearly independent restrictions of �, H0 : R� = r
against H1 : R� 6= r, where R is a q � k �xed matrix of full row rank. Consider the
model (4) and the Wald statistic

WPC =
�
R~�PC�r

�0 �
RV̂PCR0

��1 �
R~�PC�r

�
, (44)

where ~�PC and V̂PC are de�ned by (31) and (43), respectively. Suppose that Assumptions
B1-B5 hold. Then, under the H0, for both heterogenous slopes and homogeneous slopes
(�i = 0 for all i), WPC !d �

2
q; as (N; T )!1, as T=N ! c 2 (0;�].

Remark 7 Our approach is also robust against mixtures of homogeneous and heteroge-
neous slopes.14 To see this, consider the case in which the k slopes are partitioned in such
a way that k = k1 + k2, without loss of generality, where �i = (�

0
1i;�

0
2)
0, �1i = �1 + �1i,

E (�1i) = 0 and V ar (�1i) = 
1i, with � =(�
0
1;�

0
2)
0. De�ne a scaling diagonal matrix of

order k as

D =

� p
NIk1 0

0
p
NT Ik2

�
; (45)

so that

D
�
�̂ � �

��
�̂ � �

�0
D =

�
D�A

�1
NTD

�1
� 

D
NX
i=1

X0
iuiu

0
iXi

T 2N2
D

!�
D�1 �A�1

NTD
�
. (46)

It is easily seen that D�A�1
NTD

�1 = �A�1
NT . Recalling that ui = Xi�i + "i, �i = (�01i;0

0)0

and E (�i"
0
i) = 0, the probability limit of the middle term is

p lim
N;T!1

NX
i=1

D
X0
iuiu

0
iXi

T 2N2
D =

�
C11 0
0 C22

�
; (47)

where

C11 = p lim
N;T!1

N�1
NX
i=1

�
X0
1iX1i

T
�1i�

0
1i

X0
1iX1i

T

�
; (48)

C22 = p lim
N;T!1

N�1
NX
i=1

X0
2i"i"

0
iX2i

T
. (49)

Therefore, the asymptotic normality of D
�
�̂ � �

�
, the consistency of the HAC estimator

and the asymptotic validity of Wald test hold with mixtures of homogeneous and hetero-
geneous slopes.

14We do not consider cross-sectional and/or time-series structural breaks in �i which is beyond the
scope of this paper.
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4 Wald and LM tests for Correlation of Random Co-
e¢ cients with Covariates

As discussed earlier, the proposed robust approach works for random coe¢ cients. If it
is �xed cross-sectionlly varying coe¢ cients or correlated random coe¢ cients with X�

i ,
the approach may not work. To see this, consider the model (5) but without factor

components. We have �̂ � � =
�PN

i=1X
�0
i X

�
i

��1PN
i=1X

�0
i [X

�
i�i + "i]. If E (�ijX�

i ) 6= 0,
E [X�0

i X
�
iE (�ijX�

i )] is not necessarily zero, and in general it renders �̂ biased.
In view of this, we propose novel tests for correlation or dependence of random coef-

�cients with covariates, substantially extending the test proposed by Wooledridge (2010;
Ch11.7.4). The main distinctions of our tests from Wooledridge�s are: (i) our tests are
robust against (uncorrelated) random coe¢ cients;15 (ii) we propose a Lagrange Multiplier
test along with a Wald test; (iii) ours permit E (�ijX�

i ) to be a non-linear function of X
�
i .

More generally, suppose that the random part of the coe¢ cients is modeled as

�i = h (X
�
i )� �h + �i (50)

with E [h (X�
i )] = �h and E (�ijX�

i ) = 0, where various forms of function of X
�
i can be

entertained. For the testing purpose, we consider h (X�
i ) = �i� with

�i =
�
�x
(1)
i ; �x

(2)
i ; :::; �x

(g)
i

�
; (51)

�x
(g)
i =

�
�x
(g)
i1 ; �x

(g)
i2 ; :::; �x

(g)
ik

�0
, �x(g)ih = T�1

PT
t=1 x

g
ith.

16 Note that xith is the (t; h) element

of the defactored regressor, Xi = MFX
�
i .
17 Initially assuming that F0 is observable,

consider an augmented regression

yi =Wi� + �i; (52)

whereWi = [Xi;Li] with
Li = Xi

�
�i � ��

�
; (53)

�� = N�1PN
i=1�i, � = (�

0; �0)
0, and the associated unrestricted estimator �̂ =

�b̂
�
0
; �̂

�0
=

(W0
iWi)

�1W0
iyi. Under the null hypothesis of H0 : � = 0 and Assumptions A1-A4, for

homogeneous or heterogeneous slopes, Theorem 3 establishes that

W
(g)
CRC = �̂

0
V̂�1
�� �̂ !d �

2
g (54)

as (N; T ) ! 1, where V̂�� is de�ned as the bottom right partition of V̂NT

�
�̂
�
=�

V̂�� V̂��

V̂�� V̂��

�
=
�PN

i=1W
0
iWi

��1 �PN
i=1W

0
i�̂i�̂

0
iWi

��PN
i=1W

0
iWi

��1
, �̂i = yi�Wi�̂.

15Wooldridge (2010;p.386) points out that the drawback of his test is that it cannot detect heterogeneity
in �i that is uncorrelated with �xi. In our robusti�ed test, this becomes the desirable property.
16Cross product terms, such as T�1

PT
t=1 x

(g)
ithx

(f)
itj for h 6= j, could be included in �i.

17For the model with �xed e¤ects, the test variable �i should not be based on within-transformed X�
i ,

otherwise �x(1)i = 0 for all i.
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For the estimated factor case, the test statistic is computed based on
�
ŷi; X̂i

�
,

Ŵi = [X̂i; L̂i] with L̂i = X̂i

�
�̂i � �̂

�
, �̂i based on X̂ i, and ~�PC =

�e~�0PC ; ~�PC�0 =�
Ŵ0

iŴi

��1
Ŵ0

iŷi, which is the bias-corrected PC estimator discussed in Section 3.

We also consider the Lagrange Multiplier (LM) or Score test of the correlated random
coe¢ cient. One of the advantages of employing the LM test is that, unlike the Wald test,
computation of the LM test only requires the estimation results of the null model. The
LM test statistic with observable factors is de�ned as

LM
(g)
CRC =

 
NX
i=1

L0iûi

!0 NX
i=1

K0
iûiû

0
iKi

!�1 NX
i=1

L0iûi

!
(55)

where ûi = yi �Xi�̂ with �̂ =
�PN

i=1X
0
iXi

��1PN
i=1X

0
iyi and

K0
i = L

0
i �
 

NX
i=1

L0iXi

! 
NX
i=1

X0
iXi

!�1
X0
i. (56)

For the PC estimator, the LM test statistic is given by

LM
(g)
CRCPC

=

 
NX
i=1

L̂0i~uPC;i

!0 NX
i=1

K̂0
iûPC;iû

0
PC;iK̂i

!�1 NX
i=1

L̂0i~uPC;i

!
(57)

where ûPC;i = yi �Xi�̂PC with �̂PC=
�PN

i=1 X̂
0
iX̂i

��1PN
i=1 X̂

0
iŷi, ~uPC;i = yi �Xi

~�PC

with ~�PC being the bias corrected estimator, and

K̂0
i= L̂

0
i �
 

NX
i=1

L̂0iX̂i

! 
NX
i=1

X̂0
iX̂i

!�1
X̂0
i. (58)

By the standard discussion of asymptotic equivalence of the LM and Wald tests, it is
readily established that under the null hypothesis LMCRC !d �

2
g as (N; T ) ! 1, and

LMCRCPC !d �
2
g as (N; T ) ! 1 such that N=T ! c 2 (0;�]. It may be su¢ cient to

consider g = 2 to approximate the function g (X�
i ) for our testing purpose.

When the test is rejected in favour of alternatives, it is preferable to employ estimators
which are consistent when variation of �i is dependent on covariates. For the estimation
of the models with observed factors, the mean group estimator proposed by Chamberlain
(1982) and Pesaran and Smith (1995) would be possible choices.

5 Monte Carlo Experiments

In this section we investigate the �nite sample performance of our robust approach against
slope heterogeneity, error serial correlation and heteroskedasticity. We consider the per-
formance of the following estimators: (two-way) �xed e¤ects estimator �̂FE, which is the
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pooled ordinary least square (OLS) estimator of within-transformed and cross-sectionally
demeaned variables; the bias-non-corrected PC estimator �̂PC (de�ned by (26)) and its
bias-corrected version ~�PC (de�ned by (31)); Bai�s (2009) iterative PC estimator, both
bias-non-corrected �̂Bai and the bias-corrected estimator ~�Bai.

18 Bai�s estimator does
not require the linear factor structure in X�

i unlike the PC estimator, and its algorithm
estimates � and F iteratively from the residual ui, given the initial value of �. This
generality results in additional bias terms. In all the experiments, we assume that the
number of factors r is known.19

In particular, we examine bias and root mean square errors (RMSE) of the estimators,
and empirical size and power of the (Wald) test for linear restrictions of slope coe¢ cients,
as well as the performance of the LM test for correlation and dependence of slope coe¢ -
cients with covariates.20

5.1 Design

Consider the following data generating process:

y�it =
kX
h=1

x�ith�ih +
rX
`=1

ft`�i` + �";it"it; i = 1; 2; :::; N ; t = 1; 2; :::; T (59)

where �i` � iidN(0; 1), ft` = �fft�1;`+
q
1� �2f�t`, �t` � iidN(0; 1) with f0;` � iidN (0; 1)

for ` = 1; ::; r; "it = �""it�1 +
p
1� �2"�it; �it � iidN(0; 1) with "i0 � iidN (0; 1), and

�";it = (�";i�";t)
1=2 , �";i � iidU (0:5; 1:5) and �";t = 0:5 + t=T . (60)

The regressors xith, h = 1; 2; ::; k, are generated as

x�ith =
rX
`=1

ft`ih` + ��v,itvith; (61)

where vith = �vvit�1;h +
p
1� �2v$it;h. We consider two types of distribution for $it;h:

(i) $it;h =
�
$�
it;h � c

�
=
p
2c, $�

it;h � iid�2c and vi0;h =
�
v�i0;h � c

�
=
p
2c, v�i0;h � iid�2c with

c = 6, and (ii) $it;h � iidN(0; 1) with vi0;h � iidN(0; 1). The factor loadings in x�ith are
generated as

ih` = 0:7�i` +
�
1� 0:72

�1=2
'ih`; (62)

'ih` � iidN(0; 1) for h = 1; ::; k and ` = 1; ::; r; so that they are correlated with factor
loadings in y�it.

�v,it = (�v;i�v;t)
1=2 , �v;i � iidU (0:5; 1:5) and �v;t = 0:5 + t=T , (63)

18See Appendix D for the de�nition of �̂Bai and ~�Bai. We take the error-serial correlation into our
consideration for the bias correction.
19The Pesaran�s (2006) CCE estimator is not considered in our experiments, since, to our knowledge,

feasible analytical bias correction for the pooled estimator under slope homogeneity is not available.
20The �nite sample performance of the Wald version of the correlated random e¤ects test is much

worse than the LM test version. Therefore, its summary results are not reported.
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and �2 = f2; 3g. Finally we have

�ih = �h + ��

�q
1� �2x��ih + �x�wih

�
; (64)

�ih � iidN (0; 1) for h = 1; ::; k, and

wih =
1
p
q

qX
p=1

zih;p � �zh;p
szh;p

, (65)

where �zh;p = N�1PN
i=1 zih;p, s

2
zh;p = (N � 1)�1

PN
i=1 (zih;p � �zh;p)

2. We consider zih;p =
T�1

PT
t=1 (x

�
ith)

p.
We set k = 2 (two regressors) for all the experiments. We consider two sets of design:

the model without factors (r = 0) to examine the �xed e¤ects estimator, and the model
with two factors (r = 2) to examine the PC and Bai�s estimators. As recommended in
Remark 1, before the estimation the data is all within transformed and cross-sectionally
demeaned, to make the results invariant to the inclusion of (additive) individual e¤ects
and time e¤ects.
In view of the sensitiveness of the �nite sample behaviour of the PC estimator to the

parameter values (�1; �2),
21 we consider three combinations of (�1; �2): (1; 3), (0; 0) and

(�1;�3).22
To look into the bias and RMSE of the estimators, and the size and power of the test

of linear restrictions for the estimators, we consider the following sets of designs:
(A) homogeneous slopes (�� = 0 in (64));
(B) heterogeneous slopes (�� = 0:2 in (64)).
In order to see the e¤ects of dependence of �i with the regressors upon the bias of the

estimators and the associated tests, we set �x� = 0:5 in (64). To investigate the e¤ects of
the symmetry of the distribution upon the performance of the estimators and the tests,
we consider two types of distribution of disturbances in xith :
(C)

�
$�
it;h � 6

�
=
p
12, $�

it;h � iid�26, with �x� = 0:5
(D) $it;h � iidN(0; 1), with �x� = 0:5.
For designs (C) and (D), we consider two types of dependence of �ih upon regres-

sors: �ih is a linear function of the following cross-sectionally standardised values: (i)
T�1

PT
t=1 (x

�
ith) (i.e., q = 1 and p = 1 in (65)) and (ii) T

�1PT
t=1 (x

�
ith)

2 (i.e., q = 1 and
p = 2 in (65)).
Finally, the size and the power of the LM tests with degrees g = 1; 2, are examined as

the set (E). The empirical size is obtained using designs (A) and (B), and the empirical
power is computed by designs (C) and (D).
We consider all the combinations of N = 50; 100; 200 and T = 25; 50; 100; 200.

Throughout the experiments, we set �f = 0:5, �" = 0:5 and �v = 0:5. To save space, we
report the results with �2 = 2 only.23 All the tests are conducted at the �ve per cent
signi�cance level. All the experimental results are based on 2,000 replications.

21See discussions in Westerlund and Urbain (2015) for more details.
22As the FE estimator is much less sensitive to the change of (�1; �2), the results for (1; 3) are only

examined and reported.
23The results with �2 = 3 are qualitatively very similar to those with �2 = 2, which are available upon

request from the authors.
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5.2 Results

Table 1 summarises the performance of the Fixed E¤ect estimator for the model of
(�1; �2) = (1; 3), with time-series and cross-section heteroskedastic, serially correlated
errors in the absence of interactive e¤ects. Panels A reports the bias, the root mean
square error (RMSE) of estimates of �1, and the size of the Wald test for H0 : �1 = 1
and the power for H0 : �1 = 0:95, under homogeneous slopes, and Panel B under hetero-
geneous random slopes. The results for �2 are qualitatively similar and not reported. As
predicted by the theory, the Wald test based on the HAC variance estimator has correct
size both under slope homogeneity and heterogeneity. Panels C&D report the bias of the
estimates and the size of the Wald test for H0 : �1 = 1, to see the e¤ects of dependence
between random coe¢ cients and regressors. In Panel C the regressors are generated by
asymmetric disturbances and in Panel D, they are drawn from symmetric distribution.
In Panel C, when �i depends on

PT
t=1 x

�
ith, the �xed e¤ects estimator exhibits systematic

bias, but in Panel D, it does not. This is because when the third moment of x�ith is zero,
by construction E [X�0

i X
�
i�i] = 0 which makes the estimator unbiased. However, as can

be seen in Panel D, the size of the test declines systematically as sample size rises, which
suggests that the HAC variance estimates will not be consistent. When �i is a linear
function of

PT
t=1(x

�
ith)

2, regardless of the shape of the distribution of regressors, it ex-
hibits serious bias in estimates (see Panels C&D). Therefore, it is of great importance to
statistically check the evidence of dependence of �i with regressors. The performance of
the proposed LM test for correlation and dependence of random coe¢ cients with regres-
sors is summarised in Panel E. As can be seen, it has correct size with slope homogeneity
and random coe¢ cients, and the LM test with g = 2 has high power against both types
of dependence of �i,

PT
t=1 x

�
ith and

PT
t=1 (x

�
ith)

2, whilst the LM test with g = 1 lacks
power when �i depends on

PT
t=1 (x

�
ith)

2 only. Therefore, it is recommended to employ
g = 2 in practice.
Let us turn our attention to the estimation of the models with unobservable interactive

e¤ects. The relevant results are reported in Tables 2-4. Each table contains Panels A-E,
which correspond to the panels in Table 1. Tables 2-4 employ di¤erent parameter values
of (�1; �2). Table 2 summarises the results for (�1; �2) = (1; 3), Table 3 for (�1;�3)
and Table 4 for (0; 0). To illustrate the e¤ectiveness of the bias-correction, we report the
results both for bias-non-corrected and bias-corrected estimators.
Consider Panel A of Table 1, which deals with the slope homogeneous case. First look

at the bias of the estimators. Non-bias-corrected estimator (�̂Bai) has very little bias and
the magnitude of correction is very small. As reported in Bai (2009), the bias-corrected
estimator (~�Bai) has very small bias and it becomes smaller as N and/or T rise. On
the other hand, the bias-non-corrected PC estimator (�̂PC) has a larger magnitude of
bias, in line with the results reported in Appendix A of Westerlund and Urbain (2015).
Nonetheless, the bias-corrected estimator (~�PC) successfully reduces the bias. In terms
of RMSE, ~�Bai and ~�PC are very similar for all the combinations of (N; T ). The size of
the Wald test based on �̂Bai and ~�Bai is close to nominal level. Due to the bias, the size
of the test based on �̂PC has moderate size distortion, which is successfully corrected by
the bias-correction - the size of the test based on ~�PC is much closer to the nominal level.
Now let us turn our attention to the random coe¢ cient model, the results of which are

summarised in Panel B, Table 2. The magnitude of the bias of the estimators under slope
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heterogeneity is larger than under slope homogeneity, especially with small N and T , but
it gets smaller as N and T increase. As in the homogeneous slope case, the bias of both
�̂Bai and ~�Bai is relatively small, whilst the bias of �̂PC is much larger than that of �̂Bai.
Interestingly, the bias-corrected PC estimator successfully reduces the bias of �̂PC for
heterogeneous slope models as well (see Panel B of Tables 2-4). In general, the reduction
of the bias increases the variation of the estimator, and when the bias in �̂PC is relatively
small, in terms of RMSE, the performances of �̂PC and ~�PC are very similar. This slight
loss of e¢ ciency is revealed in the power comparison of the Wald test. When both Wald
tests based on �̂PC (�̂Bai) and ~�PC (~�Bai) have correct size, the power of the test based on
�̂PC (�̂Bai) is marginally higher than that based on ~�PC (~�Bai). However, when the bias
in �̂PC is relatively large (see, for example, Panel B of Table 3), as the bias-correction is
very e¤ective, the RMSE of ~�PC becomes much smaller than that of �̂PC . Furthermore,
due to the �nite sample bias of �̂PC , there can be severe size distortion in Wald tests
(see, for example, Panel B of Table 3). In addition, the power based on the PC estimator
tends to be higher than that of Bai�s estimator. This is likely due to the fact that the PC
estimator uses information by exploiting the factor structure in regressors, whilst Bai�s
estimator does not. The properties of the results reported in Panels C, D and E are very
similar to those commented earlier on the corresponding panels in Table 1.
Finally, we comment on the sensitivity of the estimators to the variation of the para-

meter values.24 It is revealed by our simulation that Bai�s estimates are invariant to the
changes of the parameter values of (�1; �2). Namely, the results related to Bai�s estima-
tors in Tables 2-4 are numerically identical. On the other hand, comparing the results
in Panels A and B of Tables 2-4, it can be seen that the bias of �̂PC is sensitive to the
values of (�1; �2). The bias of �̂PC is positive in Table 2 with (�1; �2) = (1; 3) and in
Table 3 with (�1;�3), while the bias in Table 4 (0; 0) is negative. Note that in the case
of (�1; �2) = (�1;�3) the bias of �̂PC is relatively large in magnitude and it requires
a larger sample size for the bias-corrected estimator to satisfactorily reduce it. To sum
up, the proposed bias-correction of the PC estimator is quite e¤ective for both slope
homogeneous and heterogeneous cases, and the e¢ cacy of ~�PC is mostly comparable to
that of ~�Bai. However, in view of the sensitivity of the �nite sample performance of the
PC estimates to the (centred) value of slope coe¢ cients, the proposed robust approach
based on Bai�s (2009) estimator might be preferred in practice.

6 Concluding Remarks

In this paper, we have proposed a robust approach against heteroskedasticity, error serial
correlation and slope heterogeneity for large linear panel data models. First, we have
established the asymptotic validity of the Wald test based on the panel HAC variance
estimator of the pooled estimator under random coe¢ cient models. Then, we have shown
that a similar result holds with the proposed bias-corrected principal component-based
pooled estimators for models with unobserved interactive e¤ects. Our new theoretical

24Such sensitivities are reported in Westerlund and Urbain (2015) for the PC estimator. We note two
points. First, for all the design employed in Westerlund and Urbain, the mean of the factor loadings is well
away from zero, which could exaggerate the magnitude of the bias of the estimator. For the PC approach,
we recommend to within-transform and cross-sectionally demean the data before the estimation, which
would lessen such sensitivities.
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result has justi�ed the use of the same slope estimator and the variance estimator, both
for slope homogeneous and heterogeneous models. This robust approach can signi�cantly
reduce the model selection uncertainty for applied researchers.
In addition, we have proposed a novel test for correlation and dependence of the

random coe¢ cient with covariates. The test is of great importance, since the widely used
estimators and/or its variance estimators can become inconsistent when the variation of
coe¢ cients depends on covariates, in general.
We have examined the �nite sample performance of the estimators, tests of linear

restrictions, and the LM tests for correlated random coe¢ cients. The evidence illustrates
the usefulness of our approach. In particular, for the estimation of the models with
unobserved interactive e¤ects, the size of the proposed robust Wald test using the bias-
corrected PC estimators and Bai�s (2009) estimator is very close to the nominal level,
under both slope homogeneity and slope heterogeneity, while maintaining satisfactory
power. Also, the LM tests for correlated random coe¢ cients have correct size under
both slope homogeneity and slope heterogeneity due to pure random coe¢ cients, while
exhibiting high power when the random coe¢ cients depend on covariates. In view of the
sensitivity of the �nite sample performance of the PC estimates to the (centred) value of
slope coe¢ cients, the proposed robust approach based on Bai�s (2009) estimator might
be preferred in practice.
As emphasised in the paper, when the test of correlated random coe¢ cient rejects the

null in favour of alternatives, it is preferable to employ estimators which are consistent
when variation of slopes is dependent on covariates. For the estimation of the models
with observed factors, the mean group estimator proposed by Chamberlain (1982) and
Pesaran and Smith (1995) would be possible choices. For the estimation of the models
with unobserved factors, to our knowledge, no satisfactory alternative estimators have
been proposed in the literature. Thus, developing such an estimator will be an important
future research theme.
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Table 1: Summary results of Fixed E¤ects estimator for the model with f�1; �2g = f1; 3g,
heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, �ih = �h for all i, h = 1; 2
for �1 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂FE
25 -0.148 -0.115 -0.005 2.572 1.848 1.276 5.5 5.9 4.9 47.4 76.1 96.9
50 -0.077 -0.040 0.008 1.853 1.305 0.920 6.0 5.4 5.2 76.0 96.6 100.0
100 -0.061 -0.015 -0.001 1.372 0.954 0.674 5.9 5.7 5.4 95.5 100.0 100.0
200 -0.017 0.004 0.007 0.955 0.677 0.479 5.4 6.1 5.3 100.0 100.0 100.0
Panel B: Heterogeneous Slopes, �ih = �h + �ih with �ih � iidN (0; 0:04) for all i, h = 1; 2
for �1 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂FE
25 -0.038 -0.064 0.045 4.122 2.966 2.146 5.6 5.5 5.4 23.0 39.3 66.6
50 -0.015 -0.010 0.057 3.679 2.592 1.869 6.6 5.4 5.1 30.2 50.5 78.6
100 -0.031 0.009 0.039 3.327 2.328 1.661 5.7 4.6 4.8 33.0 57.3 85.2
200 0.025 0.037 0.050 3.129 2.194 1.562 6.1 5.5 4.9 36.5 63.2 90.0

Notes for Panels A and B: Data is generated as y�it = x�it;1�i1 + x�it;2�i2 + �";it"it, i = 1; :::; N , t =

1; :::; T , "it = �""it�1 +
p
1� �2"�it; �it � iidN(0; 1) with "i0 � iidN(0; 1), �";it = (�";i�";t)

1=2, �";i �
iidU (0:5; 1:5) and �";t = 0:5 + t=T ; x�it;h = ��v,itvit;h, where vit;h = �vvit�1;h +

p
1� �2v$it;h, $it;h �

iid
�
�26 � 6

�
=
p
12 with vi0;h � iid

�
�26 � 6

�
=
p
12, �v,it = (�v;i�v;t)

1=2, �v;i � iidU (0:5; 1:5) and �v;t =
0:5 + t=T . We set �" = �v = 0:5 and �2 = 2. �̂FE is the pooled regression of within-transformed and
cross-sectionally demeaned variables. The size is rejection frequency of the proposed Wald test (de�ned
by (19)) for H0 : �1 = 1 and the power for H0 : �1 = 0:95, based on the 5% level test. All results are
based on 2000 replications.
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Table 1 continued

Panel C: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using �

2
6

(i) �ih is function of
P
t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (x100) Size Bias (x100) Size
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂FE
25 0.068 0.019 0.147 5.2 5.0 4.4 1.145 1.158 1.273 6.0 6.9 8.5
50 0.107 0.088 0.164 5.7 4.6 3.3 1.208 1.247 1.315 7.8 6.8 9.4
100 0.075 0.099 0.153 5.5 3.6 3.8 1.236 1.317 1.350 7.7 7.6 9.9
200 0.151 0.145 0.188 5.2 4.3 3.2 1.398 1.450 1.473 7.4 8.9 12.7
Panel D: Correlated Heterogeneous Slopes, �x� = 0:5, x

�
ith generated using N (0; 1)

(i) �ih is function of
P
t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (x100) Size Bias (x100) Size
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂FE
25 0.046 0.022 0.031 6.6 5.2 4.7 1.213 1.185 1.205 7.6 7.4 7.6
50 -0.045 -0.008 -0.016 6.4 4.6 3.5 1.134 1.168 1.183 6.8 6.2 8.5
100 -0.033 -0.021 -0.015 5.7 4.7 2.9 1.192 1.194 1.222 6.1 7.6 8.7
200 -0.062 -0.049 -0.043 6.0 4.6 3.3 1.235 1.236 1.266 7.1 7.4 9.8

Notes for Panels C and D: The data generating process (DGP) is the same as that for Panel B,

except �ih = �h + ��

�q
1� �2x��ih + �x�wih

�
; �ih � iidN (0; 1) for h = 1; 2; wih =

zih;p��zh;p
szh;p

, where

�zh;p = N�1PN
i=1 zih;p, s

2
zh;p = (N � 1)�1

PN
i=1 (zih;p � �zh;p)

2, zih;p = T�1
PT

t=1

�
x�it;h

�p
, p = 1; 2: The

DGP for Panel D is identical to of Panel C, except that $it;h � iidN (0; 1).
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Table 2: Summary results of Bai and PC estimators for the model with f�1; �2g = f1; 3g,
interactive e¤ects, heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, �ih = �h for all i, h = 1; 2
for �1 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂Bai
25 0.048 0.015 0.091 2.717 1.932 1.336 6.9 6.5 5.5 50.5 76.2 97.1
50 0.013 0.018 0.048 1.919 1.341 0.942 6.9 6.4 5.6 76.5 96.6 100.0
100 -0.021 0.018 0.021 1.413 0.972 0.681 7.4 6.4 5.6 95.1 99.9 100.0
200 0.007 0.024 0.021 0.989 0.688 0.485 7.3 6.2 5.5 100.0 100.0 100.0
~�Bai
25 0.038 0.006 0.082 2.712 1.931 1.334 6.9 6.4 5.5 50.2 76.1 97.1
50 0.003 0.009 0.040 1.918 1.341 0.942 6.8 6.2 5.6 76.3 96.7 100.0
100 -0.031 0.010 0.015 1.415 0.973 0.682 7.3 6.6 5.5 95.1 99.9 100.0
200 -0.008 0.014 0.014 0.996 0.689 0.485 7.1 6.1 5.4 99.9 100.0 100.0
�̂PC
25 0.318 0.156 0.158 2.703 1.931 1.337 6.3 6.0 5.3 52.5 78.2 97.3
50 0.274 0.147 0.110 1.932 1.339 0.945 6.4 5.7 5.1 78.4 97.2 100.0
100 0.253 0.151 0.088 1.425 0.976 0.683 7.2 6.1 5.9 96.7 99.9 100.0
200 0.290 0.164 0.087 1.021 0.703 0.490 7.1 6.7 5.7 99.9 100.0 100.0
~�PC
25 0.122 0.035 0.092 2.731 1.941 1.337 6.3 6.1 5.6 49.5 76.3 97.1
50 0.071 0.023 0.042 1.942 1.340 0.943 6.3 6.0 4.9 75.6 96.7 100.0
100 0.047 0.024 0.019 1.424 0.974 0.681 6.9 6.0 5.8 95.8 99.9 100.0
200 0.086 0.038 0.018 0.996 0.691 0.485 5.7 6.1 5.7 99.9 100.0 100.0

Notes for Panel A: Data is generated as y�it =
P2

h=1 x
�
ith�ih +

P2
`=1 ft`�i` + �";it"it; i = 1; 2; :::; N ; t =

1; 2; :::; T , where �i` � iidN(0; 1), ft` = �fft�1;`+
q
1� �2f�t`, �t` � iidN(0; 1) with f0;` � iidN (0; 1) for

` = 1; ::; r; "it = �""it�1 +
p
1� �2"�it; �it � iidN(0; 1) with "i0 � iidN (0; 1), and �";it = (�";i�";t)

1=2,
�";i � iidU (0:5; 1:5) and �";t = 0:5 + t=T ; x�ith =

Pr
`=1 ft`ih` + ��v,itvith;where vith = �vvit�1;h +p

1� �2v$it;h,$it;h � iid
�
�26 � 6

�
=
p
12 with vi0;h � iid

�
�26 � 6

�
=
p
12, ih` = 0:7�i`+

�
1� 0:72

�1=2
'ih`,

'ih` � iidN(0; 1), �v,it = (�v;i�v;t)
1=2, �v;i � iidU (0:5; 1:5) and �v;t = 0:5 + t=T , �2 = 2. �̂Bai is non-

bias-corrected and ~�Bai is bias-corrected estimator proposed by Bai (2009) and �̂PC is the PC estimator
de�ned by (C.4) and ~�PC is the proposed bias corrected estimator de�ned by (31). The size is rejection
frequency of the proposed Wald test (de�ned by (19)) for H0 : �1 = 1 and the power for H0 : �1 = 0:95,
based on the 5% level test. All results are based on 2000 replications.
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Table 2 continued

Panel B: Heterogeneous Slopes, �ih = �h + �ih with �ih � iidN (0; 0:04) for all i, h = 1; 2
for �1 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂Bai
25 0.002 -0.009 0.108 4.228 3.049 2.190 7.8 6.3 6.2 26.2 41.8 67.3
50 -0.095 -0.038 0.052 3.741 2.627 1.882 8.5 6.7 6.1 32.9 52.8 79.0
100 -0.170 -0.050 0.013 3.364 2.344 1.668 7.7 5.8 5.2 36.5 58.8 85.7
200 -0.134 -0.037 0.017 3.152 2.198 1.564 8.1 6.5 5.3 39.8 64.4 90.3
~�Bai
25 -0.016 -0.024 0.096 4.227 3.049 2.189 7.7 6.3 6.2 25.9 41.6 66.9
50 -0.116 -0.056 0.038 3.742 2.629 1.882 8.4 6.9 5.9 32.8 52.6 78.8
100 -0.196 -0.070 -0.001 3.365 2.345 1.668 7.6 5.7 5.3 36.2 58.6 85.4
200 -0.181 -0.071 -0.004 3.153 2.200 1.565 7.7 6.4 5.3 39.4 63.3 90.0
�̂PC
25 0.335 0.161 0.188 4.160 3.038 2.194 6.3 6.0 6.1 25.2 43.1 68.0
50 0.251 0.138 0.134 3.700 2.609 1.882 7.2 5.9 5.7 33.4 53.8 79.1
100 0.201 0.134 0.105 3.325 2.332 1.663 6.5 5.2 5.1 38.2 60.5 86.6
200 0.247 0.155 0.108 3.120 2.194 1.562 6.1 6.0 5.2 41.8 66.0 91.1
~�PC
25 0.200 0.071 0.138 4.208 3.055 2.199 6.6 6.2 6.3 24.8 41.9 67.1
50 0.107 0.044 0.082 3.736 2.620 1.885 7.2 5.7 5.8 32.0 52.6 78.2
100 0.053 0.038 0.052 3.355 2.340 1.665 6.4 5.2 5.0 36.7 58.9 86.0
200 0.100 0.060 0.055 3.142 2.199 1.563 6.5 6.0 5.1 39.7 64.5 90.5

Notes for Panel B: See notes to Panel A.
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Table 2 continued

Panel C: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using �

2
6

(i) �ih is function of
P
t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (x100) Size, H0 : �1 = 1 Bias (x100) Size, H0 : �1 = 1
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂Bai
25 0.439 0.456 0.576 7.5 6.1 5.4 0.591 0.724 0.918 6.7 6.1 6.9
50 0.364 0.456 0.546 8.6 5.9 5.1 0.556 0.754 0.911 8.4 6.5 7.1
100 0.352 0.497 0.571 7.4 5.4 5.4 0.526 0.789 0.918 7.8 6.7 7.0
200 0.476 0.594 0.660 7.3 6.2 5.2 0.650 0.881 1.008 7.4 7.6 8.4
~�Bai
25 0.424 0.442 0.563 7.5 6.2 5.5 0.580 0.712 0.907 6.7 6.2 6.8
50 0.347 0.439 0.533 8.6 5.9 5.1 0.540 0.739 0.898 8.4 6.4 6.9
100 0.332 0.479 0.558 7.4 5.5 5.4 0.508 0.767 0.904 7.9 6.7 7.0
200 0.444 0.566 0.641 7.1 5.9 5.0 0.619 0.843 0.978 7.7 7.5 8.0
�̂PC
25 0.795 0.634 0.657 6.2 5.9 5.7 1.117 1.002 1.059 6.3 6.6 7.2
50 0.732 0.640 0.631 6.9 5.3 4.9 1.059 1.010 1.036 7.5 6.5 7.5
100 0.739 0.688 0.665 6.8 5.0 5.4 1.043 1.046 1.047 7.3 6.5 7.6
200 0.869 0.790 0.753 6.9 5.9 5.3 1.172 1.146 1.136 7.0 7.8 9.0
~�PC
25 0.671 0.551 0.611 6.5 5.8 5.6 0.918 0.880 0.992 6.6 6.4 7.0
50 0.600 0.553 0.583 7.0 5.2 4.9 0.850 0.882 0.966 7.3 6.2 7.1
100 0.605 0.600 0.616 6.6 4.9 5.2 0.830 0.916 0.976 7.2 6.3 6.9
200 0.736 0.703 0.704 6.7 5.9 5.2 0.959 1.015 1.065 6.7 7.5 8.4

Notes for Panel C: The data generating process (DGP) is the same as Panel B, except �ih =

�h + ��

�q
1� �2x��ih + �x�wih

�
; �ih � iid

�
�26 � 6

�
=
p
12 for h = 1; 2; wih =

zih;p��zh;p
szh;p

, where �zh;p =

N�1PN
i=1 zih;p, s

2
zh;p = (N � 1)�1

PN
i=1 (zih;p � �zh;p)

2, zih;p = T�1
PT

t=1

�
x�it;h

�p
, p = 1; 2.
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Table 2 continued

Panel D: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using N (0; 1)

(i) �ih is function of
P
t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (x100) Size, H0 : �1 = 1 Bias (x100) Size, H0 : �1 = 1
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂Bai
25 -0.006 -0.016 0.083 8.6 5.9 4.3 0.605 0.736 0.873 9.2 6.5 6.5
50 -0.174 -0.090 -0.014 7.7 6.2 4.3 0.460 0.678 0.804 8.2 6.8 6.2
100 -0.177 -0.114 -0.033 7.5 5.1 3.6 0.497 0.698 0.818 8.2 6.5 6.4
200 -0.227 -0.159 -0.079 7.4 5.5 4.0 0.525 0.709 0.831 8.3 6.4 6.6
~�Bai
25 -0.022 -0.030 0.071 8.5 6.0 4.2 0.592 0.723 0.862 9.2 6.4 6.5
50 -0.191 -0.104 -0.026 7.9 6.2 4.3 0.443 0.665 0.793 8.1 6.8 6.2
100 -0.200 -0.131 -0.046 7.4 5.3 3.5 0.474 0.675 0.804 8.1 6.3 6.3
200 -0.266 -0.186 -0.097 7.3 5.5 4.1 0.486 0.669 0.800 8.4 6.1 6.6
�̂PC
25 0.350 0.164 0.168 7.2 5.4 4.3 1.137 1.014 1.017 8.2 6.9 6.4
50 0.213 0.110 0.077 6.2 5.5 4.2 0.987 0.951 0.937 8.0 6.7 6.6
100 0.218 0.086 0.061 6.3 5.0 3.4 1.028 0.965 0.948 6.8 6.3 6.8
200 0.176 0.044 0.020 5.7 4.7 3.4 1.057 0.979 0.964 7.2 6.3 6.9
~�PC
25 0.224 0.080 0.122 7.5 5.5 4.3 0.944 0.895 0.952 8.8 6.7 6.2
50 0.070 0.020 0.028 6.2 5.6 4.1 0.774 0.824 0.868 7.5 6.4 6.2
100 0.073 -0.007 0.010 6.5 4.9 3.4 0.812 0.835 0.878 6.6 6.3 6.3
200 0.029 -0.050 -0.031 6.0 5.0 3.6 0.839 0.847 0.893 7.3 5.6 6.6

See notes to Panel C. The DGP for Panel D is identical to of Panel C, except that $it;h � iidN (0; 1).
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Table 3: Summary results of PC estimators for the model with f�1; �2g = f�1;�3g,
interactive e¤ects, heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, �ih = �h for all i, h = 1; 2
for �1 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂PC
25 2.907 1.573 1.014 4.151 2.559 1.707 20.6 15.3 12.8 79.4 92.3 99.4
50 2.489 1.279 0.715 3.230 1.876 1.194 26.0 17.2 12.1 96.6 99.6 100.0
100 2.356 1.199 0.625 2.800 1.559 0.930 38.9 26.0 17.0 99.9 100.0 100.0
200 2.338 1.182 0.599 2.577 1.379 0.773 58.6 39.5 24.8 100.0 100.0 100.0
~�PC
25 1.067 0.595 0.509 3.214 2.131 1.475 9.0 7.6 8.2 59.1 80.9 98.0
50 0.577 0.265 0.192 2.155 1.408 0.981 7.2 6.8 5.8 78.8 97.0 100.0
100 0.421 0.168 0.093 1.559 1.016 0.699 7.8 6.4 6.0 96.5 99.9 100.0
200 0.416 0.152 0.065 1.131 0.729 0.496 7.1 6.2 5.6 99.9 100.0 100.0
Panel B: Heterogeneous Slopes, �ih = �h + �ih with �ih � iidN (0; 0:04) for all i, h = 1; 2
for �1 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂PC
25 3.191 1.720 1.112 5.413 3.566 2.489 13.4 10.5 9.5 50.1 61.0 80.9
50 2.728 1.406 0.806 4.672 2.986 2.058 14.0 9.4 8.1 56.8 70.0 87.4
100 2.562 1.315 0.710 4.248 2.695 1.813 14.2 9.5 7.3 62.6 77.1 93.3
200 2.562 1.307 0.688 4.079 2.571 1.710 14.7 9.3 7.2 68.2 83.0 95.5
~�PC
25 1.255 0.684 0.576 4.609 3.217 2.309 8.0 7.5 7.2 33.4 49.3 73.4
50 0.715 0.333 0.250 3.872 2.658 1.914 7.8 6.0 6.0 37.2 56.0 80.4
100 0.523 0.224 0.145 3.427 2.359 1.675 6.4 5.2 5.5 39.8 61.7 87.2
200 0.537 0.216 0.121 3.207 2.218 1.570 6.5 6.0 5.2 43.3 66.2 90.8

Notes to Table 3: The DGPs for Panels A-E are identical to those in Table 2, except that f�1; �2g =
f�1;�3g. The performance of Bai�s estimators is not reported, since the results are identical to those in
Table 2. See notes to Panels A and B in Table 2. The size is rejection frequency of the proposed Wald
test (de�ned by (19)) for H0 : �1 = �1 and the power for H0 : �1 = �1:05, based on the 5% level test.
All results are based on 2000 replications.
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Table 3 continued

Panel C: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using �

2
6

(i) �ih is function of
P
t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (x100) Size, H0 : �1 = �1 Bias (x100) Size, H0 : �1 = �1
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂PC
25 3.638 2.183 1.576 15.0 12.0 10.9 4.432 2.862 2.196 17.2 15.7 17.0
50 3.208 1.906 1.301 16.0 11.2 9.2 3.868 2.460 1.814 16.9 14.5 14.4
100 3.094 1.870 1.270 16.6 12.7 9.5 3.685 2.374 1.730 18.7 15.5 15.3
200 3.173 1.937 1.332 17.9 12.8 10.8 3.743 2.430 1.783 19.9 17.0 17.1
~�PC
25 1.721 1.158 1.044 9.0 7.6 7.6 2.172 1.656 1.571 8.8 9.0 11.1
50 1.215 0.843 0.750 8.0 5.8 5.9 1.514 1.206 1.165 7.6 6.9 7.8
100 1.079 0.792 0.711 7.1 5.7 5.4 1.297 1.099 1.071 6.6 6.1 7.0
200 1.176 0.862 0.772 7.7 6.2 5.4 1.370 1.156 1.122 6.1 6.9 8.2

Panel D: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using N (0; 1)

�ih is a function of
P
t x
�
ith �ih is a function of

P
t x
�2
ith

for �1 Bias (x100) Size, H0 : �1 = �1 Bias (x100) Size, H0 : �1 = �1
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂PC
25 3.237 1.735 1.086 15.7 10.0 7.3 4.480 2.888 2.141 19.5 16.3 15.7
50 2.754 1.410 0.757 13.4 8.7 6.0 3.831 2.426 1.716 17.7 14.4 14.3
100 2.607 1.291 0.672 13.2 8.1 4.8 3.682 2.305 1.629 17.5 14.9 13.7
200 2.508 1.216 0.609 13.0 7.4 4.8 3.631 2.271 1.613 18.9 16.6 14.5
~�PC
25 1.307 0.699 0.550 9.2 6.8 5.5 2.242 1.690 1.522 10.3 9.3 9.8
50 0.733 0.329 0.199 7.0 5.9 4.3 1.473 1.170 1.068 7.4 6.7 7.4
100 0.555 0.192 0.104 6.6 5.1 3.3 1.285 1.027 0.970 6.4 6.1 6.5
200 0.462 0.114 0.038 5.9 4.7 3.5 1.240 0.990 0.951 6.0 5.6 6.6

See notes to Panel C and Panel D in Table 2..
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Table 4: Summary results of PC estimators for the model with f�1; �2g = f0; 0g, inter-
active e¤ects, heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, �ih = �h for all i, h = 1; 2
for �1 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂PC
25 -0.506 -0.205 0.026 2.707 1.929 1.326 5.4 6.3 4.8 41.7 72.6 97.0
50 -0.622 -0.285 -0.094 1.997 1.358 0.941 7.5 6.1 5.3 65.2 95.0 100.0
100 -0.671 -0.301 -0.136 1.547 1.010 0.691 10.1 7.7 6.0 89.1 99.8 100.0
200 -0.638 -0.296 -0.141 1.167 0.743 0.502 11.7 8.0 6.4 99.6 100.0 100.0
~�PC
25 0.045 0.074 0.168 2.673 1.924 1.339 6.2 6.0 5.4 49.3 76.8 97.5
50 -0.046 0.007 0.054 1.906 1.331 0.939 6.1 5.7 5.2 74.5 96.7 100.0
100 -0.083 -0.003 0.015 1.404 0.967 0.679 6.5 6.0 5.6 94.6 99.9 100.0
200 -0.045 0.004 0.011 0.981 0.683 0.482 5.6 5.9 5.7 99.9 100.0 100.0
Panel B: Heterogeneous Slopes, �ih = �h + �ih with �ih � iidN (0; 0:04) for all i, h = 1; 2
for �1 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂PC
25 -0.449 -0.177 0.066 4.143 3.020 2.178 6.0 5.9 5.8 20.7 38.3 66.0
50 -0.614 -0.281 -0.062 3.715 2.609 1.872 7.1 6.2 5.5 25.7 47.4 76.6
100 -0.697 -0.306 -0.112 3.371 2.338 1.661 6.6 5.6 5.2 28.1 53.9 83.6
200 -0.655 -0.292 -0.114 3.159 2.197 1.559 7.4 6.0 5.1 31.3 58.8 88.5
~�PC
25 0.147 0.126 0.221 4.173 3.039 2.195 6.8 6.2 6.1 25.6 42.7 68.8
50 0.007 0.037 0.099 3.711 2.614 1.881 7.2 6.0 5.9 31.6 53.0 79.1
100 -0.063 0.018 0.053 3.344 2.337 1.665 6.8 5.2 5.2 35.5 58.7 85.9
200 -0.016 0.035 0.052 3.135 2.196 1.562 7.3 6.1 5.2 39.0 64.7 90.6

Notes to Table 4: The DGPs for Panels A-E are identical to those in Table 2, except that f�1; �2g =
f0; 0g. The performance of Bai�s estimators is not reported, since the results are identical to those in
Table 2. See notes to Panels A and B in Table 2. The size is rejection frequency of the proposed Wald
test (de�ned by (19)) for H0 : �1 = 0 and the power for H0 : �1 = �0:05, based on the 5% level test.
All results are based on 2000 replications.
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Table 4 continued

Panel C: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using �

2
6

(i) �ih is function of
P
t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (x100) Size, H0 : �1 = 0 Bias (x100) Size, H0 : �1 = 0
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂PC
25 0.004 0.293 0.534 6.0 5.6 5.0 0.120 0.549 0.875 5.4 5.6 6.4
50 -0.139 0.220 0.434 6.6 5.0 4.4 -0.004 0.488 0.786 7.4 5.8 5.9
100 -0.162 0.247 0.447 5.9 4.4 4.6 -0.052 0.506 0.779 6.3 5.1 5.7
200 -0.036 0.342 0.531 5.7 4.5 4.2 0.070 0.597 0.862 6.1 6.2 6.5
~�PC
25 0.614 0.604 0.693 6.7 5.9 5.8 0.813 0.912 1.064 6.6 6.7 7.7
50 0.497 0.545 0.600 7.2 5.2 5.1 0.712 0.864 0.981 8.1 6.6 7.4
100 0.487 0.579 0.616 6.6 5.1 5.4 0.677 0.889 0.976 7.5 6.7 7.3
200 0.620 0.677 0.702 6.6 6.0 5.2 0.806 0.983 1.062 7.6 7.9 8.6

Panel D: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using N (0; 1)

�ih is a function of
P
t x
�
ith �ih is a function of

P
t (x

�
ith)

2

for �1 Bias (x100) Size, H0 : �1 = 0 Bias (x100) Size, H0 : �1 = 0
T,N 50 100 200 50 100 200 50 100 200 50 100 200
�̂PC
25 -0.446 -0.182 0.040 7.2 5.3 4.0 0.129 0.556 0.828 7.4 5.7 5.6
50 -0.662 -0.315 -0.122 6.2 5.8 4.0 -0.092 0.420 0.682 7.1 5.9 5.4
100 -0.675 -0.359 -0.158 6.7 4.8 3.3 -0.071 0.415 0.676 6.8 5.2 5.2
200 -0.726 -0.406 -0.204 6.6 5.0 3.7 -0.052 0.424 0.687 7.2 5.1 5.4
~�PC
25 0.163 0.129 0.199 7.2 5.5 4.4 0.833 0.925 1.018 8.5 7.2 6.9
50 -0.034 0.007 0.041 6.2 5.8 4.1 0.628 0.799 0.877 7.9 6.7 6.5
100 -0.035 -0.031 0.008 6.3 4.8 3.3 0.661 0.800 0.874 7.4 6.5 6.6
200 -0.082 -0.076 -0.036 6.4 4.9 3.9 0.685 0.811 0.886 8.3 6.1 6.9

See notes to Panel C and Panel D in Table 2.
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Appendix A: Lemmas and Proofs of Main Results
for Section 2

We rely on the law of large numbers and central limit theorem results, which are stated in Lemmas
A.1 and A.2, which are given and proved in Hansen (2007). The results which are stated as Lemmas
A.3-A.6 are discussed and proven in Hansen (2007), but replicated here for convenience. The proof of
main results, which are readily proven based on the lemmas, are given in A.2. We provide proofs of
LemmaA.8 in A.3.25

A.1: Lemmas for Section 2
Lemma A.1 Suppose fWi;T g are independent across i = 1; 2; :::; N for all T with E (Wi;T ) = �i;T and

E jWi;T j1+� < � <1 for some � > 0 and all i, T . Then N�1PN
i=1

�
Wi;T � �i;T

� p! 0 as (N;T )
j!1.

Lemma A.2 Suppose fwi;T g, h�1 random vectors, are independent across i = 1; 2; :::; N for all T with
E (wi;T ) = 0, E

�
wi;Tw

0
i;T

�
= �i;T and E kwi;T k2+� < � < 1 for some � > 0 and all i, T . Assume

� = limN;T!1N�1PN
i=1 �i;T is positive de�nite and the smallest eigenvalue of � is strictly positive.

Then, N�1=2PN
i=1wi;T

d! N (0;�) as (N;T )
j!1.

Lemma A.3 Let fwtg be a strong mixing sequence with E (wt) = 0, E jwtjs+� < � � 1 and mixing
coe¢ cient � (m) of size (1� c) r=(r� c) where c 2 2N, s � c < r. Then, there is a constant C depending

only on s and � (m) such that E
���PT

t=1 wt

���s � C D (s; �; T ), where D (s; �; T ) is as de�ned in Doukhan

(1994) and satisfying D (s; �; T ) = O(T ) for s � 2 and D (s; �; T ) = O(T s=2) for s > 2.

Lemma A.4 Under Assumptions A1 and A2, �ANT �A!p0 and �A
�1
NT �A�1!p0 as (N;T ) ! 1,

where �ANT and A are de�ned by (7) and in Assumption A2, respectively.

Lemma A.5 Under Assumptions A1-A3, 1p
NT

PN
i=1X

0
i"i !d N (0;B), where B is de�ned in Assump-

tion A3.

Lemma A.6 Under Assumptions A1-A3, N�1PN
i=1 B̂i;T � B!p0 as (N;T ) ! 1, where B̂i;T =

T�1X0
i"̂i"̂

0
iXi with "̂i = yi �Xi�̂ with �i= 0 for all i, and B is de�ned in Assumption A3.

Lemma A.7 Under Assumptions A1-A4, 1p
NT

PN
i=1X

0
iXi�i !d N (0;C), where C is de�ned in As-

sumption A4.

Lemma A.8 Under Assumptions A1-A4, N�1PN
i=1 Ĉi;T � C!p0 as (N;T ) ! 1, where Ĉi;T =

T�2X0
iûiû

0
iXi with ûi = yi �Xi�̂ and C is de�ned in Assumption A4.

A.2: Proofs of Main Results in Section 2
Proof of Theorem 1. Applying Lemmas A.4 and A.5, the result immediately follows.
Proof of Theorem 2. Applying Lemmas A.4 and A.7, the result immediately follows.
Proof of Proposition 1. Applying Lemmas A.8 and A.6, the result immediately follows.
Proof of Theorem 3. In the case of both slope homogeneity and slope heterogeneity, using

Theorems 1&2, together with Proposition 1,
h
V̂NT

�
�̂
�i�1=2 �

�̂ � �
�
!d N (0; Ik) as (N;T ) ! 1.

It is straightforward to impose the linear restriction H0 : R� = r and show that under the null,h
RV̂NT

�
�̂
�
R0
i�1=2 �

R�̂ � r
�
!d N (0; Iq) which implies that

�
R�̂ � r

�0 h
RV̂NT

�
�̂
�
R0
i�1 �

R�̂ � r
�
!d

�2q as (N;T )!1. This completes the proof.

25Proof of other Lemmas in this subsection is provided in Appendix C.1 for convenience.
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A.3: Proofs of Lemmas in Section A.1
Proof of Lemma A.8. We write

N�1
NX
i=1

Ĉi;T = N�1T�2
NX
i=1

X0
iuiu

0
iXi �N�1T�2

NX
i=1

X0
iXi

�
�̂ � �

�
u0iXi

�N�1T�2
NX
i=1

X0
iui

�
�̂ � �

�0
X0
iXi +N

�1T�2
NX
i=1

X0
i

�
�̂ � �

��
�̂ � �

�0
Xi

= E1 �E2 �E3 +E4.

Recall ui = Xi�i + "i. First

E3 = N�1T�2
NX
i=1

X0
iXi�i

�
�̂ � �

�0
X0
iXi +N

�1T�2
NX
i=1

X0
i"i

�
�̂ � �

�0
X0
iXi (A.1)

= E31 +E32, say. (A.2)

vec (E31) = N�1
NX
i=1

�
X0
iXi

T

 X

0
iXi

T
�i

��
�̂ � �

�

but E
X0

iXi

T 
 X0
iXi

T �i

1+� � �E X0
iXi

T

2+2� E X0
iXi

T �i

2+2��1=2 � � by (C.1) and (C.6). As ��̂ � �� =
Op
�
N�1=2�, E31 = Op

�
N�1=2�. Similarly vec (E32) = N�1T�1=2

PN
i=1

�
X0
iXi

T 
 X0
i"ip
T

��
�̂ � �

�
=

Op
�
N�1=2T�1=2

�
, thus, E3 = Op

�
N�1=2�+Op �N�1=2T�1=2

�
. It is easily seen that E2 = Op

�
N�1=2�+

Op
�
N�1=2T�1=2

�
. kE4k � N�1T�1

PN
i=1

T�1=2X0
i

2 �̂ � �2 = Op
�
N�1T�1

�
. Finally,

E1 = N�1T�2
NX
i=1

X0
i (Xi�i + "i) (Xi�i + "i)

0
Xi

= N�1T�2
NX
i=1

X0
iXi�i�

0
iX

0
iXi +N

�1T�2
NX
i=1

X0
i"i"

0
iXi

+N�1T�2
NX
i=1

X0
iXi�i"

0
iXi +N

�1T�2
NX
i=1

X0
i"i�

0
iX

0
iXi

= G1 +G2 +G3 +G4, say.

Since, E
T�3=2X0

iXi�i"
0
iXi

1+� � E
�T�1X0

iXi�i
T�1=2X0

i"i
�1+� � E

T�1X0
iXi�i

2+2� E T�1=2X0
i"i
2+2� �

� by by (C.1) and (C.6), G3 = Op
�
T�1=2

�
. By a similar derivation, it is easily seen that G4 =

Op
�
T�1=2

�
. By (C.1), G2 = Op

�
T�1

�
. Finally by (C.6), G1 �C!p 0; and the required result follows.

Appendix B: Lemmas and Proofs of Main Results
in Section 3

B.1: Lemmas
Proof of the consistency of factor estimators and other related results are in line with the discussion in
Bai (2009).

Lemma B.1 (i) T�1
PT

s=1

PT
t=1 [�`N (s; t)]

2 � �, where �`N (s; t) = N�1PN
i=1E (eit`eis`) for all ` =

1; :::;m;
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(ii) E
�
T�1

PT
t=1

 1p
N

PN
i=1 eit`g

0
i`

2� � � for all ` = 1; :::;m;

(iii) E
� 1p

NT

PT
t=1

PN
i=1 eit`g

0
i`

2� � � for all ` = 1; :::;m;

Lemma B.2

F̂R
�1 � F0 = 1

NT

k+1X
`=1

NX
i=1

F0g0`ie
0
`iF̂Q̂+

1

NT

k+1X
`=1

NX
i=1

e`ig
00
`iF

00F̂Q̂+
1

NT

k+1X
`=1

NX
i=1

e`ie
0
`iF̂Q̂,

where

Q̂ =
�
�0
N�0F̂

��1
, �0F̂ = T�1F00F̂, and R =

�
�NT Q̂

��1
, (B.1)

�NT is r eigenvectors of N�1PN
i=1 Z

�
iZ

�0
i corresponding to the �rst r largest eigenvalues, which is

invertible.

Lemma B.3 T�s=2
F̂� F0Rs = Op

�
��sNT

�
, s = 1; 2:

Lemma B.4 N�1=2
PN

i=1 Ĝi �R�1G0
i

s = Op
�
��sNT

�
, s = 1; 2:

Lemma B.5
T�1 �F̂� F0R�0 F̂ = Op

�
��2NT

�
,

T�1 �F̂� F0R�0F0 = Op
�
��2NT

�
,

T�1 �F̂� F0R�0 "i =
Op
�
��2NT

�
,

T�1 �F̂� F0R�0 v`i = Op
�
��2NT

�
,

T�1 �F̂� F0R�0 e`i = Op
�
��2NT

�
,

RR0 �
�
F00F0

T

��1 =
Op
�
��2NT

�
.

Lemma B.6
 1p

N

PN
i=1 T

�1
�
F̂� F0R

�0
v`i

00
`i

 = Op
�
N�1=2�+Op ���2NT �,  1p

N

PN
i=1 T

�1
�
F̂� F0R

�0
e`ig

00
`i

 =
Op
�
N�1=2�+Op ���2NT � for all `:

Lemma B.7
pN(�EE���EE)F0p

T

2 � �, pN(�EE���EE)v`ip
T

2 � �, pN(�EE���EE)"ip
T

2 � �, pN(�EE���EE)e`ip
T

2 �
� for all ` where �EE = N�1PN

i=1EiE
0
i and ��EE = N�1PN

i=1E (EiE
0
i) :

Lemma B.8 F00F̂
T !p � as (N;T )!1, � is �xed and positive de�nite.

Lemma B.9
MF̂ �MF0

 = Op
�
��1NT

�
:

Lemma B.10 1
NT

PN
i=1X

�0
i

�
MF̂ �MF0

�
X�
i = Op

�
��1NT

�
. In the following lemmas, we consider the

properly scaled limiting properties of these three terms.

Lemma B.11 Under Assumptions B1-B5,

1p
NT

NX
i=1

X�0
i MF̂X

�
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Lemma B.13 Under Assumptions B1-B5,
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T

N

1

N

NX
i=1

NX
j=1

�0i
�
�0
N

��1
G0
j

E0jMF0"i

T
=

r
T

N

1

N

NX
i=1

�0i
�
�0
N

��1
g01i�

2
"i + op (1) . (B.5)

where g01i is the �rst column of G
0
i and �

2
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�
. In a similar manner,r
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 v�i = tr (�vvi
��;i) .

Lemma B.15 Under Assumptions B1-B5,r
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where �
EE;i = E (E0iEi=T ).

Lemma B.16 Under Assumptions B1-B5,r
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where �
V E;i = E (V0
iEi=T ).

Lemma B.17 Under Assumptions B1-B5, �̂NT � �
y
NT !p 0 as (N;T ) ! 1 such that T=N ! c 2

(0;�].

B.2: Proof of Main Results in Section 3
Proof of Proposition 2. First, using X�

i = F
0�00i +Vi, we can write
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Substituting (B.3) and (B.4) in Lemmas B.12&B.13 into (B.9) gives
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Further substituting (B.5), (B.7) and (B.8) into (B.10) gives the required result.

Proof of Proposition 3. Recall that ĉNT =
�

1
NT

PN
i=1 X̂

0
iX̂i

��1
�̂NT . By Lemma B.10,
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iVi = op (1) and, by continuous mapping theorem,
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Proof of Theorem 4. Under slope homogeneity, recalling ~�PC = �̂PC � 1
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where �NT is de�ned by (29). By Lemma B.17,�̂NT � �NT = op (1) with slope homogeneity, we have

p
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as (N;T ) ! 1 such that T=N ! c 2 (0;�]. By Assumption B5, 1
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0
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0
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�
0; ~B

�
by Lemma A.2 and Assumption B5, as (N;T ) ! 1 such that T=N !

c 2 (0;�], the required result follows.
Proof of Theorem 5. Under heterogeneous slopes, recalling ~�PC = �̂PC � 1
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1
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0
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By Lemmas B.10 & B.11 and Proposition 2 we have
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Because �̂NT � �
y
NT = op (1) with �

y
NT = Op (1) by Proposition 3 and 1p
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i=1V

0
i"i = Op (1) by

Assumption B5, inside of the curly brackets is Op
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N�1=2�. Therefore,
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as (N;T ) ! 1 such that T=N ! c 2 (0;�]. By Assumption B5, 1
NT
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i=1V

0
iVi !p A and�

1
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i=1V

0
iVi

��1
!p A

�1, and 1p
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by Lemma A.2 and Assumption

B5, as (N;T )!1 such that T=N ! c 2 (0;�], the required result follows.
Proof of Theorem 6. Consider
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where ûi = y�i �X�
i �̂PC . Under homogeneous or heterogeneous slopes, by Lemma B.10 and continuous

mapping theorem, 1
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i=1 X̂
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iX̂i� 1
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0
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First consider the slope homogeneous case. Noting X̂0
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0
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In a similar manner, it is easily shown that kA33k = Op
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�
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In a similar manner, it is easily shown that A13 = Op
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Using Lemma A.1, 1
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0
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as (N;T )!1 such that T=N ! c(0;�].

Now consider the case with heterogeneous slopes. Noting X̂0
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we have
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iûiû
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Using Lemma A.1, 1N
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0
i
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T � ~C =op (1), and we conclude that, under Assumptions B1-B5,

N�1V̂PC � ~A�1 ~C~A
�1 !p 0 (B.19)

as (N;T )!1 such that T=N ! c(0;�].
In the case of both slope homogeneity and slope heterogeneity, using Theorems 4 and 5, together with

(B.16) and (B.19), V̂�1=2
PC

�
~�PC � �

�
!d N (0; Ik). It is straightforward to impose the linear restriction

H0 : R� = r and show that under the null,
�
RV̂PCR

��1=2 �
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�
!d N (0; Iq) which implies

that
�
R~�PC � r
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2
q as (N;T ) ! 1 such that T=N ! c(0;�]. This

completes the proof.
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Supplementary Appendix

for

�A robust approach to heteroskedasticity, error
serial correlation and slope heterogeneity for large
linear panel data models with interactive e¤ects�

by K. Hayakawa, S. Nagata and T. Yamagata

Appendix C: Proof of Lemmas for Section 3
In what follows, we repeatedly use Cauchy-Schwarz inequality, triangular inequality, Minkowski in equal-
ity, Holder�s inequality, and other well-established results: for conformable matrices ABC, vec (ABC) =

(C0 
A) vec (B), E kA
Bks �
�
E kAk2sE kBk2s

�1=2
, for square matrices, kABk � kAk�max kBk.

C1: Proof of Lemmas for Section 2
Proof of Lemma A.4. E

�AiT

1+� = E
T�1X0

iXi
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1 using Holder�s and Minkowski�s inequality and Assumption A2, then applying Lemma A.1 gives
�ANT �A!p0. Applying continuous mapping theorem yields �A�1

NT �A�1!p0.
Proof of Lemma A.5. We have

E
T�1=2X0
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(C.1)

� k1+�
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2+2�
2 C D (s; �; T )

�
� � <1,

where the third inequality follows, because, by Assumption A1, E (xith"it) = 0, E jxith"itjs+� � E jxithj2s+2� E j"itj2s+2� �
2�2s+2� <1 for s > 2 and all h = 1; :::; k, and using Lemma A.3 E
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�
. Therefore E

T�1=2X0
i"i
2+2� � � and together with Assumption A3, applying Lemma A.2

the result follows.
Proof of Lemma A.6. We write
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First
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0
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= 0 by Assumptions A1 and A2. Noting
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and E
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Applying Lemma A.2 the required result follows.

C2: Proof of Lemmas for Section 3
Proof of Lemma B.1. We only discuss the proof for ` = 1, since for ` = 2; :::; k + 1, the proof is
identical to that for Lemma 1 in Bai and Ng (2002). For (i), recalling that G0
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�
�00i �i+�

0
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a3 � � and a4 � �. (ii) is shown in a similar manner.
Proof of Lemma B.2. Following the discussion in Bai (2009), p.1266, we write
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Observing that A4 = F
0�0
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Let
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where �NT is assumed to be invertible (the invertibility of �NT is proved in Bai 2009, p.1267) so that
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as required.
Proof of Lemma B.3. By Lemma B.2 we have
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as required.

Proof of Lemma B.4. Substituting F0 =
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Proof of Lemmas B.5-B.9 is obtained in line with the discussions in Bai (2009) under Assumptions
B1-B5, which are omitted. See derivations therein.

Proof of Lemma B.10.
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Using the above results, the required result follows.
Proof of Lemma B.12.

1p
NT

NX
i=1

�0iF
00MF̂�f"i = � 1p

NT

NX
i=1

�0i

�
F̂R

�1 � F0
�0
MF̂�f";i

= � 1p
NT

NX
i=1

�0i

 
1

NT

k+1X
`=1

NX
i=1

Q̂0F̂0e`ig
00
`iF

00

!
MF̂�f";i

� 1p
NT

NX
i=1

�0i

 
1

NT

k+1X
`=1

NX
i=1

Q̂0F̂0F0g0`ie
0
`i

!
MF̂�f";i

� 1p
NT

NX
i=1

�0i

 
1

NT

k+1X
`=1

NX
i=1

Q̂F̂e`ie
0
`i

!
MF̂�f";i

= �b11 � b12 � b13

S.6



b11 =
p
NT

1

NT

NX
i=1

�0i

 
1

NT

k+1X
`=1

NX
i=1

Q̂0F̂0e`ig
00
`i (R

0)
�1
R0F00

!
MF̂�f";i

= �
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0
MF̂�f";i

with

AmNT =
1

NT

k+1X
`=1

NX
i=1

F̂0e`ig
00
`i (R

0)
�1

but

kAmNT k �
 1p

T

1

N

k+1X
`=1

NX
i=1

R
F00e`ig

00
`ip

T
(R0)

�1
+


1

N

k+1X
`=1

NX
i=1

�
F̂� F0R

�0
e`i

T
g00`i (R

0)
�1


� 1p

T

1

N

k+1X
`=1

NX
i=1

F00e`ig00`ip
T

+ 1

N

k+1X
`=1

NX
i=1


�
F̂� F0R

�0
e`i

T


g0`i(R0)

�1


= Op

�
T�1=2

�
+Op

�
��2NT

�
.

Next,

b11 =
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0
MF̂�f";i

=
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0 
IT �

F̂F̂
0

T

!
�f";i

=
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0
�f";i

�
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0 F̂F̂0
T
�f";i

= b111 � b112

kb111k �
p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0F0�0i
+
p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0 "i
=

p
NTOp

�
��2NT

� h
Op

�
T�1=2

�
+Op

�
��2NT

�i

kb112k �
p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0 F̂
 F̂0F0T

�0i
+
p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0 F̂
 F̂0pT


 "ipT


=

p
NTOp

�
��2NT

� h
Op

�
T�1=2

�
+Op

�
��2NT

�i
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b111 =
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0
�f";i +

p
NT

1

NT

NX
i=1

�0i Q̂
0AmNTT

�1
�
F̂� F0R

�0
F0F00�f";i

= b1111 + b1112

kb1111k �
p
NT

1

NT

NX
i=1

�0i Q̂0AmNT

�
F̂� F0R

�0
�f";i


�

p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0 �f";i
�

p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0F0�0i
+
p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0 "i
=

p
NTOp

�
��2NT

� h
Op

�
T�1=2

�
+Op

�
��2NT

�i
.

kb1112k �
p
NT

1

NT

NX
i=1

�0i Q̂0AmNTT
�1
�
F̂� F0R

�0
FF0 (F�i + "i)


�

p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0F0F00F0T

�0i
+
p
N
1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0FF0"ip
T


=

p
NTOp

�
��2NT

� h
Op

�
T�1=2

�
+Op

�
��2NT

�i

b112 =
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0 h
T�1

�
F̂� F0R

�
R0F00

i
�f";i

+
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0 �
T�1

�
F̂� F0R

��
F̂� F0R

�0�
�f";i

+
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0 �
T�1FR

�
F̂� F0R

�0�
�f";i

+
p
NT

1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0 n
T�1F

h
RR0�

�
T�1F0F

��1i
F0
o
�f";i

= b1121 + b1122 + b1123 + b1124

kb1121k =

pNT 1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0 h
T�1

�
F̂� F0R

�
R0F00

i
�f";i


�

p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

�F̂� F0R�2 kR0k
F00F0T

 k�ik
+
p
N
1

N

NX
i=1

Q̂0
 kAmNT k

�F̂� F0R�2 kR0k
F00"ip

T


=

p
NTOp

�
��2NT

� h
Op

�
T�1=2

�
+Op

�
��2NT

�i
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kb1122k =

pNT 1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0 �
T�1

�
F̂� F0R

��
F̂� F0R

�0�
�f";i


�

p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT kT�1

F̂� F0R2 T�1 �F̂� F0R�0F0�0i
+
p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT kT�1

F̂� F0R2 T�1 �F̂� F0R�0 "i
=

p
NTOp

�
��4NT

� h
Op

�
T�1=2

�
+Op

�
��2NT

�i
kb1123k =

p
NTOp

�
��2NT

� h
Op

�
T�1=2

�
+Op

�
��2NT

�i

kb1124k �
pNT 1

NT

NX
i=1

�0i Q̂
0AmNT

�
F̂� F0R

�0 n
T�1F

h
RR0�

�
T�1F0F

��1i
F0
o�
F0�i + "i

�
�

p
NT

1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0FRR0�
�
T�1F0F

��1F0F0T

 k�ik
+
p
N
1

N

NX
i=1

�0iQ̂0
 kAmNT k

T�1 �F̂� F0R�0FRR0�
�
T�1F0F

��1F0"ip
T


=

p
NTOp

�
��4NT

� h
Op

�
T�1=2

�
+Op

�
��2NT

�i
.

To conclude, b11 =
p
NTOp

�
��2NT

� �
Op
�
T�1=2

�
+Op

�
��2NT

��
.

Noting Q̂ =
�
�0
N�0F̂

��1
= ��1

0F̂

�
�0
N

��1
, we have

b12 =
1p
NT

1

N

NX
i=1

NX
j=1

k+1X
`=1

�0i
�
�0
N

��1
g0`je

0
`jMF̂�f";i

=
1p
NT

1

N

NX
i=1

NX
j=1

k+1X
`=1

�0j
�
�0
N

��1
g0`i�

0
f";jMF̂e`i

=
1p
NT

NX
i=1

k+1X
`=1

0@ 1

N

NX
j=1

�0j
�
�0
N

��1
g0`i�

0
f";j

1AMF̂e`i

=
1p
NT

NX
i=1

k+1X
`=1

H0
`iMF̂e`i

H`i =
1

N

NX
j=1

�f";jg
00
`i

�
�0
N

��1
�00j :

b12 =
1p
NT

NX
i=1

k+1X
`=1

H0
`iMF0e`i

+
1p
NT

NX
i=1

k+1X
`=1

H0
`i

�
MF̂ �MF0

�
e`i

= b121 + b122
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b121 =
1p
NT

1

N

NX
i=1

NX
j=1

�0i
�
�0
N

��1
G0
jE

0
jMF0�f";i

=

r
T

N

1

N

NX
i=1

NX
j=1

�0i
�
�0
N

��1
G0
j

E0j"i

T

+
1p
NT

1

N

NX
i=1

NX
j=1

�0i
�
�0
N

��1
G0
j

E0jFF
0"i

T

=

r
T

N

1

N

NX
i=1

NX
j=1

�0i
�
�0
N

��1
G0
j

E0j"i

T
+ op (1) .

b122 = � 1p
NT

NX
i=1

k+1X
`=1

H0
`i

h
T�1

�
F̂� F0R

�
R0F00

i
e`i �

1p
NT

NX
i=1

k+1X
`=1

H0
`i

�
T�1

�
F̂� F0R

��
F̂� F0R

�0�
e`i

� 1p
NT

NX
i=1

k+1X
`=1

H0
`i

�
T�1FR

�
F̂� F0R

�0�
e`i �

1p
NT

NX
i=1

k+1X
`=1

H0
`i

n
T�1F0

h
RR0�

�
T�1F00F0

��1i
F00
o
e`i

= b1221 + b1222 + b1223 + b1224

kb1221k � 1p
NT

NX
i=1

k+1X
`=1

H0
`iT

�1
�
F̂� F0R

�
R0F00e`i

�
p
N

k+1X
`=1

24 1
N

NX
j=1

�0j ��0
N

��1�0f";jT�1 �F̂� F0R�
35" 1

N

NX
i=1

g0`i kR0k
F00e`ip

T


#

=
p
NOp

�
��2NT

�

kb1222k �
p
NT

k+1X
`=1

1

N

NX
j=1

�0j ��0
N

��1�0f";jT�1 �F̂� F0R� 1N
NX
i=1

g0`iT�1 �F̂� F0R�0 e`i
=

p
NTOp

�
��4NT

�
kb1224k �

p
N
1

N

NX
i=1

k+1X
`=1

H0
`iF

0

T

RR0�
�
T�1F00F0

��1F00e`ip
T

 = pNOp ���2NT �
since

H0
`iF

0

T

 = Op (1).

b1223 =
1p
NT

NX
i=1

k+1X
`=1

H0
`i

�
T�1FRR0

�
F̂R

�1 � F0
�0�

e`i

=
1p
NT

NX
i=1

k+1X
`=1

H0
`i

"
T�1F

�
F00F0

T

��1 �
F̂R

�1 � F0
�0#

e`i

+
1p
NT

NX
i=1

k+1X
`=1

H0
`i

"
T�1F

 
RR0 �

�
F00F0

T

��1!�
F̂R

�1 � F0
�0#

e`i

= b12231 + b12232

kb12232k �
p
NT

1

N

NX
i=1

k+1X
`=1

H0
`iF

0

T


RR0 �

�
F00F0

T

��1
�F̂R�1 � F0

�0
e`i


=

p
NTOp

�
��4NT

�
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b12231 =
1p
NT

NX
i=1

k+1X
`=1

H0
`iT

�1F

�
F00F0

T

��1
1

NT

k+1X
`=1

NX
j=1

Q̂0F̂0e`jg
00
`jF

00
e`i

+
1p
NT

NX
i=1

k+1X
`=1

H0
`iT

�1F

�
F00F0

T

��1
1

NT

k+1X
`=1

NX
j=1

Q̂0F̂0F0g0`je
0
`j
e`i

+
1p
NT

NX
i=1

k+1X
`=1

H0
`iT

�1F

�
F00F0

T

��1
1

NT

k+1X
`=1

NX
j=1

Q̂0F̂0e`je
0
`je`i

= b122311 + b122312 + b122313

b122311 =
1p
NT

NX
i=1

k+1X
`=1

H0
`iT

�1F

�
F00F0

T

��1
1

NT

k+1X
`=1

NX
j=1

Q̂0R0F00e`jg
00
`jF

00
e`i

+
1p
NT

NX
i=1

k+1X
`=1

H0
`iT

�1F

�
F00F0

T

��1
1

NT

k+1X
`=1

NX
j=1

Q̂0
�
F̂� F0R

�0
e`jg

00
`jF

00
e`i

= b1223111 + b1223112

kb1223111k � 1p
T

1

N

NX
i=1

k+1X
`=1

H0
`iF

T



�
F00F0

T

��1
F00e`iT


 1p

N

k+1X
`=1

NX
j=1

Q̂0R0F
00e`jp
T
g00`j


= Op

�
T�1=2

�

kb1223112k �
p
N
1

N

NX
i=1

k+1X
`=1

H0
`iF

T



�
F00F0

T

��1
F00e`ip

T

 1N
k+1X
`=1

NX
j=1

Q̂0
T�1 �F̂� F0R�0 e`jg00`j

=
p
NOp

�
��2NT

�
.

Noting Q̂ =
�
�0
N�0F̂

��1
= ��1

0F̂

�
�0
N

��1
b122312 =

r
T

N

1

N

NX
i=1

k+1X
`=1

H0
`iF

T

�
F00F0

T

��1 k+1X
h=1

NX
j=1

�
�0
N

��1
g0hj

e0hje`i

T
(C.14)

b122313 =
1p
NT

NX
i=1

k+1X
`=1

H0
`iT

�1F

�
F00F0

T

��1
1

NT

k+1X
s=1

NX
j=1

Q̂0R0F00esje
0
sje`i

+
1p
NT

NX
i=1

k+1X
`=1

H0
`iT

�1F

�
F00F0

T

��1
1

NT

k+1X
s=1

NX
j=1

Q̂0
�
F̂� F0R

�0
esje

0
sje`i

= b1223131 + b1223132

b1223131 =
1p
NT

NX
i=1

k+1X
`=1

H0
`iF

T

�
F00F0

T

��1
1p
T
Q̂0R0F

00 ��EEe`ip
T

+
1

T

1

N

NX
i=1

k+1X
`=1

H0
`iF

T

�
F00F0

T

��1
Q̂0R0F

00pN
�
�EE � ��EE

�
e`ip

T

= b12231311 + b12231312
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kb12231311k =

 1p
T

1p
NT

NX
i=1

k+1X
`=1

1

N

NX
j=1

�0j
�
�0
N

��1
g0`i
�0f";jF

T

�
F00F0

T

��1
Q̂0R0F

00 ��EEe`ip
T


=

 1p
T

NX
i=1

k+1X
`=1

1

N

NX
j=1

�0j
�
�0
N

��1 1p
N

NX
i=1

g0`i
e0`i
��EEF

0

T
RQ̂

�
F00F0

T

��1
F00�f";j

T


� 1p

T

k+1X
`=1

1

N

NX
j=1

�0j ��0
N

��1F00�f";jT


 1p

N

NX
i=1

g0`i
e0`i
��EEF

0

T

 kRkQ̂

�
F00F0

T

��1
= Op

�
T�1=2

�
.

kb12231312k � 1p
T

1

N

NX
i=1

k+1X
`=1

H0
`iF

T



�
F00F0

T

��1Q̂0
 kR0k

F00
p
N
�
�EE � ��EE

�
e`i

T


= Op

�
T�1=2

�
.

kb1223132k =

 1p
NT

NX
i=1

k+1X
`=1

1

N

NX
j=1

�0j
�
�0
N

��1
g0`i
�0f";jF

0

T

�
F00F0

T

��1
1

NT

k+1X
s=1

NX
h=1

Q̂0
�
F̂� F0R

�0
esh (e

0
she`i)


=

 1p
NT

NX
i=1

k+1X
`=1

1

NT

k+1X
s=1

NX
h=1

1

N

NX
j=1

�0j
�
�0
N

��1
g0`i (e

0
`iesh)

�0f";jF
0

T

�
F00F0

T

��1
Q̂0
�
F̂� F0R

�0
esh


�

p
T

0@ 1

N

NX
j=1

�0j
�0f";jF0T


1A 1p

N

k+1X
`=1

NX
i=1

g0`ie
0
`ip
T


0B@ 1

N

k+1X
s=1

NX
h=1


�
F̂� F0R

�0
esh

T


 eshpT


1CA

�
��0

N

��1
�
F00F0

T

��1Q̂0


=
p
TOp

�
��2NT

�
.

Noting Q̂ =
�
�0
N�0F̂

��1
= ��1

0F̂

�
�0
N

��1
b13 =

1p
NT

NX
i=1

�0i

�
1

T
Q̂0F̂0e`ie

0
`i

�
MF̂�f";i

=
1p
NT

NX
i=1

�0i
1

T

�
�0
N

��1 F̂0F0
T

!�1
F̂0�EEMF̂�f";i.

but, by Lemma 7 of Norkute et al (2018),

1p
NT

NX
i=1

�0i

0@ 1
T

�
�0
N

��1 F̂0F0
T

!�1
F̂0�EE

1AMF̂�f";i

=
1p
NT

NX
i=1

�0i

0@ 1
T

�
�0
N

��1 F̂0F0
T

!�1
F̂0 ��EE

1AMF̂�f";i + op (1)

= b�13 + op (1) .
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b�13 =
1p
NT

NX
i=1

�0i

0@ 1
T

�
�0
N

��1 F̂0F0
T

!�1
F̂0 ��EE

1AMF̂�f";i

=
1p
NT

NX
i=1

�0i
1

T

�
�0
N

��1�F00F0
T

��1
F00 ��EEMF0�f";i

+
1p
NT

NX
i=1

�0i
1

T

�
�0
N

��1�F00F0
T

��1
F00 ��EE

�
MF̂ �MF0

�
�f";i

+
1p
NT

NX
i=1

�0i
1

T

�
�0
N

��1 24 F̂0F0
T

!�1
F̂0 �

�
F00F0

T

��1
F00

35 ��EEMF̂�f";i

= b�131 + b
�
132 + b

�
133

kb�132k =

 1p
NT

NX
i=1

�0i
1

T

�
�0
N

��1�F00F0
T

��1
F00 ��EE

�
�PF̂ +PF0

�
�f";i


�

r
N

T

��0
N

��1
�
F00F0

T

��1
F00p

T

�max ���EE� PF̂ �PF0 1N
NX
i=1

�0i�f";ip
T


=

r
N

T
Op
�
��1NT

�
.

Noting 
F̂0F0

T

!�1
F̂0 �

�
F00F0

T

��1
F00 =

 
F̂0F0

T

!�1
F̂0 �

 
F̂0F0

T

!�1 
F̂0F0

T

!�
F00F0

T

��1
F00

=

 
F̂0F0

T

!�1
F̂0MF0

b�133 =
1p
NT

NX
i=1

�0i
1

T

�
�0
N

��1 24 F̂0F0
T

!�1
F̂0 �

�
F00F0

T

��1
F00

35 ��EEMF̂�f";i

=
1p
NT

NX
i=1

�0i
1

T

�
�0
N

��1 F̂0F0
T

!�1
F̂0MF0
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+
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Noting
1p
T

MF0F̂
 = Op

�
��1NT

�
as 1p

T
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T
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�
F̂
 = 1p

T

�PF0 �PF̂� F̂ � PF0 �PF̂ F̂p
T

 = Op
�
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�
,
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T
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r
N

T

1

N
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r
N

T
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N
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T
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T
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�
��2NT

�
.

so b11 = op (1), b13 = op (1), and
b13 = op (1) . (C.15)

This suggest the transformation of regressors:

~X�
i =MF̂X

�
i �MF̂ÊjĜ

00
j

�
�0
N

��1
�̂0i .

Proof of Lemma B.13.

1p
NT

NX
i=1

V0
iMF0�f";i +

1p
NT

NX
i=1

V0
i

�
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=
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+
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Thus, b2111 = Op
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�
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�
. Noting Q̂ =
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=
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+

r
1

N

1

N

NX
i=1

NX
j=1

V0
iEj
T

G00
j

�
�0
N

��1�F00F0
T

��1
F00"ip
T

=
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b2113 =
1p
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= b21131 + b21132

Recalling �EE = N�1Pk+1
`=1
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i=1 e`ie

0
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i=1E
0
iEi and ��EE = N�1PN
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0
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+
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kb211311k �

p
N

T

1

N

NX
i=1

V0
i
��EEF

0

p
T

RQ̂
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�
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�
.
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�
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�
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�
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o
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b232 = op (1).
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Using the above results, �̂NT � �
y
NT !p 0 under slope heterogeneity and homogeneity.
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Appendix D: Monte Carlo Supplements

Bias corrected estimator of Bai (2009) and our proposed co-
variance estimator
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The HAC variance estimator of �̂Bai is given by
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We have chosen S = bT 1=4c.
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