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Abstract

In this paper, we propose a robust approach against heteroskedasticity, error
serial correlation and slope heterogeneity for large linear panel data models. First,
we establish the asymptotic validity of the Wald test based on the widely used
panel heteroskedasticity and autocorrelation consistent (HAC) variance estimator
of the pooled estimator under random coeflicient models. Then, we show that a
similar result holds with the proposed bias-corrected principal component-based es-
timators for models with unobserved interactive effects. Our new theoretical result
justifies the use of the same slope estimator and the variance estimator, both for
slope homogeneous and heterogeneous models. This robust approach can signifi-
cantly reduce the model selection uncertainty for applied researchers. In addition,
we propose a novel test for the correlation and dependence of the random coefficient
with covariates. The test is of great importance, since the widely used estimators
and/or its variance estimators can become inconsistent when the variation of coef-
ficients depends on covariates, in general. The finite sample evidence supports the
usefulness and reliability of our approach.
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1 Introduction

The recently increasing availability of panel data sets in which both cross-section dimen-
sion N and times series dimension 7' are large has produced opportunities to develop
statistical methods to exploit richer information, while presenting associated technical
challenges. In particular, controlling cross-sectional dependence, heterogeneity in para-
meters and distributions, and serial dependence has been a main focus of the literature.

The cerebrated fixed effects model permits intercept to be cross-sectionally heteroge-
neous whilst slope coefficients are constant across cross-section units and time. Hansen
(2007) has shown that, under mild conditions, the heteroskedasticity and autocorrela-
tion consistent (HAC) variance estimator of Arellano (1987), which is originally proposed
for a short panel fixed effects estimator, will be asymptotically valid for large panels.
Greenaway-McGrevy et al. (2012) propose to use the HAC estimator for the pooled
principal component based (PC) estimator for the model with unobserved interactive
effects.

The random-coefficient model, in which the slope coefficients are allowed to vary with
the cross-sectional units, has attracted great attention in recent years.! It can control
differences in behaviour across cross-section units which are not captured by the control
variables. For such models, the estimate of interest is often the population average of
slope coefficients. Interestingly, if the cross-sectional variation of slopes in the random
coefficient model is independent of covariates, the fixed effects estimator is consistent
to the population average of slope coefficients. A non-parametric variance-covariance
estimator for such pooled estimators has been implicitly proposed in Pesaran (2006),
in which the population variation of slopes is replaced by its sample counterpart — the
variation of the estimates of cross-section specific slopes. The evidence has shown that
the variance estimator behaves very well in finite samples.

There are some issues about this variance estimator for our robust approach. First,
for the choice between the HAC and this variance estimator, the practitioner would
like to know if there is slope heterogeneity or not. Second, the computation of the
variance estimator requires a calculation of the individual slope estimates, and this can
be costly when N and T are very large. Third, some estimation methods, such as Bai’s
(2009) estimator, do not permit slope heterogeneity models, and making use of statistics
involving individual slope estimates might not be asymptotically justified.

In this paper, we propose a robust approach against heteroskedasticy, error serial
correlation and slope heterogeneity for large linear panel data models. First, we establish
the asymptotic validity of the Wald test based on the panel HAC variance estimator for
the pooled estimator under random coefficient models. Then, we show that a similar
result holds with the bias-corrected PC estimators for models with interactive effects,
which extend the results in Westerlund and Urbain (2015) and Reese and Westerlund
(2018). Our new theoretical result justifies the use of the same slope estimator and the
variance estimator, both for slope homogeneous and heterogeneous models. This robust
approach is expected to substantially reduce the model selection uncertainty for applied
researchers.

Another main contribution of this paper is a novel test for the correlation and de-
pendency of the random coefficient on covariates. We extend the test proposed by

ISee Hsiao and Pesaran (2008) for an excellent survey of random coefficient panel data models.



Wooledridge (2010) by robustifying against (uncorrelated) random coefficients, proposing
a Lagrange Multiplier test along with a Wald test, and developing them for the models
with unobservable interactive effects. The test is of great importance, since the widely
used estimators and/or its variance estimators can become inconsistent when the varia-
tion of coefficients is correlated or dependent with covariates, in general.

We have examined the finite sample performance of the estimators, tests of linear
restrictions, and the LM tests for correlated random coefficients. The evidence illustrates
the usefulness of our approach. In particular, for the estimation of the models with
unobserved interactive effects, the size of the proposed robust Wald test using the bias-
corrected PC estimators and Bai’s (2009) estimator is very close to the nominal level,
under both slope homogeneity and slope heterogeneity, while maintaining satisfactory
power. Also, the LM tests for correlated random coefficients have correct size under
both slope homogeneity and slope heterogeneity due to pure random coefficients, while
exhibiting high power when the random coefficients depend on covariates.

The paper is organised as follows. The robust Wald test is proposed for standard linear
panel data models in Section 2, then for the models with unobserved interactive effects
in Section 3. A test for correlation of slopes with covariates is proposed in Section 4. The
finite sample performance of the proposed bias-corrected estimator, the associated Wald
test and the correlation test is investigated using the Monte Carlo method in Section 5.
Section 6 contains some concluding remarks. Proofs of the main results are contained in
Appendix, and the proofs of associated Lemmas and full experimental results are found
in Online Appendices.

Notations: [|A| = [tr (A’A)Y2, j (A) (4, (A)) is the maximum (minimum)
eigenvalue of square matrix A, “—,” denotes convergence in probability, “—4” denotes
convergence in distribution, A is an upper bound which is a finite positive constant, A,
is an lower bound which is a finite positive constant strictly above zero, N denotes the
number of cross-section units and 7' denotes the number of time-series observations of
panel data, d y7 = min {\/N, \/T}, (N,T) — oo denotes N and T go to infinity jointly,

My =1—A(A’A)"" A/, where A has full column rank.

2 Benchmark Panel Data Model

Consider a panel data model with cross-sectionally heterogeneous slopes:
Ui = X3 B + N + e, (1)

i=1,2,..,N, t =12 ..T, x} is a k X 1 vector of observed covariates, f? is a r x 1
vector of time-variant but cross-sectionally invariant regressor, A} is a r x 1 factor loading
vector, which is time-invariant but cross-sectionally variant, and ¢;; is disturbances. The
k x 1 slope coefficients are generated as

B; =B +mn,, (2)

where 1, is independently distributed random vector across i, with E (n;) = 0. When
1, = 0 for all 4, it reduces to the homogeneous slope model. Throughout the paper, our



interest is in the estimation and testing of the linear restrictions of 3. Now stuck the T
equations of (1) to form
yi =X;B; + FNl + e, (3)

where y} = (yflvy;KQa“wy;T)/v X = (X:17X;27'“7X;'KT>/7 FO = (f?,fg,...,f%)/, and g; =
(81'1, Ei2y vny 5iT),‘

In this section, we assume F? is observed.? Consider the projection matrix Mgo =
I— F° (FYF%) ' F”. By Frisch-Waugh-Lovell theorem, denoting y; = Myoy? and X; =
MpoX?, the model of interest can be equivalently written as®

Vi = XiB; + €fei, €fei = FO)\? + €;. (4)

Remark 1 For the discussion below, we restrict f° to be time varying and XY to be cross-
sectionally varying, without loss of generality. When 0 = f* or A = X°, interactive ef-
fects will reduce to o; = fYA) and 6, = £ A°, which are additive individual effects and time
effects, respectively. For notational simplicity, we do not include these effects on top of
interactive effects, but all the discussion below will hold by replacing {y,,x} } with trans-
formed variables {i;, %31}, where i, = (v — 57 — 95 +§°) and &, = (x}, — %} — %; + %)
with gt = TS ys, g5 = NOPSSN s, 55 = NOUSSN g5, and X5, X and X* are
defined analogously.

We can rewrite the equation (4) as?

yi=XiB+w, u; =Xin,; + € ;. (5)
The pooled estimator of 3 is given by

N
B= (Z X;Xz) > Xy (6)
=1 =1

To analyse the asymptotic properties of B, we extend the assumptions in Hansen
(2007) to accommodate random coefficient models as follows:

Assumption Al: {x},,¢;} is independent across i = 1,2, ..., N for all ¢, a strong mixing
sequence in ¢t with o of size —3s/(s—4) for s > 4, with E |e;|*™ < A < 00, E |z <
A < oo forallit,h=1,2,....k and F (g;|X;) = 0; || B]| < A; {m,} is independent across
i=1,2,...,N and of {&;} for all i, E |n;,]"™ < A < 00 and E (9,|X;) = 0.
Assumption A2: (Identification): A,y = T7'E (X!X;) is uniformly positive definite
and A =limy 7o Any, With Ayy = N -1 Zf\;l A,;r, is fixed and positive definite.
Assumption A3: (Variance Matrix 1): Byy = T71E (XX, X;) and X..; = E (g;€}|X;)
are uniformly positive definite and B =limy .o Byr, with Byy = N1 ZZ]\LI Bir, is
fixed and positive definite.

2In the next section, we consider the case in which FY is not observable.

30f course, as X;FO)\E) = X;"MFoFO)\? = 0, we could replace €. ; in (4) by ;. We prefer €. ; here
as it will ease the discussions in the next section.

4(Clearly, in this section, €. ; in (5) can be replaced by &;.



Assumption A4: (Variance Matrix 2): C;r = T72F (X/X;9,,,X/X;) and Q,,; =
E (n;m}|X;) are uniformly positive definite and C = limy 7o Cnr, with Cyr = N~* Zfil Cir,
is fixed and positive definite.

Assumption A1 allows serial dependence in {x,, £;;} but assumes independence across
1. The random coefficient is independent across i. Both the idiosyncratic errors and
random coefficient are assumed to be uncorrelated with x;. Assumption A2 is a fairly
standard identification condition. Assumption A3 allows conditional heteroskedasticity
across ¢ and t. Assumption A4 permits a conditionally heteroskedastic random coefficient
process.

For later use, let us define the sample counterpart of Ay7 and A;r defined in As-
sumption A2:

N
Ayt =N A, Ap = T7'X]X,. (7)
i=1
Substituting (4) into (6) gives

N
B -8 = (Z X;Xz> ZX;U-Z (8)
) =1 1 N =1 1 N )

Let us consider the asymptotic properties of the first term of the second equality in
(8). We state the following theorem, which is proven by Hansen (2007):

Theorem 1 Consider model (5). Under Assumptions A1-A3, as (N,T) — oo,
| X
Ayi—— ) Xle;—4 N (0,A7'BA™! 9
NT\/W ZZI: i d ( ) ( )

where Any, A, and B are defined in (7), Assumptions A2 and A3, respectively.

This is a very useful result, since, in the absence of slope heterogeneity n,, even
when the dimension of ¥..; = F (g;e}|X;) is unbounded as 7" — oo (but pi,. (Zeei) <
A with serially correlated errors), the theorem tells us that the use of the celebrated
heteroskedasticity and autocorrelation consistent (HAC) variance estimator of Arellano
(1987) for short panel models will be asymptotically justified for large panels.

The next theorem states the asymptotic properties of the first term of the second
equality in (8).

Theorem 2 Consider model (5). Under Assumptions A1, A2 and A/, as (N,T) — oo,
| X
A_l —— AZTTIz —d N 0, A_1CA_1 (10)
oD ( )

where Ayt and Ay are defined in (7), A and C are defined in Assumptions A2 and A4,
respectively.



As discussed in Pesaran (2006) and Reese and Westerlund (2018), the pooled estimator
B is consistent to the centred value B under the random coefficient assumption, and the
variation of B due to the dispersion of slope coefficients dominates the variation due to
the linear function of idiosyncratic errors. The following corollary of these two theorems
clarify this point:

Corollary 1 Consider model (5). Under Assumptions A1-A4, as (N,T) — oo,
VN (B - 5) s N (0,A'CA™Y) (11)
whilst under slope homogeneity, n;, = 0 for all i,
VNT (B - [3) 4N (0,A'BAY), (12)

where B3 is defined by (6), A, B and C are defined in Assumptions A2, A3 and A4,

respectively.

In view of this, Pesaran (2006) proposes to estimate the variance of B under random
coefficient assumption by

Vr (5) = N'ALCrrARL, (13)

where N
Cyr=N"" Z Air (Bl - E) (Bz - E>/ Air, (14)

=1

Bi = (X;Xi)fl Xly; and B=N-! Zf\il Bl The idea is to approximate the unobserved
slope heterogeneity m,; by its sample counterparts, BZ — B The empirical evidence has
proven that this estimator works well in finite samples.® There are some issues with this
variance estimator for our robust approach. First, because it is different from the HAC
variance estimator assuming slope homogeneity, at the choice the practitioner would like
to know if there is slope heterogeneity or not. Second, the computation of the variance
estimator requires a calculation of the individual slope estimates, and this can be costly
when N and T are large. Third, some estimation methods, such as Bai’s (2009) esti-
mator, do not permit slope heterogeneity models and computation of statistics involving
individual slope estimates might not be justified. In practice we do not necessarily have
a priori information on whether slopes are homogeneous or heterogeneous, which may
make the choice of the variance estimator subject to uncertainty.5

We propose a simple robust approach against such a choice. Based on the above
discussion, under slope heterogeneity we have

N N .
1 1 .
NT? Z E(Xuwu,X;) = NTE Z E (XX, X;X;) + NTE Z E (X!S..:X;)
= =1 i=1
L
- NT2 Z B (XX XiX3) + O (T71) (15)
i=1

5See experimental results in Pesaran (2006), for example.
6Pesaran and Yamagata (2008) and Su and Chen (2013), for example, propose slope homogeneity
tests, which can guide such a choice.



This suggests a new alternative estimator of C:

N PN
-~ -~ -~ x’.u~u’.X-
—1 7 T 1
Cnyr=N E Cir, Cir = — T

i=1

(16)

where 0; = y; — XZB
Under homogeneous slopes (n; = 0 for all i), 2= S8 | B (Xwu/X;) = 1= S0 | B (X/8..X,)
as u; = g;, hence, following Hansen (2007), we propose the following estimator of B:

155 .13/

N
Byr =N} Z Bir, Bir = T

i=1

(17)

We summarise the asymptotic properties of the estimators Cyr and Byr in the following
proposition:”

Proposition 1 Consider the model (4) and the pooled estimator B, which is defined by
(6). Under Assumptions A1-A4, under slope heterogeneity CNT—>pC, whilst under slope
homogeneity (m;, = 0 for all 7) Byr —, B, as (N,T) — oo, where 4; =y; — XiB, Cnr
and Byt are defined by (16) and (17), and C and B are defined in Assumptions A3 and
A4.

This proposition implies that the use of a widely employed HAC variance estimator
for short panel data models,

) X N “lrn N -1
Var (B) = (; szl-) [g Xzﬁiﬁgxi] <§ X;Xi) , (18)

is asymptotically justified for large panel data models under both slope homogeneity and
slope heterogeneity.

When there is strong evidence that coefficients are heterogeneous, an alternative
pooled estimator, such as a mean group estimator, may be preferred. In this paper
we are more in line with the robust approach, which is widely employed in the literature
- avoiding uncertainty in specifying and estimating ‘nuisance’ parameters for potential
efficiency gain. As will be discussed in the next section, this approach turns out to be
useful for some popular estimation methods, in particular, estimation of linear panel data
models with unobserved interactive effects.

We close this section by presenting a result for the Wald test based on the proposed
robust variance estimator of B

Theorem 3 Consider testing q linearly independent restrictions of 3, Hy : RB=r
against Hy : RB # r, where R is a q X k fixed matriz of full row rank. Consider the
model (4) and the Wald test statistic

o= (R0-0) (R (B)]%) (5. o

where B and V nr (B) are defined by (6) and (18), respectively. Suppose that Assump-

tions A1-A4 hold. Then, under the Hy, for both heterogenous slopes and homogeneous
slopes (m; = 0 for all i), Wy —q4 X3, as (N, T) — oo.

"The proof of the consistency of By is given by Hansen (2007).

6



3 Models with Unobserved Interactive Effects

When F? is unobserved, it should be replaced with a suitable estimator, and in this case
a further careful analysis is required. In particular, using estimated variables will result
in some asymptotic biases in the pooled estimator, as discussed in Pesaran (2006), Bai
(2009) and Westerlund and Urbain (2015), among others. Here we follow the discussion
in Westerlund and Urbain (2015) and Reese and Westerlund (2018). Our theoretical
contributions to this strand of literature are: (i) establishing the consistency of a bias-
corrected estimator both under homogeneous and heterogeneous slopes;® (ii) showing
the limit distribution of the Wald test statistic based on the HAC variance estimator
both under homogeneous and heterogeneous slopes,’ and; (iii) proposing a new test for
correlation and dependence of the random coefficients with the regressors (in the next
section).

In this section we assume that X! has a linear factor structure,'’

X! = FTY 4+ V,. (20)
By combining (4) and (20), we have a system of m = k + 1 equations:
Z; = F'G? + E; (21)

where Z; = (y;,X}), G? = (TVB,+X],TY), E; = (V,;8; + €;, V;). For later usage, define

N
Th=N"> G!GY. (22)

=1

In line with Bai (2009) and Norkute et al (2018), we replace Assumptions A1-A4 with
the followings:

Assumption B1 (idiosyncratic error in y): (i) ¢;; is independently distributed across

i; (ii) E (e4) = 0and F ]eit|8+6 <A < oo (i) T71 Zle Zthl E |€is€it|1+5 < A < oo (iv)
4
E|IN-1/2 Zf\il €is€5t — E'(gisgit)]) < A < oo for every t and s;

(V) N T2y 3 ey oy ey 00V (Eisivs irgin)| < A < 005 (vi) By =
E (g;€}) is positive definite and its largest eigenvalue is bounded, uniformly every i and

T.

Assumption B2 (idiosyncratic error in x): (i) vy is independently distributed across

i and group-wise independent from e;; (ii) E (vg) = 0 and E |vg[5™° < A < o0; (iii)
4
Ty S Elvusvea] ™™ < A < oc; (iv) E ‘N_l/z S eisve — B (veisver)]| <

8Westerlund and Urbain (2015; supplement) only prove the consistency of the bias-corrected estimator
under the slope homogeneity. Pesaran (2006) and Reese and Westerlund (2015) provide a proof of
consistency of the non-bias-corrected pooled estimator.

9Theorem 2 in Reese and Westerlund (2015) shows the limit distribution of the pooled estimator
allowing weak factors, but does not discuss estimation of asymptotic variance and associated Wald test,
nor bias-correction.

10Bai (2009) does not impose such a structure and this generality introduces two extra bias terms. In
the Monte Carlo section, we apply our approach to Bai’s non-linear estimator.
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A < oo forevery £, t and s; (v) N~1T2 ZZN:1 ZtT:1 Zstl Zle 25:1 |coV (VpisVeit, VeirVeinw )| <
A < o0; (vi) the largest eigenvalue of E (vy;vy;) is bounded uniformly for every ¢, i and

T.

Assumption B3 (factor components): (i) E|[f?|* < A < oo and T~ 37| fofY —
¥, as T — oo which is a fixed positive definite matrix, f) is group-wise independent
from vi; and 4; (i) denoting H? = [T, AY]", E(H?) = 0, HY is independent across

0 0
i, E|HO|I' < A < 0o and N'S°F HYH? —, Qy = [ Q(l;,r “ra }, which is a fixed
wra Wi

positive definite matrix, HY is group-wise independent from v;; and e;; (iii) Y% —, T°
as N — oo, which is a fixed positive definite matrix.

Assumption B4 (random coefficient): 7, is independent across i, F (m;) = O,
E(nm,) = Q,,; which is a fixed positive definite matrix uniformly for every i, E ||n,||* <
A < oo and ||B]* < A < o0, and n, is group-wise independent of e, v;; and HY.

Assumption B5 (identification and Variance Matrices): A = TT'E(VIV)),
B, = =T7'E(Vieie;V;) and CzT =T 2E(V/Vinn.ViV, ) are uniformly positive deﬁmte

T —1 . -1 -1
and A = th,T—>oo Zz 1 zT; - th,T—>oo Zz 1 BZT and C - th T—>oo Zz 1 CzT

are fixed and positive definite.

Idiosyncratic errors €; and v are independent groups of each other, independent
over i, but allowed to be serially correlated as structured by Assumptions B1 and B2.
Assumption B3 implies there are r factors, and the factor loadings I'Y and A have
mean zero without loss of generality and are allowed to be correlated with each other.
Assumption B4 implies that the random coefficients can be heteroskedastic but should
be independent of all other cross-section varying variables. Assumption B5 corresponds
to Assumptions A2-A4 in Section 2.

For any invertible r x r matrix R, define

F=FR, G, =R 'G!, (23)
such that T7'F'F =1, and zlj\il G;G/ is diagonal. Then, My = Mpo, so that MgF° =
MpgoF = 0. The solutions to the minimisation problem,

m N T

1
argFC?glC NT ZZ Zite — fgzé )

=1 i=1 t=1
N

subjectto T7'F'F = I,, and Z G, G, being diagonal, (24)
i—1

with 2%, being (t, £)th element of Z*, are given by F, which is v/T times the eigenvectors
correspondlng to the r largest elgenvalues of the T x T matrix N~! Z L Z;ZY, and
G; = F'Z:/T, thus, E; = Mz Z:.1!

n the standard literature, factor loadings and the idiosyncratic errors in factor models are assumed
to be independent (e.g. Bai and Ng, 2002). Under slope heterogeneity, due to the presence of 3, in g;1
and e;1, they are uncorrelated but not independent. As is shown in Lemma B.3, this does not change the
Convergence rate of the factor estimators. For example, under both slope heterogeneity and homogeneity,

o 0y (55




Defining the transformed variables

the pooled estimator is obtained as

-~ N ~ ~ 71 N ~
Bpc = <Z X;Xz) > Xy (26)

i=1

Noting that X!§;= ng;“ and w; = X!, + €., we have
N -1 N
Bpc—B = (Z X;Xz> Z Xiu;
i=1 i=1
N 1w N
= (Z XQXi> [Z X MpXim, + Y X Mgesei| - (27)
i=1

i=1 i=1

As discussed in Bai (2009) and Westerlund and Urbain (2015), there will be asymp-
totic bias under homogeneous slopes when N/T — ¢ € (0, A]. Greenaway-McGrevy et al
(2012) consider the same model with serially correlated errors, but do not derive asymp-
totic bias. We extend the results of Westerlund and Urbain, proposing a bias-correction
which is asymptotically justified with both homogeneous slopes and heterogeneous slopes.

Proposition 2 Consider model (5). Under Assumptions B1-B5, as (N,T) — oo and
N/T — c e (0,A],

N N
1 . 1 T
UNT 2 XM = e 2 Vient b +or (1) )
=1 =1

s
I
—

1 — al .
o=y T bt S (3 et ) (x3)
N
D DG (1) A (29)
=1

gY; is the first column vector of G,
02, =E (T 'ele;), Qpp; = E (TT'EE;), Qup; = E (T'VIE,) . (30)

Observe that, under slope heterogeneity, GY and E; are functions of 3,. This is the
reason why the expression of the bias is different from that in Westerlund and Urbain

(2015).12 Based on Proposition 2, we propose to use the following bias-corrected estima-

tor:
1

Bre = Bro — Néz\m (31)

121t is easily seen that, under slope homogeneity, the bias-term & v and that of Westerlund and Urbain
(2015, Theorem 1) are asymptotically the same.



where

j=1
1 N ! T
-V > Qv GYYN
=1
with
. X N . PZr . By
I = TZ,TN:N_lszGN P Tl7gli_ 72’2 (34)
=1
p Mplipe, - BE
612 = PCV’#FM?QEE,Z': % , E; = M Z; (35)
< Fripo; V'E;
A= ?C’,QVE,Z-: 2V = MpX;, (36)

Upc, =y, — X;"B pc- This estimator is different from those proposed by Westerlund and

Urbain (2015), to allow slope heterogeneity. Note that the probability limit of estimators

with superscript “”, 61; and 5\1, will be different for the slope heterogeneous case, because

they are functions of u; = X1, + €s.;. The following proposition shows that €yr
is consistent to the bias given by (29) under slope homogeneity, and the limit of &y
remains bounded under slope heterogeneity.

Proposition 3 Under Assumptions B1-B5, as (N,T) — oo and N/T — ¢ € (0, A],

éNT —C—yp 0 (37)

~1
where ¢ = (ﬁ Zf\il V;Vi> R,T,

1 — .
SJ]r\TT TN ZF? (T?\/) ' g?iaii

i=1

N N
T (3 @) () ot )
j=1

i=1

N
D DG (X)W + T (39)

i=1

with o
0-7241' = ng‘ +1ir <AiTan,i) . (39)
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Remark 4 Under slope homogeneity, n, = 0 for all i, it is easily seen that ENT — &N =
0, (1), as Exp — &y = 0, (1) and €\, — Eny = 0, (1), thus, the limiting distribution

of VNT (BPC — ﬁ) 15 centred at zero. Under slope heterogeneity, ENT — ﬂ\,T = 0, (1),

2 -
where B HER,TH is bounded, hence, the limiting distribution of VN <,8 PC — B) is centred
at zero.

Now we are ready to state the asymptotic normality result of the bias corrected
estimator under slope homogeneity:

Theorem 4 Under Assumptions B1-B5, under homogeneous slopes (n, = 0 for all i),
as (N,T) — oo and N/T — c € (0, A],

VNT (ch - 5) N (0, A*BA’I) . (40)
where A and B are defined in Assumption B5.

Next, consider the case of slope heterogeneity. Noting that u; = X}'n, + €5.;, by
Proposition 2 and Lemma B.11, we have

N N

N
1 1 X¥MpoX* 1
— E X'Mpu; = E ¢ tn, + E X' Mgé€se; + 0, (1)
VNT & VN “ T VNT &

_ fzv' i+ o (1) (41)

Together with Proposition 3, the asymptotic normality of the bias-corrected estimator
under slope heterogeneity is established in the following theorem:

Theorem 5 Under Assumptions B1-B5, as (N,T) — oo and N/T — ¢ € (0, 4],
VN (BPC . ﬂ) N (0, A*ICA*1> (42)
where A and C are defined in Assumption B5.

We propose the heteroskedasticity, autocorrelation and slope heterogeneity robust
variance estimator for the model with unobserved interactive effects, which is given by
-1

VPC = (i X;X,) <ZX l,l.pclupcvZ > <Z X/ ) N (43)

where Gpc,; = y; — XZ‘B pc- The asymptotic justification of the use of this variance
estimator is established in the following theorem.!3

-1

BReplacing @, in (43) with ii; = y* — X8pc will not alter the results.
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Theorem 6 Consider testing q linearly independent restrictions of B3, Hy : RB=r
against Hy : RB # r, where R is a q X k fixed matrixz of full row rank. Consider the
model (4) and the Wald statistic

Wpe = <’RBPC—r)/ (RVPCR’> B (RBPC—r> , (44)

where 3 po and Ve are defined by (81) and (43), respectively. Suppose that Assumptions
B1-B5 hold. Then, under the Hy, for both heterogenous slopes and homogeneous slopes
(m; =0 for alli), Wpe —a X2, as (N,T) — oo, as T/N — c € (0,A].

Remark 7 Our approach is also robust against mixtures of homogeneous and heteroge-
neous slopes.'* To see this, consider the case in which the k slopes are partitioned in such
a way that k = ky + ko, without loss of generality, where B; = (8, 85), B = By + My
E(ny;) = 0 and Var (ny;) = Qu;, with 8 = (8,,8,). Define a scaling diagonal matriz of

order k as
vV NI, 0
D= ' 4
{ 0 VNTI, } ’ (45)
so that

D(3-p)(B-B) D= (DAyD") (D 3 X;EQX ) (D'ARLD).  (46)

It is easily seen that DA;\,lTD_l = AL Recalling that w; = Xym, + €5, n; = (7,0
and E (n,e;) = 0, the probability limit of the middle term is

X’uqu Cy O
le%IllooZD T2N? _( 0 Csxp )’ 47)
where

N XX X X1

: -1 41 41
Cu = pN}%IEOON i1< T 1M1 T )7 (48)

N

Cp = p lim N1y Z2EER2% (49)

N, T—o0 - T
i=1
Therefore, the asymptotic normality of D <B — ,3), the consistency of the HAC' estimator

and the asymptotic validity of Wald test hold with mixtures of homogeneous and hetero-
geneous slopes.

14We do not consider cross-sectional and/or time-series structural breaks in [3; which is beyond the
scope of this paper.
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4 Wald and LM tests for Correlation of Random Co-
efficients with Covariates

As discussed earlier, the proposed robust approach works for random coefficients. If it
is fixed cross-sectionlly varying coefficients or correlated random coefficients with X7,
the approach may not work. To see this, consider the model (5) but without factor

. -1
components. We have 8 — 8 = (Zf\; X;”XZ‘) SN X (X, + e I E (]| X2) # 0,

E[X¥X*E (n,|X?)] is not necessarily zero, and in general it renders 3 biased.

In view of this, we propose novel tests for correlation or dependence of random coef-
ficients with covariates, substantially extending the test proposed by Wooledridge (2010;
Ch11.7.4). The main distinctions of our tests from Wooledridge’s are: (i) our tests are
robust against (uncorrelated) random coefficients;!? (ii) we propose a Lagrange Multiplier
test along with a Wald test; (iii) ours permit E (n,|X}) to be a non-linear function of X}.

More generally, suppose that the random part of the coefficients is modeled as

n; =h(X}) — py +¢; (50)

with E [h(X})] = py, and E (¢;|X}) = 0, where various forms of function of X} can be
entertained. For the testing purpose, we consider h (X}) = 5,4 with

=, — (>—<§1>; x\: >—<§g>) , (51)

7

/
)‘(Z(g) = (i’(f),j:g), ...,:Z'E?) , :EZ(Z) = 7' 29,10 Note that xy, is the (¢,h) clement
of the defactored regressor, X; = MpX;.!'" Initially assuming that F° is observable,
consider an augmented regression

yi=Wi0 +¢, (52)
where W; = [X,, L;] with

[

L =X, (8 -8, (53)

—~/ /
E=N"'2N E,60=(8,8),and the associated unrestricted estimator § = <,8 , 5) =

(W!W,;)"' W'y,;. Under the null hypothesis of Hy : § = 0 and Assumptions A1-A4, for
homogeneous or heterogeneous slopes, Theorem 3 establishes that
Al _~ -~
W =8 V58 =42 (54)

g

as (N,T) — oo, where Vs is defined as the bottom right partition of Var (9) =

. ) . —1 .
(Yo ) (s wow) (s wieis) (2, wiw) -
Vsz Vs

15Wooldridge (2010;p.386) points out that the drawback of his test is that it cannot detect heterogeneity
in B, that is uncorrelated with X;. In our robustified test, this becomes the desirable property.

16 Cross product terms, such as 7! Z?:l foZfoj) for h # j, could be included in Z;.

"For the model with fixed effects, the test variable &; should not be based on within-transformed X,

otherwise )‘cz(-l) = 0 for all s.
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For the estimated factor case, the test statistic is computed based on (yi,Xi),

~ = !
W, = [X,,L;] with L; = Xj (EZ — E), E,; based on X, and Opc = (ﬁpc,épc) =
aa N1 .
(W;WZ> W.§y,, which is the bias-corrected PC estimator discussed in Section 3.

We also consider the Lagrange Multiplier (LM) or Score test of the correlated random
coefficient. One of the advantages of employing the LM test is that, unlike the Wald test,
computation of the LM test only requires the estimation results of the null model. The
LM test statistic with observable factors is defined as

N "/ N -1/ N
LMY, = (Z L;ﬁi> (Z KgﬁiﬁiKi> (Z L;ﬁi> (55)
=1 =1

=1

- - -1
where @; = y; — X; with B = (XX, XiX;) 22X, Xiy; and

N N -1
K, =L~ (Z L;Xi) (Z XX) X;. (56)
=1 i=1

For the PC estimator, the LM test statistic is given by

N "/ N -1 /N
LM, = (Z i;ﬁPCﬂ) (Z K;ﬁpqiﬁ;aif{i> (Z E;ﬁpcﬁ-> (57)
i=1 i=1

=1

- N ~ ~\—1 N ~
where lipc; = y; — XiBpc with Bpc= (Zf\; X;Xz> Zf\; Xéf’i, Upc; = Yi — XiBpc

with B pc being the bias corrected estimator, and

!/ N l -
k-1l (S ) (s s o)
=1 =1

By the standard discussion of asymptotic equivalence of the LM and Wald tests, it is
readily established that under the null hypothesis LMcrc —q Xf, as (NV,T) — oo, and
LMcrepe —d X; as (N,T) — oo such that N/T — ¢ € (0, A]. It may be sufficient to
consider g = 2 to approximate the function g (X) for our testing purpose.

When the test is rejected in favour of alternatives, it is preferable to employ estimators
which are consistent when variation of 3, is dependent on covariates. For the estimation
of the models with observed factors, the mean group estimator proposed by Chamberlain
(1982) and Pesaran and Smith (1995) would be possible choices.

5 Monte Carlo Experiments

In this section we investigate the finite sample performance of our robust approach against
slope heterogeneity, error serial correlation and heteroskedasticity. We consider the per-
formance of the following estimators: (two-way) fixed effects estimator By, which is the
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pooled ordinary least square (OLS) estimator of within-transformed and cross-sectionally
demeaned variables; the bias-non-corrected PC estimator Bpe (defined by (26)) and its
bias-corrected version Bp (defined by (31)); Bai’s (2009) iterative PC estimator, both
bias-non-corrected /3 Ba; and the bias-corrected estimator Bp,,.'® Bai’s estimator does
not require the linear factor structure in X! unlike the PC estimator, and its algorithm
estimates 3 and F iteratively from the residual u;, given the initial value of 3. This
generality results in additional bias terms. In all the experiments, we assume that the
number of factors r is known.’

In particular, we examine bias and root mean square errors (RMSE) of the estimators,
and empirical size and power of the (Wald) test for linear restrictions of slope coefficients,
as well as the performance of the LM test for correlation and dependence of slope coeffi-
cients with covariates.?”

5.1 Design

Consider the following data generating process:
k r
U= B+ > fudie+ ocugn, i =12, Nit=12_.T (59)
h=1 =1

where )\ig ~ ZZdN(O, ].), ftg = ,Offt—l,2+w /1 — p?:Vtg, Vg ~ lZdN(O, 1) with fg}g ~ 1tdN (0, 1)
for ¢ =1,..,7 €4 = pciu—1+ /1 — p2&s, &y ~ 1idN(0,1) with g;9 ~ iidN (0,1), and

Ot = (Keikies)'?, ey~ iidU (0.5,1.5) and ke, = 0.5 +t/T. (60)

The regressors x;,, h = 1,2, .., k, are generated as
Tih = Z JeeVing + 90y itVitn, (61)
=1

where vy, = pyVi—1,n + /1 — p2win. We consider two types of distribution for w;, :
(i) @ien = (@i — €) /V2¢, @y, ~ didx? and vig s = (Vig,, — ) /V2¢, Vi, ~ didy? with
¢ =6, and (ii) @y, ~ 19dN(0,1) with v, ~ #4dN(0,1). The factor loadings in x},, are
generated as
1/2

Yine = 0.7Aie + (1 = 0.7%) "~ i, (62)
Oipe ~ 1WdN(0,1) for h = 1,..,k and £ = 1,..,r, so that they are correlated with factor
loadings in y};.

Ovit = (Kyikiva)?, Kyq ~ iidU (0.5,1.5) and Ky, = 0.5 +t/T, (63)

18See Appendix D for the definition of 3p,; and Bp,;. We take the error-serial correlation into our
consideration for the bias correction.

9The Pesaran’s (2006) CCE estimator is not considered in our experiments, since, to our knowledge,
feasible analytical bias correction for the pooled estimator under slope homogeneity is not available.

20The finite sample performance of the Wald version of the correlated random effects test is much
worse than the LM test version. Therefore, its summary results are not reported.
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and ¢? = {2,3}. Finally we have

Bin = B, + oy (\/ L —p2Min + meih> ; (64)

Ny, ~ 1WdN (0,1) for h =1, .., k, and

1 g Zihyp — Zh D
Wip = — —_— (65)
\/a pz; Szh,p

where z,, = N7* Zf\il Zihpy Sop, = (N — 1)_1 ZZJ\LI (Zinp — Zh,p)g. We consider z;,, =

zh,p
T Zthl (@5)"-

We set k = 2 (two regressors) for all the experiments. We consider two sets of design:
the model without factors (r = 0) to examine the fixed effects estimator, and the model
with two factors (r = 2) to examine the PC and Bai’s estimators. As recommended in
Remark 1, before the estimation the data is all within transformed and cross-sectionally
demeaned, to make the results invariant to the inclusion of (additive) individual effects
and time effects.

In view of the sensitiveness of the finite sample behaviour of the PC estimator to the
parameter values (3;, 35),2! we consider three combinations of (8;, 35): (1,3), (0,0) and
(—1,-3).2

To look into the bias and RMSE of the estimators, and the size and power of the test
of linear restrictions for the estimators, we consider the following sets of designs:

(A) homogeneous slopes (o, = 0 in (64));

(B) heterogeneous slopes (0, = 0.2 in (64)).

In order to see the effects of dependence of 3, with the regressors upon the bias of the
estimators and the associated tests, we set p,,, = 0.5 in (64). To investigate the effects of
the symmetry of the distribution upon the performance of the estimators and the tests,
we consider two types of distribution of disturbances in z;y, :

(C) (@}, — 6) /V12, @}y, ~ didxE, with p,, = 0.5

(D) @itn ~ #dN(0, 1), with p,, = 0.5.

For designs (C) and (D), we consider two types of dependence of f3,, upon regres-
sors: [3,;, is a linear function of the following cross-sectionally standardised values: (i)
T 'S (2%,) (e, ¢ = 1Tand p = 1in (65)) and (ii) 77>, (z%,)° (e, ¢ = 1 and
p=2in (65)).

Finally, the size and the power of the LM tests with degrees g = 1,2, are examined as
the set (E). The empirical size is obtained using designs (A) and (B), and the empirical
power is computed by designs (C) and (D).

We consider all the combinations of N = 50,100,200 and T = 25,50, 100, 200.
Throughout the experiments, we set p, = 0.5, p, = 0.5 and p, = 0.5. To save space, we
report the results with ¢? = 2 only.?® All the tests are conducted at the five per cent
significance level. All the experimental results are based on 2,000 replications.

21See discussions in Westerlund and Urbain (2015) for more details.

22 As the FE estimator is much less sensitive to the change of (8;, 35), the results for (1,3) are only
examined and reported.

23The results with ¢? = 3 are qualitatively very similar to those with ¢* = 2, which are available upon
request from the authors.
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5.2 Results

Table 1 summarises the performance of the Fixed Effect estimator for the model of
(81, 05) = (1,3), with time-series and cross-section heteroskedastic, serially correlated
errors in the absence of interactive effects. Panels A reports the bias, the root mean
square error (RMSE) of estimates of (3;, and the size of the Wald test for Hy : §; = 1
and the power for Hy : 3, = 0.95, under homogeneous slopes, and Panel B under hetero-
geneous random slopes. The results for 3, are qualitatively similar and not reported. As
predicted by the theory, the Wald test based on the HAC variance estimator has correct
size both under slope homogeneity and heterogeneity. Panels C&D report the bias of the
estimates and the size of the Wald test for Hy : 3, = 1, to see the effects of dependence
between random coefficients and regressors. In Panel C the regressors are generated by
asymmetric disturbances and in Panel D, they are drawn from symmetric distribution.
In Panel C, when 7, depends on Zthl x},,, the fixed effects estimator exhibits systematic
bias, but in Panel D, it does not. This is because when the third moment of z7,, is zero,
by construction E [X3'X*n,] = 0 which makes the estimator unbiased. However, as can
be seen in Panel D, the size of the test declines systematically as sample size rises, which
suggests that the HAC variance estimates will not be consistent. When 7, is a linear
function of 3./ (x%,)?, regardless of the shape of the distribution of regressors, it ex-
hibits serious bias in estimates (see Panels C&D). Therefore, it is of great importance to
statistically check the evidence of dependence of 3, with regressors. The performance of
the proposed LM test for correlation and dependence of random coefficients with regres-
sors is summarised in Panel E. As can be seen, it has correct size with slope homogeneity
and random coefficients, and the LM test with g = 2 has high power against both types
of dependence of B;, S/, a%, and S|, (x3,)?, whilst the LM test with g = 1 lacks
power when 3, depends on Zthl (x;‘th)2 only. Therefore, it is recommended to employ
g = 2 in practice.

Let us turn our attention to the estimation of the models with unobservable interactive
effects. The relevant results are reported in Tables 2-4. Each table contains Panels A-E,
which correspond to the panels in Table 1. Tables 2-4 employ different parameter values
of (8y,0,). Table 2 summarises the results for (5,,03,) = (1,3), Table 3 for (—1,—3)
and Table 4 for (0,0). To illustrate the effectiveness of the bias-correction, we report the
results both for bias-non-corrected and bias-corrected estimators.

Consider Panel A of Table 1, which deals with the slope homogeneous case. First look
at the bias of the estimators. Non-bias-corrected estimator (B Bai) has very little bias and
the magnitude of correction is very small. As reported in Bai (2009), the bias-corrected
estimator (3p,;) has very small bias and it becomes smaller as N and/or T rise. On
the other hand, the bias-non-corrected PC estimator (B pc) has a larger magnitude of
bias, in line with the results reported in Appendix A of Westerlund and Urbain (2015).
Nonetheless, the bias-corrected estimator (B pe) successfully reduces the bias. In terms
of RMSE, 3, and (p are very similar for all the combinations of (N,T). The size of
the Wald test based on {3 5a; a0d (g, is close to nominal level. Due to the bias, the size
of the test based on B pc has moderate size distortion, which is successfully corrected by
the bias-correction - the size of the test based on 3 pc 1s much closer to the nominal level.

Now let us turn our attention to the random coefficient model, the results of which are
summarised in Panel B, Table 2. The magnitude of the bias of the estimators under slope
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heterogeneity is larger than under slope homogeneity, especially with small N and 7', but
it gets smaller as V and 7" increase. As in the homogeneous slope case, the bias of both
I Ba; a0d B, is relatively small, whilst the bias of ] pc is much larger than that of B Bai-
Interestingly, the bias-corrected PC estimator successfully reduces the bias of 3 po for
heterogeneous slope models as well (see Panel B of Tables 2-4). In general, the reduction
of the bias increases the variation of the estimator, and when the bias in ] pe 1s relatively
small, in terms of RMSE, the performances of 3 pe and 5 pc are very similar. This slight
loss of efficiency is revealed in the power comparison of the Wald test. When both Wald
tests based on Bpo (Bpy;) and Bpe (Bpy;) have correct size, the power of the test based on
3 PC (Bpy;) is marginally higher than that based on 3pe (Bg,;). However, when the bias
in Bp¢ is relatively large (see, for example, Panel B of Table 3), as the bias-correction is
very effective, the RMSE of 3p becomes much smaller than that of 3. Furthermore,
due to the finite sample bias of ﬁ pc» there can be severe size distortion in Wald tests
(see, for example, Panel B of Table 3). In addition, the power based on the PC estimator
tends to be higher than that of Bai’s estimator. This is likely due to the fact that the PC
estimator uses information by exploiting the factor structure in regressors, whilst Bai’s
estimator does not. The properties of the results reported in Panels C, D and E are very
similar to those commented earlier on the corresponding panels in Table 1.

Finally, we comment on the sensitivity of the estimators to the variation of the para-
meter values.?* It is revealed by our simulation that Bai’s estimates are invariant to the
changes of the parameter values of (3, ;). Namely, the results related to Bai’s estima-
tors in Tables 2-4 are numerically identical. On the other hand, comparing the results
in Panels A and B of Tables 2-4, it can be seen that the bias of 3 pc 1S sensitive to the
values of (3, 5). The bias of BPC is positive in Table 2 with (3, 3,) = (1,3) and in
Table 3 with (—1, —3), while the bias in Table 4 (0,0) is negative. Note that in the case
of (8y,85) = (—1,—3) the bias of B po 1s relatively large in magnitude and it requires
a larger sample size for the bias-corrected estimator to satisfactorily reduce it. To sum
up, the proposed bias-correction of the PC estimator is quite effective for both slope
homogeneous and heterogeneous cases, and the efficacy of B pc 1s mostly comparable to
that of /3 Bai- However, in view of the sensitivity of the finite sample performance of the
PC estimates to the (centred) value of slope coefficients, the proposed robust approach
based on Bai’s (2009) estimator might be preferred in practice.

6 Concluding Remarks

In this paper, we have proposed a robust approach against heteroskedasticity, error serial
correlation and slope heterogeneity for large linear panel data models. First, we have
established the asymptotic validity of the Wald test based on the panel HAC variance
estimator of the pooled estimator under random coefficient models. Then, we have shown
that a similar result holds with the proposed bias-corrected principal component-based
pooled estimators for models with unobserved interactive effects. Our new theoretical

24Such sensitivities are reported in Westerlund and Urbain (2015) for the PC estimator. We note two
points. First, for all the design employed in Westerlund and Urbain, the mean of the factor loadings is well
away from zero, which could exaggerate the magnitude of the bias of the estimator. For the PC approach,
we recommend to within-transform and cross-sectionally demean the data before the estimation, which
would lessen such sensitivities.
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result has justified the use of the same slope estimator and the variance estimator, both
for slope homogeneous and heterogeneous models. This robust approach can significantly
reduce the model selection uncertainty for applied researchers.

In addition, we have proposed a novel test for correlation and dependence of the
random coefficient with covariates. The test is of great importance, since the widely used
estimators and/or its variance estimators can become inconsistent when the variation of
coefficients depends on covariates, in general.

We have examined the finite sample performance of the estimators, tests of linear
restrictions, and the LM tests for correlated random coefficients. The evidence illustrates
the usefulness of our approach. In particular, for the estimation of the models with
unobserved interactive effects, the size of the proposed robust Wald test using the bias-
corrected PC estimators and Bai’s (2009) estimator is very close to the nominal level,
under both slope homogeneity and slope heterogeneity, while maintaining satisfactory
power. Also, the LM tests for correlated random coefficients have correct size under
both slope homogeneity and slope heterogeneity due to pure random coefficients, while
exhibiting high power when the random coefficients depend on covariates. In view of the
sensitivity of the finite sample performance of the PC estimates to the (centred) value of
slope coefficients, the proposed robust approach based on Bai’s (2009) estimator might
be preferred in practice.

As emphasised in the paper, when the test of correlated random coefficient rejects the
null in favour of alternatives, it is preferable to employ estimators which are consistent
when variation of slopes is dependent on covariates. For the estimation of the models
with observed factors, the mean group estimator proposed by Chamberlain (1982) and
Pesaran and Smith (1995) would be possible choices. For the estimation of the models
with unobserved factors, to our knowledge, no satisfactory alternative estimators have
been proposed in the literature. Thus, developing such an estimator will be an important
future research theme.
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Table 1: Summary results of Fixed Effects estimator for the model with {3;, 55} = {1, 3},
heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, 3;;, = 0,, for all i, h =1,2

for 34 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
Brp

25  -0.148 -0.115 -0.005 2.572 1.848 1.276 5.5 59 4.9 474 76.1 96.9
50  -0.077 -0.040 0.008 1.853 1.305 0.920 6.0 54 5.2 76.0 96.6 100.0
100  -0.061 -0.015 -0.001 1.372 0.954 0.674 5.9 5.7 54 95.5 100.0 100.0
200 -0.017 0.004 0.007 0.955 0.677 0.479 54 6.1 5.3 100.0 100.0 100.0
Panel B: Heterogeneous Slopes, (3;, = 05, + n;, with n;;, ~ #idN (0,0.04) for all i, h = 1,2

for 3, Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
Brp

25 -0.038 -0.064 0.045 4.122 2.966 2.146 5.6 5.5 5.4 23.0 393 66.6
50 -0.015 -0.010 0.087 3.679 2.592 1869 6.6 54 5.1 30.2 50.5 78.6
100 -0.031 0.009 0.039 3.327 2.328 1.661 5.7 4.6 4.8 33.0 573 852
200 0.025 0.037 0.050 3.129 2.194 1.562 6.1 5.5 4.9 36.5 63.2 90.0

Notes for Panels A and B: Data is generated as y;;, = z}; 18,1 + 2} 280 + 0ct€it, @ = 1,...,N, t =
1L, T, e = peciv1 + /T — p2Es, &5y ~ iidN(0,1) with ej0 ~ idN(0,1), 0cir = (Keikics)/?, Keq ~
#1dU (0.5,1.5) and ke = 0.5 +t/T; T, = GOy itVit,h, Where Vi = povi—1p + /1 — P2ty Wit,h, ~
iid (x2 — 6) /V12 with vig, ~ iid (x2 — 6) /12, 0vit = (Kyikv4)"/?, Ky ~ iidU (0.5,1.5) and ry; =
0.5+ t/T. We set p. = p, = 0.5 and =27 rp 1s the pooled regression of within-transformed and
cross-sectionally demeaned variables. The size is rejection frequency of the proposed Wald test (defined

by (19)) for Hy : 5; = 1 and the power for Hy : §; = 0.95, based on the 5% level test. All results are
based on 2000 replications.
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Table 1 continued

Panel C: Correlated Heterogeneous Slopes, p,, = 0.5, z7;, generated using X%

(i) B, is function of ), a7, (ii) By, is function of >, (:c;."th)2
for Bias (x100) Size Bias (x100) Size
T,N 50 100 200 50 100 200 50 100 200 50 100 200

BrE
25 0.068 0.019 0.147 5.2 5.0 44 1.145 1.158 1.273 6.0 6.9 8.5
50 0.107 0.088 0.164 5.7 4.6 3.3 1.208 1.247 1315 7.8 6.8 9.4
100  0.075 0.099 0.153 5.5 3.6 3.8 1.236 1.317 1.350 7.7 7.6 9.9
200 0.151 0.145 0.188 5.2 4.3 3.2 1.398 1.450 1.473 7.4 89 127
Panel D: Correlated Heterogeneous Slopes, p,, = 0.5, 7, generated using N (0, 1)

(i) By, is function of ), 7, (ii) By is function of ), (JU;.*th)2
for 3, Bias (x100) Size Bias (x100) Size
TN 50 100 200 50 100 200 50 100 200 50 100 200

BrE
25 0.046 0.022 0.031 6.6 52 4.7 1213 1.185 1.206 7.6 74 7.6

50 -0.045 -0.008 -0.016 6.4 4.6 3.5 1.134 1.168 1.183 6.8 6.2 8.5
100  -0.033 -0.021 -0.015 5.7 4.7 29 1192 1.194 1.222 6.1 7.6 8.7
200 -0.062 -0.049 -0.043 6.0 46 3.3 1235 1.236 1.266 7.1 74 9.8

Notes for Panels C and D: The data generating process (DGP) is the same as that for Panel B,
except B;, = B, + oy (1 /1— p%nnih +pxnwih> M ~ 1dN (0,1) for h = 1,2, wy, = Mj where

Szh,p

— _ — * p
Zhp=N"1 Zfil Zih,p) Szh,p =(N-1) ' Zf\il (zinp — Zh,p)Q, Zingp =T7! Zthl (‘Tit,h) ;p=1,2.The
DGP for Panel D is identical to of Panel C, except that w; j, ~ #4dN (0, 1).
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Table 2: Summary results of Bai and PC estimators for the model with {3, 3,} = {1, 3},
interactive effects, heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, 3;;, = 0,, for all i, h =1,2

for 34 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
BBai

25 0.048 0.015 0.091 2.717 1.932 1.336 6.9 6.5 5.5 50.5 76.2 97.1
50 0.013 0.018 0.048 1.919 1.341 0942 6.9 64 5.6 76.5 96.6 100.0
100 -0.021 0.018 0.021 1.413 0.972 0681 7.4 6.4 5.6 95.1 99.9 100.0
200 0.007 0.024 0.021 0.989 0.688 0.485 7.3 6.2 5.5 100.0 100.0 100.0
B Bai
25 0.038 0.006 0.082 2.712 1.931 1.334 6.9 6.4 5.5 50.2 76.1 97.1
50 0.003 0.009 0.040 1.918 1.341 0.942 6.8 6.2 5.6 76.3 96.7 100.0
100  -0.031 0.010 0.015 1.415 0.973 0.682 7.3 6.6 5.5 95.1 99.9 100.0
200 -0.008 0.014 0.014 0.996 0.689 0485 7.1 6.1 54 99.9 100.0 100.0
Bpc
25 0.318 0.156 0.158 2.703 1.931 1.337 6.3 6.0 5.3 52.5 78.2 97.3
50 0.274 0.147 0.110 1.932 1.339 0.945 6.4 5.7 5.1 78.4 97.2 100.0
100 0.253 0.151 0.088 1.425 0.976 0.683 7.2 6.1 5.9 96.7 99.9 100.0
200 0.290 0.164 0.087 1.021 0.703 0.490 7.1 6.7 5.7 99.9 100.0 100.0
Bpc
25 0.122 0.035 0.092 2.731 1.941 1.337 6.3 6.1 5.6 49.5 76.3 97.1
50 0.071 0.023 0.042 1.942 1.340 0.943 6.3 6.0 4.9 75.6 96.7 100.0
100 0.047 0.024 0.019 1.424 0.974 0.681 6.9 6.0 5.8 95.8 99.9 100.0
200 0.086 0.038 0.018 0.996 0.691 0.485 5.7 6.1 5.7 99.9 100.0 100.0

Notes for Panel A: Data is generated as vy, = 22:1 T Bin + 23:1 fredie + 0c ity 1 =1,2,..,Nit =
1,2,...,T, where \ig ~ 4dN(0,1), fro = pyfi-1,0+4/1 — pfcl/tg, vy ~ 1idN(0,1) with fo ¢ ~ #dN (0, 1) for

C=1,.,r, i = pociv1 + /T — p2&;, &y ~ dN(0,1) with ;0 ~ iidN (0,1), and o = (ke ikics)"?,
Reyi ~ 4dU (0.5,1.5) and ke = 0.5 4+ t/T; x5, = Dopeq feeVine + 90y, itVien,where Vi, = pyvi—1,5 +

1= 2w p, @in ~ did (x2 — 6) V12 with vig s ~ iid (x2 — 6) /V12, e = 0. 7Nt (1 — 0.72) % 0,
Gine ~ TAN(0,1), 0v.it = (kv ikiv.s) >, Kyi ~ iidU (0.5,1.5) and kyy = 0.5+ t/T, ¢* = 2. Bp,; is non-
bias-corrected and (3,,; is bias-corrected estimator proposed by Bai (2009) and 3p¢ is the PC estimator
defined by (C.4) and Bp is the proposed bias corrected estimator defined by (31). The size is rejection
frequency of the proposed Wald test (defined by (19)) for Hy : 3; = 1 and the power for Hy : 8, = 0.95,

based on the 5% level test. All results are based on 2000 replications.
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Table 2 continued

Panel B: Heterogeneous Slopes, (3;;, = B}, + n;, with n;;, ~ @dN (0,0.04) for all ¢, h = 1,2

for 3
TN
B Bai
25
50
100
200
BBai
25
50
100
200
Bpc
25
50
100
200

Bpc
25

50
100
200

Bias (x100) RMSE (x100) Size Power

20 100 200 50 100 200 50 100 200 50 100 200
0.002 -0.009 0.108 4.228 3.049 2.190 7.8 6.3 6.2 26.2 41.8 67.3
-0.095 -0.038 0.062 3.741 2.627 1.882 85 6.7 6.1 329 52.8 79.0
-0.170 -0.050 0.013 3.364 2.344 1.668 7.7 5.8 5.2 36.5 58.8 85.7
-0.134 -0.037 0.017 3.152 2.198 1.564 8.1 6.5 53 39.8 644 90.3
-0.016 -0.024 0.096 4.227 3.049 2.189 7.7 6.3 6.2 259 41.6 66.9
-0.116 -0.056 0.038 3.742 2.629 1.882 84 6.9 59 32.8 52.6 78.8
-0.196 -0.070 -0.001  3.365 2.345 1.668 7.6 5.7 53 36.2 58.6 85.4
-0.181 -0.071 -0.004 3.153 2.200 1.565 7.7 6.4 53 394 63.3 90.0
0.335 0.161 0.188 4.160 3.038 2.194 6.3 6.0 6.1 252 43.1 68.0
0.251 0.138 0.134 3.700 2.609 1.882 7.2 59 5.7 334 538 79.1
0.201 0.134 0.105 3.325 2.332 1.663 6.5 52 5.1 38.2 60.5 86.6
0.247 0.155 0.108 3.120 2.194 1.562 6.1 6.0 5.2 41.8 66.0 91.1
0.200 0.071 0.138 4.208 3.055 2.199 6.6 6.2 6.3 24.8 41.9 67.1
0.107 0.044 0.082 3.736 2.620 1.885 7.2 5.7 5.8 32.0 52.6 78.2
0.0563 0.038 0.052 3.355 2.340 1.665 6.4 52 5.0 36.7 58.9 86.0
0.100 0.060 0.055 3.142 2.199 1.563 6.5 6.0 5.1 39.7 64.5 90.5

Notes for Panel B: See notes to Panel A.
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Table 2 continued

Panel C: Correlated Heterogeneous Slopes, p,, = 0.5, z7;, generated using X%

(i) B is function of >, x,, (ii) By, is function of >, (x;f‘th)2
for 3, Bias (x100) Size, Hy: B; =1 Bias (x100) Size, Hy: f; =1
T,N 50 100 200 50 100 200 50 100 200 50 100 200

B Bai
25 0.439 0.456 0.576 7.5 6.1 54 0.591 0.724 0918 6.7 6.1 6.9
50 0.364 0.456 0.546 8.6 5.9 51 0.556 0.754 0.911 &84 6.5 7.1
100  0.352 0.497 0571 7.4 54 54 0.526 0.789 0918 7.8 6.7 7.0
200 0.476 0.594 0.660 7.3 6.2 5.2 0.650 0.881 1.008 7.4 7.6 8.4
BBai
25 0424 0.442 0563 7.5 6.2 55 0.580 0.712 0.907 6.7 6.2 6.8
50 0.347 0.439 0.533 8.6 5.9 51 0.540 0.739 0.898 84 6.4 6.9
100 0.332 0.479 0.558 7.4 5.5 54 0.508 0.767 0904 7.9 6.7 7.0
200 0.444 0.566 0.641 7.1 5.9 50 0.619 0.843 0978 7.7 7.5 8.0
Bpc
25 0.795 0.634 0.657 6.2 5.9 57 1.117 1.002 1.059 6.3 6.6 7.2
50 0.732 0.640 0.631 6.9 5.3 49 1.059 1.010 1.036 7.5 6.5 7.5
100  0.739 0.688 0.665 6.8 5.0 54 1.043 1.046 1.047 7.3 6.5 7.6
200 0.869 0.790 0.753 6.9 5.9 53 1.172 1.146 1.136 7.0 7.8 9.0
Bpc
25 0.671 0.551 0.611 6.5 5.8 56 0.918 0.880 0.992 6.6 6.4 7.0
50 0.600 0.553 0.583 7.0 5.2 4.9 0.850 0.882 0.966 7.3 6.2 7.1
100  0.605 0.600 0.616 6.6 4.9 52 0.830 0.916 0976 7.2 6.3 6.9
200 0.736 0.703 0.704 6.7 5.9 52 0.959 1.015 1.065 6.7 7.5 8.4

Notes for Panel C: The data generating process (DGP) is the same as Panel B, except 3,
B, + oy (1 /1 — pinnih +pmw,,;h) SN, ~ tid (Xé — 6) /V12 for h = 1,2, wy, = M} where Zz, , =

Szh,p

_ N —1 N N _ T p
Nt > iz Zihps Sgh,p =N —1)"" 300 Rinp — Znp)s zinp =T ! D1 (x;'kt,h> ,p=12
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Table 2 continued

Panel D: Correlated Heterogeneous Slopes, p,,, = 0.5, 27, generated using N (0, 1)

(i) B is function of >, x,, (ii) By, is function of ), (a:;?‘th)2
for B3, Bias (x100) Size, Hy : 1 =1 Bias (x100) Size, Hy: B; =1
T,N 50 100 200 50 100 200 50 100 200 50 100 200

B Bai
25 -0.006 -0.016 0.083 8.6 5.9 4.3 0.605 0.736 0.873 9.2 6.5 6.5
50 -0.174 -0.090 -0.014 7.7 6.2 4.3 0.460 0.678 0.804 8.2 6.8 6.2
100 -0.177 -0.114 -0.033 7.5 5.1 3.6 0.497 0.698 0.818 8.2 6.5 6.4
200 -0.227 -0.159 -0.079 7.4 5.5 4.0 0.525 0.709 0.831 8.3 6.4 6.6
BBai
25 -0.022 -0.030 0.071 85 6.0 4.2 0.592 0.723 0.862 9.2 6.4 6.5
50 -0.191 -0.104 -0.026 7.9 6.2 4.3 0.443 0.665 0.793 8.1 6.8 6.2
100  -0.200 -0.131 -0.046 7.4 5.3 3.5 0474 0.675 0.804 8.1 6.3 6.3
200 -0.266 -0.186 -0.097 7.3 5.5 4.1 0.48 0.669 0.800 8.4 6.1 6.6
Bpc
25 0.350 0.164 0.168 72 54 4.3 1.137 1.014 1.017 &2 6.9 6.4
50 0.213 0.110 0.077 6.2 5.5 4.2 0987 0.951 0.937 8.0 6.7 6.6
100 0.218 0.086 0.061 6.3 5.0 3.4 1.028 0.965 0.948 6.8 6.3 6.8
200 0.176 0.044 0.020 5.7 4.7 3.4 1.057 0.979 0964 7.2 6.3 6.9
Bpc
25 0.224 0.080 0.122 7.5 5.5 4.3 0944 0.895 0.952 8.8 6.7 6.2
50 0.070 0.020 0.028 6.2 5.6 4.1 0774 0.824 0.868 7.5 6.4 6.2
100 0.073 -0.007 0.010 6.5 4.9 3.4 0.812 0.835 0.878 6.6 6.3 6.3
200 0.029 -0.050 -0.031 6.0 5.0 3.6 0.839 0.847 0.893 7.3 5.6 6.6

See notes to Panel C. The DGP for Panel D is identical to of Panel C, except that @y, ~ #@dN (0, 1).
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Table 3: Summary results of PC estimators for the model with {3, 5,} = {—1, -3},
interactive effects, heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, 3;;, = 0,, for all i, h =1,2

for 4 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
Bre

25 2907 1.573 1.014 4.151 2.559 1.707 20.6 15.3 12.8 79.4 923 994
50 2489 1.279 0.715 3.230 1.876 1.194 26.0 17.2 12.1 96.6 99.6 100.0
100  2.356 1.199 0.625 2.800 1.559 0.930 38.9 26.0 17.0 99.9 100.0 100.0
200 2.338 1.182 0.599 2,577 1.379 0.773 58.6 39.5 24.8 100.0 100.0 100.0

Bpc
25 1.067 0.595 0.509 3.214 2.131 1.475 90 7.6 82 59.1 80.9 98.0

50 0.577 0.265 0.192 2.155 1.408 0.981 72 6.8 538 78.8 97.0 100.0
100 0.421 0.168 0.093 1.559 1.016 0.699 7.8 6.4 6.0 96.5 99.9 100.0
200 0.416 0.152 0.065 1.131 0.729 0.496 71 6.2 5.6 99.9 100.0 100.0
Panel B: Heterogeneous Slopes, 3;;, = 5j, + n;, with n;;, ~ #dN (0,0.04) for all ¢, h = 1,2

for 3, Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
Bre

25  3.191 1.720 1.112 5.413 3.566 2.489 13.4 10.5 9.5 50.1 61.0 80.9
50 2.728 1.406 0.806 4.672 2.986 2.058 14.0 94 8.1 56.8 70.0 87.4
100 2.562 1.315 0.710 4.248 2.695 1.813 14.2 95 7.3 62.6 77.1 93.3
200 2.562 1.307 0.688 4.079 2.571 1.710 147 9.3 7.2 68.2 83.0 955
Bpc
25 1.255 0.684 0.576 4.609 3.217 2.309 80 7.5 7.2 334 493 734
50 0.715 0.333 0.250 3.872 2.658 1.914 7.8 6.0 6.0 37.2 56.0 804
100 0.523 0.224 0.145 3.427 2.359 1.675 6.4 52 5.5 39.8 61.7 87.2
200 0.537 0.216 0.121  3.207 2.218 1.570 6.5 6.0 5.2 43.3 66.2 90.8

Notes to Table 3: The DGPs for Panels A-E are identical to those in Table 2, except that {5;, 55} =
{—1,—3}. The performance of Bai’s estimators is not reported, since the results are identical to those in
Table 2. See notes to Panels A and B in Table 2. The size is rejection frequency of the proposed Wald
test (defined by (19)) for Hy : 8; = —1 and the power for Hy : 3; = —1.05, based on the 5% level test.
All results are based on 2000 replications.
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Table 3 continued

Panel C: Correlated Heterogeneous Slopes, p,, = 0.5, z7;, generated using X%

(i) By, is function of ), z7%,, (ii) By, is function of ), (a:;kth)2
for 3, Bias (x100) Size, Hy : f; = —1 Bias (x100) Size, Hy: B; = —1
T,N 50 100 200 50 100 200 50 100 200 50 100 200

Brc
25 3.638 2.183 1.576 15.0 12.0 10.9 4.432 2.862 2.196 17.2 15.7 17.0
50 3.208 1.906 1.301 16.0 11.2 9.2 3.868 2.460 1.814 16.9 14.5 144
100 3.094 1.870 1.270 16.6 12.7 9.5 3.685 2.374 1.730 18.7 15.5 15.3
200 3.173 1.937 1.332 179 12.8 10.8 3.743 2.430 1.783 19.9 17.0 17.1

Brc
25  1.721 1.158 1.044 9.0 7.6 7.6 2.172 1.656 1.571 8.8 9.0 11.1
50  1.215 0.843 0.750 8.0 5.8 5.9 1.514 1.206 1.165 7.6 6.9 7.8
100 1.079 0.792 0.711 7.1 5.7 5.4 1.297 1.099 1.071 6.6 6.1 7.0
200 1.176 0.862 0.772 7.7 6.2 5.4 1.370 1.156 1.122 6.1 6.9 8.2

Panel D: Correlated Heterogeneous Slopes, p,,, = 0.5, z},;, generated using N (0,1)

Bip, is a function of 3, x¥,, B;p, is a function of Y, x}3
for 5, Bias (x100) Size, Hy : f; = —1 Bias (x100) Size, Hy : f; = —1
T,N 50 100 200 50 100 200 50 100 200 50 100 200

Bpc
25 3.237 1.735 1.086 15.7 10.0 7.3 4.480 2.888 2.141 19.5 16.3 15.7
50 2.754 1.410 0.757 13.4 8.7 6.0 3.831 2.426 1.716 17.7 144 14.3
100 2.607 1.291 0.672 13.2 8.1 4.8 3.682 2.305 1.629 175 149 13.7
200 2.508 1.216 0.609 13.0 74 4.8 3.631 2.271 1.613 189 16.6 14.5

Bpc
25 1.307 0.699 0.550 9.2 6.8 5.5 2.242 1.690 1.522 10.3 9.3 9.8
50 0.733 0.329 0.199 70 5.9 4.3 1.473 1.170 1.068 74 6.7 7.4
100  0.555 0.192 0.104 6.6 5.1 3.3 1.285 1.027 0.970 6.4 6.1 6.5
200 0.462 0.114 0.038 59 4.7 3.5 1.240 0.990 0.951 6.0 5.6 6.6

See notes to Panel C and Panel D in Table 2..
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Table 4: Summary results of PC estimators for the model with {3, 8,5} = {0,0}, inter-
active effects, heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, 3;;, = 0,, for all i, h =1,2

for 34 Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
Bpc

25 -0.506 -0.205 0.026 2.707 1.929 1.326 54 6.3 48 41.7 726 97.0
50 -0.622 -0.285 -0.094 1.997 1.358 0.941 75 6.1 53 652 95.0 100.0
100 -0.671 -0.301 -0.136 1.547 1.010 0.691 10.1 7.7 6.0 &89.1 99.8 100.0
200  -0.638 -0.296 -0.141 1.167 0.743 0.502 11.7 8.0 6.4 99.6 100.0 100.0

Bpc
25 0.045 0.074 0.168 2.673 1.924 1.339 6.2 6.0 54 493 76.8 97.5

50 -0.046 0.007 0.054 1.906 1.331 0.939 6.1 5.7 52 745 96.7 100.0
100 -0.083 -0.003 0.015 1.404 0.967 0.679 6.5 6.0 56 94.6 99.9 100.0
200 -0.045 0.004 0.011 0.981 0.683 0.482 56 5.9 5.7 99.9 100.0 100.0
Panel B: Heterogeneous Slopes, (3;;, = B3, + n;, with n;;, ~ #dN (0,0.04) for all ¢, h = 1,2

for 3, Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
Bre

25  -0.449 -0.177 0.066 4.143 3.020 2.178 6.0 59 58 20.7 383 66.0
50 -0.614 -0.281 -0.062 3.715 2.609 1.872 71 6.2 55 257 474 76.6
100  -0.697 -0.306 -0.112 3.371 2.338 1.661 6.6 5.6 5.2 28.1 539 83.6
200 -0.655 -0.292 -0.114 3.159 2.197 1.559 74 6.0 51 31.3 588 88.5
Bpc
25 0.147 0.126 0.221 4.173 3.039 2.195 6.8 6.2 6.1 25.6 42.7 68.8
50 0.007 0.037 0.099 3.711 2.614 1.881 72 6.0 59 31.6 53.0 79.1
100 -0.063 0.018 0.053 3.344 2.337 1.665 6.8 52 52 355 b587 859
200 -0.016 0.035 0.052 3.135 2.196 1.562 73 6.1 52 39.0 64.7 90.6

Notes to Table 4: The DGPs for Panels A-E are identical to those in Table 2, except that {5;, 55} =
{0,0}. The performance of Bai’s estimators is not reported, since the results are identical to those in
Table 2. See notes to Panels A and B in Table 2. The size is rejection frequency of the proposed Wald
test (defined by (19)) for Hy : 8, = 0 and the power for Hy : 8; = —0.05, based on the 5% level test.
All results are based on 2000 replications.
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Table 4 continued

Panel C: Correlated Heterogeneous Slopes, p,, = 0.5, z7;, generated using X%

(i) By, is function of ), z7%,, (ii) By, is function of ), (a:;kth)z
for 3, Bias (x100) Size, Hy: 3, =0 Bias (x100) Size, Hy: 3; =0
T,N 50 100 200 50 100 200 50 100 200 50 100 200
Brc
25 0.004 0.293 0.534 6.0 5.6 5.0 0.120 0.549 0875 54 5.6 6.4
50  -0.139 0.220 0434 6.6 5.0 4.4 -0.004 0.488 0.786 7.4 5.8 5.9
100 -0.162 0.247 0447 59 44 4.6 -0.052 0.506 0.779 6.3 5.1 5.7
200 -0.036 0.342 0.531 5.7 4.5 4.2 0.070 0.597 0.862 6.1 6.2 6.5
Bpc

25 0.614 0.604 0.693 6.7 59 538 0.813 0.912 1.064 6.6 6.7 7.7
50  0.497 0.545 0.600 7.2 52 5.1 0.712 0.864 0981 8.1 6.6 7.4
100 0.487 0.579 0.616 6.6 51 54 0.677 0.889 0976 7.5 6.7 7.3
200  0.620 0.677 0.702 6.6 6.0 5.2 0.806 0.983 1.062 7.6 79 8.6

Panel D: Correlated Heterogeneous Slopes, p,,, = 0.5, z},;, generated using N (0,1)

B;p, is a function of 3, a3, B;p, is a function of ), (xjth)Q

for 5, Bias (x100) Size, Hy : 5, =0 Bias (x100) Size, Hy : ; =0
TN 50 100 200 50 100 200 50 100 200 50 100 200
Bpc

25 -0.446 -0.182 0.040 7.2 5.3 4.0 0.129 0.556 0.828 7.4 5.7 5.6

50  -0.662 -0.315 -0.122 6.2 5.8 4.0 -0.092 0.420 0.682 7.1 5.9 5.4
100 -0.675 -0.359 -0.158 6.7 4.8 3.3 -0.071 0.415 0.676 6.8 5.2 5.2
200 -0.726 -0.406 -0.204 6.6 5.0 3.7 -0.052 0.424 0.687 7.2 5.1 5.4
Bpc

25  0.163 0.129 0.199 7.2 55 44 0.833 0.925 1.018 85 7.2 6.9
50 -0.034 0.007 0.041 6.2 58 4.1 0.628 0.799 0.877 7.9 6.7 6.5
100 -0.035 -0.031 0.008 6.3 48 3.3 0.661 0.800 0.874 7.4 6.5 6.6
200 -0.082 -0.076 -0.036 64 49 3.9 0.685 0.811 0.886 8.3 6.1 6.9

See notes to Panel C and Panel D in Table 2.
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Appendix A: Lemmas and Proofs of Main Results
for Section 2

We rely on the law of large numbers and central limit theorem results, which are stated in Lemmas
A.1 and A.2, which are given and proved in Hansen (2007). The results which are stated as Lemmas
A.3-A.6 are discussed and proven in Hansen (2007), but replicated here for convenience. The proof of
main results, which are readily proven based on the lemmas, are given in A.2. We provide proofs of
LemmaA.8 in A.3.2°

A.1: Lemmas for Section 2

Lemma A.1 Suppose {W;r} are independent across i =1,2,...,N for all T with E(W; ) = p, 7 and
E |WZ-,T|1+‘s < A < 0o for some § >0 and all i, T. Then N1 Zfil (Wi — p.7) 20 as (N, T) % .

Lemma A.2 Suppose {w; v}, h x1 random vectors, are independent acrossi=1,2,...,N for all T with
E(w;r)=0, E (W,;7TW£7T) =X;r and E ||W¢,T||2+5 < A < oo for some § > 0 and all i, T. Assume
Y =limy -0 N1 Zf\;l i 15 positive definite and the smallest eigenvalue of X is strictly positive.

Then, N"125N wir % N(0,%) as (N, T) - .

Lemma A.3 Let {w;} be a strong mizing sequence with E (w;) = 0, E|w|"™® < A < 0o and mizing
coefficient o (m) of size (1 —¢)r/(r —c) where ¢ € 2N, s < ¢ < r. Then, there is a constant C' depending

only on s and o (m) such that E ‘Zthl wt’é < C D(s,6,T), where D (s,6,T) is as defined in Doukhan
(1994) and satisfying D (5,6, T) = O(T) for s <2 and D (s,6,T) = O(T*/?) for s > 2.

Lemma A.4 Under Assumptions Al and A2, Ayr — A —,0 and AJ_VlT —A"'—>,0 as (N,T) — oo,
where Ant and A are defined by (7) and in Assumption A2, respectively.

Lemma A.5 Under Assumptions A1-AS, \/% Zfil Xle; —q N (0,B), where B is defined in Assump-
tion A3.

Lemma A.6 Under Assumptions A1-A3, N~} Zfil Bi,T — B —,0 as (N,T) — oo, where Ei’T =
T-1X!g,2/X; with & =y; — Xiﬁ with n;= 0 for all i, and B is defined in Assumption A3.

Lemma A.7 Under Assumptions A1-AJ, ﬁ Zil X!X;n; —a N (0,C), where C is defined in As-
sumption A4.

Lemma A.8 Under Assumptions A1-A4, N~* Ef\il Cir — C —,0 as (N,T) — oo, where C;r =
T2X! 000X, with 4; = y; — X, and C is defined in Assumption Aj.

A.2: Proofs of Main Results in Section 2

Proof of Theorem 1. Applying Lemmas A.4 and A.5, the result immediately follows. m
Proof of Theorem 2. Applying Lemmas A.4 and A.7, the result immediately follows. m
Proof of Proposition 1. Applying Lemmas A.8 and A.6, the result immediately follows. m
Proof of Theorem 3. In the case of both slope homogeneity and slope heterogeneity, using
N AN1-1/2 /4

Theorems 1&2, together with Proposition 1, {VNT (,8)} (,8 —ﬂ) —aq N(0,I;) as (N,T) — oo.
It is straightforward to impose the linear restriction Hy : RG =r and show that under the null,

~ “ —1/2 . . I R " -1 "
[RVNT (ﬁ) R'} (Rﬁ -~ r) —4 N (0, 1,) which implies that (RB - r) {RVNT (,6) R/} (Rﬁ - r) .y
x§ as (N, T) — oco. This completes the proof. m

25Proof of other Lemmas in this subsection is provided in Appendix C.1 for convenience.
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A.3: Proofs of Lemmas in Section A.1
Proof of Lemma A.8. We write

N N N
N1 Z; Cir = N7'T72 ; X/uu,X; — N2 ; X/X; (B - B) ;X
N N
SN Y X (B ) XX+ NUT2 Y OX( (B 8) (B 8) X
i=1 1=1

— E,—E,E; +E,.

Recall u; = X;n; +€;. First

N N

Es = N'T2Y XX, (B - ,6)/ XIX; + N2 3" Xle, ([3 - ﬁ)/ X/X; (A1)
=1 =1

= E31 + E32, say. (AQ)

N X, X .
vec (Es1) = N1 Z (X;,Xz ® XZTXZTIZ‘> (,3 - ﬁ)
i=1

(e e

XiXi o XiX;
but B ‘ =,

2428\ 1/2 ~

Ko ) < Aby (C.1) and (C.6). As (ﬁ—,@) -
Op (N712), By = 0, (N7/?). Similarly vec(Bg) = NT V20N (3% 0 X2 (5-8) =

O, (N=YV2171/2) thus, E3 = O, (N~Y/2) + 0, (N~Y/2T~1/2)_ It is easily seen that E; = O, (N~1/2) +

2
Op (NV21=1/2) |By|| < NP 0N (|72, ? =0, (N7'T71). Finally,

E;

N
N2 X (Xam, + €3) (Xom, +€0)' X,

N N
= N7 X[ XinmiXiX; + N7'T72 Y XieielX;

i=1 i=1

N N
ANTIT2Y XXX + NI Xleim XX
i=1 =1
= G1+G2+G3+G4, say.

146 1+6 2426

H2+26 <

Since, E | T732X[Xime}X;|| " < E (|77 X[ Xam, || | T7V*X]es||) " < BT X Xm || E|| T2 X e,
A by by (C.1) and (C.6), Gz = O, (T*I/Q). By a similar derivation, it is easily seen that Gy =

O, (T~'/?). By (C.1), G2 = O, (I'"!). Finally by (C.6), G; — C —, 0, and the required result follows.

|

Appendix B: Lemmas and Proofs of Main Results
in Section 3

B.1: Lemmas

Proof of the consistency of factor estimators and other related results are in line with the discussion in
Bai (2009).

Lemma B.1 (i) 7! ZZ=1 Zthl [oon (5,8)]° < A, where ogn (s,t) = N1 Zfil E (ejreeise) for all £ =
1,...,m;
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(i) E ( Y H N YLy eingl
(iii) E (H \/% Zt:l Zi:l €iteBiy

) A foralll=1,...m

> <A forall=1,...m

Lemma B.2

k+1 N k+1 N k+1 N

-~ —1 A
FR - NT Z Z FoghehFQ + Z Z €ri g /FOIFQ + ﬁ Z Z e&ehFQ,
(=1i=1 == =1 i=1
where »
Q= (T[J)VAOFYl Aoy =T 'F'F, and R = (ENTQ) ; (B.1)

EnT is r eigenvectors of N1 Zf\;l Z:ZY corresponding to the first r largest eigenvalues, which is
invertible.

Lemma B.3 T75/2 HF — FORH =0, (637), s=1,2.

Lemma B.4 N~/2 HZL G -R'GY =0, (55%), s=12.

Lemma B.5 ' T
0, (632). ’
Op (637)-

Lemma B.6 \/iﬁ Zf\;l T (F - FOR)/ Veig;
Op (NV2) + 0, (§57) for all L.

-1 (F — FOR)/El

. FO/ RO -1
T

(R~ FOR)/FH — 0, (632).|1

(R FR) FOH ~ 0, (632).

71 (F - F0R>/V&- =0, (637), [|T71 (F - FOR)/ eul| = Oy (637).

. I
=0p (N71/2)+OP (6&21“% ﬁ Zfil Tt (F - FOR) erigy

2

N(EEE—EEE)si < A,

VT

\/N(EEE—X_]EE)FO 2 \/N(EEE—EEE)VM ?
- JT VT

A for all £ where Xpp = NN E;E, and Spp = N1 SN | E(EE]).

\/N(EEE—SEE)QM

Lemma B.7 T

<A,

s

Lemma B.8 FOT —p A as (N,T) — o0, A is fized and positive definite.

Lemma B.9 HMF — MFoH =0, (5&1T) .

Lemma B.10 - SN Xy (Mg — Mpo) X¥ = O, (6x7)- In the following lemmas, we consider the
properly scaled limiting properties of these three terms.
Lemma B.11 Under Assumptions B1-B5,

N N

1 1 _
NT > XIMpXin, = INT > X MpoX;n, + O, (557) - (B.2)
i=1 i=1

Lemma B.12 Under Assumptions B1-B5,

N N N '
1 T1 _1 _oE' Mgog;

= Y TV Mgep = —[}jzro Y G B3

VNT &0 RS NN 22 i (Yx) G (B.3)
N N N

T 1 1 E E;
T T (XR) T GGy (1)) "4, (1).

zljlnl
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Lemma B.13 Under Assumptions B1-B5,

- - T 1 <t . VIE; )
—— ) ViMgerei=——= ViMpogi +1/ == D> 2 GY (XX) T AV +0,(1). (B4
VNT =] VNT = NNi:lj:l T
Lemma B.14 Under Assumptions B1-B5,
N N / N
T 1 1 E-MFOEZ' T 1 1
S () @ LS (1) ot b0, (). (B)
i=1 j=1 i=1

where g9, is the first column of Gy and 02, =T 'Y, | E (¢2,). In a similar manner,

N / N
/T -1 E'MpoV;n;, /T 1 -1

1=1 j=1
wvmﬁ =tr (Evuiﬂnn,i) .

Lemma B.15 Under Assumptions B1-B5,

N
T1 - 1 ~ _
= Ve T ()| D G, G | (Xh) T Ao, (1) (B.7)
i j=1

Lemma B.16 Under Assumptions B1-B5,

VIS S VIR o o) TlZﬂmG‘) (1) Ao, () (BS)

1=1 j=1
where Qv g, = E(VIE;/T).
Lemma B.17 Under Assumptions B1-B5, & yp — £}L\,T —p 0 as (N,T) — oo such that T/N — c €
(0, A].

B.2: Proof of Main Results in Section 3

Proof of Proposition 2. First, using X; = F'TY + V;, we can write

N N N

1 . 1 1

INT § X' Mpé€fe; = TNT § TYF"Mpese; + INT § ViMgé€fe;. (B.9)
i=1 i=1 i=1

Substituting (B.3) and (B.4) in Lemmas B.12&B.13 into (B.9) gives
N N N /
1 %/ . T 1 0 0y\—1 OEJ-MF()si

i=1 i=1 j=1

T 1 1 Y ZN:XN: TO GOEn JGO/(TO) 1)\0

1 T1 V'E; .
*ﬁZWMF"“ Ty Y VB (xg) Ao, @0
i=1 i=1 j=1
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Further substituting (B.5), (B.7) and (B.8) into (B.10) gives the required result.
Ao\ L A
Proof of Proposition 3. Recall that Enr = (ﬁ Zf\; X;XZ') &n7- By Lemma B.10, 1= vazl XiX;—

-1

-1
~7 Zf\;l VIV, = o0, (1) and, by continuous mapping theorem, <ﬁ Zfil X;XZ) - (ﬁ sz\;l V;Vi) =

0p,(1). By Lemma B.17, &yp — STNT = o0, (1), therefore, Exr — ¢ = NLZz L XIX ) Eng —
-1

(ﬁ Zi\il XgXZ—> ﬂVT =0, (1), as required. m

Proof of Theorem 4. Under slope homogeneity, recalling BPC = BPC — %éNT with éyp =

(ﬁ Zi\il X;Xz>_l ENT, we have
~ 1N . -1 . X / )
VNT (ﬁpo - 5) = (NT ;XiX,) (m ;Xi M€ e — \/; NT) ’
-1

o N1
but by Lemma B.10 and continuous mapping theorem, (ﬁ Zil X’LXz) — (ﬁ Zfil V;Vi) =

op (1), and using Proposition 2, we can write
N
1 T /-
Wi E Viei — \ (£NT - §NT>
VNT = N

VT (Bye -~ 8) = <N1T f;v;vi)
i=1

where &y is defined by (29). By Lemma B.17.€ yp — &€y = 0, (1) with slope homogeneity, we have

-1

+o, (1),

-1

VNT (ﬁpc - ﬂ) = <N1T ZVQVz) (\/]1\[7 ZV§€¢> +op (1)

s (N,T) — oo such that T/N — ¢ € (0,A]. By Assumption B5, ﬁZf\il VIV, —, A, and

ﬁ Zfil Vie; =4 N (0,]§) by Lemma A.2 and Assumption B5, as (N,T) — oo such that T/N —
€ (0, A], the required result follows. m

Proof of Theorem 5. Under heterogeneous slopes, recalling ,BPC = ,[)'PC Le ~enT with enr =

N1
(ﬁ Zf\il X;Xi> & N7, we have

-1
. 1 e 1 o= XMpX;
VN (ﬁpc _ 5) - (NT S :x;xi> lN > TR,

i1
1 & 1
t= ZX;‘k/Mﬁ‘efe,i - —&nr (B.11)
VNT = VN
By Lemmas B.10 & B.11 and Proposition 2 we have
1 Y T vy
W(re-n) - (ievv) X
( ) NT 2~ VN&T
{ 1 O 1
+ 72\/2@4‘7 Enr — Ehr } +0p(1). (B.12)
VNT = VN ( )

Because &y — &4 = o0, (1) with £5,, = O, (1) by Proposition 3 and ﬁZf\; Vie; = O, (1) by
Assumption B5, inside of the curly brackets is O, (T’1/2) + o0p (N’l/Q). Therefore,

W(B —,6)— LXN:V/V- LZVQVL +o0,(1)
PC - NTi:1 i vV \/N T T’z p

=1
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s (N,T) — oo such that T/N — ¢ € (0, A] By Assumption B5, ﬁZfVlV’-V- —p A and

(ﬁ Zil V;Vi) —, A71 and \FZ T ‘n;, —a N (0 C) by Lemma A.2 and Assumption

B5, as (N,T) — oo such that T/N — ¢ € (0, A} the required result follows. m
Proof of Theorem 6. Consider

Vpe = (ix’x)l (f: Lol X ) <ZX X) 1, (B.13)

i=1 i=1

where 0; = y; — X} ,B pc- Under homogeneous or heterogeneous slopes, by Lemma B.10 and continuous
o !
mapping theorem, 1~ Zfil XiX; — &5 Zf\il ViV, =0, (1), then (ﬁ Zivzl X;Xi) — At =0,(1).

First consider the slope homogeneous case. Noting Xgﬁi = X; [egﬁ - X7 (,ch—ﬁ)] we have

N
Kieepiel X = (NT) ' 3K X: (Bre—B) epiX (B.14)

3~
M=
»
;>
=
?{)
I
i M >

2

- ersn (Brc—B) XX+ (NT)” PRACED) (Bec—8) X,
i=1 i=1

= Al —A,—As;+ A, (B.15)

X MpX;

T

I X Mgecsi (s
A; = TN 1;;“(ﬁpc—ﬂ)

N xgx o ’ XK *
© e XM (5, gy XX

X:' (Mg —MFo)eEfl (B —B)/ X' Mg X

+TN~ 12

TN Z X{Mpoeeri (chfﬁ)’ X} (Mg — Myo) X}

— T T
= A3+ A3z + Ass.
but as
X Mp X7 ||? XXz |2 x:F |’ x5,
7 7 < 1 1 T v <
BT 2 < =
by Assumptions B1-B5 and
X?/ (Mf‘iMFO)esfi ’ —1/2 al elsfi®X2</ ’ —1/2 al e/sfi®Xz<, ’ 2
- < (v s S ) v e | < v SR g e
i=1 i=1
we have
e || X (Mg — M) ecgi | || XM X |-
Al < 7NN - |Brc-4|
1/2 1/2
Z®X*/ 2 9 B N X?/MAX’T 2
< (oS B ) (3 [N
i=1

0, (57%) 0, (ﬁw) -0,y ) o0 ) = 0 o5k
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In a similar manner, it is easily shown that ||Ass|| = O, (5&})

|Asi]] < VTN-

IN

HV’MFoV*

ViMpoes [\ N VI Mpo V*

N*lz i Fo&¢g > (le H 7 FOV,
( =1 \/T =1 T

70 (). ()

hence, Ag = 0, (1). In a similar manner, it is easily shown that As = o, (1).

o (k)

1/2
) [Bre-a]

N
. XMy X
IVERS Bt
i=1

Next, consider Aj.

N
Ay = (NT)7') X;'Mpoecsiel ;;MypoX;
=1
N
+(NT)™H D Xy (Mg — Mpo) €cpi€l ;Mg X
i=1

N
+(NT)™" > X;'Myoecgiel;; (Mg — Mpo) X;
=1

= A +Ap+ A

N
[A < H(NT)l > X} (Mg — Mpo) ec i€l ;Mo X}
=1

+

< (1

In a similar manner, it is easily shown that A3 = O, (6E1T) Therefore, we have

N
(NT)™' > X7 (Mg — Mpo) €cgi€lp; (Mg — Mpo) X;

i=1

1/2

2 1/2 1 N
2 _
e ) (3 Vi) 0,658,
i=1

sfz X*/

N N
1 Sl l G 1 . .
— E XaalX;, = ~NT EZI X;'Mpoe.fi€. ;;MpoX; + 0p (1)

N
1
= — ZV;&?Zé‘ivl + 0p (1) .
NT P

Using Lemma A.1, ﬁ Zfil VieeiV, — B =0, (1), and we conclude that, under Assumptions B1-B5,

(NT) ' Vpe —A"'BA™' —, 0 (B.16)

as (N,T) — oo such that T/N — ¢(0,A]. m =
Now consider the case with heterogeneous slopes. Noting X;ﬁl = X; [X;‘ni + €5 — XJ (,@PC—,B)}
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we have

leﬁlﬁ/ = ZXI X i M + eefz) (X n; + eefz ’L NT2 ZX/ (/GPC ﬂ) (X:nz + €€£B/]&)

NT2 NT2
- ix (Bro—) (Bre-8) %
=1

- ZX’ (X;m,+ecr) (Bre—0) XiX

_ B,_B, 7B3+B4. (B.18)
Consider Bs.
1, . cro 1 S, . oo
Bs = 7= ; XiXin; (ﬁpc*ﬁ) XiXit s ; Xi€eyi (51:0*@) XiX;
= Bs; +Baso.

B3, is similar to A3/T, but noting Bpc—8 = O, (N=1/2), we have Bgy = O, (857) T~ =0, (1).

Baill < Z [

thus B3 = 0, (1). In a similar manner, it is easily shown that By = 0, (1) and B4 = 0, (1). Now consider
B;.

/M X*

—0 (N1,

N N
1 2 : !N 1N *I 1 2 : A AR
B1 = NT? 2 X‘lX'L T”LT’LXL X,‘ + W v X1Xl nzesszl

2

3> Xieepiel X

i=1

1 1
<o/ I~k ~
tNT2 z_; Xi€ermiXi Xi+

= By +Bi2 +Biz + By

N N
1 <= ViMpoe; , X'MpX; 1 = X7 (Mg —Mpo) e, XIMpX;
B, - — % Lyl T FM - 7 F 1 F“Y
13 N2 K g T T
= C1+Cy
but
i © X7 X;'MpX; _
1Cal < 3 3 [ 2 vt - Mo 1t | KX = 0, o5t
and
M iy X MpX;
jCill < 7=+ || SR = 0 (1),

thus, B13 = 0, (1). In a similar manner, it is easily shown that Bqs = 0, (1). Also, By = A;/T =
0, (Tﬁl).

Xy (M MFo) X7 , X Mp Xy

VMgV, ViMgoV,
Bu = NZ T " NZ

1 Z XMpoX; X7 (Mg — Mypo) X
T n:n; T
= D;+D;+Ds.
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N
1 WX (Mg — Mpo) X, X MpoX?
D, = & Z !

T T
ix*' (Mg fMFo)X ‘n,AX;" (Mz — Mpo) X
— v T
= D21+D22,
but
LIRS ol Rl VARV I et BN
and
Dol < 25X g M| el = 0, (632

thus, Dy = 0, (1). In a similar manner, it is easily shown that D3 = O, (5NT) To sum up

N
1 e 1A VIMpVi | VIMpoV;
NT?2 ;Xiuzuixl = N 2:: T n:n; T +0p (1)
N
1 vy, V’V
= N Z + o0, (1).
Using Lemma A.1, + ~ ZN v V nmivTv C =0, (1), and we conclude that, under Assumptions B1-B5,
N"Wpe—A"1CA™ —,0 (B.19)

as (N,T) — oo such that T/N — ¢(0, A].
In the case of both slope homogeneity and slope heterogeneity, using Theorems 4 and 5, together with
(B.16) and (B.19), V _1 2 (ﬁpc - B) —a N (0,I;). It is straightforward to impose the linear restriction

R —-1/2 , .
o : RB =r and show that under the null, (RVPCR> (R,BPC - r) —4 N (0,1,) which implies

~ / N -1 ~
that (Rﬂpc - r) (RVPCR) (Rﬁpc - r) —a x2 as (N, T) — oo such that T/N — ¢(0,A]. This
completes the proof.
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Supplementary Appendix
for

“A robust approach to heteroskedasticity, error
serial correlation and slope heterogeneity for large
linear panel data models with interactive effects”

by K. Hayakawa, S. Nagata and T. Yamagata

Appendix C: Proof of Lemmas for Section 3

In what follows, we repeatedly use Cauchy-Schwarz inequality, triangular inequality, Minkowski in equal-
ity, Holder’s inequality, and other well-established results: for conformable matrices ABC, vec (ABC) =

/ s 2s 2s 1/2 .
(C'®A)vec(B), E|AB|” < (E|A|™ E|B|| , for square matrices, |AB|| < || Al tmax IBIl-

C1: Proof of Lemmas for Section 2
Proof of Lemma A.4. E||A;|'"" = E|T'XX||"" < B||T-2X, "™ < E |tr (T7'X(X,)]

K T N k T sy ]
—r 00 (BT shan] )T <m0 (S S (Bl )T s erac

oo using Holder’s and Minkowski’s inequality and Assumption A2, then applying Lemma A.1 gives
Ayt — A —,,0. Applying continuous mapping theorem yields A;,lT — A’lﬂpO. [
Proof of Lemma A.5. We have

146

T 2

1
= sz‘thfz‘t
VT =

E HT‘l/Qngi e

X 146 i L ar2e\ ] 0
F < F|l— TithEi C.1

k1+6( 20 D (s, T)) < A < oo,

IN

where the third inequality follows, because, by Assumption A1, F (x;pei) =0, E |xith5it\s+5 < Elzin
2+26

2A25%20 < oo for s > 2 and all h = 1, ..., k, and using Lemma A.3 F ‘23:1 Tith€it =C D (s,6,T) =

= ) Therefore F HT‘1/2X§EZ»H2+2§

the result follows. m
Proof of Lemma A.6. We write

N*liBi,T - (NT)_liX,’ieie;Xi—(NT)_liV:X,’L-Xi (B—B) e X, (C.2)
=1 ) 3
_ ZX/EZ (3~ ,6) XX, + (NT)™ ZX’ (B-5) (B—B)/X
=1

= Dy —Ds;—Dj3+ Dy. (C?))

< A and together with Assumption A3, applying Lemma A.2

First

NOrxXiX,  Xlei\ /s
vec(Dg) = N~1T1/2 (” ® ”) B-03). (C.4)
3 ; T T ( )

S.1

|25+26 B ‘8

it |28+2§ S



;e"'> = 0 by Assumptions Al and A2. Noting

T
1 2426
148 ) k 2426\ 2F2¢
BT xx,|** < B|r- — Bl (07 XX =m0 | [ B]S S a2,
h=1t=1
kT o 2426
o P CEN il ISP )
h=1 t=1
X/X, _ Xle: [0 X 12428 ixre, (12126 /2 N XX Xle
andEH L ® ft = (E"T H‘— ) SAandbyLemmaA.lN‘lzizl( L ® \/1?) =

0, (1) and together with B3 -3 = O, (1/\/NT), vec(D3) = o0, (N~Y/27~1). In a similar manner,
N 2 .

vee(Dy) = 0, (N12T). Dyl < NS 71X [|B - 8] = 0, (V). BIDy Y =

BT Xeel X || < B||IT-12Xe |

plimMT_,OO N1 sz\il Bi,T — Bi,T =0 as required. ]

Proof of Lemma A.7. First F (TﬁlXQXmi) =0 and Var (T’1X;Xmi) = C;r.

1o = 0 (1) by (C.1), and we apply Lemma A.l to conclude

2 1+6

BT X Xn, |7

IN

k T
E E LTithTiteT);e

(=1 t=1

k
T (2426) E Z
h=1

1 1+6
2426\ T1+8

E T
g E TithTiteT ;e

< p—(2+26) i E

h=1 (=1 t=1
but as
- 9426 i | q2+26
5\ 7%
E szithxitﬂmé = [ZZ (E|xithx"tm’w|2+2 ) ]
0=1t=1 £=1t=1
2+26 4-+46 atas\'/?
E\zitnwitem;,] < | Elzanvicel En;
) 1/4 o\ 1/2
5
< (E|xith|8+80 E|a|¥® ) (E|77i2‘4+4b)
< A
we have
1146
i c kT . 2426\ T+6
B 2426 _ &) 2F2@
B[ XX |7 < mCr SIS TN (B im0 ]
h=1 \ Le=1t=1
C ee N
< eSS {325y
h=1 Lé=1 t=1
< TERRRIEA [T = 0 (1) (C.6)

Applying Lemma A.2 the required result follows. m

C2: Proof of Lemmas for Section 3

Proof of Lemma B.1. We only discuss the proof for ¢ = 1, since for £ = 2,...,k + 1, the proof is
identical to that for Lemma 1 in Bai and Ng (2002). For (i), recalling that G? = (I‘O’,@ —|—/\O rY), E; =

S.2



(ViB; + €, V), denoting p; (t, 8) = oo (5,8) / [oen (,) oo (5, 8)]2 with oo (s,8) = N2 N | E (eqoeinr)
and noting that o,y (¢,t) <

T T T
TS on () = T oun () oen (s, 9) [pe (¢, 5))
s=1t=1 s=1t=1
T T
< AT TN oew (8 oo (s,8)Y2 [pg (£ 5)]
s=1 t=1

< AT‘lzZ oen (s,t)] < A?

by Assumptions B1 and B2. For (iii), noting that e;;; = v/},8; + €; and g% =T, + A,

ﬁ Z Z Z Z €it1€jslg?1/g?1

N NT ZZZE{ BivieviB; + eucis] [BiTITY B; + AV AT}

2

; IN
—— cing;

= N Z B l(Blvavl8) (B8] + B (B8 B OYN)
2.2

+E (sitem (@F?F?’ﬂ) + B (cucis) E (AYA?)
= a1+ as+as—+ ay.

" (BvieviuB) (BIITYB,) = vee (KOTV)' (8,8, © 8,8.] vec (vigviy)
- LT ZZZ (E (T9T%)) E [8:8; © B:8}] vec (E (vieviy))
< IS vty | A B (90 < A
2
Similarly

E(AYA)) <A,

ag = %Ztr E /6 ﬁ/) (71_‘ ;ZE(VitV§S))

az < A and a4 < A. (ii) is shown in a similar manner. =
Proof of Lemma B.2. Following the discussion in Bai (2009), p.1266, we write

k+1 N k+1 N
': 0 OO/
FEN ZZF glel F + NTZZethiF F (C.7)
é 1i=1 (=1 i=1
| k1N k+1 N
0 0/ 0/
=A;+ A2 +As+ Ay (C.8)

Observing that Ay = FOT(J)\,AOF, we have
FEnr — FOYYA ;= A1+ As + As. (C.9)
Post-multiplying the above equation by Q = (YA, F)fl yields

FENTQ-F' = (A + Ay + A3) Q. (C.10)
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Let

-1
R = (ENTQ) , (C.11)
where Epn7 is assumed to be invertible (the invertibility of Zyr is proved in Bai 2009, p.1267) so that
) | N | k1N
el 0 _ 0.0/ FA RO A
FR - F'= - > ZF 9iel FQ+ 1= ZZe&g&-F FQ
=1 i=1 (=1 i=1
] N
A
+ ﬁ ;;egiemFQ, (012)

as required. m
Proof of Lemma B.3. By Lemma B.2 we have

L1 O
TR B0 < T2 (A + 1A+ 1As]) |@

)

where Ay, Ay and A3 are defined in (C.7).

N
1 1 .
T2 A = —|— F'GEF
|| 1H \/T NT; 3 1
R HF Loy | E
VN [VTI||VNT = " || ||VT
1
= O _—
(%)
by Lemma B.1 (iii). In a similar manner,
11 &
T2 Ay]] = —||— ) E,GVF"F
RS HF Loy
VN [VTI||VNT = " ||| VT
1
= O _— s
(%)
—-1/2 _ “12le a1l S =
T7VAs = T ZSppFT 22 (Spp - Spp) B
= Az + Az
where
| N B | N k1
EEE = N ZZeige;E, EEE = N ZZE (ei[e;e) . (C].?))
(=1 i=1 i=1 £=1
1 As| < 1 VN (2pp — SgE) F—O( 1 )
2= UNT VT JT "\VNT
by Assumption B1&B2, and by Lemma B.7,
P

||A31H < Tﬁl:umax (EEE)

VT

“o,(1).

Noting that HQH <A,

e =0 (Gr) <o () =on i

S.4



as required. m
Proof of Lemma B.4. Substituting F* = (FO — FR_1> +FR to G, =T 'FZ: =T 'F'F°G? +

T-1F'E; gives

N N N
N2V G -RIGY < N2 T—lﬁ’[(FO—FR”)}ZG%ZT*FE
i=1 i=1 i=1
< il o)
1| e, _
v 1/2;T VERYE;|| + f“ 1/22T 1/2 (F F R)
= Op(‘s&lT)'
|

Proof of Lemmas B.5-B.9 is obtained in line with the discussions in Bai (2009) under Assumptions
B1-B5, which are omitted. See derivations therein.
Proof of Lemma B.10. || 3>, X;' (Mg — Mr) X;
]

2
7ol = Op (637).

Noting that X7 = F'TY +V; and y; = X;8 + u;, u; = Xym, + €feyis €Efe,i = FO)\? + €;, we have

< [IMp - Me || 4 2, |

N N
Z X/lli Z X*/MFUi
i=1 1]:\]1 N N
Z X MpXin,; + Z T9F"Mgese ; + Z ViMgey. .

i=1 i=1 i=1

Proof of Lemma B.11.

N N
1 1 1
XMpXin, = X' MpXin, + —— 3 XY (Mg — Mp) Xin,
fTZ n;, = \/NT; 7 F Z’rh—’—\/NTi:Zl z( i F) i1
! ZX*’ (Mg — M) Xi; ! EN:(FF’+V)’(M Mr) (FT} +V;)n
F P = T = i i P F i 7
VNT VNT = g
1 N
= — Y IF (Mg — Mg) FTn,
VT & M
1 N
+———Y IF' (Mz — Mg) Vi,
m; .
V! (M — Mg) FT'n,
R Z
1
\/NT; o '
= aj+ag+taztay.
— Y IF (Mg — Mg)FTy, = ——— n.T, @ T;) vec (F' (Mg — My) F)
VNT & ¥ VNT l:1 ¥

N !
F'®F
= — 7. @ TY) < )vec(M»—MF)

—_

=
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Since (vec (A)) vec (A) = tr (A’A) and |Jvec (A)|| = ||A|l, and tr (A @ B) = tr (A) tr (B) and (A ® B) (A ® B) =
(A’‘®B’) (A @ B) = (A’A © B'B)

laill < inlr'e@r @ |[vec (Mg — Mg )|
= \/%XN: ;o) H Mz — Mg||
pas
= O (651)-
as || i (ims @ )| = 0, (1) and [ M — M| = 0, (55).

ay = W erF/ (Mf;‘ — MF Vﬂh \/— Z ( ) vec (F, (Mf? — MF))

N
1
lao| < vz(af MM\Mﬂ
=1
= Op(‘SK/lT)
Next
N
lasll = || 7= (M — Mp) FI'n; H (T} ® V})vec (Mg — M) F)
\/N ; \/7T7, 1
N
F'®I
— fz nlI‘/®V ( %T>vec(M MF)
< NZmF (6n%)
i=1
V/ 'V'/
laal = H\/—TZV/ M MF)Vmi = (771 2 )vec(Mﬁ—MF)

Vi V] _
|3 (B oty ol = 0 551

Using the above results, the required result follows. m
Proof of Lemma B.12.
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=2
=
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=2
()



with

but

HAmNTH

Next,

IN

IN

[b111]

[b112]

IN

N
1 . N /
= \/ﬁﬁ Z F?QIAmNT (F - FOR) Mﬁ‘€f57i
i=1
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= NTgp LT A (F-FR) e
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1 0A/ n 0 ! .
—\/ﬁﬁ 1;E=1 IQ ANt (F—F R) T e
= b1 —bie
[[A7]]

[Amnrl|

Q/

IN

1 N
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1 N
VAT S|

= VNTO, (63%) [0p (T712) + 0, (57%)]

X F/FO
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b111 = VN

Z QA (F - FOR) €eit F Z T0Q AT (F - FOR)/FOFO’efm-

= bu+ b1112

1 X
VNT N7 2

b < WQ%MM(F—WRYQW
= VN ZHFO mnr| || T (F_FOR)Iefe,i
. I
< vt | 771 (B = FOR) F|| A7)
1 Y . R /
+VNT 3 0 ||| A r || 7 (F7F0R> e
=1
= VNTO, (6E2T) {OP (T_l/z) +Op (517\72T)} :
1 R X )
Ibuell < VAT 3 IT0QAne T (F— F'R) FF' (FA; + <))
=1
N 010
< VN Z [isd - (F—F0R>IF° F F HAOH
AL 3 1 (¢ _ 7R F|| | FE
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by =

D121

=1
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\/ﬁﬁ i:; T/ A, vt (F - FOR)' [T—l (F _ FOR) R'FO’} e
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1 R R / ~
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HF Z T0Q' A e (F - FOR) 771 (- FR) RFY| .

FO/FO
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i=1
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To conclude, by; = VNTO, (6;\,27«) [Op (T~
Noting Q = !
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op (1) and

1 A —110 0 -1 1 al 0 0/ 0 —1 FO/ui
h, = N ZRF 7 (YY) N Z GjQpp,;Gj | (TY) 7 top (1). (C.19)
j=1

i=1
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N
hy = %ZQVE,lG?R*“r;&A?
=1
1 NP
+N Z (QVE,i QVE,z) G Y\

N N
1 o A oa1a 1 _ SN
hs = N Z (QVEJ - QVE’L) G,z"rz_vl)‘i + N Z Qe — Qve,) G;'rﬁl)\i
i=1 i=1
= Jji1+i2
L&
. e e
h = % ; (QVE i QVE,L) GY (R YT\
1 .
+N ; (QVE,z QVE,i) (Gz - R_lG?) T\
= 81182
1NA 41 A4141NA L 1/2A_1
g2l < NZHQVE,L*QVE,Z NZ A NZHGifR G Ty H
i=1 i=1 i=1
= O (‘5_1 )

2
=0, (5&1T) In a similar

as ZZV:1 Héz ~R'GY|| = 0, (6yr) and Zi\;
manner, it is easily shown that g1 = 0, (1). and also jo = 0, (1), thus, hss = 0, (1). As HQVEJH4 <A

and F 5\1

’QVE,z’ — Qg

4
< A, we have

N
) B X - .
il < D 6 Rt 1 |
1 & N X 2\
~ _ ) 213 -
< (yxle-wrel) (yimed i) (e
= Op(‘sl_v}f)'
Finally as Tn — Y =0, (1),
by = L3 Qi GR (8 E , () (C.20)
3—1\7-i=1 VE, 4 N T Op : '

Using the above results, & NT — ER,T —, 0 under slope heterogeneity and homogeneity. m
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Appendix D: Monte Carlo Supplements

Bias corrected estimator of Bai (2009) and our proposed co-
variance estimator

The estimator (B Bais f‘b) is the solution of the set of nonlinear equations

NT i (y;k - X?Bbm) (y:-‘ - X;‘Bbai>l‘| Fo=F,®yr
) (C.1)

where ® 1 is a diagonal matrix that consists r largest eigenvalues of the above matrix in the brack-

N -1 N
Bgai = (Z X?'Mpbx?> > X{'M;,yi and

i=1 i=1

ets, arranged in descending order, with the restriction ]?‘g]?‘b/T = I, and A;Ab is diagonal, where
~ ~ ~ ~ / ~ A~ -~ -~ A~
Ay = ()\1, Ao, .., )\N> , A =T7'F) (y:‘ — X;‘Bb). The solution (5b,Fb) is obtained by iteration until

convergence. For the computation of variance estimator of Bb and the bias correction, the following
transformed X is used:

N
~ . - PRV EN -1
Xy = Mg X; = N7'Y Mg, X5, ag; = A, (AbAb/N) A, (C.2)
j=1
The HAC variance estimator of Bp,; is given by
N -1 N -1
V- (z xx) S K, Ko (z xmxm) )
=1 =1 1=1
with @y = Mg, (y;‘ — Xf[‘]b) = (Tpi1y -y ﬂbiT)/, and the bias corrected estimator is

15 1

8., =83, .— —B—=C 4
ﬁBm IBB(M, NB TC, (C )
where ( )
N (Xr- NN a,X AA N\
~—-1 1 7 Jj=1"1**) AbAb L =2
= —A_ .
B ONT 7y E T < N ) Aid; (C.5)
L1 XM F, (AL,

5 G 4 F bEb bLdb 3

C= _AbNTN ;:1 Tb ( N ) A (C.6)

3? = Ty, by, AbNT:ﬁ Zfil Xgif(bi, letting MFbX;?‘ = XM, then denote
Xy MFoQ; Fo 1 s R oA . A
T ) TN ]z: z:: U thb Ltfb ¢t Z Z S 1 Up,jtUb,jt—s (beitflg,t—s =+ Xb,z't—sﬂﬁ,t) .

1 s=1t=s+1
(C.7)
We have chosen S = |T%/4].
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