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Abstract

We propose simple dual-channel models in which an upstream manufacturer trades
with a downstream retailer that is able to engage in cost-reducing activities. When
the manufacturer determines whether to encroach on the downstream market after
observing the retailer’s effort level, the threat of manufacturer encroachment can work
as a disciplinary device to induce the retailer to aggressively engage in cost reductions,
after which the manufacturer refrains from encroaching further on the downstream
market. The disciplinary device is more likely to improve consumer welfare and social
welfare, although the encroachment itself can harm social welfare.
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1 Introduction

This study considers the impact of manufacturer encroachment on an incumbent monopolis-

tic retailer that is able to engage in cost-reducing activities, as well as on consumer welfare

and social welfare. More specifically, we consider the effect on consumer welfare and social

welfare of the interaction between the threat of manufacturer encroachment and the retailer’s

ability to reduce costs.

Supplier encroachment normally harms retailers as a result of the direct competition

between existing retailers and the new retailer (i.e., the supplier).1 This is particularly serious

for small or medium-sized franchisees that trade with national franchisors (see Emerson

(2010) for examples in the United States, and Hashimoto (2017) for examples of Japanese

convenience stores). On the other hand, it is reasonable for franchisors (from their point

of view) to encroach on retail markets when their franchisees perform well or poorly in the

relevant markets (Devaraj, Fan, and Kohli, 2002; Rohm and Swaminathan, 2004). This is

because when franchisees perform well, there is sufficient room for all parties to earn profits

in the retail markets. In contrast, when franchisees perform poorly, an additional retail

channel is needed to provide substitutes for the franchisees in the markets. This reasoning

implies that franchisees can discourage a franchisor from entering the retail market by being

efficient in terms of cost and/or quality through cost-reducing/quality-enhancing activities.

In addition, even when encroachment occurs as a result of good performance, the damage it

causes is small because the retailers are sufficiently strong in their retail market.2 Following

this perspective, we can treat franchise encroachment as a disciplinary device for poorly

performing franchisees. To avoid supplier encroachment in this case, franchisees can engage

in cost-reducing/quality-enhancing activities. The perspective discussed here also implies

that franchisors are able to encroach on the retail markets by observing their franchisees’

effort levels. However, it would be better for franchisors to decide whether to encroach on the

1 However, marketing researchers know that this statement does not always hold in theory (see Arya,

Mittendorf, and Sappington, 2007).
2 The latter view is supported by Arya, Mittendorf, and Sappington (2007) from a theoretical point of

view. They show that supplier encroachment benefits a monopoly retailer if the retailer is efficient.
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retail market without observing their franchisees’ effort levels, because this could be a better

way to induce franchisees to engage in adequate cost-reducing/quality-enhancing activities.

Based on this discussion, we investigate the following research question: how do supplier

encroachment and a commitment to (non)encroachment work?

We construct simple dual-channel models in which an upstream manufacturer trades with

a downstream retailer that is able to engage in cost-reducing activities. The manufacturer

determines whether to encroach on the retail market after observing the retailer’s effort

level. We also consider models in which the sequence of cost-reduction and encroachment

is reversed, as in several works described below. That is, the upstream manufacturer first

determines whether to encroach on the market, after which the downstream retailer engages

in cost-reducing activities. Here, we compare three alternatives related to manufacturer

encroachment: (i) no commitment on whether or not to encroach; (ii) a commitment to

encroach; and (iii) a commitment to not encroach. The first alternative is related to the first

scenario, and the second and third alternatives are related to the second scenario.

The market structure in our study follows that of Arya, Mittendorf, and Sappington

(2007) in the sense that there is one upstream manufacturer and one downstream retailer.

The retailer in our study is able to engage in cost-reducing activities by incurring endogenous

sunk costs. Observing the retailer’s cost reduction, the manufacturer determines whether

to encroach on the downstream market. As noted earlier, we also consider situations in

which the manufacturer determines whether to encroach on the downstream market before

the retailer engages in cost-reducing activities. The marginal cost of the manufacturer’s

direct channel is assumed to be higher than that of the retailer, as in Arya, Mittendorf, and

Sappinton (2007), based on which the manufacturer unilaterally sets the linear wholesale

price. We also consider a scenario in which the manufacturer and retailer employ a two-

part tariff contract determined through Nash bargaining. Finally, the retailers set their

quantities if the manufacturer encroaches on the downstream market as in Arya, Mittendorf,

and Sappinton (2007), otherwise, only the retailer monopolistically sets its quantity.

The results are as follows. In the linear contract case, the retailer sets a high invest-
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ment level, which deters the manufacturer from entering the downstream market directly if

the manufacturer’s direct channel operates at an intermediate level of efficiency. This im-

plies that the threat of manufacturer encroachment can enhance the efficiency of the retailer

substantially. However, if the efficiency of the manufacturer’s direct channel is high (resp.

low), it enters (resp. does not enter) the downstream market directly, which diminishes

(resp. maintains) the incentive of the retailer to reduce its costs. Manufacturer encroach-

ment enhances the consumer surplus and the total surplus as a result of strong downstream

competition. In addition, if the manufacturer’s direct channel is not too inefficient, it has

no incentive to commit to a decision on whether or not to encroach; that is, it retains an

option to encroach until the retailer actually engages in cost-reduction activities. This out-

come is related to situations in which “franchise agreements state that the franchisee has no

exclusive territory” (Emerson, 2010, p.234). Interestingly, in this case, the manufacturer’s

concern over a commitment to encroach is aligned with that of the retailer.

In the case of a two-part tariff contract, the equilibrium decision of the manufacturer

on encroachment depends on its bargaining power over the retailer and the efficiency of its

direct channel. Specifically, in equilibrium, the manufacturer encroaches on the downstream

market if and only if (i) its bargaining power is not sufficiently strong or (ii) its direct

channel is significantly inefficient. This is because the benefit of increasing the manufacturer’s

disagreement payoff dominates the cost of distorting the wholesale price, which controls the

retail production.3 In contrast, suppose that neither (i) nor (ii) is satisfied. In this case,

the retailer sets a high enough investment level such that the manufacturer does not enter

the downstream market directly if the efficiency of the direct channel is sufficiently high.

Interestingly, the retailer may set a low investment level such that the manufacturer does

not enter the retail market directly if the efficiency of the manufacturer in the downstream

market is low, but not too low. These two outcomes are similar to that under the linear

contract case in that the retailer manipulates its investment level to prevent the manufacturer

3 However, if the manufacturer’s bargaining power is sufficiently strong, utilizing the more efficient retailer

effectively is better for the manufacturer because it earns enough profit from the fixed fee through bargaining.
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from entering the downstream market directly. If the efficiency of the manufacturer’s retail

channel is at an intermediate level, the retailer sets an optimal investment level as though

it does not face a threat of manufacturer encroachment.

In addition to the above results, the manufacturer’s decision on whether or not to en-

croach is almost consistent with what is best for the consumer surplus and the total surplus.

This is because the encroachment decision means that the manufacturer controls the re-

tailer’s incentive for cost-reducing activities, which enhances the consumer surplus and the

total surplus. This finding contrasts sharply with that of Matsushima, Mizuno, and Pan

(2018), who show that manufacturer encroachment decreases the total surplus owing to a

significant increase in the wholesale price if the efficiency of the manufacturer’s retail channel

is high. Although we show this counterintuitive outcome in the subgame in which the manu-

facturer decides whether to open a direct channel before the retailer engages in cost-reducing

activities, we show that the outcome is almost not realized in the overall game if we consider

the manufacturer’s decision on whether or not to commit to encroach. The results in our

study and Matsushima, Mizuno, and Pan (2018) imply that if retailers have (resp. do not

have) abilities to do such activities, encroachment is beneficial (resp. can be harmful).

Several works are related to ours. Since the pioneering work of Chiang, Chhajed, and

Hess (2003), who discuss direct marketing by a manufacturer explicitly, many researchers

have investigated market structures in which manufacturers operate in dual channels (e.g.,

Cattani et al., 2006; Kumar and Ruan, 2006; Yoo and Lee, 2011; Hsiao and Chen, 2013,

2014; Matsui, 2016). Although some of these studies examine an endogenous formation

of dual-channel market structures, in other words, manufacturer encroachment (e.g., Arya,

Mittendorf, and Sappington, 2007; Mizuno, 2012; Hsiao and Chen, 2013; Li, Xie, and Zhao,

2015; Matsui, 2016; Matsushima, Mizuno, and Pan, 2018; Pan, 2018), they do not consider

investments in quality improvement or in cost reduction. In addition, although some works

discuss investments in quality improvement or in cost reduction in dual-channel manufacturer

models (e.g., Tsay and Agrawal, 2004; Dan, Xu, and Liu, 2012; Pei and Yan, 2015; Yoon,

2016; Chen et al., 2017), they all compare just two kinds of market structures, namely
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those in which a manufacturer does or does not open a direct channel. That is, none of

these studies consider the relation between the threat of encroachment and investments by

manufacturers and/or retailers, which is the primary focus of our study.

The remainder of the paper proceeds as follows. Section 2 provides the model setting.

Section 3 shows the results of the model in which the vertical pair use a linear wholesale price.

Then, Section 4 extends the model by incorporating a two-part tariff contract, determined

through Nash bargaining. Finally, Section 5 concludes the paper.

2 Model

We consider a bilateral monopoly market with one manufacturer M and one retailer R. R

purchases manufacturing products from M at a linear wholesale price w, which it then resells

to final consumers at additional marginal cost c − xR, where c is a positive constant and

xR is R’s non-contractible effort level to reduce its marginal cost. Here, xR is related to

operational know-how, managerial efficiency, and so on. Furthermore, M cannot control xR

directly by means of a contract. R’s total marginal cost is c− xR +w, and R can engage in

cost-reducing activities by incurring a cost x2
R. We also consider a case of a two-part tariff.

We consider M ’s option to sell its product directly through its own direct channel, with

constant marginal cost c + cM , where cM is a positive constant. This implies that M is

less efficient than R in terms of handling its product itself in the downstream market. The

products distributed through M ’s and R’s channels are homogeneous. The inverse demand

in the market is given by4

p = 1− qR − qM , (1)

where qi is the quantity supplied by i = R,M (R and M indicate the retailer and manufac-

turer channel, respectively). If M does not sell its product directly through its own channel,

4 The demand formulation is a special case of the demand system derived from the representative consumer

utility U = αRqR + αMqM − (q2R + q2M + 2θqRqM )/2, where αR = αM = 1 and θ = 1 (e.g., Hsiao and Chen,

2013; Chen et al., 2017). Owing to the linearity of the demand system, we can equivalently convert the cost

difference between c− xR and c+ cM in our model to the quality difference between αR and αM , where R’s

investment in quality increases αR and the initial level of αR is higher than that of αM .
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qM = 0. The profits of M and R are given as

πM = wqR + (p− (c+ cM))qM , (2)

πR = (p− (c− xR)− w)qR − x2
R. (3)

The consumer surplus, the producer surplus, and the total surplus are defined as follows:

CS ≡ (qM + qR)
2

2
, PS ≡ πM + πR, TS ≡ CS + PS, (4)

respectively. We consider the following four-stage game. In stage 1, the retailer R chooses

its investment level xR. In stage 2, the manufacturer M decides whether to open its own

direct channel (i.e., encroachment). In stage 3, M unilaterally offers its wholesale price w

to R. In stage 4, R and M set quantities qR and qM simultaneously if M opens its own

direct channel; otherwise, R sets qR monopolistically. Note that the sequence of stages 1

and 2 follows the scenario motivated in the Introduction. That is, we investigate how the

threat of manufacturer encroachment induces R to engage in cost-reducing activities. Then,

we also consider a four-stage game in which the sequence of stages 1 and 2 changes; that

is, M determines whether to open its own direct channel in stage 1, and then R chooses

xR in stage 2. The latter approach is followed in several related papers, as described in the

Introduction.

3 Equilibrium

We need to consider two subgames after stage 2: (i) M does not open its own direct channel

(it does not encroach); and (ii) M opens its own direct channel (it encroaches). We denote

the former and the latter case as N and E, respectively.

3.1 The manufacturer does not encroach (case N)

In stage 4, the maximization problem of R is maxqR (1− qR − (c− xR)−w)qR − x2
R, leading

to qNR (xR, w) = (1 − c + xR − w)/2. In stage 3, anticipating the outcome, M maximizes

wqNR (xR, w), leading to wN(xR) = (1 − c + xR)/2 and qNR (xR, w
N) = (1 − c + xR)/4. The
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resulting profits of R and M in stage 3 are respectively given as

πN
R (xR) =

(1− c+ xR)
2

16
− x2

R, (5)

πN
M(xR) =

(1− c+ xR)
2

8
. (6)

3.2 The manufacturer encroaches (case E)

In stage 4, the maximization problems of R and M in stage 4 are maxqR (1− qR − qM − (c−

xR)− w)qR − x2
R and maxqM wqR + (1− qR − qM − (c+ cM))qM , respectively, leading to5

qER(xR, w) =


1− c+ cM + 2xR − 2w

3
if w > xR − ((1− c)− 2cM),

1− c+ xR − w

2
if w ≤ xR − ((1− c)− 2cM),

qEM(xR, w) =


1− c− 2cM − xR + w

3
if w > xR − ((1− c)− 2cM),

0 if w ≤ xR − ((1− c)− 2cM).

In stage 3, anticipating the outcome, M maximizes wqER(xR, w) + (1 − qER(xR, w) −

qEM(xR, w)− (c+ cM))qEM(xR, w), leading to

wE(xR) =



5(1− c)− cM + 4xR

10
if xR <

5(1− c)− 7cM
2

≡ xl
R,

xR − (1− c− 2cM) if xl
R ≤ xR < 3(1− c)− 4cM ≡ xh

R,
1− c+ xR

2
if xh

R ≤ xR.

The resulting profits of R and M in stage 3 are respectively given as

πE
R(xR) =



4(cM + xR)
2

25
− x2

R if xR < xl
R,

(1− c− cM)2 − x2
R if xl

R ≤ xR < xh
R,

(1− c+ xR)
2

16
− x2

R if xh
R ≤ xR,

(7)

πE
M(xR) =



(1− c− cM)2

4
+

(cM + xR)
2

5
if xR < xl

R,

(1− c− cM)(xR − (1− c− 2cM)) if xl
R ≤ xR < xh

R,

(1− c+ xR)
2

8
if xh

R ≤ xR.

(8)

5 We do not explicitly mention the possibility in which qER(xR, w) = 0. This is because R is more efficient

than M ’s direct channel, implying that M does not shut down R using a prohibitively high w.
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This result implies that R can be active if and only if it has a cost advantage over M ’s

direct channel, which is given by cM + xR. In addition, when xR ≥ xh
R, the outcome is

equivalent to that in case N .

3.3 Opening M ’s direct channel: Stage 2

To simplify the exposition, we define

z ≡ cM
1− c

.

The decision of M to open its own direct channel depends on the investment level xR.

Specifically, M opens its own channel if and only if πE
M(xR) > πN

M(xR); that is,

xR < x̄R ≡ (1− c){(5−
√
10)− (8−

√
10)z}

3
. (9)

3.4 Cost-reducing investment: Stage 1

Using the outcomes in (5), (7), and (9), we obtain the objective of R in stage 1 as follows:

πR(xR) ≡


πE
R(xR) =

4((1− c)z + xR)
2

25
− x2

R if xR < x̄R,

πN
R (xR) =

(1− c+ xR)
2

16
− x2

R, if xR ≥ x̄R.

(10)

Here, x̄R < 0 if and only if z > (5−
√
10)/(8−

√
10) ≃ 0.380. Within this range of z, xh

R > x̄R.

Solving the maximization problem maxxR
πR(xR), we obtain the following proposition.

Proposition 1 The optimal investment level of R is given as:6

x∗
R =



xE
R ≡ 4(1− c)z

21
if z ≤ 0.181,

x̄R =
(1− c){(5−

√
10)− (8−

√
10)z}

3
if 0.181 < z ≤ 0.339,

xN
R ≡ 1− c

15
if z > 0.339.

(11)

6 The exact values of 0.181 and 0.339 are

(
847− 2

√
70(8

√
10− 13)− 224

√
10

)
/(1327 − 280

√
10) and

(24− 5
√
10)/(5(8−

√
10)), respectively.
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In this scenario, M opens its own direct channel if and only if z ≤ 0.181. When z > 0.339,

the profits of M and R, the consumer surplus, and the total surplus are constant with an

increase in z. When 0.181 < z ≤ 0.339, the profit of M decreases with z, the profit of R

increases with z, the consumer surplus decreases with z, and the total surplus is concave with

respect to z. When z ≤ 0.181, the profit of M decreases with z, the profit of R increases with

z, and the consumer surplus and the total surplus decrease with z.

Here, we explain the outcome graphically although an explicit derivation is available in

Appendix A1. A notable feature of the outcome is that R sets significantly higher xR so

as not to induce M to encroach when z lies in the intermediate range of values in (11) (see

Figure 1). Thus, R’s effort to avoid encroachment enhances M ’s profit substantially, leading

to a non-monotonic relation between M ’s profit and z (see Figure 1).

[Figure 1 about here]

From Figure 1, we find that the wholesale price w∗ on the domain of smaller z, where en-

croachment occurs, is smaller than that on the domain of larger z, where encroachment does

not occur. This is reminiscent of the main mechanism in Arya, Mittendorf, and Sappington

(2007). On the domain of smaller z, the direct effect of welfare improvement from encroach-

ment, as a result of a reduction in wholesale prices and an increase in competition, dominates

the indirect effect of welfare deterioration resulting from a reduction in investment. Thus,

encroachment improves the consumer surplus and the total surplus.

3.5 Cost-reduction after encroachment

Here, observing the decision of M to open its own direct channel, R determines its level of

cost reduction in stage 2. For the case of no encroachment, from (10) and (11), the investment
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level is xN
R = (1− c)/15. In addition, for the case of encroachment, the investment level is

xE
R =



4(1− c)z

21
if z ≤ 0.677,

(1− c)(5− 7z)

2
(= xl

R) if 0.677 < z ≤ 0.714,

0 if 0.714 < z ≤ 0.742,
1− c

15
if 0.742 < z.

(12)

Substituting the outcome in stage 2 into (6) and (8), we have the profit of M under the two

cases:

πN
M(xN

R ) =
32(1− c)2

225
(13)

πE
M(xE

R) =



125z2(1− c)2

441
+

(1− c)2(1− z)2

4
if z ≤ 0.677,

3(1− z)2(1− c)2

2
if 0.677 < z ≤ 0.714,

(1− z)(2z − 1)(1− c)2 if 0.714 < z ≤ 0.742,

32(1− c)2

225
if 0.742 < z.

(14)

Comparing the two values in (13) and (14), we obtain the following proposition.7

Proposition 2 Manufacturer M opens its own direct channel if

z < 0.336 or 0.601 < z < 0.692. (15)

If the condition in (15) is satisfied, R’s optional investment level is xE
R in (12); otherwise,

it is xN
R = (1 − c)/15. If M does not encroach, the profits of M and R, the consumer

surplus, and the total surplus are constant with a change in z. When M encroaches, the

profit of M decreases in z for z < 0.336 and for z ∈ (0.677, 0.692), and increases in z for

z ∈ (0.601, 0.677]. The profit of R decreases in z for z ∈ (0.689, 0.692), and increases in z

for z < 0.336 or z ∈ (0.601, 0.689). The consumer surplus decreases in z for z < 0.336 or

z ∈ (0.601, 0.692). Lastly, the total surplus decreases in z for z < 0.336 or z ∈ (0.677, 0.692),

and increases in z for z ∈ (0.601, 0.677).

7 The exact values of 0.336, 0.601, 0.677, 0.689, and 0.692 are 7
(
315− 2

√
1987

)
/4705,

7
(
315 + 2

√
1987

)
/4705, 21/31, 31/45, and (45 − 8

√
3)/45, respectively. Note that M ’s retailer is inac-

tive if and only if z > 21/31.
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The equilibrium outcome is summarized in Figure 2. A notable feature of the outcome is

that for z ∈ (0.601, 0.692), encroachment reduces the wholesale price substantially (Arya,

Mittendorf, and Sappington, 2007), inducing R to invest aggressively. As a result, both M

and R benefit from M ’s encroachment. Moreover, on this range of z, (0.601, 0.692), the

wholesale price reduction means the incentive for R to invest is enhanced by encroachment.

That is, the existence of R’s investment opportunity reinforces the benefits of encroachment

described in Arya, Mittendorf, and Sappington (2007).

[Figure 2 about here]

3.6 Commitment problem: linear pricing

We consider the endogenous decision of whether or not to commit to encroachment/non-

encroachment. The sequence of the game is as follows. Initially, M decides whether to

commit to encroachment or non-encroachment. At this stage, M has three alternatives: (i)

M commits to non-encroachment, and then it never opens its own direct channel; (ii) M

commits to encroachment, and then it immediately opens its own direct channel; (iii) M

does not commit to either encroachment or non-encroachment, and it determines whether or

not to encroach after observing R’s effort level, xR. When M chooses the first alternative,

the subgame is the non-encroachment case in Section 3.5. When M chooses the second

alternative, the subgame is the encroachment case in Section 3.5. When M chooses the

third alternative, the subgame is the non-commitment case in Section 3.4.

To identifyM ’s incentive to commit to encroachment/non-encroachment, we compare the

outcomes in Sections 3.4 and 3.5 by merging Figures 1 and 2. The comparison is summarized

in Figure 3.

[Figure 3 about here]

The outcome is summarized as the following proposition.

Proposition 3 If z < 0.601, M does not have an incentive to commit to encroach. That

is, it retains the option to encroach until R actually engages in cost-reduction activities;

otherwise, it commits to encroaching on the retail market.
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The former outcome is related to situations in which “franchise agreements state that the

franchisee has no exclusive territory” (Emerson, 2010, p.234). Interestingly, the decision of

M on whether to commit is consistent with R’s interests. In particular, in the intermediate

range of z, [0.181, 0.339], R and M both prefer the non-commitment on encroachment in

Section 3.4 to the commitment on encroachment in Section 3.5. This is because the former

outcome allows R to monopolize the retail market, owing to R’s significant effort, whereas

the latter leads to a duopoly, irrespective of the retailer’s effort. For the upper range of z,

[0.601, 0.692), as discussed in Section 3.5, a commitment on encroachment benefits both M

and R, owing to the wholesale price reduction, which is expected by R in the investment

stage and encourages it to engage in cost-reduction activities.

From the viewpoint of the consumer surplus and the total surplus, the decision by M on

whether to commit is almost consistent with what is best for the total surplus. However, it

is not consistent with what is best for the consumer surplus for the intermediate range of z,

[0.181, 0.339]. The latter inconsistency stems from the retail monopoly resulting from non-

encroachment and the wholesale price increase, which offsets the benefit from the enhanced

effort of R.

4 Two-part tariff

Now, we return to the basic model by allowing two-part tariff contracts. The difference

between the setting here and that in the basic model lies in the third stage. Specifically, we

consider the following four-stage game. In stage 1, R chooses its investment level xR. In

stage 2, M decides whether to open its own direct channel. In stage 3, M and R negotiate

a two-part tariff contract, (w, f), through Nash bargaining, where w is the wholesale price

and f is the fixed payment to M . Then, α is the bargaining power of R over M . This is

the difference between this and the basic model. In stage 4, R and M set quantities qR and

qM simultaneously if M opens its own direct channel; otherwise, R sets qR monopolistically.

Note that we also consider a four-stage game in which the sequence of stages 1 and 2 is

reversed; that is, M determines whether or not to encroach in stage 1, after which R chooses

13



xR in stage 2.

We need to consider two subgames after stage 2: (i) M does not open its own direct

channel; (ii) M encroaches on the downstream market. We denote the former and the latter

cases as NT and ET , respectively.

4.1 The manufacturer does not encroach (case NT )

In stage 4, the outcome is qNR (xR, w) = (1 − c + xR − w)/2. In stage 3, anticipating the

outcome, M and R negotiate a two-part tariff, in which their disagreement profits are both

zero (excluding R’s sunk investment cost). The bargaining outcome is given as

wNT = 0, fNT (xR) =
(1− α)(1− c+ xR)

2

4
.

Avoiding the double-marginalization problem (by setting wNT = 0), M and R simply split

the downstream monopoly profit (1 − c + xR)
2/4 through Nash bargaining. The resulting

profits of R and M in stage 3 are respectively given as

πNT
R (xR) =

α(1− c+ xR)
2

4
− x2

R, (16)

πNT
M (xR) =

(1− α)(1− c+ xR)
2

4
. (17)

4.2 The manufacturer encroaches (case ET )

In stage 4, the outcome is the same as that in the linear pricing case. We restate it here.

qER(xR, w) =


(1− c)(1 + z) + 2xR − 2w

3
if w > xR − (1− c)(1− 2z) ≡ w̄(xR),

1− c+ xR − w

2
if w ≤ w̄(xR),

qEM(xR, w) =


(1− c)(1− 2z)− xR + w

3
if w > w̄(xR),

0 if w ≤ w̄(xR).

The resulting profits of R and M are πE
R(xR, w) = (qER(xR, w))

2 − f − x2
R and πE

M(xR, w) =

(qEM(xR, w))
2 + wqER(xR, w) + f , respectively.

In stage 3, anticipating the outcome, M and R negotiate a two-part tariff. In contrast

to case NT , M has a disagreement profit in which the negotiation breaks down. This is

14



πO
M = (1− c)2(1− z)2/4, which is realized if M is the monopolist after the breakdown of the

negotiation. The bargaining problem is given as

max
w,f

α log
[
πE
R(xR, w)− (−x2

R)
]
+ (1− α) log

[
πE
M(xR, w)− πO

M

]
.

The bargaining outcome is given as8

wET (xR) =


(1− c)(1− 5z)− 4xR

2
if xR <

(1− c)(1− 3z)

2
≡ KL,

−(1− c)(1− 2z) + xR if KL ≤ xR < (1− c)(1− 2z) ≡ KH ,

0 if KH ≤ xR,

fET (xR) =



(4− α)((1− c)z + xR)
2. if xR < KL,

(1− c)(1− z)((1− c)(4− α− (4− 5α)z) + 4αxR)

4
if KL ≤ xR < KH ,

(1− α)(1− c+ xR)
2 + α(1− c)2(1− z)2

4
if KH ≤ xR.

Owing to the encroachment by M , wET (xR) non-monotonically changes with xR. For xR <

KL, w
ET (xR) decreases because they need to shift a retail quantity from M ’s direct channel

to R, which is more efficient. At xR = KL, q
E
M(xR, w

ET (xR)) becomes zero, which implies

that halting M ’s direct channel is optimal. In addition, at xR = KL, the realized negative

wholesale price is in itself inefficient from the industry viewpoint, because it induces an

excessive supply by R. For xR ∈ (KL, KH), w
ET (xR) increases because it becomes easier to

halt M ’s direct channel as R’s efficiency improves through the increase in xR. The resulting

profits of R and M in stage 3 are respectively given as

πET
R (xR)=



α((1− c)z + xR)
2 − x2

R. if xR < KL,

(1− c)(1− z)(−((1− c)(1− 5z) + 4xR)

4
− x2

R if KL ≤ xR < KH ,

α((1− c)z + xR)((1− c)(2− z) + xR)

4
− x2

R if KH ≤ xR,

(18)

πET
M (xR)=



(1− c)2(1− z)2 + 4(1− α)((1− c)z + xR)
2

4
. if xR < KL,

(1− c)(1− z)((1− c)(α+ (4− 5α)z) + 4(1− α)xR)

4
if KL ≤ xR < KH ,

(1− α)(1− c+ xR)
2 + α(1− c)2(1− z)2

4
if KH ≤ xR.

(19)

8 Because πO
M does not depend on either w or f , they simply maximize their joint profits by controlling

w.
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4.3 Opening M ’s direct channel: Stage 2

The decision by M to open its own direct channel depends on the investment level xR.

Specifically, M opens its direct channel if and only if πET
M (xR) > πNT

M (xR). This inequality

holds if and only if

xR < x̄L
R ≡ (1− c)((1− α)(1− 4z)− J(1− z))

3(1− α)

or xR > x̄H
R ≡

(1− c)((1− α)(1− 2z)− (1− z)
√
α(1− α))

1− α
if (i) α ∈ [0, 1/5],

xR < x̄L
R or xR > x̄M

R ≡ (1− c)((1− α)(1− 4z) + J(1− z))

3(1− α)
if (ii) α ∈ (1/5, 1/4],

for any xR if (iii) α ∈ (1/4, 1],

(20)

where J ≡
√
(1− 4α)(1− α).

Note that for α ∈ [0, 1/5], x̄H
R > KL and x̄M

R > KL; for α ∈ [1/5, 1/4], x̄H
R < KL and

x̄M
R < KL.

4.4 Cost-reducing investment: Stage 1

For the three cases (i) α ∈ [0, 1/5], (ii) α ∈ (1/5, 1/4], and (iii) α ∈ (1/4, 1], using the

outcomes in (16), (18), and (20), we obtain the objective of R in stage 1 as follows:

πT
R(xR) ≡



α((1− c)z + xR)
2 − x2

R, if (i) xR < x̄L
R,

(ii) xR < x̄L
R or

x̄M
R < xR < KL,

(iii) xR < KL,

(1− c)(1− z)(−(1− c)(1− 5z) + 4xR)

4
− x2

R if (i) x̄H
R < xR < KH ,

(ii) KL ≤ xR < KH ,

(iii) KL ≤ xR < KH ,

α((1− c)z + xR)((1− c)(2− z) + xR)

4
− x2

R if (i) KH ≤ xR,

(ii) KH ≤ xR,

(iii) KH ≤ xR,

α(1− c+ xR)
2

4
− x2

R, if (i) x̄L
R ≤ xR ≤ x̄H

R ,

(ii) x̄L
R ≤ xR ≤ x̄M

R .

(21)

Solving the maximization problem maxxR
πT
R(xR), we obtain the following proposition.
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Proposition 4 The optimal investment level of R is given as:

xT∗
R =



x̄L
R if α ≤ 1/4 and z ≤ zL,

xNT
R ≡ α(1− c)

4− α
if α ≤ 1/5 and zL < z < zH , or

1/5 < α ≤ 1/4 and zL < z < zM

x̄H
R if α ≤ 1/5 and zH ≤ z ≤ zxRH ,

x̄M
R if 1/5 < α ≤ 1/4 and zM ≤ z ≤ zxRM ,

xET
R otherwise,

(22)

where

xET
R ≡



α(1− c)z

1− α
≡ xETL

R , if 0.247 < α ≤ 1/4 and zxRM ≤ z < zET
L or,

1/4 < α and z < zET
L ,

α(1− c)(1− z)

2
≡ xETM

R , if α ≤ 1/5 and zxRH ≤ z < zET
H , or

1/5 < α ≤ 0.247 and zxRM ≤ z < zET
H , or

0.247 < α ≤ 1/4 and zET
L ≤ z < zET

H , or

1/4 < α and zET
L ≤ z < zET

H ,

α(1− c)

4− α
≡ xETH

R , if zET
H ≤ z for any α,

(23)

zL ≡ 4− 5α + 4α2 − 4J

(4− α)(5− 4α)
, zM ≡ 4− 5α + 4α2 + 4J

(4− α)(5− 4α)
,

zH ≡
8− 16α + 5α2 − 4

√
α(1− α)

(4− α)(4− 5α)
, zET

L ≡ 1− α

3− α
, zET

H ≡ 2− α

4− α
,

zxRM ≡ 1 + J

5− 4α
, zxRH ≡

2− 3α−
√
α(1− α)

4− 5α
.

(24)

M opens its own direct channel if and only if the condition in (23) holds.

The outcome in (22) and M ’s decision on whether to encroach are summarized in Figure 4.

[Figure 4 about here]

Next, we review how M ’s encroachment decision influences the wholesale price. If M

does not encroach, the wholesale price is zero, irrespective of z. Otherwise, it decreases with

z monotonically whenever M ’s direct channel supplies a positive quantity, and is negative

at the minimum value of z such that the direct channel just stops its supply. This relation

is one of the key factors in our model.
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When α ≤ 1/4 and z ≤ zL, R sets xR = x̄L
R, which is larger than xNT

R , to avoid having

M encroach (see DS and N in xR/(1− c) in Figure 5). This aggressive investment enhances

M ’s profit, but reduces R’s profit (see (22) and Figure 5). When α ≤ 1/5 and zL < z < zH ,

or α ∈ (1/5, 1/4] and zL < z < zM , R’s investment level, xNT
R , does not depend on z, but

does depend on α, which has a positive effect on the profit share of R in the negotiation.

The higher profit share of R means that a larger α has a positive impact on R’s investment

level (see xR/(1− c) in Figure 5).9 When α ≤ 1/5 and zH ≤ z ≤ zxRH (resp. α ∈ (1/5, 1/4]

and zM ≤ z ≤ zxRM), interestingly, R sets xR = x̄H
R (resp. xR = x̄M

R ), which is lower than

xNT
R , to avoid inducing M to encroach, diminishing the profits of both M and R (see DW in

xR/(1 − c) in Figure 5). This is because M would encroach on the downstream market to

encourage R to produce more together with a negative wholesale price if R became sufficiently

efficient by setting xR = xNT
R .

When the condition in (23) holds, M decides to encroach. R is more useful when M ’s

efficiency in the downstream market is lower. To use R effectively, M , with a higher z, sets

a lower wholesale price, which encourages R’s production. Anticipating the lower wholesale

price, R sets a higher investment level (see E in xR/(1 − c) in Figure 5). The resulting

(gross) profit of R is partially transferred to M through the fixed payment. In fact, R’s

profit increases with z monotonically, whereas M ’s profit turns upward at an intermediate

value of z, owing to R’s stronger investment incentive (see the thin lines (the case of α = 0.28)

in πM/(1− c)2 and πR/(1− c)2 in Figure 5).

[Figure 5 about here]

4.5 Cost-reduction after encroachment

Here, observing M ’s decision on whether to open its own direct channel, R determines its

level of cost reduction in stage 2. The investment levels in the cases of non-encroachment

9 Here, xNT
R is the same as xET

R in the case of zET
H ≤ z, although these are derived from maxxR πT

R(xR)

in the fourth and third cases, respectively, in equation (21).
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and encroachment are respectively as follows:

xNT
R ≡ α(1− c)

4− α
, xET

R ≡


xETL
R , if z < zET

L ,

xETM
R , if zET

L ≤ z < zET
H ,

xETH
R , if zET

L ≤ z.

(25)

Substituting xET
R in (25) into (17) and (19), we have the profit of M under the two cases

πNT
M (xNT

R )=
4(1− α)(1− c)2

(4− α)2
, (26)

πET
M (xET

R )=



(1− c)2((1− α)(1− z)2 + 4z2)

4(1− α)
, if z < zET

L ,

(1− c)2(1− z)(α(3− 2α) + (4− 7α + 2α2)z)

4
, if zET

L ≤ z < zET
H ,

(1− c)2(α(4− α)2(1− z)2 + 16(1− α))

4(4− α)2
, if zET

L ≤ z.

(27)

Comparing the two values in (26) and (27), we obtain the following proposition.10

Proposition 5 Manufacturer M opens its own direct channel if and only if

α ≥ 0.263, or

α < 0.263 and z <
(4− α)(1− α)− 2

√
(1− α)(4− 16α+ 3α2)

(5− α)(4− α)
≡ z̄LM or

z > max

(4− α)(1− α) + 2
√
(1− α)(4− 16α + 3α2)

(5− α)(4− α)
,

(4− α)(2− α)(1− 2α)− 2
√
α(1− α)(4 + α− α2)

(4− α)(4− 7α + 2α2)

 ≡ z̄HM .

(28)

Figure 6 shows the condition in which M encroaches on the downstream market.

[Figure 6 about here]

For α > 0.263, encroachment gives a stronger bargaining position (a larger disagreement

payoff) to M , although it also causes a distortion in the retail distribution. For α < 0.263,

depending on the value of z, M opens its own direct channel. The impact of M ’s decision

on encroachment depends on the efficiency of M , z, because z influences the wholesale price

under encroachment. If z is large, encroachment encourages R to engage in cost-reducing

10 The exact value of 0.263 is 2(4−
√
13)/3.
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activities, owing to the negative wholesale price offered by M . If z is an intermediate value,

non-encroachment encourages R to engage in cost-reducing activities owing to its secured

monopoly position. If z is small, M encroaches on the retail market simply because en-

croachment increases its disagreement payoff. However, when z is small, from the viewpoint

of R’s investment incentive, there is a discrepancy between the realized channel structure

(encroachment) and the preferred structure (non-encroachment). The discrepancy and a suf-

ficiently large wholesale price, in which z is small, harms R’s profit and the consumer surplus

and the total surplus, as in the main analysis. Fortunately, except for the case in which z is

small, the equilibrium channel structure is acceptable from an efficiency viewpoint.

[Figure 7 about here]

Welfare reducing encroachment Compared to the case in which M commits to not

encroach, commitment to encroachment harms the consumer surplus and the total surplus

if the efficiency of M is high enough because M sets a significantly higher wholesale price.

Figure 7 shows the possibility. The curve on z ∈ [0, 0.061] (resp. z ∈ [0, 0.085]) in the

case of α = 0.18 (resp. α = 0.22) represents the outcome in which M encroaches. The flat

line-segment on z ∈ [0.061, 0.269] (resp. z ∈ [0.085, 0.24]) in the case of α = 0.18 (resp.

α = 0.22) represents the outcome in which M commits to not encroach and the outcome

does not depend on the value of z because M ’s direct channel is inactive. We find that

CS/(1 − c)2 and TS/(1 − c)2 for sufficiently small z are lower than those in which M does

not encroach. We also find that w/(1− c) for sufficiently small z is significantly higher than

that in which M does not encroach (w = 0). Although this welfare reducing encroachment

is derived in Matsushima, Mizuno, and Pan (2018), the negative result almost does not

appear if we consider M ’s decision on commitment to encroachment or non-encroachment

as in Section 3.6.
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4.6 Commitment problem: two-part tariff

Here, as in Section 3.6, to identify M ’s incentive to commit to encroachment or to non-

encroachment, we compare the outcomes in Sections 4.4 and 4.5. We need to compare M ’s

three alternatives: (i) M commits to non-encroachment, and then it immediately opens

its own direct channel; (ii) M commits to encroachment, and then it never opens its own

direct channel; (iii) M does not commit to either encroachment or non-encroachment, and

it determines whether or not to encroach after observing R’s effort level, xR.

Given R’s effort level, the consumer surplus in the non-encroachment case and that in

the encroachment case are given as

CSNT (xR) =
(1− c+ xR)

2

8
,

CSET (xR) =



((1− c)(1 + z) + 2xR)
2

8
if xR < KL,

(1− c)2(1− z)2

2
if KL ≤ xR < KH ,

((1− c)(2− z) + xR)
2

18
if KH ≤ xR.

The resulting total surplus in the non-encroachment case and that in the encroachment case

are TSNT (xR) = πNT
R (xR) + πNT

M (xR) + CSNT (xR) and TSET (xR) = πET
R (xR) + πET

M (xR) +

CSET (xR), respectively. Let be zCS and zTS the larger roots of the quadratic equations

CSNT (x̄L
R) − CSET (xETL

R ) = 0 and TSET (xETL
R ) − TSNT (xNT

R ) = 0, with respect to z,

respectively. After some calculus, we obtain the condition that M ’s choice for the three

alternatives:

Proposition 6 M does not commit to either encroachment or non-encroachment if

z ≤ z̄HM or z ≥ zxRH when α ∈ [0, 1/5),

z ≤ z̄HM or z ≥ zxRM when α ∈ [1/5, 1/4),

z ≤ z̄LM or z ≥ z̄HM when α ∈ [1/4, 0.263),

for any z when α ∈ (0.263, 1]

(29)

(see the white, blue, and gray areas in Figure 8), otherwise, it commits to either encroachment

or non-encroachment on the retail market (the read area in Figure 8). More concretely, given
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that the condition in (29) does not hold, M commits to encroachment if α < 1/4, otherwise,

M commits to non-encroachment. M ’s choice for the three alternatives is not consistent

with R’s interest if z̄LM < z < zL or z̄HM < z < zxRH when 0 < α < 1/5, or z̄LM < z < zL

or z̄HM < z < zxRM when 1/5 ≤ α < 1/4 (see the gray and red area without shade or dots

in Figure 8). M ’s choice for the three alternatives is not consistent with what is best for

the consumer surplus if zCS < z < z̄LM when 0 < α < 1/4, or z̄LM < z < z̄HM when for

1/4 ≤ α < 0.263 (see the blue area with shade and the red area with shade or dots in Figure

8). M ’s choice for the three alternatives is not consistent with what is best for the total

surplus if zTS < z < z̄HM when 1/4 ≤ α < 0.2626 (see the red area with shade in Figure

8). M ’s choice for the three alternatives is consistent with what is best for R, the consumer

surplus, and the total surplus if

z ≤ zCS, zL ≤ z ≤ z̄HM , or z ≥ zxRH when α ∈ [0, 1/5),

z ≤ zCS, zL ≤ z ≤ z̄HM , or z ≥ zxRM when α ∈ [1/5, 1/4),

z ≤ z̄LM or z ≥ z̄HM when α ∈ [1/4, 0.263),

for any z when α ∈ (0.263, 1].

Figure 8 summarizes the conditions in Proposition 6.

[Figure 8 about here]

Except the red area with shade on α ∈ [1/4, 0.263), M ’s choice for the three alternatives

is consistent with what is best for the total surplus. When α < 1/4, M ’s choice for the

alternatives enhances R’s incentive to set a higher effort level which is beneficial to the total

surplus.

In Figure 9, the thin solid line on smaller z in the case of α = 0.15 is related to the

investment enhancing effect (see xR/(1− c)), and the thick dashed line on z ∈ [0.136, 0.176]

in the case of α = 0.26 is related to the negative effect of commitment to non-encroachment.

This is quite different from the result of welfare reducing encroachment in Section 4.5.

[Figure 9 about here]
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5 Conclusion

This study considers the impact of manufacturer encroachment on a monopolistic incumbent

retailer that is able to engage in cost-reducing activities, as well as on the consumer surplus

and the total surplus. We construct simple dual-channel models showing when an upstream

manufacturer encroaches on the retail market after observing the retailer’s effort level. We

consider a linear contract and a two-part tariff contract. In particular, we take into account

the bargaining power of each agent in the latter case.

We also consider models in which the sequence of cost-reduction and encroachment is

reversed, as in the related studies listed in the Introduction. That is, the upstream man-

ufacturer first determines whether or not to encroach, after which the downstream retailer

engages in cost-reducing activities.

In addition, we compare three alternatives on manufacturer encroachment: (i) a non-

commitment on encroachment, (ii) a commitment to encroach, and (iii) a commitment to

not encroach. The first alternative is related to the first scenario, and the second and third

alternatives are related to the second scenario.

The results are as follows. In the linear contract case, the retailer sets a high investment

level which prevents the manufacturer from entering the downstream market directly if

the efficiency of the manufacturer in the retail market is at an intermediate level. If the

efficiency of the manufacturer in the downstream market is high (resp. low), it enters (resp.

does not enter) the downstream market directly, which reduces (resp. keeps) the incentive

of the retailer to engage in cost-reduction activities. Manufacturer encroachment enhances

the consumer surplus and the total surplus as a result of strong downstream competition.

In addition, if the manufacturer’s direct channel is not too inefficient, it does not have an

incentive to commit on whether to encroach; that is, it retains the option to encroach until

the retailer actually engages in cost-reduction activities. Interestingly, the manufacturer’s

concern over a commitment to encroach is aligned with that of the retailer. That is, the

retailer prefers the manufacturer’s non-commitment to a decision to encroach.

In the two-part tariff contract case, the equilibrium decision of the manufacturer on
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encroachment depends on its bargaining power over the retailer and on the efficiency of its

direct channel. Specifically, in equilibrium, the manufacturer encroaches on the downstream

market if and only if (i) its bargaining power is not sufficiently strong or (ii) its direct

channel is significantly inefficient. When neither (i) nor (ii) is satisfied, the retailer sets

a high investment level, which prevents the manufacturer from entering the downstream

market directly if the efficiency of the manufacturer’s direct channel is high. Interestingly,

the retailer may set a low investment level to prevent the manufacturer from entering the

retail market directly if the efficiency of the manufacturer in the downstream market is low

(but not too low). These two outcomes are similar to those in the linear contract case in

that the retailer manipulates its investment level so as not to induce the manufacturer to

enter the downstream market directly. If the efficiency of the manufacturer’s direct channel

is at an intermediate level, the retailer sets an optimal investment level as though there is

no threat of manufacturer encroachment.

In addition, in the two-part tariff contract case, if the manufacturer’s direct channel is

not inefficient, it does not have an incentive to commit on whether to encroach. That is, it

retains the option to encroach until the retailer actually engages in cost-reduction activities.

Other than in an intermediate range of manufacturer efficiency, the manufacturer’s concern

over the commitment to encroach is almost aligned with that of the retailer. Moreover, the

manufacturer’s encroachment decision is almost consistent with what is best for the con-

sumer surplus and the total surplus. This is because the decision on whether to commit to

encroach enables the manufacturer to control the retailer’s incentive for cost-reducing activi-

ties, which enhances both the consumer surplus and the total surplus. This finding contrasts

sharply with that of Matsushima, Mizuno, and Pan (2018), who show that manufacturer

encroachment decreases the total surplus as a result of a significant increase in the wholesale

price if the efficiency of manufacturer’s retail channel is high. Although we also shows this

counterintuitive outcome in Section 4.5, we show that it is almost not realized in the overall

game if we take into account cost-reducing activities and the manufacturer’s decision on

whether to commit to encroach, as in Section 4.6.
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Here, we have considered a monopolistic buyer–supplier relationship. As an extension

of our model, we can consider a bilateral duopoly with cost asymmetry in the downstream

level. Then, if it is not too complex, we could extend this second model further to include

two incumbent downstream firms that engage in cost reduction. These scenarios are both

left for future research.
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x∗
R w∗

M ’s profit R’s profit

Consumer surplus Total surplus
Figure 1: The outcome under a linear contract (R&D-Encroachment)

Note: Horizontal axis is cM/(1− c)
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x∗
R w∗

M ’s profit R’s profit

Consumer surplus Total surplus
Figure 2: The outcome under a linear contract (Encroachment-R&D)

Note: Horizontal axis is cM/(1− c)
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Figure 3: Comparison of the two scenarios under a linear contract
Note: Horizontal axis is cM/(1− c)
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Figure 4: Investment level and encroachment decision (R&D-Encroachment)
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Figure 5: The outcomes under a two-part tariff (R&D-Encroachment)
Note: Horizontal axis is cM/(1− c)
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Figure 6: Encroachment decision (Encroachment-R&D)
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Figure 9: Comparison of the two scenarios under a two-part tariff
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Online appendix on

“Supplier encroachment and retailer effort”

by Noriaki Matsushima and Tomomichi Mizuno

A Calculating equilibrium under linear contract

In this appendix, we calculate the equilibrium. Here, we consider the case where the retailer

R and the manufacturer M use a linear contract. The profits of R and M are πR = (1 −

qR − qM − (c− xR)−w)qR − x2
R and πM = wqR + (1− qR − qM − (c+ cM))qM , respectively.

Throughout this appendix, we assume 1 > c+ cM , c > 0, and cM > 0. Note that if the first

assumption is not satisfied, the direct channel output is always zero.

A.1 Cost-reduction before encroachment

First, we consider the case in which R engages in cost reduction before M ’s encroachment

decision.

A.1.1 Stage 3 and 4: Cournot competition and wholesale pricing

For the third and fourth stages, we have two subgames: that in which M does not open its

own direct channel (case N) and that in which it does open its own direct channel (case E).

Stages 3 and 4 in case N (Section 3.1) When M does not encroach (does not open

its own direct channel), the maximization problem for R in the fourth stage is maxqR (1−

qR − (c − xR) − w)qR − x2
R, where qM = 0. Because R is a unique channel, qR must be

strictly positive (i.e., qR > 0). The first-order condition yields the output qNR (w, xR) =

(1− c− w + xR)/2.

Substituting qNR (w, xR) into πM , we have the maximization problem in the third stage

maxw wqNR (w, xR). Solving this problem, the wholesale price is wN(xR) = (1 − c + xR)/2,

leading to qNR (xR) = (1− c+ xR)/4, π
N
R (xR) in (5), and πN

M(xR) in (6).
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Stage 4 in case E (Section 3.2) First, we derive an interior solution by simply calcu-

lating the first-order conditions. Using the interior solution, we check the condition that the

quantity supplied by each retail channel is positive.

In the fourth stage, the maximization problems for the retail channels of R and M are

maxqR (1− qR − qM − (c− xR)−w)qR − x2
R and maxqM wqR + (1− qR − qM − (c+ cM))qM ,

respectively. The first-order conditions lead to

qR(w, xR) =
1− c+ cM − 2w + 2xR

3
, qM(w, xR) =

1− c− 2cM + w − xR

3
.

By checking the signs of qR(w, xR) and qM(w, xR), we obtain the following relations: qR(w, xR) >

0 and qM(w, xR) ≤ 0 if w ≤ xR − (1 − c − 2cM) ≡ w̄L; qR(w, xR) > 0 and qM(w, xR) > 0 if

w̄L < w < (1 − c + cM + 2xR)/2 ≡ w̄H ; and qR(w, xR) ≤ 0 and qM(w, xR) > 0 if w ≥ w̄H .

We check the corner solutions in the case of w ≤ w̄L and w ≥ w̄H .

The outputs in the case of w ≤ w̄L are the same as those in case N . Then, the outputs

are qR = qNR (w, xR) and qM = 0. For the case of w ≥ w̄H , we solve maxqM wqR + (1− qR −

qM − (c + cM))qM s.t. qR = 0. Then, the outputs are qR = 0 and qM = (1 − c − cM)/2.

Summarizing the above, we have the following outputs in the fourth stage.

[
qER(w, xR), q

E
M(w, xR)

]
=



[
1− c+ xR − w

2
, 0
]
, if w ≤ w̄L,[

1− c+ cM + 2xR − 2w

3
,
1− c− 2cM − xR + w

3

]
if w̄L < w < w̄H ,[

0,
1− c− cM

2

]
if w̄H ≤ w.

Substituting these outputs into the profit equations, we have πE
R(w, xR) = [qER(w, xR)]

2−

x2
R and πE

M(w, xR) = wqER(w, xR) + [qEM(w, xR)]
2.

Stage 3 in case E We consider the three cases derived above: w ≤ w̄L, w̄L < w < w̄H ,

and w ≥ w̄H . Using the first-order condition in each case, we first calculate the candidate

wholesale price.

First, we consider the profit of R with w ≤ w̄L. Solving the first-order condition

∂πE
M(w, xR)/∂w = 0, we have w = (1 − c + xR)/2 ≡ w+0(xR), where the subscript in-
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dicates that the quantities of R and M are strictly positive (+) and zero (0), respec-

tively. Second, we consider the case of w̄L < w < w̄H . The first-order condition leads

to w = (5(1− c)− cM +4xR)/10 ≡ w++(xR), where the subscript means that the quantities

of R and M are strictly positive (+). Finally, we consider the case of w ≥ w̄H . Because

qR = 0 for any w ∈ [w̄H ,∞), the profit of M does not depend on w. Here, we assume that

M chooses w = w̄H ≡ w0+, where the subscript indicates that the quantities of R and M

are zero (0) and strictly positive (+) respectively.

Next, we compare w̄L, w̄H , w+0, and w++. We define xl
R ≡ (5(1− c)− 7cM)/2, which we

obtain by solving w̄L = w++ for xR, and xh
R ≡ 3(1 − c) − 4cM , which we obtain by solving

w̄L = w+0.

Then, we have 
w̄L < w++ < w+0 < w̄H if xR < xl

R,
w++ ≤ w̄L < w+0 < w̄H if xl

R ≤ xR < xh
R,

w++ < w+0 ≤ w̄L < w̄H if xh
R ≤ xR.

Moreover, we can show that πE
R(w, xR) is continuous at w̄L and w̄H . Because we must keep

w+0 ≤ w̄L and w̄L < w++ < w̄H , the optimal wholesale price is as follows:

wE(xR) =


5(1− c)− cM + 4xR

10
(= w++) if xR < xl

R,

xR − (1− c− 2cM) (= w̄L) if xl
R ≤ xR < xh

R,
1− c+ xR

2
(= w+0) if xh

R ≤ xR.

Substituting wE(xR) into the profit functions of R and M , we have πE
R(xR) in (7) and

πE
M(xR) in (8). Similarly, substituting wE(xR) into qER(w, xR) and qEM(w, xR), we have

qER(xR) = qER(w
E(xR), xR) and qEM(xR) = qEM(wE(xR), xR).

A.1.2 Stage 2

Comparing M ’s profit under encroachment with that under no-encroachment, we show the

condition in which M encroaches. We have three cases, based on the level of investment xR:

xR ∈ [0, xl
R), xR ∈ [xl

R, x
h
R), and xR ∈ [xh

R,∞). We can easily show that in the second and

third cases, M does not have an incentive to encroach. That is, πN
M(xR) > πE

R(xR).
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Here, we define z ≡ cM/(1 − c). We consider the first case, xR ∈ [0, xl
R). Calculating

πE
M(xR) − πN

R (xR), and substituting in cM = z(1 − c), we have a quadratic function of xR

with a positive coefficient of x2
R. Solving πE

M(xR)− πN
R (xR) = 0 for xR, we have

xR =


(1− c)

(
5− 8z −

√
10(1− z)

)
3

≡ x̄R,

(1− c)
(
5− 8z +

√
10(1− z)

)
3

≡ x̄′
R.

Comparing x̄R, x̄
′
R, and xl

R, we have x̄R < xl
R < x̄′

R. Hence, we do not need to consider the

threshold value x̄′
R. Then, M opens its own direct channel if xR < x̄R.

The profits of R and M are πE
R(xR) and πE

M(xR), respectively, if xR < x̄R, and πN
R (xR)

and πN
M(xR), respectively, if xR ≥ x̄R (πR(xR) in (10)).

A.1.3 Stage 1

From the result in the second stage, we have two cases: xR < x̄R and xR ≥ x̄R. First, we

naively derive the “optimal” xR without taking into account the conditions in the two cases.

Then, using the two “optimal” values of xR, we check the true optimal xR.

First, we consider the case of xR < x̄R, in which the profit of R is πE
R(xR). Solving the

first-order condition ∂πE
R(xR)/∂xR = 0 for xR, we have xR = 4(1 − c)z/21 ≡ xE

R. Next,

we consider the case of xR ≥ x̄R. The first-order condition ∂πN
R (xR)/∂xR = 0 leads to

xR = (1− c)/15 ≡ xN
R .

In order to determine the true optimal investment level, we compare xE
R, x

N
R , and x̄R.

Then, we obtain the following:
xE
R < x̄R and xN

R ≤ x̄R if z ≤ 0.339

(
≈ 71− 8

√
10

135

)
,

xE
R < x̄R and x̄R < xN

R if 0.339 < z < 0.340

(
≈ 7(46− 5

√
10)

622

)
,

x̄R ≤ xE
R and x̄R < xN

R if 0.340 ≤ z,

where, after solving xN
R = x̄R and xE

R = x̄R for z, respectively, we obtain z = 0.339 and

z = 0.340. This result means that the candidate optimal investment levels are xE
R and x̄R if

z ≤ 0.339, xE
R and xN

R if 0.339 < z < 0.340, and xN
R if z ≥ 0.340.
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Comparing the profits of R at the candidate levels, we show the equilibrium investment

level. For the case of z ≤ 0.339, we have πE
R(x

E
R) > πN

R (x̄R) if z < (847−2
√
70(8

√
10− 13)−

224
√
10)/(1327− 280

√
10) ≈ 0.181. Hence, R chooses xR = xE

R if z < 0.181, and xR = x̄R if

0.181 ≤ z ≤ 0.339. In the case of 0.339 < z < 0.340, we have πE
R(x

E
R) < πN

R (xN
R ). Hence, R

chooses xR = xN
R . In the case of z ≥ 0.340, because we have πE

R(x̄R) < πN
R (xN

R ), R chooses

xN
R .

Summarizing the above results, we obtain the equilibrium investment level described in

Proposition 1:

x∗
R =



xE
R =

4(1− c)z

21
if z ≤ 0.181,

x̄R =
(1− c){(5−

√
10)− (8−

√
10)z}

3
if 0.181 < z ≤ 0.339,

xN
R =

1− c

15
if z > 0.339.

Finally, we calculate the equilibrium outcomes by substituting xR = x∗
R into qNR (xR),

wN(xR), π
N
R (xR), π

N
M(xR), q

E
R(xR), q

E
M(xR), w

E(xR), π
E
R(xR), and πE

M(xR). Here, we divide

the outputs and the wholesale price by 1 − c, and divide the profits by (1 − c)2. Note that

xE
R < xl

R for z ≤ 0.181.

[
q∗R

1− c
,

q∗M
1− c

,
w∗

1− c

]
=



[
10z

21
,
21− 31z

42
,
21− z

42

]
if z ≤ 0.181,

[
(8−

√
10)(1− z)

12
, 0,

(8−
√
10)(1− z)

6

]
if 0.181 < z ≤ 0.339,[

4

15
, 0,

8

15

]
if 0.339 < z,
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
π∗
R

(1− c)2

π∗
M

(1− c)2

 =




4z2

21
441− 882z + 941z2

1764

 if z ≤ 0.181,


24
√
10− 81 + (242− 64

√
10)z + 5(8

√
10− 37)z2

24
(8−

√
10)2(1− z)2

72


if 0.181 < z ≤ 0.339,

1

15
32

225

 if 0.339 < z.

Substituting the above results into CS, PS, and TS, we have the equilibrium surpluses CS∗,

PS∗, and TS∗, respectively. Note that after dividing these functions by (1−c)2, they include

only the parameter z.

Because these outcomes contain only parameter z after dividing by 1− c or (1− c)2, we

can depict them as shown in Figure 1. Moreover, differentiating these outcomes with respect

to z, we complete the proof of Proposition 1.

A.2 Cost-reduction after encroachment

For the third and the fourth stages, we have the same outcomes as in the case of cost-

reduction before encroachment. Hence, we start with the second stage, where R chooses an

investment level.

A.2.1 Stage 2

In this stage, R chooses an investment level. Following the decision in the first stage, we

have two subgames: that in which M does not open its own direct channel (case N), and

that in which it does open its own direct channel (case E).

Stage 2 (case N) First, we consider the case without encroachment. The profit of R is

πN
R (xR) in (10), and the first-order condition leads to xR = (1 − c)/15(= xN

R ). Then, the

profits of R and M are πN
R (xN

R ) and πN
M(xN

R ), respectively.
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Stage 2 (case E) Based on the investment levels, we have three cases: xR < xl
R, x

l
R ≤

xR < xh
R, and xh

R ≤ xR. First, we naively derive xR that satisfies the first-order conditions

in each of the three cases. These xR are the candidates for the optimal investment level.

For xR < xl
R, the first-order condition leads to xR = 4(1− c)z/21(= xE

R). For x
l
R ≤ xR <

xh
R, the first-order condition yields xR = 0. For xh

R ≤ xR, solving the first-order condition,

we have xR = (1− c)/15(= xN
R ).

Comparing xE
R, x

N
R , x

l
R, x

h
R, and 0, we have the following inequalities.

xE
R ≤ xl

R, 0 < xl
R, and xN

R < xh
R if 0 < z ≤ 21

31
(≈ 0.677),

xl
R < xE

R, 0 ≤ xl
R, and xN

R < xh
R if 0.677 < z ≤ 5

7
(≈ 0.714),

xl
R < xE

R, xl
R < 0 < xh

R, and xN
R ≤ xh

R if 0.714 < z ≤ 11

15
(≈ 0.733),

xl
R < xE

R, xl
R < 0 ≤ xh

R, and xh
R < xN

R if 0.733 < z ≤ 3

4
(= 0.75),

xl
R < xE

R, xh
R < 0, and xh

R < xN
R if 0.75 < z.

Note that we find that the profit function of R, πE
R(xR), is continuous with respect to xR by

substituting xR = xl
R or xR = xh

R into πE
R(xR). Moreover, πE

R(xR) is locally concave over xR

for each of the three cases. For z ≤ 0.677, xR = xE
R is the local optimal value on the range

[0, xl
R), and πE

R(xR) decreases in xR on [xl
R,∞). Hence, xR = xE

R is the global optimal value.

For 0.677 < z ≤ 0.714, πE
R(xR) increases in xR on [0, xl

R), and decreases in xR on [xl
R,∞).

Hence, xR = xl
R is the global optimal value. For 0.714 < z ≤ 0.733, πE

R(xR) monotonically

decreases in xR for xR ≥ 0(> xl
R). Hence, xR = 0 is the global optimal value. For z > 0.75,

πE
R(xR) is maximized at xR = xN

R for xR ≥ 0(≥ xh
R).

The remaining case is 0.733 < z ≤ 0.75. In this case, we have two candidates for the

optimal investment level: xR = 0 for (xl
R <)0 ≤ xR < xh

R, and xR = xN
R for xR ≥ xh

R.

Substituting these into πE
R(xR), we have πE

R(0) ≥ πE
R(x

N
R ) if 0.733 < z ≤ (15 −

√
15)/15(≈

0.742), and πE
R(0) < πE

R(x
N
R ) if 0.742 < z ≤ 0.75, respectively.
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Summarizing the above results, we have the following outcome in the second stage.

xE2nd
R =



4(1− c)z

21
(= xE

R) if z ≤ 0.677,

(1− c)(5− 7z)

2
(= xl

R) if 0.677 < z ≤ 0.714,

0 if 0.714 < z ≤ 0.742,
1− c

15
(= xN

R ) if 0.742 < z.

Substituting xR = xE2nd
R into the profits of R and M , we have the following:


πE2nd
R

(1− c)2

πE2nd
M

(1− c)2

 =




4z2

21
125z2

441
+

(1− z)2

4

 if z ≤ 0.677,


(3− 5z)(7− 9z)

4
3(1− z)2

2

 if 0.677 < z ≤ 0.714,

[
(1− z)2

(1− z)(2z − 1)

]
if 0.714 < z ≤ 0.742,


1

15
32

225

 if 0.742 < z.

A.2.2 Stage 1

We derive Proposition 2 by comparing πN
M(xN

R ) and πE2nd
M . For z ≤ 0.677, πE2nd

M > πN
M(xN

R )

if z < 7(315 − 2
√
1987)/4705(≈ 0.336) or 7(315 + 2

√
1987)/4705(≈ 0.601) < z ≤ 0.677.

For 0.677 < z ≤ 0.714, πE2nd
M > πN

M(xN
R ) if 0.677 < z < (45 − 8

√
3)/45(≈ 0.692). For

0.714 < z, πE2nd
M < πN

M(xN
R ). Hence, M encroaches when the following condition is satisfied

(as in Proposition 2):

z < 0.336 or 0.601 < z < 0.692.

As in the case with investment before encroachment, using the threshold values z =
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0.336, 0.601, 0.677, and 0.692, we can calculate the equilibrium outcomes, as follows:


q∗∗R
1− c

,
q∗∗M
1− c

w∗∗

1− c
,

x∗∗
R

1− c

 =




10z

21
,

21− 31z

42
21− z

42
,

4z

21

 if z < 0.336 or 0.601 < z < 0.677,


4

15
, 0

8

15
,

1

15

 if 0.336 ≤ z ≤ 0.601 or 0.692 ≤ z,

 1− z, 0

3(1− z)

2
,

5− 7z

2

 if 0.677 ≤ z < 0.692,

[
π∗∗
R

(1− c)2
,

π∗∗
M

(1− c)2

]
=



[
4z2

21
,

441− 882z + 941z2

1764

]
if

z < 0.336 or
0.601 < z < 0.677,[

1

15
,

32

225

]
if

0.336 ≤ z ≤ 0.601 or
0.692 ≤ z,[

21− 62z + 45z2

4
,

3(1− z)2

2

]
if 0.677 ≤ z < 0.692,

Substituting the above results into CS, PS, and TS, we have the equilibrium surpluses

CS∗∗, PS∗∗, and TS∗∗, respectively. Note that after dividing these functions by (1 − c)2,

they include only parameter z.

Using the above outcomes, we derive Figure 2. Moreover, differentiating these outcomes

with respect to z, we complete the proof of Proposition 2.

B Calculating the equilibrium under a two-part tariff

Here, we calculate the equilibrium for a two-part tariff. The profits of R and M are πR =

(p− (c− xR)− w)qR − x2
R − f and πM = wqR + (p− (c+ cM))qM + f , respectively.

B.1 Cost-reduction before encroachment

B.1.1 No encroachment subgame (Case NT )

First, we consider the case without encroachment. In the fourth stage, M ’s output is zero

and R chooses qNR (xR, w) = (1− c+ xR − w)/2 = argmaxqR πR. Then, the resulting profits
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of R and M are πN
R (xR, w) = (qNR (xR, w))

2 − f − x2
R and πN

M(xR, w) = wqNR (xR, w) + f ,

respectively.

In the third stage, M and R negotiate a two-part tariff. Then, the bargaining outcome

is (wN , fN(xR)) = (0, (1− α)(1− c + xR)
2/4) = argmax α log

[
πN
R (xR, w)− (−x2

R)
]
+ (1−

α) log
[
πN
M(xR, w)

]
. From the third and fourth stage outcomes, we obtain the profits of R

and M as (16) and (17), respectively:

πNT
R (xR) =

α(1− c+ xR)
2

4
− x2

R, πNT
M (xR) =

(1− α)(1− c+ xR)
2

4
.

B.1.2 Encroachment subgame (Case ET )

We consider the subgame under encroachment. In the fourth stage, the first-order conditions

lead to

qER(xR, w) =


(1− c)(1 + z) + 2xR − 2w

3
if w > xR − (1− c)(1− 2z) ≡ w̄(xR),

1− c+ xR − w

2
if w ≤ w̄(xR),

qEM(xR, w) =


(1− c)(1− 2z)− xR + w

3
if w > w̄(xR),

0 if w ≤ w̄(xR).

Substituting these into the profits of R and M , we have πE
R = (qER(xR, w))

2 − f − x2
R and

πE
M(xR, w) = (qEM(xR, w))

2 + wqER(xR, w) + f , respectively.

In the third stage, R and M negotiate a two-part tariff. The outside option for R is

the same as that in the case without encroachment: −x2
R. On the other hand, even if the

negotiation breaks down, M can sell its product through its own direct channel. Hence, the

outside profit is πO
M = (1 − c)2(1 − z)2/4 = maxqM πM s.t. qR = 0. Then, the bargaining

problem is

max
w,f

α log
[
πE
R(xR, w)− (−x2

R)
]
+ (1− α) log

[
πE
M(xR, w)− πO

M

]
.

Because the outside profit πO
M does not depend on w and f , we can solve this maximization

problem as follows. First, we maximize the net joint profit, πE
R(xR, w)−(−x2

R)+πE
M(xR, w)−

πO
M , with respect to w. Second, we divide the maximized net joint profit by f . Specifically, we
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first obtain wET (xR) = argmaxw πE
R(xR, w)−(−x2

R)+πE
M(xR, w)−πO

M = argmaxw Π(xR, w),

where Π(xR, w) ≡ πE
R(xR, w) + πE

M(xR, w), which is the actual joint profit. Second, sub-

stituting wET (xR) into the profits of R and M , we solve the following equation for f :

πE
R(xR, w

ET ) − (−x2
R) = α[πE

R(xR, w
ET ) − (−x2

R) + πE
M(xR, w

ET ) − πO
M ]. In this way, we

obtain the fixed fee f = fET (xR).

Here, we derive wET and fET . Because qEM(xR, w) and qER(xR, w) are continuous in w,

Π(xR, w) is also continuous in w. First, we calculate candidates for wET . Using qEM(xR, w)

and qER(xR, w) for the case with w > w̄(xR), we solve ∂Π(xR, w)/∂w = 0, leading to w =

((1− c)(1− 5z)− 4xR)/2 ≡ wET+(xR). In addition, using qER(xR, w) and qEM(xR, w) for the

case w ≤ w̄(xR), we solve ∂Π(xR, w)/∂w = 0, leading to w = 0. Comparing wET+(xR) and

0 with w̄(xR), we have w̄(xR) < 0 and w̄(xR) < wET+(xR) if xR < (1− c)(1− 3z)/2 ≡ KL,

w̄(xR) < 0 and wET+(xR) ≤ w̄(xR) if KL ≤ xR < (1− c)(1− 2z) ≡ KH , and 0 ≤ w̄(xR) and

wET+(xR) < w̄(xR) if KH ≤ xR. From the three cases and the continuity of Π(xR, w), we

obtain wET (xR), as follows:

wET (xR) =


(1− c)(1− 5z)− 4xR

2
(= wET+(xR)) if xR < KL,

−(1− c)(1− 2z) + xR (= w̄(xR)) if KL ≤ xR < KH ,

0 if KH ≤ xR.

Second, we calculate fET . Substituting wET into πE
R(xR, w

ET )− (−x2
R) = α[πE

R(xR, w
ET )−

(−x2
R) + πE

M(xR, w
ET )− πO

M ] and solving for f , we have

fET (xR) =



(4− α)((1− c)z + xR)
2 if xR < KL,

(1− c)(1− z)((1− c)(4− α− (4− 5α)z) + 4αxR)

4
if KL ≤ xR < KH ,

(1− α)(1− c+ xR)
2 + α(1− c)2(1− z)2

4
if KH ≤ xR.

Substituting wET (xR) and fET (xR) into πE
R(xR, w) and πE

M(xR, w), we obtain the profits of

R and M as (18) and (19), respectively:

πET
R (xR) =



α((1− c)z + xR)
2 − x2

R if xR < KL,

(1− c)(1− z)(−(1− c)(1− 5z) + 4xR)

4
− x2

R if KL ≤ xR < KH ,

α((1− c)z + xR)((1− c)(2− z) + xR)

4
− x2

R if KH ≤ xR,

47



πET
M (xR) =



(1− c)2(1− z)2 + 4(1− α)((1− c)z + xR)
2

4
if xR < KL,

(1− c)(1− z)((1− c)(α + (4− 5α)z) + 4(1− α)xR)

4
if KL ≤ xR < KH ,

(1− α)(1− c+ xR)
2 + α(1− c)2(1− z)2

4
if KH ≤ xR.

B.1.3 Stage 2

In the second stage, M decides whether to open its own direct channel. We consider the

three cases described earlier: (i) xR < KL; (ii) KL ≤ xR < KH ; and (iii) KH ≤ xR.

Case (i) For xR < KL, we consider the sign of πET
M (xR) − πNT

M (xR). This difference is a

quadratic function of xR, the coefficient of x2
R takes a positive value, and the discriminant

of this difference takes a negative value if α > 1/4, implying that M opens its own direct

channel for any xR < KL if α > 1/4.

On the other hand, if α ≤ 1/4, there are one or two real roots that satisfy πET
M (xR) −

πNT
M (xR) = 0. We denote the roots by x̄L

R and x̄M
R .

x̄L
R ≡ (1− c) {(1− α)(1− 4z)− (1− z)J}

3(1− α)
,

x̄M
R ≡ (1− c) {(1− α)(1− 4z) + (1− z)J}

3(1− α)
,

where J =
√
(1− 4α)(1− α) defined in (20) and xL

R ≤ xM
R .

We can show that x̄L
R < KL for any α ≤ 1/4. Comparing x̄M

R with KL, we have x̄
M
R < KL

if 1/5 < α ≤ 1/4. Hence, if α ≤ 1/5, the condition for opening the direct channel is xR < x̄L
R,

given 1/5 < α ≤ 1/4; that is, xR < x̄L
R or x̄M

R < xR < KL.

Case (ii) For KL ≤ xR < KH , we consider the sign of πET
M (xR)− πNT

M (xR), as in Case (i).

The coefficient of x2
R is negative, the discriminant takes a positive value, and there are two

roots of the equation πET
M (xR)− πNT

M (xR) = 0, given by

x̄h
R =

(1− c)
{
(1− α)(1− 2z) + (1− z)

√
α(1− α)

}
1− α

,

x̄H
R =

(1− c)
{
(1− α)(1− 2z)− (1− z)

√
α(1− α)

}
1− α

.
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Comparing x̄h
R and x̄H

R with KL and KH , we have KL ≤ x̄H
R < KH < x̄h

R if α ≤ 1/5, and

x̄H
R < KL < KH < x̄h

R if α > 1/5. Hence, the condition in which M opens its own direct

channel is (1) x̄H
R < xR < KH and α ≤ 1/5, or (2) KL ≤ xR < KH and α > 1/5.

Case (iii) For any xR ≥ KH , π
ET
M (xR) − πNT

M (xR) > 0, implying that M opens its own

direct channel.

Summarizing the above arguments, we obtain the condition that M opens its own direct

channel, as in (20). 
xR < x̄L

R or xR > x̄H
R if α ≤ 1/5,

xR < x̄L
R or xR > x̄M

R if 1/5 < α ≤ 1/4,
for any xR if α > 1/4.

B.1.4 Stage 1

We consider the investment decision by R. From the result in the second stage, the en-

croachment decision depends on the investment level xR and the R’s bargaining power α.

We consider the three cases derived earlier: (I) α ≤ 1/5, (II) 1/5 < α ≤ 1/4, (III) α > 1/4.

Case (I): α ≤ 1/5 From the result in the second stage, M encroaches if xR < x̄L
R or

xR > x̄H
R .

First, we consider the investment level under encroachment in the following intervals for

xR: xR < x̄L
R and xR > x̄H

R . From the result in the third stage, we have to consider a

different two-part tariff for each interval of xR: [0, x̄L
R), (x̄

H
R , KH), and [KH ,∞). Solving

∂πET
R (xR)/∂xR = 0 for each interval, we have

xR = αcM/(1− α) ≡ xETL
R

for the case of 0 ≤ xR < x̄L
R,

xR = α(1− c− cM)/2 ≡ xETM
R

for the case of xR ∈ (x̄H
R , KH), and

xR = α(1− c)/(4− α) ≡ xETH
R
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for the case of xR ∈ [KH ,∞). Comparing the candidate investment levels xETL
R , xETM

R , and

xETH
R with the threshold values x̄L

R, x̄
H
R , and KH , we have the following:

xETL
R ∈ [0, x̄L

R), xETM
R ≤ x̄H

R , xETH
R ≤ KH if z < zET

l ,
xETL
R ≥ x̄L

R, xETM
R ≤ x̄H

R , xETH
R < KH if zET

l ≤ z ≤ zET
m ,

xETL
R > x̄L

R, xETM
R ∈ (x̄H

R , KH), xETH
R < KH if zET

m < z < zET
H ,

xETL
R > x̄L

R, xETM
R ≥ KH , xETH

R ∈ [KH ,∞) if z ≥ zET
H ,

where

zET
l ≡ 1− α2 + J

5− α− α2
, zET

m ≡
8− 18α + 7α2 − α3 − 4

√
(1− α)α

16− 28α + 9α2 − α3
, zET

H ≡ 2− α

4− α
.

Moreover, we can show that πET
R (KH) = limxR→KH−0 π

ET
R (xR) and πET

R (xR) is concave in

each interval. Hence, the candidate investment levels for the encroachment interval are xETL
R

if z < zET
l , x̄L

R and x̄H
R if zET

l ≤ z ≤ zET
m , xETM

R if zET
m < z < zET

H , and xETH
R if z ≥ zET

H .

Next, we consider the investment level without encroachment in the following interval for

xR: [x̄
L
R, x̄

H
R ]. Solving ∂πNT

M (xR)/∂xR = 0, we have xR = α(1−c)/(4−α) = xNT
R . Comparing

xNT
R with the threshold values x̄L

R and x̄H
R , we have the following.

xNT
R < x̄L

R if z < zL =
4− 5α+ 4α2 − 4J

(4− α)(5− 4α)
,

xNT
R ∈ [x̄L

R, x̄
H
R ] if zL ≤ z ≤ zH ,

xNT
R > x̄H

R if z > zH =
8− 16α + 5α2 − 4

√
(1− α)α

(4− α)(4− 5α)
.

Hence, for xR ∈ [x̄L
R, x̄

H
R ], the candidate investment level is x̄L

R if z < zL, xNT
R if zL ≤ z ≤ zH ,

and x̄H
R if z > zH .

From the two previous cases, we compare the threshold values zET
l , zET

m , zET
H , zL, and

zH in order to identify the candidate optimal investment levels for each z. The comparison

leads to the relation zL < zET
l < zET

m < zH < zET
H . Hence, the candidate investment levels

are as follows: (1) xETL
R and x̄L

R if z < zL; (2) xETL
R and xNT

R if zL ≤ z < zET
l ; (3) x̄L

R,

x̄H
R , and xNT

R if zET
l ≤ z ≤ zET

m ; (4) xETM
R and xNT

R if zET
m < z ≤ zH ; (5) xETM

R and x̄H
R if

zH < z < zET
H ; and (6) xETH

R and x̄H
R if zET

H ≤ z.

We explicitly consider case (1) (z < zL). After some calculation, we have πET
R (xETL

R ) <

πNT
R (x̄L

R). Note that xETL
R < KL and x̄L

R > 0 for any z < zL. Hence, the equilibrium
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investment level is xR = x̄L
R. Applying similar procedures to the other four cases, except case

(5) (zH < z < zET
H ), we have that πET

R (xETL
R ) < πNT

R (xNT
R ) for zL ≤ z < zET

l , πET
R (x̄L

R) <

πNT
R (xNT

R ) and πET
R (x̄H

R ) < πNT
R (xNT

R ) for zET
l ≤ z ≤ zET

m , πET
R (xETM

R ) < πNT
R (xNT

R ) for

zET
m < z ≤ zH , and πET

R (xETH
R ) > πNT

R (x̄H
R ) for z

ET
H ≤ z.

Finally, we consider case (5) (zH < z < zET
H ). Solving πET

R (xETM
R ) < πNT

R (x̄H
R ), we

have z <
(
8− 15α + 7α2 − α3 − 2

√
(1− α)α

)
/(16 − 25α + 9α2 − α3) ≡ zh. Here, if

R can take xR = x̄H
R , we must keep x̄H

R ≥ 0. Solving this inequality, we have z ≤(
2− 3α−

√
α(1− α)

)
/(4 − 5α) ≡ zxRH . Comparing the threshold values zH , zET

H , zh,

and zxRH , we have zH < zxRH < zh < zET
H . Then, for zxRH < z < zh, R cannot choose

xR = x̄H
R , which is the candidate of the optimal (corner) solution on the range [x̄L

R, x̄
H
R ],

because this range is empty if zxRH < z. Hence, the equilibrium investment level in this case

is xR = x̄H
R if zH < z ≤ zxRH , and xR = xETM

R if zxRH < z < zET
H .

Summarizing the above discussion, for 0 ≤ α ≤ 1/5, the equilibrium investment level is

given as follows:

xR =



x̄L
R if 0 ≤ z < zL,

xNT
R if zL ≤ z ≤ zH ,

x̄H
R if zH < z ≤ zxRH ,

xETM
R if zzRH < z < zET

H ,
xETH
R if zET

H ≤ z.

Case (II) In this case, we assume 1/5 < α ≤ 1/4. As in case (I), we can show the

following:

xETL
R ∈ [0, x̄L

R), xETM
R < KL, xETH

R < KH if z < zET
l ,

xETL
R ∈ [x̄L

R, x̄
M
R ], xETM

R < KL, xETH
R < KH if zET

l ≤ z ≤ zET
l′ ,

xETL
R ∈ (x̄M

R , KL), xETM
R < KL, xETH

R < KH if zET
l′ < z < zET

L ,
xETL
R ≥ KL, xETM

R ∈ [KL, KH), xETH
R < KH if zET

L ≤ z < zET
H ,

xETL
R ≥ KL, xETM

R ≥ KH , xETH
R ∈ [KH ,∞) if zET

H ≤ z,

where zET
l′ ≡ (1− α2 + J) /(5− α− α2) and zET

L ≡ (1− α)/(3− α). We can also show that

πET
R (xR) is continuous at xR = KL and KH . Hence, the candidate investment levels with

encroachment are xETL
R if z < zET

l , x̄L
R and x̄M

R if zET
l ≤ z ≤ zET

l′ , xETL
R if zET

l′ < z < zET
L ,

xETM
R if zET

L ≤ z < zET
H , and xETH

R if z ≥ zET
H .
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In the case of no-encroachment, xNT
R has the following relation:

xNT
R < x̄L

R if z < zL

xNT
R ∈ [x̄L

R, x̄
M
R ] if zL ≤ z ≤ zM ≡ 4− 5α + 4α2 + 4J

(4− α)(5− 4α)
,

xNT
R > x̄M

R if z > zM .

Hence, the candidate investment level without encroachment is x̄L
R if z < zL, xNT

R if zL ≤

z ≤ zM , and x̄M
R if z > zM .

Before we check the relation between the threshold values of z, we check the condition

that x̄M
R ≥ 0. Then, we have z ≤ (1 + J) /(5 − 4α) ≡ zxRM . Thus, if z > zxRM , the

case of no encroachment never occurs. Here, we have seven threshold values: zET
l , zET

l′ ,

zET
L , zET

H , zL, zM , and zxRM . First, comparing these, excluding zET
L , we have zL ≤ zET

l ≤

zET
l′ ≤ zM < zxRM < zET

H . Next, we compare zET
L with these six threshold values. Then, we

have zL < zET
l < zET

l′ ≤ zET
L ≤ zM < zxRM < zET

H if 1/5 < α ≤ 2(5 − 3
√
2)/7(≈ 0.216),

zL ≤ zET
l ≤ zET

l′ ≤ zM < zET
L < zxRM < zET

H if 2(5− 3
√
2)/7 < α ≤ 0.247, and zL ≤ zET

l ≤

zET
l′ ≤ zM < zxRM < zET

L < zET
H if 0.247 < α ≤ 1/4.11

11 The value of 0.247 is obtained by numerically by solving zxRM = zET
L for α.
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Figure A1: Candidates of optimal investment level

From the above discussion, we can identify the candidate optimal investment levels, as

shown in Figure A1. We have three cases, based on α. The horizontal axis is the value of z.

On the upper part of each axis in Figure A1, we describe the candidate optimal investment

levels leading to encroachment. On the lower part of each axis in Figure A1, we describe the

candidates of optimal investment level leading to non-encroachment.

We compare the candidates in each region for z. First, when z ≤ min{zET
L , zM}, we

have the same comparisons for the candidates. Then, for any α ∈ (1/5, 1/4], we have

πET
R (xETL

R ) < πNT
R (x̄L

R) for z ∈ [0, zL), πET
R (xETL

R ) < πNT
R (xNT

R ) for z ∈ [zL, zET
l ), πET

R (x̄L
R) <

πNT
R (xNT

R ) and πET
R (x̄M

R ) < πNT
R (xNT

R ) for z ∈ [zET
l , zET

l′ ], and πET
R (xETL

R ) < πNT
R (xNT

R ) for
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z ∈ (zET
l′ ,min{zET

L , zM}). Moreover, if z > zxRM , there is one candidate. Hence, the optimal

investment is as follows. For α ∈ (1/5, 1/4], the optimal investment is xETH
R if z > zET

H . For

α ∈ (1/5, 0.247], the optimal investment is xETM
R if z ∈ (zxRM , zET

H ]. For α ∈ (0.247, 1/4],

the optimal investment is xETL
R if z ∈ (zxRM , zET

L ], and xETM
R if z ∈ (zET

L , zET
H ].

The remaining comparisons are for the following three cases: α ∈ (1/5, 0.216] and

z ∈ [zET
L , zM); α ∈ (1/5, 0.247] and z ∈ [max{zET

L , zM}, zxRM ]; and α ∈ (0.216, 1/4]

and z ∈ [zM ,min{zET
L , zxRM}). For the first case, we have πET

R (xETM
R ) < πNT

R (xNT
R );

for the second case, we have πET
R (xETM

R ) < πNT
R (x̄M

R ); and for the third case, we have

πET
R (xETL

R ) < πNT
R (x̄M

R ).

Summarizing the above discussion, we obtain the equilibrium investment level for 1/5 <

α ≤ 0.247 as follows:

xR =



x̄L
R if 0 ≤ z < zL,

xNT
R if zL ≤ z ≤ zM ,

x̄M
R if zM < z ≤ zxRM ,

xETM
R if zxRM < z < zET

H ,
xETH
R if zET

H ≤ z.

For the case of 0.247 < α ≤ 1/4, we have

xR =



x̄L
R if 0 ≤ z < zL,

xNT
R if zL ≤ z ≤ zM ,

x̄M
R if zM < z ≤ zxRM ,

xETL
R if zxRM < z ≤ zET

L ,
xETM
R if zET

L < z < zET
H ,

xETH
R if zET

H ≤ z.

Case (III) Finally, we consider the case of α > 1/4. As in cases (I) and (II), we can show

the following:
xETL
R ∈ [0, KL), xETM

R < KL, xETH
R < KH if z < zET

L ,
xETL
R > KL, xETM

R ∈ [KL, KH), xETH
R < KH if zET

L ≤ z < zET
H ,

xETL
R > KL, xETM

R > KH , xETH
R ∈ [KH ,∞) if z ≥ zET

H .

Because πET
R (xR) is continuous and concave, the optimal investment level is

xR =


xETL
R if z ≤ zET

L ,
xETM
R if zET

L < z < zET
H ,

xETH
R if zET

H ≤ z.
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Integrating cases (I), (II), and (III), we obtain the equilibrium investment level xT∗
R in

(22) and (23) in Proposition 4. We summarize the condition that M opens its own direct

channel in (23) in Proposition 4.

For the encroachment regions where the equilibrium investment level is xETL
R , xETM

R ,

or xETH
R , substituting these into qEM(xR, w

ET (xR)), qER(xR, w
ET (xR)), wET (xR), fET (xR),

πET
M (xR), and πET

R (xR), we obtain the equilibrium outcomes. Note that we have xETL
R <

KL ≤ xETM
R < KH ≤ xETH

R . Similarly, for the non-encroachment region where the equilib-

rium investment level is x̄L
R, x̄

M
R , x̄H

R , or xNT
R , substituting these into qNR (xR, 0), f

NT (xR),

πNT
M (xR), and πNT

R (xR), we obtain the equilibrium outcomes where qNM = 0 and wNT = 0.

From the above outcomes, we obtain CST∗ = (qT∗
M + qT∗

R )2/2 and TST∗ = CST∗ + πT∗
R + πT∗

M ,

where the superscript T∗ denotes the equilibrium outcomes. Moreover, we draw these out-

comes with z as a variable. For α = 0.1, 0.22, and 0.28, we obtain the four curves of the

equilibrium outcome shown in Figure 5.

B.2 Cost-reduction after encroachment

We consider the case of a cost-reduction after an encroachment decision. Using the results

in the previous discussion, we easily obtain the subgame outcomes after Stage 1. In the

encroachment case, the investment level is equal to that in case (III). Substituting xET
R in

(23) into πET
M (xR), we obtain the profit of M , as in subsection 4.5.

πET
M (xET

R ) =



(1− c)2((1− α)(1− z)2 + 4z2)

4(1− α)
, if z < zET

L ,

(1− c)2(1− z)(α(3− 2α) + (4− 7α + 2α2)z)

4
, if zET

L ≤ z < zET
H ,

(1− c)2(α(4− α)2(1− z)2 + 16(1− α))

4(4− α)2
, if zET

L ≤ z.

For the non-encroachment case, substituting xR = xNT
R into πNT

M (xR), we have

πNT
M (xNT

R ) =
4(1− α)(1− c)2

(4− α)2
.

Because there are two threshold values zET
L and zET

H , we consider three cases: z < zET
L ,

zET
L ≤ z < zET

H , and zET
L ≤ z. We consider the first case, z < zET

L . Solving πET
M (xET

R ) −

55



πNT
M (xNT

R ) > 0, we obtain the encroachment condition, as follows:

z <
(4− α)(1− α)− 2

√
(1− α)(4− 16α + 3α2)

(5− α)(4− α)
≡ z̄LM if 0 ≤ α < 0.159,

z < z̄LM or

z >
(4− α)(1− α) + 2

√
(1− α)(4− 16α + 3α2)

(5− α)(4− α)
≡ z̄H1

M

 if 0.159 ≤ α < 0.263,

for any z if α ≥ 0.263 ≈ 2(4−
√
13)

3
.

Second, for zL ≤ z < zET
H , and solving πET

M (xET
R )− πNT

M (xNT
R ) > 0, we have the following

encroachment condition: z >
(4− α)(2− α)(1− 2α)− 2

√
α(1− α)(4 + α− α2)

(4− α)(4− 7α + 2α2)
≡ z̄H2

M if 0 ≤ α < 0.159,

for any z if 0.159 ≤ α ≤ 1.

Finally, for zET
H ≤ z, we consider πET

M (xET
R ) − πNT

M (xNT
R ), which we find always takes a

positive value. Hence, for any z, the encroachment condition is satisfied.

Therefore, integrating the results in the three cases (define z̄HM ≡ max{z̄H1
M , z̄H2

M } as in

(28)), we obtain Proposition 5. As in the previous subsection, by substituting the equilibrium

outcomes into each stage, we can draw the equilibrium outcomes, as shown in Figure 7. Note

that in the encroachment case, the equilibrium investment function takes a different form

based on the value of z, with threshold values zET
L and zET

H .

C Proof of Proposition 6

In this section, we prove Proposition 6. From (16)–(19), we have

πNT
R (xR) =

α(1− c+ xR)
2

4
− x2

R,

πNT
M (xR) =

(1− α)(1− c+ xR)
2

4
,

πET
R (xR)=



α((1− c)z + xR)
2 − x2

R. if xR < KL,

(1− c)(1− z)(−(1− c)(1− 5z) + 4xR)

4
− x2

R if KL ≤ xR < KH ,

α((1− c)z + xR)((1− c)(2− z) + xR)

4
− x2

R if KH ≤ xR,
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πET
M (xR)=



(1− c)2(1− z)2 + 4(1− α)((1− c)z + xR)
2

4
if xR < KL,

(1− c)(1− z)((1− c)(α+ (4− 5α)z) + 4(1− α)xR)

4
if KL ≤ xR < KH ,

(1− α)(1− c+ xR)
2 + α(1− c)2(1− z)2

4
if KH ≤ xR.

The consumer surplus in the non-encroachment case and that in the encroachment case in

stage 3 are respectively given as

CSNT (xR) =
(1− c+ xR)

2

8
,

CSET (xR) =



(1− c+ cM + 2xR)
2

8
if xR < KL,

(1− c− cM)2

2
if KL ≤ xR < KH ,

2− 2c− cM + xR)
2

18
if KH ≤ xR.

Then, the total surplus in the non-encroachment case and that in the encroachment case

in stage 3 are respectively given as TSNT (xR) = πNT
R (xR) + πNT

M (xR) + CSNT (xR) and

TSET (xR) = πET
R (xR) + πET

M (xR) + CSET (xR).

From Propositions 4 and 5, we have the following nine threshold values for z: z̄LM , z̄HM ,

zL, zM , zH , zxRM , zxRH , zET
L , and zET

H . Integrating Figures 4 and 6, we have Figure A2.
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Figure A2: The threshold values for z in Sections 4.4 and 4.5

57



From Figure A2, we have the following inequalities.12

z̄LM < zL < z̄HM < zH < zxRH < zET
H if α ∈ [0, 0.159),

z̄LM < zL < z̄HM < zET
L < zH < zxRH < zET

H if α ∈ [0.159, 1/5),

z̄LM < zL < z̄HM < zET
L < zM < zxRM < zET

H if α ∈ [1/5, 0.216),

z̄LM < zL < z̄HM < zM < zET
L < zxRM < zET

H if α ∈ [0.216, 0.247),

z̄LM < zL < z̄HM < zM < zxRM < zET
L < zET

H if α ∈ [0.247, 1/4),

z̄LM < z̄HM < zET
L < zET

H if α ∈ [1/4, 0.263).

Note that we do not need to consider the case of α > 0.263 because sections 4.4 and

4.5 have the same equilibrium outcomes for the case. From xET
R in equations (23) and

(25) in Sections 4.4 and 4.5, when M encroaches, the investment level is equal to either

xETL
R = α(1 − c)z/(1 − α), xETM

R = α(1 − c)(1 − z)/2, or xETH
R = α(1 − c)/(4 − α),

regardless of the timing structures of the games. Moreover, we find that xETL
R < KL,

KL ≤ xETM
R < KH , and KH ≤ xETH

R because the three investment levels are the interior

solutions for the intervals of xR, [0, KL), [KL, KH) and [KH ,∞), respectively. Hence, we can

calculate subgame outcomes from the investment level.

From the above discussion, we can identify the outcomes, as shown in Figures A3-1 and

A3-2. We have the following six cases, based on α. The horizontal axis is the value of z. On

the upper part of each axis in Figures A3-1 and A3-2, we describe the outcomes in Section

4.4 (R&D → E). Below the lower part of each axis in Figures A3-1 and A3-2, we describe

the outcomes in Section 4.5 (E → R&D).

From Figure A3-1 and A3-2, under some parameter ranges, the outcomes in Sections

4.4 and 4.5 are completely the same. More concretely, the ranges are α ∈ [0, 1/4) and

z ∈ (zL, z̄HM ]; α ∈ [0, 1/5) and z ≥ zxRH ; α ∈ [1/5, 1/4) and z ≥ zxRM ; α ∈ [1/4, 0.263) and

(z ∈ (0, z̄LM) or z ≥ z̄HM); and α ≥ 0.263. Hence, under the parameter ranges, the timing

structures in Sections 4.4 and 4.5 do not influence M ’s decision of whether to encroach.

12 The values of α, 0.159, 0.216, 0.247, and 0.263, are obtained by numerically solving z̄HM = zET
L ,

zM = zET
L , zH = zL, and z̄HM = z̄LM , respectively.
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Figure A3-1: Comparisons of the outcomes in Sections 4.4 and 4.5
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Figure A3-2: Comparisons of the outcomes in Sections 4.4 and 4.5
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In the following discussion, we compare the subgame outcomes in Sections 4.4 and 4.5.

First, we show the following two comparisons which are a little bit complex: (i) for α ∈

[0, 1/4) and z ∈ (0, z̄LM ], we compare the consumer surplus in Section 4.4 with that in Section

4.5; (ii) for α ∈ [1/4, 0.263) and z ∈ [z̄LM , z̄HM), we compare the total surplus in Section 4.4

with that in Section 4.5. Finally, we explain how we compare the subgame outcomes of the

other cases in Sections 4.4 and 4.5.

Case (i) Since at α = 0, we have z̄LM = 0. Hence, we do not need to consider the case with

α = 0. Here, we consider the interval α ∈ (0, 1/4).

We compare CSNT (x̄L
R) with CSET (xETL

R ). The difference CSNT (x̄L
R)− CSET (xETL

R ) is

CSNT (x̄L
R)− CSET (xETL

R ) = ΦCS
2 z2 + ΦCS

1 z + ΦCS
0 ,

where

ΦCS
2 ≡ −

9(1 + α)2 +
[
4(1− α)−

√
(1− α)(1− 4α)

]2
72(1− α)2

(< 0),

ΦCS
1 ≡ −

26− 11α− 8
√
(1− α)(1− 4α)

36(1− α)
(< 0),

ΦCS
0 ≡

8− 11α− 8
√
(1− α)(1− 4α)

72(1− α)
(> 0).

The difference is a quadratic function of z and the sign of the coefficient of z2 is negative.

Solving CSNT (x̄L
R)− CSET (xETL

R ) = 0 with respect to z, we have two roots:

zCS′ ≡
−ΦCS

1 +
√
(ΦCS

1 )2 − 4ΦCS
2 ΦCS

0

2ΦCS
2

, zCS ≡
−ΦCS

1 −
√
(ΦCS

1 )2 − 4ΦCS
2 ΦCS

0

2ΦCS
2

.

Because of ΦCS
2 < 0, ΦCS

1 < 0, and ΦCS
0 > 0, we have zCS′

< 0 and zCS′
< zCS. Hence, we

ignore the threshold value zCS′
.

Here, we compare zCS with z̄LM . Then, for α ∈ (0, 1/4), we have zCS < z̄LM . Therefore,

we have CSNT (x̄L
R) ≥ CSET (xETL

R ) if z ≤ zCS; CSNT (x̄L
R) < CSET (xETL

R ) if zCS < z < z̄LM .
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Case (ii) For α ∈ [1/4, 0.263) and z ∈ [z̄LM , z̄HM), first, we compare TSET (xETL
R ) with

TSNT (xNT
R ). The difference TSET (xETL

R )− TSNT (xNT
R ) is

TSET (xETL
R )− TSNT (xNT

R ) = ΦTS
2 z2 + ΦTS

1 z + ΦTS
0 ,

where

ΦTS
2 ≡ 11− α(2 + 5α)

8(1− α)2
, ΦTS

1 ≡ − 1− 3α

4(1− α)
, ΦTS

0 ≡ −α(24− 11α)

8(4− α)2
.

The difference is a quadratic function of z and the sign of coefficient of z2 is positive. Solving

TSET (xETL
R )− TSNT (xNT

R ) = 0 with respect to z, we have two roots:

zTS ≡
−ΦTS

1 +
√
(ΦTS

1 )2 − 4ΦTS
2 ΦTS

0

2ΦTS
2

, zTS′ ≡
−ΦTS

1 −
√
(ΦTS

1 )2 − 4ΦTS
2 ΦTS

0

2ΦTS
2

.

Because of ΦTS
2 > 0, ΦTS

1 < 0, and ΦTS
0 < 0, we have zTS′

< zTS. Moreover, for α ∈

[1/4, 0.263), we can numerically show zTS′
< 0. Hence, we ignore the threshold value zTS′

.

Comparing zTS with z̄LM and z̄HM , we have z̄LM < zTS < z̄HM if α ∈ [1/4, 0.2626); z̄LM < z̄HM <

zTS if α ∈ [0.2626, 0.263).13 Therefore, TSET (xETL
R ) ≤ TSNT (xNT

R ) if α ∈ [0.2626, 0.263)

or α ∈ [1/4, 0.2626) and z ∈ [z̄LM , zTS]; TSET (xETL
R ) > TSNT (xNT

R ) if α ∈ [1/4, 0.2626) and

z ∈ (zTS, z̄HM).

The other cases We consider the other cases: (I) α ∈ [0, 1/4) and z ∈ (0, z̄LM) (note that

the comparison for the consumer surplus is already done), (II) α ∈ [0, 1/4) and z ∈ [z̄LM , zL),

(III) α ∈ [0, 0.159) and z ∈ [z̄HM , zH), (IV) α ∈ [0.159, 1/5) and z ∈ [zET
L , zH), (V) α ∈

[1/5, 0.216) and z ∈ [zET
L , zM), (VI) α ∈ [0, 1/5) and z ∈ [zH , zxRH), (VII) α ∈ [1/5, 0.216)

and z ∈ [zM , zxRM), (VIII) α ∈ [0.216, 0.247) and z ∈ [zET
L , zxRM), (IX) α ∈ [0.159, 0.216)

and z ∈ [z̄HM , zET
L ), (X) α ∈ [0.216, 1/4) and z ∈ [z̄HM , zM), (XI) α ∈ [0.216, 0.247) and

z ∈ [zM , zET
L ), (XII) α ∈ [0.247, 1/4) and z ∈ [zM , zxRM), and (XIII) α ∈ [1/4, 0.263) and

z ∈ [z̄LM , z̄HM) (note that the comparison for the total surplus is already done).

First, we show that for α ∈ [0, 1/4) and z ∈ (0, z̄LM), πNT
M (x̄L

R) > πET
M (xETL

R ). The

difference πNT
M (x̄L

R) − πET
M (xETL

R ) is a quadratic function of z and the sign of the coefficient

13 The value of 0.2626 is obtained by numerically solving zTS = z̄HM .
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of z2 is negative. Solving πNT
M (x̄L

R) − πET
M (xETL

R ) = 0 with respect to z, we have the roots:

zSol1 and zSol2, where zSol1 ≤ zSol2. Comparing the threshold values 0, z̄LM , zSol1, and

zSol2, we have (0, z̄LM) ⊂ [zSol1, zSol2]. Because the coefficient of z2 is negative, we obtain

πNT
M (x̄L

R) > πET
M (xETL

R ).

For the other cases, we employ similar procedures. Because we assume z ∈ (0, 1) in each

case, we can consider a bounded interval for z. We denote it by [zlow, zhigh). In addition,

we denote the outcome in Section 4.4 by V R&D and that in Section 4.5 by V E. Then,

the difference V R&D − V E is a quadratic function of z and the coefficient of z2 consists of

only α. Because we assume α ∈ [0, 1], we can determine the sign of coefficient of z2 by a

numerical calculation. Next, we calculate the sign of the discriminant of V R&D − V E = 0.

If the discriminant is negative, we can find the sign of the difference V R&D − V E is the

same as that of the coefficient of z2. On the other hand, if the discriminant is non-negative,

there exist one or two roots solving V R&D − V E = 0. We denote the roots by zSol1 and

zSol2, where zSol1 < zSol2. Finally, we can show that either [zlow, zhigh) ⊂ [zSol1, zSol2] or

[zlow, zhigh) ⊂ (0, zSol1] ∪ [zSol2, 1) must be satisfied. This result means that the sings of the

difference V R&D −V E do not change. In addition, we can show that if the difference is zero,

z must be equal to one of the threshold values for z: z̄LM , z̄HM , zL, zM , zH , zxRM , zxRH , and

zET
L .

After some calculations, we obtain the following results; (I) for α ∈ [0, 1/4) and z ∈

(0, z̄LM), we have πNT
M (x̄L

R) > πET
M (xETL

R ), πNT
R (x̄L

R) > πET
R (xETL

R ), and TSNT (x̄L
R) > TSET (xETL

R )

(see Case (i) for the comparison between CSNT (x̄L
R) and CSET (xETL

R )); (II) for α ∈ [0, 1/4)

and z ∈ [z̄LM , zL), we have πNT
M (x̄L

R) > πNT
M (xNT

R ), πNT
R (x̄L

R) < πNT
R (xNT

R ), CSNT (x̄L
R) >

CSNT (xNT
R ) and TSNT (x̄L

R) > TSNT (xNT
R ); (III) for α ∈ [0, 0.159) and z ∈ [z̄HM , zH), we

have πNT
M (xNT

R ) ≤ πET
M (xETM

R ), πNT
R (xNT

R ) ≥ πET
R (xETM

R ), CSNT (xNT
R ) < CSET (xETM

R ),

and TSNT (xNT
R ) < TSET (xETM

R ), where the equality is satisfied at z = z̄HM ; (IV) for α ∈

[0.159, 1/5) and z ∈ [zET
L , zH), we have πNT

M (xNT
R ) < πET

M (xETM
R ), πNT

R (xNT
R ) > πET

R (xETM
R ),

CSNT (xNT
R ) < CSET (xETM

R ), and TSNT (xNT
R ) < TSET (xETM

R ); (V) for α ∈ [1/5, 0.216) and

z ∈ [zET
L , zM), we have πNT

M (xNT
R ) < πET

M (xETM
R ), πNT

R (xNT
R ) > πET

R (xETM
R ), CSNT (xNT

R ) <
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CSET (xETM
R ), and TSNT (xNT

R ) < TSET (xETM
R ); (VI) for α ∈ [0, 1/5) and z ∈ [zH , zxRH),

we have πNT
M (x̄H

R ) < πET
M (xETM

R ), πNT
R (x̄H

R ) > πET
R (xETM

R ), CSNT (x̄H
R ) < CSET (xETM

R ),

and TSNT (x̄H
R ) < TSET (xETM

R ); (VII) for α ∈ [1/5, 0.216) and z ∈ [zM , zxRM), we have

πNT
M (x̄M

R ) < πET
M (xETM

R ), πNT
R (x̄M

R ) > πET
R (xETM

R ), CSNT (x̄M
R ) < CSET (xETM

R ), and TSNT (x̄M
R ) <

TSET (xETM
R ); (VIII) for α ∈ [0.216, 0.247) and z ∈ [zET

L , zxRM), we have πNT
M (x̄M

R ) <

πET
M (xETM

R ), πNT
R (x̄M

R ) > πET
R (xETM

R ), CSNT (x̄M
R ) < CSET (xETM

R ), and TSNT (x̄M
R ) < TSET (xETM

R );

(IX) for α ∈ [0.159, 0.216) and z ∈ [z̄HM , zET
L ), we have πNT

M (xNT
R ) ≤ πET

M (xETL
R ), πNT

R (xNT
R ) ≥

πET
R (xETL

R ), CSNT (xNT
R ) < CSET (xETL

R ), and TSNT (xNT
R ) < TSET (xETL

R ), where the equal-

ity is satisfied at z = z̄HM ; (X) for α ∈ [0.216, 1/4) and z ∈ [z̄HM , zM), we have πNT
M (xNT

R ) ≤

πET
M (xETL

R ), πNT
R (xNT

R ) ≥ πET
R (xETL

R ), CSNT (xNT
R ) < CSET (xETL

R ), and TSNT (xNT
R ) <

TSET (xETL
R ), where the equality is satisfied at z = z̄HM ; (XI) for α ∈ [0.216, 0.247) and

z ∈ [zM , zET
L ), we have πNT

M (x̄M
R ) < πET

M (xETL
R ), πNT

R (x̄M
R ) > πET

R (xETL
R ), CSNT (x̄M

R ) <

CSET (xETL
R ) and TSNT (x̄M

R ) < TSET (xETL
R ); (XII) for α ∈ [0.247, 1/4) and z ∈ [zM , zxRM),

we have πNT
M (x̄M

R ) < πET
M (xETL

R ), πNT
R (x̄M

R ) > πET
R (xETL

R ), CSNT (x̄M
R ) < CSET (xETL

R ) and

TSNT (x̄M
R ) < TSET (xETL

R ); (XIII) for α ∈ [1/4, 0.263) and z ∈ [z̄LM , z̄HM), we have πET
M (xETL

R ) <

πNT
M (xNT

R ), πET
R (xETL

R ) < πNT
R (xNT

R ), and CSET (xETL
R ) > CSNT (xNT

R ) (see Case (ii) for the

comparison between TSET (xETL
R ) and TSNT (xNT

R )).

Summarizing the above discussion, we have the following result: (a) commitment to

either encroachment or non-encroachment (simply call it the commitment decision) strictly

decreases the profits of M and R, the consumer surplus, and the total surplus if α ∈ [0, 1/4)

and z ∈ (0, zCS); (b) the commitment decision strictly decreases the profits of M and

R and the total surplus, and strictly increases the consumer surplus if α ∈ [0, 1/4) and

z ∈ (zCS, z̄LM); (c) the commitment decision strictly decreases the profit of M , the consumer

surplus, and the total surplus, and strictly increases the profit of R if α ∈ [0, 1/4) and

z ∈ (z̄LM , zL); (d) the commitment decision strictly increases the profit of M , the consumer

surplus, and the total surplus, and strictly decreases the profit of R if α ∈ [0, 1/5) and

z ∈ (z̄HM , zxRH) or α ∈ [1/5, 1/4) and z ∈ (z̄HM , zxRM); (e) the commitment decision strictly

increases the profits of M and R and the total surplus, and strictly decreases the consumer
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surplus if (α ∈ [1/4, 0.2626) and z ∈ (z̄LM , zTS)) or (α ∈ [0.2626, 0.263) and z ∈ (z̄LM , z̄HM)).

(f) the commitment decision strictly increases the profits of M and R, and strictly decreases

the consumer surplus and the total surplus if α ∈ [1/4, 0.2626) and z ∈ (zTS, z̄HM). Therefore,

we obtain Proposition 6.
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