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Abstract

This paper develops an instrumental variable (IV) estimator for con-
sistent estimation of dynamic panel data models with a multifactor error
structure when both N and T , the cross-sectional and time series dimensions
respectively, are large. Our approach projects out the common factors from
observed variables, the exogenous regressors of the model, using principal
components analysis and then uses the defactored regressors as instruments
to estimate the unknown parameters, as in a standard 2SLS procedure.
The approach requires estimating solely the common factors contained in
the regressors, leaving those that only influence the dependent variable into
the errors. Hence our approach is computationally attractive. Since our
estimator is based on instrumental variables, it is not subject to the Nickell
bias that arises with least squares type estimators in dynamic panel data
models. The finite sample performance of the proposed estimator is inves-
tigated using simulated data. The results show that the estimator performs
well in terms of bias, RMSE and size. The performance of an overidentify-
ing restrictions test is also explored and the evidence suggests that it has
high power when the key assumption, strong exogeneity of (a subset of) the
regressors, is violated.
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1 Introduction

The rapid increase in the availability of panel data during the last few decades has
invoked a large interest in developing ways to model and analyse them effectively.
In particular, the issue of how to characterise ‘between group’ or cross-sectional
dependence, and then creating consistent estimation methods and making asymp-
totically valid inferences, has proven both popular and challenging. The factor
structure approach has been widely used to model cross-sectional dependence. It
escapes from the curse of dimensionality by asserting that there exists a com-
mon component, which is a linear combination of a finite number of time-varying
common factors with individual-specific factor loadings. One can provide different
interpretations of this approach, depending on the application in mind. In macroe-
conomic panels the unobserved factors are frequently viewed as economy-wide
shocks, affecting all individuals albeit with different intensities; see e.g. Favero
et al. (2005). In microeconomic panels the factor error structure may be thought
to reflect distinct sources of unobserved individual-specific heterogeneity, the im-
pact of which varies over time. For instance, in a model of wage determination
the factor loadings may represent several unmeasured skills, specific to each in-
dividual, while the factors may capture the price of these skills, which changes
intertemporally in an arbitrary way; see e.g. Carneiro et al. (2003) and Heckman
et al. (2006).

A large body of the literature has focused on developing statistical inference
for models with an error factor structure. For large panels, two estimation meth-
ods have been popular: Pesaran (2006) proposed the Common Correlated Effects
(CCE) estimator, that consists of approximating the unobserved factors by the
linear combinations of cross section averages of the dependent and explanatory
variables. Bai (2009) proposed an iterative least squares estimator with bias cor-
rection, approximating the unobserved factors by principal components (PC).1 For
both estimators it is assumed that the regressors are strictly exogenous with re-
spect to the idiosyncratic error component, whereas possible correlation between
the regressors and the error factor component is permitted. Under somewhat
weaker assumptions, Moon and Weidner (2015) show that the estimator of Bai
(2009) is interpretable as a quasi maximum likelihood estimator (QMLE), the con-
sistency of which is maintained even when the number of factors is not specified
correctly, so long as it is larger than or equal to the true number of factors.

In this paper we consider estimation of linear dynamic panel data models with
an error factor structure in large panels.2 Recently, the CCE and the PC estima-
tors have been shown to remain consistent in such models. In particular, Chudik
and Pesaran (2015a) propose mean group CCE estimation for panel autoregressive
distributed lag models. Notably they allow cross-sectionally heterogenous slope
coefficients, and they propose to alleviate the small sample bias using jackknife
bias correction. The cost of allowing this generality is twofold. First, when the

1See Westerlund and Urbain (2015) for comparison analysis of the CCE and PC estimation.
Chudik and Pesaran (2015b), Sarafidis and Wansbeek (2012) and Bai and Wang (2016) also
provide excellent surveys on the related literature.

2Estimation of such models for short panel is considered by Ahn et al. (2013) and Robertson
and Sarafidis (2015).
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number of unobserved factors is larger than the number of right-hand side vari-
ables plus one, a set of external variables, which are not in the original model
of interest but form a part of the dynamic system with the dependent variable,
should be found. In practice, this may not be a trivial exercise. Second, in order
to mitigate the effects of weak exogeneity, the CCE approach potentially requires
augmenting the model by several lags of weakly exogenous variables.3 This can
result in a large loss of degrees of freedom.

On the other hand, Moon and Weidner (2017) propose a bias-corrected PC (or
QMLE) estimator and put forward three classical likelihood based test statistics.
However, the statistical properties of the estimator are shown to be sensitive to
the quality of the estimate of the number of factors. In particular, There can be
a considerable loss of efficiency of the PC estimator when the number of factors
specified is larger than the true number.4 Finally, there is evidence suggesting
that the bias-corrected PC estimator can still exhibit some finite sample bias for
the model with exogenous regressors.5

In this paper we propose an instrumental variable (IV) estimator for dynamic
linear panel data models with error factor structure when both cross section and
time dimensions are large. Our estimator is potentially robust to the above prob-
lems and computationally attractive6. Our approach asymptotically projects out
the common component from the regressors using principal components analysis
at first stage and then uses the defactored regressors as instruments to estimate
the structural parameters. Our methodology can be regarded as an extension of
the approach taken by Sarafidis et al. (2009). The required assumption underlying
our approach is that endogeneity of the covariates arises due to the non-zero corre-
lation between the common components in the covariates and in the disturbance.
Importantly, this assumption can be tested using an overidentifying restrictions
test.

Although both our approach and the QMLE approach of Moon and Weid-
ner (2017) are based on principal components, there are important differences in
practice; firstly, our method estimates the factors from observed data (the covari-
ates), rather than the disturbances. In addition, our procedure requires estimating
solely the common factors included in the regressors. Due to these differences, it
is expected that our approach will be less sensitive to possible overestimation of
the number of factors. Moreover, since our estimator is an instrumental variable
estimator, it is not subject to the Nickell bias that arises with least squares type
estimators in dynamic panel data models. Finally, we employ the PC approach
rather than the CCE type approach for defactoring the exogenous regressors, since
with the former approach it is not necessary to seek external variables to approxi-
mate the factors when the number of unobserved factors is larger than the number
of regressors plus one.

Our approach can be regarded as the opposite one employed by Bai and Ng
(2010) and Kapetanios and Marcellino (2010). In specific, in their model the

3See equation (24) and the discussion around it in Chudik and Pesaran (2015a).
4See, for example, Table 2 in Moon and Weidner (2017).
5See Table V in Appendix E in the supplement to Bai (2009).
6We only consider the models with cross-sectionally homogeneous slopes. See Chudik and

Pesaran (2015a) for the estimation of such models.
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idiosyncratic errors of the reduced form regression of the endogenous variable cause
endogeneity, therefore, no error factor structure is considered in the structural
model of interest. They propose finding instruments for the endogenous regressors
by extracting the common components from external variables and the endogenous
regressors in the model. Our approach essentially complements theirs.

Using simulated data, the finite sample performance of the proposed IV esti-
mator and the associated t-test is investigated, along with the QMLE estimator
of Moon and Weidner (2017). The results show that the proposed estimator per-
forms well under a variety of designs both in terms of bias and size of the t-test.
Furthermore, the overidentifying restrictions test appears to have high power when
the key assumption, strong exogeneity, is violated.

The paper is organised as follows. Section 2 sets out the model and assump-
tions, and puts forward the proposed estimation approach. Section 3 extends the
results to the more general case. Section 4 studies the performance of the esti-
mator in small samples using simulated data. Section 5 contains some concluding
remarks. Proofs of propositions, theorems and corollaries, together with necessary
lemmas, are contained in Appendix A. The proofs of the lemmas are available in
Supplemental Material.

2 Model and Estimation Method

Consider the following autoregressive distributed lag, ARDL(1,0), panel data
model with a multi-factor error structure7:

yit = α + ρyi,t−1 + β′xit + uit; i = 1, 2, ..., N ; t = 1, 2, ..., T, (1)

with
uit = γ ′ifx,t + λ′ify,t + εit, (2)

where |ρ| < 1, β = (β1, β2, ..., βk)
′ with at least one of {β`}k`=1 being non-zero,

xit = (x1it, x2it, ..., xkit)
′ is a k× 1 vector of regressors, fx,t = (fx,1t, fx,2t, ..., fx,mxt)

′

and fy,t = (fy,1t, fy,2t, ..., fy,myt)
′ denote mx× 1 and my× 1 vectors of unobservable

factors, respectively. The mx×1 vector γi and the my×1 vector λi contain factor
loadings associated with fx,t and fy,t, respectively, whereas εit is an idiosyncratic
error. xit is subject to the following process:

xit = Γ′xifx,t + vit, (3)

where Γxi = (γ1i,γ2i, ...,γki) denotes an mx × k factor loading matrix and vit =
(v1it, v2it, ..., vkit)

′ is an idiosyncratic error term.8

Remark 1 When time invariant individual effects exist in uit and xit, one can
transform the variables, by taking first differences, applying the within transfor-
mation, or orthogonal deviations; this does not alter the discussion below.

7The main results of this paper naturally extend to models with higher order lags, i.e.
ARDL(p,q) for p > 0 and q ≥ 0.

8We do not explicitly discuss the case in which uit contains a subset of factor components in
xit only, since it is easily seen that all the results in this paper will still hold.
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Stacking the T observations for each i yields

yi = ρyi,−1 + Xiβ + ui, (4)

with
ui = Fxγi + Fyλi + εi, (5)

where yi = (yi1, yi2, ..., yiT )′, yi,−1 = L1yi = (yi0, yi1, ..., yiT−1)′ with Lj be-
ing the jth lag operator, Xi = (xi1,xi2, ...,xiT )′, ui = (ui1, ui2, ..., uiT )′, Fx =
(fx,1, fx,2, ..., fx,T )′, Fy = (fy,1, fy,2, ..., fy,T )′ and εi = (εi1, εi2, ..., εiT )′. Similarly,

Xi = FxΓxi + Vi, (6)

where Vi = (vi1,vi2, ...,viT )′ and Fx is defined above.
Let Wi = (yi,−1,Xi) and θ = (ρ,β′)′. The model in (4) can be written more

concisely as follows:
yi = Wiθ + ui. (7)

Wi is heterogeneously cross sectionally correlated because the factor loadings vary
across i. Also the composite error, ui, is allowed to be serially correlated through
serial correlation in the factors, fx,t and fy,t.

Our proposed approach involves asymptotically eliminating at first stage the
common factors in Xi by projecting them out, and then using the defactored
regressors as instruments to estimate the structural parameters of the model. To
see the main idea, consider the following projection matrices:

MFx = IT − Fx (F′xFx)
−1

F′x; MFx,−1 = IT − Fx,−1

(
F′x,−1Fx,−1

)−1
F′x,−1, (8)

where Fx,−1 = L1F x. If Fx were observed, premultiplying Xi by MFx would yield
MFxXi = MFxVi. Assuming Vi is independent from εi,Fx,Fy, it is easily seen
that E(X′iMFxui) = E(V′iMFxui) = 0.

Furthermore, let
Xi,−j = LjXi. (9)

So long as {yit,x′it}, t = 0, 1, ..., T is observed, the T × k matrix Xi,−1 is also
observed. Using similar assumptions, one can show that E(X′i,−1MFx,−1MFxui) =
E(V′i,−1MFx,−1MFxui) = 0.

Define
Zi ≡

[
Xi,MFx,−1Xi,−1

]
(T × 2k). (10)

Given the model in equation (7) it is clear that the defactored regressors satisfy
instrument relevance, i.e. E(Z′iMFxWi) 6= 0. Therefore, it is straightforward to
apply instrumental variable (IV) estimation using MFxZi as an instrument vector
for Wi.

Remark 2 Since our approach makes use of transformed x’s as instruments,
identification of ρ requires that at least one element in β is not equal to zero. We
believe this is a mild restriction, especially compared to imposing β 6= 0. Specif-
ically, identification of the autoregressive parameter can be achieved based on the
covariate(s) and lagged value(s) corresponding to the non-zero slope coefficient(s).
Notably, it is not necessary to know which covariates have non-zero coefficients
since by construction the 2SLS procedure does not require that all instruments are
relevant to all endogenous regressors.
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More instruments become available when further lags of xit are observed. In
particular, given model (3), when {xit}Tt=0−j for j ≥ 0 are observable, (j + 1)k

instruments, {Xi,−(r−1)}j+1
r=1, become available. Furthermore, as Vi is strictly ex-

ogenous, we could exploit (j+1)kT 2 moment conditions for asymptotically efficient
estimation. However, in such case it is well known that the estimator will be sub-
ject to the overfitting bias that arises in GMM estimation with a large number of
instruments; for further analysis see Alvarez and Arellano (2003) among others.
To avoid this issue we stick to the set as in (10), such that the number of instru-
ments is fixed and does not depend on T . The analysis of overfitting bias with a
large number of instruments is beyond the scope of this paper.

The assumption that Vi is independent of εi, Fx and Fy implies that the covari-
ates are strongly exogenous with respect to the idiosyncratic error component (i.e.
E(ε′iXi) = 0). Dynamic panel data models with strongly exogenous regressors is a
widely used framework in the economics literature; some examples include partial
adjustment models for labour supply (e.g. Bover, 1991), household consumption
models with habits (e.g. Becker et al., 1994) and production functions with adjust-
ment costs (e.g. Blundell and Bond, 2000). In these applications the autoregressive
parameter captures consumption inertia due to habits, or costs of adjustment, so
it has a structural significance; see e.g. Arellano (2003, Ch. 7). Notwithstanding
strong exogeneity with respect to the idiosyncratic disturbance, it is reasonable
to expect that the regressors may be correlated with the unobserved common fac-
tors and are, therefore, endogenous. For instance, in a production function the
input decisions of the firm are likely to be correlated with its individual-specific
unobserved characteristics, γi, that may or may not vary over time. Likewise,
determinants of labour supply, such as the level of wage offered to an individ-
ual, are likely to be correlated with the common factors influencing supply itself.
Essentially, this is the standard fixed effects assumption employed in panel data
models, extended to the factor structure. However, notice that under the current,
more general, framework, first-differencing does not remove endogeneity since the
factor component remains in the residuals. The strong exogeneity assumption of
the covariates with respect to the purely idiosyncratic error component can be
tested using an overidentifying restrictions test, as shown below.

Note that our model can be extended to allow for additional regressors which
are weakly exogenous or endogenous with respect to the idiosyncratic disturbance,
provided that there are appropriate instruments available. For example, such sets
of instruments can be formed based on lagged values of the endogenous regressors,
if these are not correlated with the common factor component. This case is anal-
ysed in detail by Sarafidis, Yamagata and Robertson (2009). External instruments
may be used in (10) if one wishes to allow for weakly exogenous regressors that are
correlated with the common factor component, as in a standard two-stage least
squares procedure. This case is analysed by Harding and Lamarche (2011).

In practice, MFx is not known because the factors Fx are not observed. As
a result, we propose estimating Fx using the principal components approach, as
advanced in Bai (2003) and Bai (2009).9 To obtain our results it is sufficient to

9We could also adopt Pesaran’s (2006) approach to estimate the common factors in the
regressors.
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make the following assumptions, where tr [A] and ||A|| =
√

tr [A′A] denote the
trace and Frobenius (Euclidean) norm of matrix A, respectively, and ∆ is a finite
positive constant.

Assumption 1 (idiosyncratic error in y): εit is independently distributed
across i and t, with mean zero, E(ε2

it) = σ2
ε,it, and E |εit|8+δ ≤ ∆ < ∞ for

small positive constant δ.

Assumption 2 (idiosyncratic error in x): (i) v`it is independently distributed
across i and group-wise independent from εit; (ii) E (v`it) = 0 and
E |v`it|8+δ ≤ ∆ < ∞; (iii) T−1

∑T
s=1

∑T
t=1E |v`isv`it|

1+δ ≤ ∆ < ∞;

(iv) E
∣∣∣N−1/2

∑N
i=1 [v`isv`it − E (v`isv`it)]

∣∣∣4 ≤ ∆ < ∞ for every `, t and s;

(v) N−1T−2
∑N

i=1

∑T
t=1

∑T
s=1

∑T
r=1

∑T
w=1 |cov (v`isv`it, v`irv`iw)| ≤ ∆ < ∞;

(vi) the largest eigenvalue of E (v`iv
′
`i) is bounded uniformly for every `, i

and T .

Assumption 3 (stationary factors): fx,t = Cx(L)efx,t and fy,t = Cy(L)efy ,t,
where Cx(L) and Cy(L) are absolutely summable, efx,t ∼ iid(0,Σfx) and
efy ,t ∼ iid(0,Σfy), where Σfx and Σfy are positive definite matrices. Each
element of efx,t and efy ,t has finite fourth order moments and are group-wise
independent from vit and εit.

Assumption 4 (random factor loadings): (i) Γxi ∼ iid(0,ΣΓx), γi ∼ iid(0,Σγ),
λi ∼ iid(0,Σλ), where ΣΓx is positive definite and Σγ and Σλ are positive
semi-definite, and each element of Γxi, γi and λi has finite fourth order mo-
ments. Γxi, γi and λi are independent groups from εit, vit, efx,t and efy ,t;
(ii) Γxi and λi are independent of each other.

Assumption 5 (identification of θ): (i) Ai,T = T−1Z′iMFxWi and Bi,T =

T−1Z′iMFxZi have full column rank for all i and T ; (ii) E ‖Ai,T‖2+2δ ≤ ∆ <

∞ and E ‖Bi,T‖2+2δ ≤ ∆ <∞ for all i and T ; (iii) E
∥∥ϕFiT,t∥∥2+δ ≤ ∆ <∞

for all i and T , where ϕFiT = T−1/2Zi
′MFxui, and E(ϕFiTϕ

′
FiT ) is a positive

definite matrix for any i, T . In addition, limN,T→∞N
−1
∑N

i=1E (ϕFiTϕ
′
FiT ) =

Ω, which is a fixed positive definite matrix.

The assumptions above require some discussion. First of all, notice that
Assumption 1 allows non-normality and (unconditional) times-series and cross-
sectional heteroskedasticity in the idiosyncratic errors in the equation for y. As-
sumptions 2 and 3 allow for serial correlation in the idiosyncratic errors in the
equation for x and the factors. Assumption 2 is in line with Bai (2003) but
assumes independence across i, which can be relaxed such that the factors and
(εit,vit) and/or εjt and εis are weakly dependent, provided that there exist higher
order moments; see Assumptions D-F in Bai (2003)10. Assumptions 3 and 4 are
standard in the principal components literature; see e.g. Bai (2003) among oth-
ers. Notice that the zero-mean restriction on the factor loadings is not binding
because for large N one can always remove the non-zero mean by transforming

10This includes conditional heteroskedasticity, such as ARCH or GARCH processes.
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the variables in terms of deviations from time-specific averages or by adding time
dummies into the model (4). The resulting correlation between the factor load-
ings is clearly Op(1/N), thus the results we obtain below are not affected by this
transformation; see Sarafidis et al. (2009) for more details. Assumption 4 allows
for possible non-zero correlations between the loadings associated with the same
factors in the y and x equations, i.e. E(γiγ

′
`i) 6= 0 for ` = 1, 2, ..., k. Since the

variables yit and xit of the same individual unit i can be affected in a related
manner by the same common shocks, allowing for this possibility is potentially
important in practice. Meanwhile Assumption 4(ii) implies that E(λiγ

′
`i) = 0 for

` = 1, 2, ..., k, i.e. the loadings of the factors entering only the process for y are
uncorrelated with those in x. This can be seen admissible in some empirical ap-
plications, where different common shocks are thought to have associated effects
on cross-section units in unrelated ways. However, to pursue more general results,
we will relax this assumption in Section 3.

Finally, Assumption 5(i)-(ii) is common in overidentified instrumental variable
(IV) estimation; for example, see Wooldridge (2002, Ch5). Assumption 5(iii)
is required for identification of the estimator, the consistency property of the
variance-covariance estimator and the asymptotic normality of the estimator as
N and T tend to infinity jointly.

The first step of our approach is to consistently estimate the number of factors
in Xi using, for example, the method proposed by Bai and Ng (2002), as T and N
tend jointly to infinity. Since these estimators are consistent, our discussion below
treats the number of factors, mx, as known. Given mx, the factors are extracted
using principal components from {Xi}Ni=1. Define F̂x as

√
T times the eigenvectors

corresponding to the mx largest eigenvalues of the T × T matrix 1
NT

∑N
i=1 XiX

′
i.

F̂x,−1 is defined in the same way, but this time based on 1
NT

∑N
i=1 Xi,−1X

′
i,−1. Note

that Fx and Γxi are estimated up to an invertible mx×mx matrix transformation.
Since our aim is to marginalise out the unobservable common components, the
principal components estimator F̂x can be treated as consistent, without loss of
generality.

The empirical counterpart of the projection matrices defined in (8) is given by

MF̂x
= IT − F̂x

(
F̂′xF̂x

)−1

F̂′x; MF̂x,−1
= IT − F̂x,−1

(
F̂′x,−1F̂x,−1

)−1

F̂′x,−1. (11)

The associated transformed instrument matrix discussed above is

MF̂x
Ẑi, where Ẑi =

(
Xi,MF̂x,−1

Xi,−1

)
. (12)

We propose the following instrumental variable (IV) or two-stage least squares
estimator of θ:

θ̂IV =
(
Â′NT B̂−1

NT ÂNT

)−1

Â′NT B̂−1
NT ĝNT , (13)

where

ÂNT =
1

NT

N∑
i=1

Ẑ′iMF̂x
Wi, B̂NT =

1

NT

N∑
i=1

Ẑ′iMF̂x
Ẑi, ĝNT =

1

NT

N∑
i=1

Ẑ′iMF̂x
yi.

(14)
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Firstly we show consistency of the above estimator. To begin with, from (7)
and (13) we obtain

√
NT

(
θ̂IV − θ

)
=
(
Â′NT B̂−1

NT ÂNT

)−1

Â′NT B̂−1
NT

(
1√
NT

N∑
i=1

Ẑ′iMF̂x
ui

)
. (15)

Since the asymptotic properties of the estimator are primarily determined by those
of 1√

NT

∑N
i=1 Ẑ′iMF̂x

ui, we focus on this term. It turns out that the asymptotic

effect of the replacement of Fx with F̂x is Op

( √
NT

min{N,T}

)
, which is either Op

(√
T
N

)
or Op

(√
N
T

)
. The result of formal analysis is provided as a proposition below,

where (N, T )
j→∞ signifies that N and T tend to infinity jointly.

Proposition 1 Consider the model in equations (1)-(3). Under Assumptions 1-

4(i)(ii), as (N, T )
j→∞ such that N/T → c with 0 < c <∞,

1√
NT

N∑
i=1

Ẑ′iMF̂x
ui =

1√
NT

N∑
i=1

Z′iMFxui +

√
T

N
b1NT + op (1) ,

where Ẑi, MF̂x
, Zi and MFx are defined in (12), (11), (10) and (8), respectively,

b1NT = [b′11NT ,b
′
12NT ]′ with

b11NT =
1

N

N∑
i=1

N∑
j=1

Ṽ′iVj

T
Γ′xjΥ

−1
kN

(
F′xFx

T

)−1
F′xui
T

;

b12NT =
1

N

N∑
i=1

N∑
j=1

Ṽ′i,−1MFx,−1Vj

T
Γ′xjΥ

−1
kN

(
F′xFx

T

)−1
F′xui
T

,

where Ṽi = Vi− 1
N

∑N
n=1 VnΓ

′
xnΥ

−1
kNΓxi, Ṽi,−1 = Vi,−1− 1

N

∑N
n=1 Vn,−1Γ

′
xnΥ

−1
kNΓxi,

and ΥkN = 1
N

∑k
`=1

∑N
i=1 γ`iγ

′
`i.

Remark 3 The source of the bias term in Proposition 1 is different than the bias
terms reported in Bai (2009) and Moon and Weidner (2017). In particular, the
bias term of our estimator arises primarily due to the correlation between the
factor loadings associated with Fx in x and the error term in the equation of y,
ui. On the other hand, the two bias terms in Bai (2009) and Moon and Weidner
(2017) arise from error serial dependence and weak cross-sectional dependence.
In our case, error serial correlation in the idiosyncratic part of the x process, v`it,
does not result in bias because v`it is not correlated with the error term in the y
equation, εit. Also note that Moon and Weidner (2017) report additional bias term
that generalizes the Nickell bias which typically occurs in dynamic panel models
with fixed effects. Our estimator is not subject to incidental parameter problem as
it is based on instrumental variables, therefore such a bias term does not arise in
our case.

8



Remark 4 Our expression of the bias estimator involves the composite error uit,
rather than the idiosyncratic error, εit. This underlines the simplicity and robust-
ness of our approach, which does not require estimation of the factor components
in the error term for bias correction or statistical inference of the estimator.

From the result stated in Proposition 1 it is easily seen that 1√
NT

∑N
i=1 Ẑ′iMF̂x

ui

isOp(1) and tends to a multivariate normal random variable. In addition,
√

T
N

b1NT

is Op(1) as T/N tends to a finite positive constant c (0 < c <∞) when N and T
→∞ jointly. Therefore, in such situation the IV estimator is

√
NT -consistent.

The above discussion is summarised in the following theorem:

Theorem 1 Consider model (1)-(3) and suppose that Assumptions 1-5(i)(ii)(iii)
hold true. Then,

θ̂IV − θ
p→ 0

as N and T → ∞ jointly in such a way that T/N → c with 0 < c < ∞, where
θ̂IV is defined in (13).

Now we turn our attention to the asymptotic normality properties of the esti-
mator. To this end, we propose a bias corrected estimator; otherwise the limiting

distribution of
√
NT

(
θ̂IV − θ

)
will not be centered at zero. Based on the result

in Proposition 1 the bias corrected estimator is defined as

̂̂
θIV = θ̂IV −

(
Â′NT B̂−1

NT ÂNT

)−1

Â′NT B̂−1
NT

1√
NT

b̂NT , (16)

where b̂NT =
√

T
N

b̂1NT with b̂1NT = [b̂′11NT , b̂
′
12NT ]′, and

b̂11NT =
1

N

N∑
i=1

N∑
j=1

ˆ̃V
′

iV̂j

T
Γ̂
′
xjΥ̂

−1
kN

F̂′xûi
T

;

b̂12NT =
1

N

N∑
i=1

N∑
j=1

ˆ̃V
′

i,−1MF̂x,−1
V̂j

T
Γ̂
′
xjΥ̂

−1
kN

F̂′xûi
T

;

ˆ̃Vi = V̂i −
1

N

N∑
n=1

V̂nΓ̂
′
xnΥ̂

−1
kN Γ̂xi;

ˆ̃Vi,−1 = V̂i,−1 −
1

N

N∑
n=1

V̂n,−1Γ̂
′
xnΥ̂

−1
kN Γ̂xi;

Υ̂kN =
1

N

k∑
`=1

N∑
i=1

γ̂`iγ̂
′
`i; γ̂`i = T−1F̂′xx`i; ûi = yi −Wiθ̂IV ; v̂`i = MF̂x

x`i.

The following theorem proves asymptotic normality of the distribution of the
bias adjusted estimator, based on Hansen’s (2007) law of large numbers and central
limit theorem, which are restated as Lemmas 1 and 2 in Appendix A.

Theorem 2 Suppose that Assumptions 1-5(i)(ii)(iii) hold true under model (1)-
(3). Then, assuming that plimN,T→∞bNT = b exists,

9



(i) as N and T →∞ jointly in such a way that T/N → c with 0 < c <∞
√
NT

(̂̂
θIV − θ

)
d→ N (0,Ψ) ,

where
̂̂
θIV is defined by (16) and

Ψ =
(
A′B−1A

)−1
A′B−1ΩB−1A

(
A′B−1A

)−1

is a positive definite matrix, A = plimN,T→∞ ÂNT and B = plimN,T→∞ B̂NT with

ÂNT and B̂NT defined in (14), and Ω is defined in Assumption 5.

(ii) Ψ̂NT −Ψ
p→ 0 as N and T →∞ jointly in such a way that T/N → c with

0 < c <∞, where

Ψ̂NT =
(
Â′NT B̂−1

NT ÂNT

)−1

Â′NT B̂−1
NT Ω̂NT B̂−1

NT ÂNT

(
Â′NT B̂−1

NT ÂNT

)−1

, (17)

with

Ω̂NT =
1

NT

N∑
i=1

Ẑ′iMF̂x
ûiû

′
iMF̂x

Ẑi (18)

and ûi = yi −Wiθ̂IV .

Define the two-step bias corrected IV estimator aŝ̂
θIV 2 = θ̂IV 2 −

(
Â′NT Ω̂−1

NT ÂNT

)−1

Â′NT Ω̂−1
NT

1√
NT

b̂NT (19)

with

θ̂IV 2 =
(
Â′NT Ω̂−1

NT ÂNT

)−1

Â′NT Ω̂−1
NT ĝNT . (20)

The following corollary describes the asymptotic properties of the estimator:

Corollary 1 Suppose that Assumptions 1-5(i)(ii)(iii) hold true under model (1)-
(3). Then, as N and T →∞ jointly in such a way that T/N → c with 0 < c <∞,

√
NT

(̂̂
θIV 2 − θ

)
d→ N

(
0,
(
A′Ω−1A

)−1
)

,

where
̂̂
θIV 2 is defined by (19), A = plimN,T→∞ ÂNT and Ω is defined in Assump-

tion 5.

The associated overidentifying restrictions test statistic is given by

SNT =
1

NT

(
N∑
i=1

̂̂u′iMF̂x
Ẑi

)
Ω̂−1
NT

(
N∑
i=1

Ẑ′iMF̂x
̂̂ui) , (21)

where ̂̂ui = yi −Wi
̂̂
θIV 2, and Ω̂ is defined by (18). Hansen (2007) shows in the

context of a standard panel fixed effects estimation that the t-test based on the
variance estimator (17) is asymptotically valid even when T and N tend jointly
to infinity. Using similar arguments, the asymptotic validity of the two-step IV
estimator and the associated overidentifying restrictions test can be verified. The
result is summarised in the following theorem:

10



Theorem 3 Suppose that Assumptions 1-5(i)(ii)(iii) hold true under model (1)-
(3). Then, as N and T →∞ jointly in such a way that T/N → c with 0 < c <∞

SNT
d→ χ2

k−1, (22)

for k > 1, under the null hypothesis of strong exogeneity of the covariates, where
SNT is defined in (21).

The overidentifying restrictions test is particularly useful in our approach in
order to test the assumption of strong exogeneity of the idiosyncratic error in the
equation for x.

3 The Case of Correlated Factor Loadings

In the previous section, we placed Assumption 4(ii) which leads to zero correlation
between the loadings of the factors that enter only y and those in x, i.e. E(λiγ

′
`i) =

0 for ` = 1, 2, ..., k. In this section, we drop this assumption. This is an important
extension to consider, since, in our approach, we only estimate the factors in the
regressors, leaving the factor components exclusively in u unestimated.

Note that if Fx were observed, even with such correlated loadings, the factor
component would be projected out from Xi completely, and so the defactored
regressors, MFxXi, would be free from Fyλi. However, since in practice the factors
are unobserved, in the absence of Assumption 4(ii) estimation of Fx can induces
additional non-zero correlations, which in turn imply extra asymptotic bias terms.

First, for a purely theoretical derivation purpose, we introduce the following:

Z̃i =
[
X̃i,MFx,−1X̃i,−1

]
(23)

where X̃i = X i − 1
N

∑N
n=1XnΓ

′
xnΥ

−1
kNΓxi, X̃i,−1 = X i,−1 − 1

N

∑N
n=1Xn,−1Γ

′
xnΥ

−1
kNΓxi.

Note that we will not make use of Z̃i or its estimated version to compute our es-
timates. Then, we replace Assumption 5(iii) with a version appropriate for Z̃i:

Assumption 5(iv) E
∥∥ϕ̃FiT,t∥∥2+δ ≤ ∆ < ∞ for all i and T , where ϕ̃FiT =

T−1/2Z̃′iMFxui and E(ϕ̃FiT ϕ̃
′
FiT ) are positive definite for any i, T . In addi-

tion, limN,T→∞N
−1
∑N

i=1E(ϕ̃FiT ϕ̃
′
FiT ) = Ω̃, which is a fixed positive defi-

nite matrix.11

The asymptotic expansion of 1√
NT

∑N
i=1 Ẑ′iMF̂x

ui is summarised in the follow-
ing proposition.

Proposition 2 Under Assumptions 1-3,4(i),5(i)(ii)(iv), as (N, T )
j→ ∞ such

that N/T → c with 0 < c <∞,

1√
NT

N∑
i=1

Ẑ′iMF̂x
ui =

1√
NT

N∑
i=1

Z̃′iMFxui +

√
T

N
b̃1NT +

√
N

T
b̃2NT + op (1) ,

11Assumption 5(iv) is in line with Assumption F in Bai (2003).
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where Ẑi, MF̂x
, Z̃i and MFx are defined by (12), (11), (23) and (8), respectively,

b̃1NT = [b̃′11NT , b̃
′
12NT ]′, b̃2NT = [b̃′21NT , b̃

′
22NT ]′, with

b̃11NT =
1

N

N∑
i=1

N∑
j=1

Ṽ′iVj

T
Γ′xjΥ

−1
kN

(
F′xFx

T

)−1
F′xui
T

;

b̃12NT =
1

N

N∑
i=1

N∑
j=1

Ṽ′i,−1Vj,−1

T
Γ′xjΥ

−1
kN

(
F′x,−1Fx,−1

T

)−1 F′x,−1MFxui

T

+
1

N

N∑
i=1

N∑
j=1

Ṽ′i,−1MFx,−1Vj

T
Γ′xjΥ

−1
kN

(
F′xFx

T

)−1
F′xui
T

;

b̃21NT = − 1

NT

N∑
i=1

Γ′xiΥ
−1
kN

(
F′xFx

T

)−1

F′xΣ̄kNTMFxui;

b̃22NT = − 1

NT

N∑
i=1

Γ′xiΥ
−1
kN

(
F′x,−1Fx,−1

T

)−1

F′x,−1Σ̄kNT,−1MFx,−1MFxui,

where Σ̄kNT = 1
N

∑k
`=1

∑N
j=1 E

(
v`jv

′
`j

)
and Σ̄kNT,−1 = 1

N

∑k
`=1

∑N
j=1 E

(
v`j,−1v

′
`j,−1

)
.

Remark 5 In comparison with the asymptotic bias term b1NT arising under As-
sumption 4(ii) in Proposition 1, dropping this assumption results in additional
asymptotic bias terms: b̃21NT , b̃22NT and the first term of b̃12NT . These terms
arise due to that fact that pre-multiplying ui by MFx does not eliminate the factor
component Fyλi, which will be correlated with FxΓxi in the absence of Assumption
4(ii).

Since 1√
NT

∑N
i=1 Ẑ′iMF̂x

ui is Op (1), the following theorem verifies consistency of
the estimator:

Theorem 4 Consider model (1)-(3) and suppose that Assumptions 1-3,4(i),5(i)(ii)(iv)
hold true. Then,

θ̂IV − θ
p→ 0

as N and T → ∞ jointly such that T/N → c with 0 < c < ∞, where θ̂IV is
defined in (13).

Based on the result of Proposition 2, the bias corrected estimator is defined as

̂̂̃
θIV = θ̂IV −

(
Â′NT B̂−1

NT ÂNT

)−1

Â′NT B̂−1
NT

1√
NT

ˆ̃bNT , (24)

where

ˆ̃bNT =

√
T

N
ˆ̃b1NT +

√
N

T
ˆ̃b2NT , (25)
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with ˆ̃b1NT = [ˆ̃b
′

11NT ,
ˆ̃b
′

12NT ]′, ˆ̃b2NT = [ˆ̃b
′

21NT ,
ˆ̃b
′

22NT ]′, and

ˆ̃b11NT =
1

N

N∑
i=1

N∑
j=1

ˆ̃V
′

iV̂j

T
Γ̂
′
xjΥ̂

−1
kN

F̂′xûi
T

;

ˆ̃b12NT =
1

N

N∑
i=1

N∑
j=1

ˆ̃V
′

i,−1V̂j,−1

T
Γ̂
′
xjΥ̂

−1
kN

F̂′x,−1MF̂x
ûi

T

+
1

N

N∑
i=1

N∑
j=1

ˆ̃V
′

i,−1MF̂x,−1
V̂j

T
Γ̂
′
xjΥ̂

−1
kN

F̂′xûi
T

;

ˆ̃b21NT = − 1

N

N∑
i=1

Γ̂
′
xiΥ̂

−1
kN

(
F̂′xΣ̂kNT ûi

T
− F̂′xΣ̂kNT F̂x

T

F̂′xûi
T

)
;

ˆ̃b22NT = − 1

N

N∑
i=1

Γ̂
′
xiΥ̂

−1
kN

(
F̂′x,−1Σ̂kNT,−1ûi

T
−

F̂′x,−1Σ̂kNT,−1F̂x

T

F̂′xûi
T

−
F̂′x,−1Σ̂kNT,−1F̂x,−1

T

F̂′x,−1MF̂x
ûi

T

)
.

We have chosen a Newey-West type estimator:

F̂′xΣ̂kNT ûi =
k∑
`=1

1

N

N∑
j=1

1

T

[
f̂x,tv̂

2
`,jtûit +

S∑
s=1

T∑
t=s+1

(
1− s

S + 1

)
v̂`,jtv̂`,jt−s

(
f̂x,tû

′
it−s + f̂x,t−sû

′
it

)]
,

where F̂′xΣ̂kNT F̂x, F̂′x,−1Σ̂kNT,−1ûi, F̂′x,−1Σ̂kNT,−1F̂x,−1 and F̂′x,−1Σ̂kNT,−1F̂x are

defined in an analogous manner. We set S = bT 1/4c.
We introduce the following assumption:12

Assumption 6:

1√
NT

N∑
i=1

Z̃′iMFxui
d→ N

(
0, Ω̃

)
. (26)

The asymptotic normality of the IV estimators is ready to be shown:

Theorem 5 Suppose that Assumptions 1-3,4(i),5(i)(ii)(iv) and 6 hold true under

model (1)-(3). Then, assuming that plimN,T→∞
ˆ̃bNT = b̃ exists, as N and T →∞

jointly in such a way that T/N → c with 0 < c <∞
(i)

√
NT

(̂̂̃
θIV − θ

)
d→ N

(
0, Ψ̃

)
, (27)

where
̂̂̃
θIV is defined by (24), and

Ψ̃ =
(
A′B−1A

)−1
A′B−1Ω̃B−1A

(
A′B−1A

)−1
(28)

12This assumption is in line with Assumption E of Bai (2009).
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is a positive definite matrix, where Ω̃ is defined in Assumption 5(iv);
(ii) Ψ̂NT − Ψ̃ = op (1), where Ψ̂NT is defined by (17);
(iii)

√
NT

(̂̂̃
θIV 2 − θ

)
d→ N

(
0,
(
A′Ω̃−1A

)−1
)

, (29)

where ̂̂̃
θIV 2 = θ̂IV 2 −

(
Â′NT Ω̂

−1

NT ÂNT

)−1

Â′NT Ω̂
−1

NT

1√
NT

ˆ̃bNT (30)

with θ̂IV 2 defined by (20).

The asymptotic properties of the overidentifying restrictions test statistic is
given in the following theorem.

Theorem 6 Suppose that Assumptions 1-3,4(i),5(i)(ii)(iv) and 6 hold true under
model (1)-(3). Then, as N and T →∞ jointly in such a way that T/N → c with
0 < c <∞

S̃NT
d→ χ2

k−1, (31)

for k > 1, under the null hypothesis of strong exogeneity of the covariates, where

S̃NT =
1

NT

(
N∑
i=1

̂̃̂
u
′

iMF̂x
Ẑi

)
Ω̂−1
NT

(
N∑
i=1

Ẑ′iMF̂x

̂̃̂
ui

)
, (32)

with
̂̃̂
ui = yi −Wi

̂̂̃
θIV 2.

4 Monte Carlo Experiments

This section investigates the finite sample behaviour of the proposed estimator
by means of Monte Carlo experiments. In particular, we focus on bias, standard
deviation, root mean square error (RMSE), empirical size of the t-test of the bias-

corrected two-step estimator
̂̂̃
θIV 2, which is defined by (30), as well as size and

power of the overidentifying restrictions test, where the test statistic is given by
(32). The small sample performance of our estimator is also compared to the
performance of the bias-corrected quasi maximum likelihood estimator (QMLE)
recently proposed by Moon and Weidner (2017), as defined in Corollary 3.7 in
their paper.13

4.1 Design

We consider the following panel data model with two covariates and three factors:

yit = αi + ρyit−1 +
2∑
`=1

β`x`it + uit; uit = λify,t +
2∑
s=1

γsifx,st + εit;

i = 1, 2, ..., N ; t = −49,−48, ..., T , (33)

13We are grateful to Martin Weidner for providing us the computational algorithm for the
QMLE estimator.
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where αi ∼ i.i.d.N(0, (1− ρ)2), λi ∼ i.i.d.N(0, 1), γsi ∼ i.i.d.N(0, 1) for s = 1, 2,
and

fy,t = ρfyfy,t−1 + (1− ρ2
fy)

1/2ζy,t;

fx,st = ρfx,sfx,st−1 + (1− ρ2
fx,s)

1/2ζx,st,

with ζy,t ∼ i.i.d.N(0, 1) and ζx,st ∼ i.i.d.N(0, 1) for s = 1, 2.
The idiosyncratic error, εit, is non-normal and heteroskedastic across both i

and t, such that εit = ςεσit(εit−1)/
√

2, εit ∼ i.i.d.χ2
1, with σ2

it = ηiϕt, ηi ∼ iidχ2
2/2,

and ϕt = t/T for t = 0, 1, ..., T and unity otherwise.
The process for the covariates is given by

x`it = µ`i +
2∑
s=1

γ`sifx,st + v`it; i = 1, 2, ..., N ; t = −49,−48, ..., T,

for ` = 1, 2, which means that only a subset of the factors in y enter the process
for x1 and x2.

The individual-specific effects in x1 and x2 are allowed to be correlated with
those in the equation for y in the following way:

µ`i = ρµ,`αi + (1− ρ2
µ,`)

1/2ω`i, ω`i ∼ i.i.d.N(0, (1− ρ)2)

for ` = 1, 2. Furthermore, the factor loadings of x1 are drawn as

γ1si = ργ,1sγsi + (1− ρ2
γ,1s)

1/2ξ1si; ξ1si ∼ i.i.d.N(0, 1),

and the factor loadings of x2 are generated by

γ2si = ργ,2sλi + (1− ρ2
γ,2s)

1/2ξ2si; ξ2si ∼ i.i.d.N(0, 1),

for s = 1, 2. This allows for the case where Assumption 4(ii) is violated, that
is, the factor loadings in the process for x2 are both correlated with the loadings
corresponding to the non-overlapping factor in y, namely λi.

The idiosyncratic errors of the process for the covariates are serially correlated,
such that

v`it = ρυ,`v`it−1+(1−ρ2
υ,`)

1/2$`it, $`it ∼ i.i.d.N(0, ς2
υσ

2
$`,i

), σ2
$`,i
∼ i.i.d.U [0.5, 1.5] ,

for ` = 1, 2.
We consider ρ ∈ {0.5, 0.8}, whereas we set β1 = 3 and β2 = 1 as a benchmark

case following Bai(2009). In order to investigate the properties of the estimator
when one of the slope coefficients is equal to zero, we specify β1 = 3 and β2 = 0.
Moreover, we set ρµ,` = 0.5, ργ,` = 0.5, ρfx,s = 0.5, ρfy =0.5, ρυ,` = 0.5 for ` = 1, 2,
s = 1, 2.

It is straightforward to see that overall average of var($`it) over i and t is ς2
υ ,

for ` = 1, 2, since σ2
$`,i

merely allows for cross-sectional heteroskedasticity and

E
(
σ2
$`,i

)
= 1. Let πx denote the proportion of the variance of x`it that is due to

v`it for all `. That is, we define πx := ς2
υ/
(
mx + ς2

υ + (1− ρυ)2). Solving in terms
of ς2

υ yields

ς2
υ =

πx
(1− πx)

[
1 + (1− ρυ)2] .
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Thus, for example, πx = 3/4 means that, for each of the covariates, the variance
of the idiosyncratic error accounts for 75% of the total variance in x. In this
case most of the variation in the covariates is due to the idiosyncratic component
and the factor structure has relatively minor significance. We set ς2

υ such that
πx ∈ {1/4, 3/4}. These values are motivated by the results in Sargent and Sims
(1977), who show that two common factors explain a large proportion of the
variation in many macroeconomic series.14

It is easily seen that the DGP ensures that the overall average of σ2
it = E (ε2

it)
over i and t is ς2

ε . Denoting ρυ = ρυ,`, ` = 1, 2, we define the signal-to-noise ratio of
the model, conditional on the factor structure and the individual-specific effects,
as follows:

SNR :=
var [(yit − εit) |L]

var (εit)
=

(
β2
1+β2

2

1−ρ2υ

)
ς2
υ + ς2ε

1−ρ2υ
− ς2

ε

ς2
ε

,

where L is the information set that contains the factor structure and the individual-
specific effects,15 and var (εit) is the overall average of E (ε2

it) over i and t. Solving
for ς2

ε yields

ς2
ε =

(
β2

1 + β2
2

1− ρ2
υ

)
ς2
υ

[
SNR− ρ2

υ

1− ρ2
υ

]−1

.

We set ς2
ε such that SNR = 2. We consider all the combinations of (T,N), for

T ∈ {25, 50, 100, 200} and N ∈ {25, 50, 100, 200}.
In order to investigate the power of the overidentifying restrictions test, which

is defined in (21), we change the DGP such that v`it = ρυ,`v`it−1 + (1− ρ2
`)

1/2$`it,
$`it = τ`εit + (1− τ 2

` )1/2%`it with %`it ∼ i.i.d.N(0, 1), ` = 1, 2. We set τ1 = 0.5 and
τ2 = 0 so that the idiosyncratic error of x1it is correlated with εit.

All results are obtained based on 2,000 replications, and all tests are conducted
at the 5% significance level.

4.2 Results

Table 1 reports the bias, standard deviation, RMSE and size of the t-test based on
the IV and QMLE estimators for the panel dynamic model with ρ = 0.5, β1 = 3,
β2 = 1.16 Panel A reports the results of the estimators of ρ, and Panel B those
for β2. The results for β1 are not reported here as they are qualitatively similar
to those for β2 (which are available upon request from the authors). IV refers
to the bias-corrected two-step instrumental variables estimator defined in (30),
whereas QMLE stands for the bias-corrected quasi maximum likelihood estimator
proposed by Moon and Weidner (2017; Corollary 3.7)

When using the IV estimator, an estimate of mx, i.e. m̂x, is obtained in
each replication, which is based on the information criteria IC1 proposed by Bai

14Indicatively, they find that two common factors explain about 93% of the variation in real
GNP, 86% of the variation in unemployment rate and 26% of the variation in residential con-
struction.

15The reason we condition on these variables is that they influence both the composite error
in the equation for the dependent variable and the covariates.

16The quantities reported for bias, standard deviation and RMSE are scaled by a factor of 10
in order to make the results easier to discern.
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and Ng (2002). We set the maximum number of factors equal to three.17 The
estimate of common factors is denoted by F̂x, which is a T × m̂x matrix obtained
by extracting the principal components from

∑N
i=1

(
Xi −Xi

) (
Xi −Xi

)′
, where

Xi = ιT × T−1
∑
t

x′it and ιT is a T × 1 column vector of ones. In order to deal

with individual specific effects, we use the matrix that projects out the common

factors including a column of ones, such that Ĥ =
[
ιT ; F̂x

]
with MĤ = IT −

Ĥ(Ĥ′Ĥ)−1Ĥ′, rather than MF̂x
. By doing so, we swipe away the individual effects

in xit. As for the QMLE, (yit,x
′
it) are transformed prior to estimation by taking

deviations from individual-specific averages, while mx +my is estimated from the
residuals of the model using the same criteria of Bai and Ng (2002), IC1, where
the maximum number of factors is set equal to four.

First let us discuss the small sample properties of the estimators of ρ, where the
results are presented in Panel A, Table 1. We see that the IV estimator appears
to have virtually no bias. The largest absolute bias reported in Table 1 is 0.0011
for N = T = 25, and it decreases in magnitude as N or T increases. There is
little evidence that the value of πx affects the bias of IV estimator. Absolute
bias of the QMLE reported in Table 1 is always much larger than that of the IV
estimator, and it seems to be sensitive to the values taken by T , N and πx. When
πx = 1/4, the bias of the QMLE is negative in most of the cases considered, and
the bias decreases in absolute value as T increases. For instance, when N = 50, for
T = 25, 50, 100, 200, the biases of QMLE are -0.0060, -0.0026, -0.0012 and -0.0005,
respectively. On the other hand, when πx = 3/4, the bias does not necessarily
decrease monotonically as T increases, unless N is sufficiently large.

The standard deviation of both the IV estimator and QMLE becomes smaller as
the values of either T and/or N increases. Even though the standard deviation of
IV estimator is comparable to that of QMLE, the standard deviation of the QMLE
is smaller than that of IV estimator in most of the cases under consideration. This
is expected because the IV estimator is based on estimating the common factors
in x only, whereas the factors in the error term of y are also estimated when using
the QMLE. This difference in dispersion of two estimators is, however, smaller
when πx = 3/4, since the IV estimator gains efficiency when πx gets larger, as it
increases the correlation between the instruments and the endogenous variables.

The performance in terms of RMSE reflects the insights drawn from the results
of bias and standard deviation discussed above. When πx = 1/4, the smaller
standard deviation overwhelms the larger bias of the QMLE, so that the RMSE of
QMLE is smaller for all the combinations of N and T considered. When πx = 3/4,
the larger bias of QMLE and improved relative efficiency of the IV estimator make
the RMSEs of IV estimator and QMLE very similar in magnitude. Indeed, in seven
cases out of 16 combinations of N and T , the RMSE of IV estimator is smaller than
that of QMLE. Notwithstanding, the size of t-test based on the QMLE appears
to be quite severely distorted. Even when N = T = 200 and πx = 1/4, which can

17Simulations in Bai and Ng (2002) show that the performance of this information criterion is
robust provided min{N,T} > 40. Our results show that notwithstanding that min{N,T} < 40
our IV estimator appears to perform very well. Intuitively, this is because in our experiment the
results suggest that for small values of either N or T , the information criterion tends to overshoot
the true number of factors, which however does not affect consistency for our estimator.
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be seen as the most favorable case for QMLE, the size of the t-test is 13.4% at the
5% nominal level. In contrast, the size of the t-test based on the IV estimator is
very close to nominal size of 5% for all the combinations of N and T and for both
πx = 1/4 and 3/4.

Now let us turn our attention to Panel B in Table 1, which summarizes the
results for the estimators of β2. Surprisingly, the QMLE of β2 exhibits much larger
bias than that of ρ, and it gets larger in magnitude when the value of πx increases.
For example, when N = T = 50 and πx = 1/4, the bias of QMLE is 0.0208, but it
becomes 0.106 with πx = 3/4, which is a positive bias of 10.6%. On the other hand,
the results reported in Panel B in Table 1 suggest that the bias of IV estimator
is very small in absolute value. Furthermore, the performance of IV estimator in
terms of standard deviation dominates that of QMLE. In fact, in seven (fifteen)
cases out of 16 combinations of N and T , the standard deviation of IV estimator
is smaller than that of QMLE when πx = 1/4 (πx = 3/4). As for the RMSE, the
superior relative performance of IV estimator is even more pronounced. When
πx = 3/4, the value of RMSE of IV estimator is twice as small as that of QMLE
in a vast majority of cases. Similarly as results reported in Panel A, the empirical
size of the t-test based on the QMLE presented in Panel B exhibits considerable
upward distortions, whereas very small or no size distortions are seen for the t-test
based on the IV estimator.

Table 2 provides the results obtained using the IV estimator and QMLE to
estimate the dynamic panel model with ρ = 0.5, β1 = 3, β2 = 0. Similar conclu-
sions are drawn based on these results, so we do not discuss them in detail to save
space. In order to see how the small sample performance of the two estimators is
affected when the DGP exhibits higher degree of persistency, further experiments
with ρ = 0.8, β1 = 3, β2 = 1 are implemented and the results are summarized in
Table 3. The relative performance of the IV estimator and QMLE is qualitatively
similar to that under ρ = 0.5, but the differences in results described above are
more apparent. In particular, the bias of QMLE of β2 is very large in magni-
tude when ρ = 0.8 (see Panel B, Table 3) and much more severe than that under
ρ = 0.5. For example, when ρ = 0.5, πx = 3/4 and N = T = 50, the bias of QMLE
of β2 is 0.106 (see Panel B, Table 1), while it is 0.206 when ρ = 0.8 (see Panel B,
Table 3). More surprisingly, when πx = 1/4 with ρ = 0.8 and N = T = 50, the
bias of QMLE is even larger in absolute value compared to the previous two cases
and it is equal to 0.401. The corresponding bias of the IV estimator is smaller
in magnitude and takes values of -0.0022, -0.0080 and -0.0103, respectively. The
large values of absolute bias of the QMLE result in bigger RMSE and more severe
size distortions of the t-test based on this estimator.

Finally, Table 4 reports the empirical size and power of the overidentifying
restrictions test. The size of test is very close to the nominal value in most of
combinations of N and T , unless N is very small, in which case it is slightly
distorted downwards. Notably, the test has high power when the idiosyncratic
error in x equation is correlated with the idiosyncratic error in y equation. Thus, it
appears that this test can be a reliable statistical tool to check the key assumption
within our approach.
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5 Concluding Remarks

This paper has proposed a computationally attractive instrumental variables pro-
cedure for consistent estimation of dynamic linear panel data models with error
cross-sectional dependence when both N and T are large. Our approach involves
projecting out the common factors from the regressors at first stage, and then
using the defactored regressors as instruments for the endogenous variables. The
estimated number of factors and the factors themselves are obtained from observed
variables rather than residuals. Since our procedure is based on instrumental vari-
ables, there is no need to correct for Nickell bias induced due to predeterminedness.

Aside from computational simplicity the method has the feature that it does
not require estimating possible distinct factors that enter directly only into the y
process, thus leaving these factors in the residuals. Therefore, full specification of
the error term of the model for y is not required.

The finite sample evidence reported in the paper suggests that the proposed
estimator performs reasonably well under all circumstances examined, and there-
fore it presents a good alternative way of estimation to existing approaches. In
particular, the estimator appears to have little bias, and small dispersion unless
either N or T is small. Furthermore, the empirical size of the t-test appears to be
close to nominal one in most cases, which makes our estimator particularly suit-
able for inferential purposes. The results of the overidentifying restrictions test
statistic suggest that the test statistic has good power to detect violations from
basic assumptions employed within our approach.

In practice, it is also possible that (a subset of) the factors that hit the covari-
ates are orthogonal to the composite disturbance of the y process. In this case the
proposed approach in this paper is asymptotically valid, though, full defactoring
is not necessary for consistency of the IV estimator. Empirically, this issue can be
addressed using a sequential testing method based on the overidentifying restric-
tions test that we have explored in this paper. In particular, one may start by
testing whether the untransformed covariates are strongly exogenous with respect
to the composite disturbance. Notice that the null hypothesis will also be satisfied
if the covariates do not have a factor structure at all. If the null is rejected, one
may project out one factor (based on the largest eigenvalue) and test whether the
defactored regressors yield valid instruments using the same statistic. If the null
is rejected, one may project out two factors and so on. Naturally, the significance
level used for this sequential method needs to be appropriately adjusted. The
interested reader is recommended to refer to Proposition 2 of Ahn et al. (2013).

Finally, notice that although the proofs of our results require N and T both
large, under certain restrictions imposed in the covariates − in particular, asymp-
totic homoskedasticity and serial uncorrelatedness − it is possible to derive consis-
tency and asymptotic normality of our estimator even for T fixed; see Bai (2003).
On the other hand, the simulation evidence we have presented suggests that even
if these conditions are not met in practice, the bias of the estimator appears to
be small and the size of the t-test satisfactory unless both N and T are small.
Therefore, we hope that our approach provides a computationally attractive way
to estimate dynamic panel data models with multi-factor residual structures, even
in cases where either T or N are moderately small.
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Table 1: Bias, Standard Deviation, RMSE and Size of the t-test of IV and QMEL
estimators, for the Panel Dynamic Model with ρ = .5, β1 = 3 and β2 = 1.

PANEL A: Bais, standard deviation, RMSE and size of t-test of the estimates of ρ

IV QMLE

πx = 1/4 πx = 3/4 πx = 1/4 πx = 3/4

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

bias×10

25 -.011 .000 -.004 .000 -.011 -.001 -.003 .001 -.060 -.070 -.081 -.085 -.055 -.079 -.114 -.140

50 .004 .006 .000 .000 .005 .006 .000 -.001 -.026 -.039 .040 .040 .140 -.007 -.041 -.068

100 .001 .005 .001 .001 .001 .004 .001 .001 -.012 -.019 -.019 -.012 .043 .019 -.011 -.038

200 -.002 .001 -.002 -.001 -.001 .001 -.001 -.001 -.005 -.010 -.009 -.010 .062 .035 .001 -.002

st.dev.×10

25 .371 .257 .177 .125 .325 .233 .153 .109 .149 .100 .081 .053 .203 .162 .134 .117

50 .216 .154 .109 .078 .183 .133 .094 .066 .081 .057 .039 .027 .132 .104 .078 .061

100 .145 .102 .070 .050 .123 .086 .060 .042 .053 .037 .024 .024 .087 .067 .052 .036

200 .101 .070 .048 .035 .085 .059 .042 .030 .037 .025 .017 .011 .066 .050 .036 .023

RMSE×10

25 .371 .257 .177 .125 .325 .233 .153 .109 .150 .124 .108 .100 .210 .180 .176 .183

50 .216 .154 .109 .078 .183 .134 .094 .066 .085 .069 .056 .055 .132 .104 .088 .091

100 .145 .102 .070 .050 .123 .086 .060 .042 .055 .041 .031 .026 .097 .070 .053 .052

200 .101 .070 .048 .035 .085 .059 .042 .030 .037 .026 .019 .015 .090 .060 .036 .032

size of t-test

25 .069 .061 .047 .045 .078 .063 .049 .045 .208 .136 .107 .090 .210 .251 .409 .603

50 .059 .056 .050 .058 .070 .060 .060 .065 .259 .172 .115 .093 .170 .173 .240 .449

100 .061 .060 .041 .044 .075 .064 .053 .056 .380 .245 .145 .088 .171 .164 .150 .319

200 .073 .050 .049 .049 .081 .059 .059 .058 .593 .395 .222 .134 .301 .230 .131 .221
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Table 1, continued.

PANEL B: Bais, standard deviation, RMSE and size of t-test of the estimates of β2
IV QMLE

πx = 1/4 πx = 3/4 πx = 1/4 πx = 3/4

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

bias×10

25 .013 -.011 .004 .017 .207 .101 .094 .091 1.13 .786 .359 .151 1.12 1.19 1.08 .966

50 .007 -.022 -.009 .009 .045 .006 .015 .027 .687 .208 .081 .035 1.15 1.06 .911 .667

100 -.005 .005 -.005 -.002 .016 .016 .005 .005 .435 .117 .026 .013 1.11 .942 .667 .311

200 -.001 .008 -.001 .005 .007 .010 .004 .006 .298 .044 .011 .010 1.06 .837 .435 .112

st.dev.×10

25 1.32 .896 .637 .453 1.05 .728 .523 .362 1.65 1.19 .742 .453 1.00 .744 .576 .445

50 .869 .594 .426 .289 .693 .466 .333 .227 1.28 .696 .368 .233 .781 .588 .467 .369

100 .588 .412 .282 .198 .455 .318 .221 .157 .998 .426 .233 .158 .676 .486 .411 .288

200 .413 .295 .202 .146 .322 .222 .153 .113 .786 .263 .156 .107 .578 .451 .355 .178

RMSE×10

25 1.32 .896 .637 .453 1.07 .735 .531 .373 2.06 1.42 .824 .477 1.59 1.40 1.22 1.06

50 .869 .594 .427 .289 .694 .466 .333 .229 1.46 .727 .376 .235 1.39 1.21 1.02 .762

100 .588 .412 .283 .198 .455 .318 .221 .157 1.09 .442 .235 .159 1.32 1.06 .782 .424

200 .413 .295 .202 .146 .322 .222 .153 .113 .841 .267 .157 .107 1.21 .951 .562 .207

size of t-test

25 .066 .064 .062 .060 .076 .072 .068 .063 .497 .384 .242 .151 .517 .643 .740 .823

50 .078 .057 .055 .051 .084 .058 .058 .052 .390 .192 .097 .078 .643 .756 .810 .774

100 .075 .068 .049 .049 .077 .060 .045 .055 .342 .138 .088 .076 .785 .824 .767 .485

200 .072 .073 .064 .063 .078 .062 .047 .059 .346 .115 .078 .061 .853 .862 .637 .218

Notes: The DGP follows yit = αi + ρyit−1 +
∑2
`=1 β`x`it + λify,t +

∑2
s=1 γsifx,st + εit, where αi ∼

i.i.d.N(0, (1− ρ)2), λi ∼ i.i.d.N(0, 1), γsi ∼ i.i.d.N(0, 1) for s = 1, 2, εit = ςεσit(εit − 1)/21/2, εit ∼ i.i.d.χ2
1,

with σ2
it = ηiϕt, ηi ∼ i.i.d.χ2

2/2, ϕt = t/T for t = 0, ..., T , otherwise unity. x`it = µ`i +
∑2
s=1 γ`sifst + v`it

for all `, where µ`i = ρµ,`αi + (1 − ρ2µ,`)
1/2ω`i, ω`i ∼ i.i.d.N(0, (1− ρ)2). The factor loadings, γ`si,

in x`it are drawn as γ`si = ργ,`sγsi + (1 − ρ2γ,`s)
1/2ξ`si, ξ`si ∼ i.i.d.N(0, 1) for ` = 1 and s = 1, 2,

whereas γ`si = ργ,`sλi + (1 − ρ2γ,`s)
1/2ξ`si, ξ`si ∼ i.i.d.N(0, 1) for ` = 2 and s = 1, 2. Moreover,

fx,st = ρfx,sfx,st−1+(1−ρ2fx,s)
1/2ζx,st, and fy,t = ρfyfy,t−1+(1−ρ2fy)1/2ζy,t with ζx,st ∼ i.i.d.N(0, 1), s = 1, 2

and ζy,t ∼ i.i.d.N(0, 1). v`it = ρυ,`v`it−1 + (1 − ρ2υ,`)
1/2$`it, $`it ∼ i.i.d.N(0, ς2υσ

2
$`,i

). We set ρµ,` = 0.5,

ργ,`s = 0.5, ρf,xs = ρf,y = 0.5, ρυ,` = 0.5 for all ` and s. ς2ε is set such that SNR = 2, while ς2υ is determined by
πx, the proportion of the total variance in x due to the idiosyncratic component. πx ∈ {1/4, 3/4}, ρ = {0.5, 0.8}
with β1 = 3, whereas β2 = {1, 0}. IV refers to the bias-corrected two-step instrumental variables estimator
defined in (30). QMLE refers to the bias-corrected quasi maximum likelihood estimator put forward by Moon
and Weidner (2017; Corollary 3.7). For IV and QMLE, the number of factors are estimated using IC1 proposed
by Bai and Ng (2002). All experiments are based on 2,000 replications and nominal level of the test is set to 5%.
The results for the estimates of β1 are very similar and not reported (available upon request from the authors).
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Table 2: Bias, Standard Deviation, RMSE and Size of the t-test of IV and QMEL
estimators, for the Panel Dynamic Model with ρ = .5, β1 = 3 and β2 = 0.

PANEL A: Bais, standard deviation, RMSE and size of t-test of the estimates of ρ

IV QMLE

πx = 1/4 πx = 3/4 πx = 1/4 πx = 3/4

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

bias×10

25 -.011 .001 -.004 .001 -.007 .000 -.002 .002 -.064 -.074 -.014 -.085 -.053 -.082 -.120 -.146

50 .005 .006 .001 -.001 .006 .005 .000 .000 -.026 -.039 -.019 .040 .015 -.008 -.044 -.072

100 .001 .004 .002 .001 .001 .003 .002 .000 -.014 -.019 -.019 -.019 .045 .018 -.014 -.040

200 .000 .002 -.002 -.001 .000 .002 -.002 -.001 -.005 -.010 -.009 -.010 .063 .032 -.002 -.024

st.dev.×10

25 .379 .259 .177 .125 .329 .225 .152 .109 .143 .082 .054 .052 .206 .167 .136 .117

50 .223 .156 .111 .079 .186 .134 .094 .067 .081 .057 .036 .027 .134 .105 .078 .060

100 .148 .103 .071 .051 .125 .086 .060 .042 .054 .036 .024 .018 .090 .069 .052 .035

200 .102 .070 .050 .035 .085 .059 .042 .029 .037 .025 .017 .011 .068 .051 .037 .022

RMSE×10

25 .379 .259 .177 .125 .329 .225 .152 .109 .156 .086 .055 .100 .213 .186 .181 .187

50 .223 .156 .111 .079 .186 .134 .094 .067 .085 .069 .041 .055 .135 .105 .089 .094

100 .148 .103 .071 .051 .125 .086 .060 .042 .055 .041 .031 .026 .101 .071 .054 .054

200 .102 .070 .050 .035 .085 .059 .042 .029 .037 .027 .019 .015 .092 .060 .037 .033

size of t-test

25 .067 .055 .047 .044 .081 .063 .049 .050 .207 .251 .371 .584 .212 .264 .413 .612

50 .064 .052 .050 .054 .066 .067 .059 .064 .138 .174 .245 .398 .167 .166 .244 .473

100 .059 .061 .046 .042 .078 .064 .056 .055 .111 .109 .145 .209 .185 .153 .154 .337

200 .074 .046 .047 .048 .083 .056 .058 .052 .096 .091 .092 .063 .303 .241 .137 .237

22



Table 2, continued.

PANEL B: Bais, standard deviation, RMSE and size of t-test of the estimates of β2
IV QMLE

πx = 1/4 πx = 3/4 πx = 1/4 πx = 3/4

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

bias×10

25 .010 -.009 .003 .017 .200 .102 .092 .091 1.07 .622 .266 .089 1.16 1.10 .965 .835

50 .007 -.021 -.009 .008 .047 .009 .015 .027 .554 .140 .046 .012 1.10 .984 .802 .530

100 -.004 .007 -.004 -.001 .018 .019 .006 .005 .343 .082 .011 .001 1.09 .868 .555 .212

200 -.003 .008 -.002 .005 .006 .011 .003 .005 .221 .023 .004 .004 1.03 .763 .337 .065

st.dev.×10

25 1.29 .870 .617 .437 1.01 .694 .498 .343 1.60 1.10 .664 .406 .979 .729 .568 .433

50 .837 .575 .412 .280 .652 .441 .314 .215 1.19 .626 .331 .219 .767 .583 .463 .361

100 .571 .400 .273 .191 .433 .300 .208 .147 .904 .375 .219 .149 .672 .485 .406 .258

200 .400 .286 .195 .142 .304 .209 .145 .107 .686 .236 .147 .101 .578 .452 .334 .144

RMSE×10

25 1.29 .870 .617 .438 1.02 .701 .506 .354 1.92 1.27 .711 .415 1.52 1.32 1.12 .941

50 .837 .576 .412 .280 .654 .441 .315 .217 1.31 .642 .334 .220 1.34 1.14 .926 .642

100 .571 .400 .273 .191 .433 .301 .208 .147 .967 .384 .219 .159 1.28 .994 .688 .334

200 .400 .286 .195 .142 .305 .209 .145 .107 .721 .238 .147 .101 1.18 .887 .475 .158

size of t-test

25 .067 .065 .065 .060 .079 .072 .071 .065 .465 .339 .203 .155 .518 .617 .691 .755

50 .076 .055 .056 .053 .082 .060 .054 .052 .357 .161 .088 .075 .638 .741 .738 .659

100 .076 .067 .049 .048 .080 .064 .049 .054 .300 .122 .086 .072 .774 .796 .674 .363

200 .074 .075 .065 .062 .079 .065 .053 .061 .300 .105 .076 .063 .843 .828 .537 .147

Notes: See notes to Table 1.
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Table 3: Bias, Standard Deviation, RMSE and Size of the t-test of IV and QMEL
estimators, for the Panel Dynamic Model with ρ = .8, β1 = 3 and β2 = 1.

PANEL A: Bais, standard deviation, RMSE and size of t-test of the estimates of ρ

IV QMLE

πx = 1/4 πx = 3/4 πx = 1/4 πx = 3/4

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

bias×10

25 -.053 -.005 -.012 .006 -.053 -.010 -.014 .005 -.219 -.300 -.490 -.980 -.528 -.596 -.795 -1.37

50 .012 .016 -.001 -.004 .015 .015 -.002 -.004 -.049 -.074 -.097 -.132 -.209 -.225 -.234 -.255

100 .002 .012 .004 .002 .002 .011 .004 .002 .013 -.002 -.025 -.058 -.080 -.085 -.094 -.098

200 -.004 .004 -.005 -.003 -.004 .004 -.005 -.003 .044 .030 .006 -.023 -.023 -.029 -.030 -.033

st.dev.×10

25 1.28 .852 .584 .405 1.33 .875 .597 .419 .388 .447 .732 1.11 .581 .521 .689 1.12

50 .639 .466 .325 .227 .637 .465 .324 .225 .152 .121 .105 .098 .225 .174 .140 .130

100 .407 .283 .198 .139 .405 .279 .197 .136 .092 .068 .060 .046 .138 .102 .075 .057

200 .272 .189 .134 .096 .267 .186 .132 .094 .060 .051 .037 .028 .087 .068 .048 .036

RMSE×10

25 1.28 .258 .584 .405 1.33 .875 .597 .419 .446 .539 .881 1.48 .785 .792 1.05 1.77

50 .639 .466 .325 .227 .637 .465 .324 .225 .160 .142 .142 .164 .306 .284 .273 .286

100 .407 .283 .198 .139 .405 .279 .197 .136 .092 .068 .065 .075 .160 .133 .120 .114

200 .277 .189 .134 .096 .267 .186 .132 .094 .074 .059 .038 .037 .090 .074 .057 .049

size of t-test

25 .057 .049 .045 .045 .070 .056 .046 .045 .367 .522 .701 .887 .502 .688 .875 .974

50 .064 .060 .055 .062 .069 .063 .053 .065 .212 .298 .461 .706 .311 .472 .676 .861

100 .071 .064 .046 .055 .078 .062 .051 .053 .152 .139 .217 .524 .182 .237 .366 .580

200 .077 .060 .063 .059 .079 .062 .064 .060 .203 .245 .145 .279 .082 .123 .141 .226
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Table 3, continued.

PANEL B: Bais, standard deviation, RMSE and size of t-test of the estimates of β2
IV QMLE

πx = 1/4 πx = 3/4 πx = 1/4 πx = 3/4

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

bias×10

25 .034 -.078 .003 .038 .266 .029 .078 .100 4.05 3.85 3.75 3.18 2.01 2.08 1.93 1.79

50 -.041 -.103 -.035 .028 -.032 -.080 -.017 .042 3.93 4.01 3.89 3.78 1.92 2.06 2.03 2.05

100 -.015 .008 -.007 -.002 .004 .002 .011 .004 3.99 3.91 3.79 3.42 1.89 1.98 2.02 2.01

200 -.004 .004 -.005 -.003 -.018 .015 .011 .015 3.86 3.87 3.65 2.73 1.91 1.95 1.93 1.92

st.dev.×10

25 4.41 2.92 2.04 1.41 4.08 2.80 1.99 1.37 2.03 1.59 1.33 1.51 2.82 2.02 1.60 1.30

50 2.71 1.83 1.31 .882 2.61 1.78 1.26 .863 1.70 1.14 .906 .703 1.86 1.42 1.04 .733

100 1.77 1.23 .858 .611 1.73 1.19 .833 .599 1.51 1.05 .816 .784 1.36 .944 .715 .518

200 1.24 .859 .596 .442 1.20 .829 .574 .427 1.38 1.04 .865 1.05 1.01 .723 .522 .371

RMSE×10

25 4.41 2.92 2.04 1.41 4.09 2.80 1.99 1.37 4.54 4.17 3.98 3.52 3.47 2.90 2.51 2.21

50 2.71 1.83 1.31 .882 2.61 1.78 1.26 .863 4.28 4.17 4.00 3.85 2.67 2.51 2.28 2.18

100 1.77 1.23 .858 .611 1.73 1.19 .833 .599 4.26 4.04 3.87 3.51 2.33 2.20 2.15 2.07

200 1.24 .859 .596 .442 1.20 .829 .574 .427 4.10 4.00 3.75 2.93 2.17 2.08 2.00 1.96

size of t-test

25 .051 .057 .055 .057 .058 .068 .063 .056 .367 .891 .935 .887 .273 .331 .428 .541

50 .068 .056 .052 .046 .081 .064 .056 .049 .899 .990 .994 .999 .324 .495 .651 .885

100 .073 .062 .044 .055 .081 .060 .045 .055 .960 .996 .998 .994 .459 .677 .903 .982

200 .071 .064 .046 .060 .078 .059 .048 .060 .980 .991 .994 .965 .660 .874 .987 1.00

Notes: See notes to Table 1.
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Table 4: Estimated Size and Power of the Overidentifying Restrictions Test, for
the panel dynamic model with ρ = .5, β1 = 3 and β2 = 1

Size Power

T,N 25 50 100 200 25 50 100 200

πx = 1/4

25 .042 .044 .045 .049 .389 .636 .888 .992

50 .034 .050 .049 .050 .678 .993 .994 1.00

100 .049 .049 .050 .047 .912 .995 1.00 1.00

200 .039 .049 .058 .046 .995 1.00 1.00 1.00

πx = 3/4

25 .039 .044 .047 .053 .643 .932 .996 1.00

50 .038 .046 .050 .053 .934 1.00 1.00 1.00

100 .054 .050 .048 .049 .998 1.00 1.00 1.00

200 .038 .050 .049 .045 1.00 1.00 1.00 1.00

Notes: The DGP is the same as that for Table 1, except that follows v`it = ρυ,`v`it−1 + (1 − ρ2` )
1/2$`it,

$`it = τ`εit + (1 − τ2` )1/2%`it with %`it ∼ i.i.d.N(0, 1), ` = 1, 2. We set τ1 = 0.5 and τ2 = 0 so that the
idiosyncratic error of x1it is correlated with εit. The overidentifying restrictions test statistic is defined by (21),
and the 5% critical value from χ2

1 distribution is used for the test. All the experiments are based on 2,000
replications.
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Appendix A: Proofs of Main Results

We rely on the law of large numbers and central limit theorem results, which are stated in
Lemmas 1 and 2; see Hansen (2007) for more details. The proofs of all the Lemmas are provided
in the Appendix B in the Supplemental Material.

Lemma 1 Suppose {Xi,T } are independent across i = 1, 2, ..., N for all T with E (Xi,T ) = µi,T

and E |Xi,T |1+δ < ∆ < ∞ for some δ > 0 and all i, T . Then N−1
∑N
i=1 (Xi,T − µi,T )

p→ 0 as

(N,T )
j→∞.

Lemma 2 Suppose {xi,T }, h× 1 random vectors, are independent across i = 1, 2, ..., N for all

T with E (xi,T ) = 0, E
(
xi,Tx′i,T

)
= Σi,T and E ‖xi,T ‖2+δ < ∆ < ∞ for some δ > 0 and all i,

T . Assume Σ = limN,T→∞N−1
∑N
i=1 Σi,T is positive definite and the smallest eigenvalue of Σ

is strictly positive. Then, N−1/2
∑N
i=1 xi,T

d→ N (0,Σ) as (N,T )
j→∞.

Consistency of factor estimators and other related results are in line with the discussion in
Bai (2009). The proof of some elementary results are very similar to Bai (2009) and are therefore
omitted; readers are invited to refer to these papers for this purpose. In what follows, we define

δ−1NT = 1/min
{√

N,
√
T
}

, δ−2NT = 1/min {N,T}.
Since our aim is to marginalize out the unobservable common components, we assume the

principal component estimator F̂x (F̂x,−1) is consistent for Fx (Fx,−1) without loss of generality.
This is valid because the factors and factor loadings in the model can always be redefined as FxG
(F∗x,−1G

∗) and G−1Γxi (G∗−1Γ∗xi), respectively, for some invertible matrix G (G∗). However,
we clarify this difference when necessary.

Next, since our instruments are MF̂x
Xi and MF̂x

MF̂x,−1
Xi,−1, we consider first

1√
NT

N∑
i=1

X̂′i,−1MF̂x
ui,

followed by

1√
NT

N∑
i=1

X′iMF̂x
ui,

where X̂i,−1 = MF̂x,−1
Xi,−1.

Let ΞkNT and ΞkNT,−1 be mx ×mx diagonal matrices that consist of the first mx largest

eigenvalues of 1
NT

∑N
i=1 XiX

′
i and 1

NT

∑N
i=1 Xi,−1X

′
i,−1, respectively. As it is well known, the

factor estimator is up to the rotation, which is sufficient for our purposes. Denote the T ×mx

matrix of true factors F0
x and mx × k matrix of true factor loadings as Γ0

xi. In a similar way,
denote by F0

y, γ0
i and λ0

i the true factors and factor loadings in y equation, which are T ×my,
mx × 1 and my × 1 matrices, correspondingly.

For any invertible mx ×mx matrices G and G∗, now define

Fx = F0
xG, Γxi= G−1Γ0

xi and F∗x,−1 = F0
x,−1G

∗, Γ∗xi= G∗−1Γ0
xi.

Then, MFx = IT − F0
xG
(
G′F0′

x F0
xG
)−1

G′F0′
x = IT − F0

xG (G)
−1 (

F0′
x F0

x

)−1
(G′)

−1
G′F0′

x =
MF 0

x
, so that MFx

F0
x = MF 0

x
F0
x= 0. In the same way, we have MF∗x,−1

F0
x,−1 = MF 0

x,−1
F0
x,−1= 0.

This implies that the consistent estimators F̂x of Fx and F̂x,−1 of F∗x,−1 serve the purpose of
marginalizing out the effect of the factor components F0

x and F0
x,−1, respectively. The following

restrictions are imposed

T−1F′xFx = Imx ,

k∑
`=1

N∑
i=1

γ`iγ
′
`i is diagonal,
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and

T−1F∗′x,−1F
∗
x,−1 = Imx

,

k∑
`=1

N∑
i=1

γ∗`iγ
∗′
`i is diagonal,

so we have
T−1F̂′xF̂x = Imx

, and T−1F̂′x,−1F̂x,−1 = Imx
.

Following the discussion in Bai (2009), p.1266, we write

F̂xΞkNT =
1

NT

k∑
`=1

N∑
i=1

F0
xγ

0
`iv
′
`iF̂x +

1

NT

k∑
`=1

N∑
i=1

v`iγ
0′
`iF

0′
x F̂x

+
1

NT

k∑
`=1

N∑
i=1

v`iv
′
`iF̂x +

1

NT

k∑
`=1

N∑
i=1

F0
xγ

0
`iγ

0′
`iF

0′
x F̂x

= E1 + E2 + E3 + E4. (A.1)

Define

Υ0
kN =

1

N

k∑
`=1

N∑
i=1

γ0
`iγ

0′
`i, Λ0F̂x

= T−1F0′
x F̂x. (A.2)

Observing that
E4 = F0

xΥ
0
kNΛ0F̂x

, (A.3)

we have
F̂xΞkNT − F0

xΥ
0
kNΛ0F̂x

= E1 + E2 + E3. (A.4)

Post-multiplying the above equation by Q̂ =
(
Υ0
kNΛ0F̂x

)−1
yields

F̂xΞkNT Q̂− F0
x = (E1 + E2 + E3) Q̂. (A.5)

Let

G =
(
ΞkNT Q̂

)−1
, (A.6)

where ΞkNT is assumed to be invertible (the invertibility of ΞkNT is proved in Bai 2009, p.1267)
so that

F̂xG
−1 − F0

x = (E1 + E2 + E3) Q̂

=
1

NT

k∑
`=1

N∑
i=1

F0
xγ

0
`iv
′
`iF̂xQ̂ +

1

NT

k∑
`=1

N∑
i=1

v`iγ
0′
`iF

0′
x F̂xQ̂

+
1

NT

k∑
`=1

N∑
i=1

v`iv
′
`iF̂xQ̂. (A.7)

Similarly, we have

F̂x,−1G
∗−1 − F0

x,−1 =
1

NT

k∑
`=1

N∑
i=1

F0
x,−1γ

0
`iv
′
`i,−1F̂x,−1Q̂−1 +

1

NT

k∑
`=1

N∑
i=1

v`i,−1γ
0′
`iF

0′
x,−1F̂x,−1Q̂−1

+
1

NT

k∑
`=1

N∑
i=1

v`i,−1v
′
`i,−1F̂x,−1Q̂−1, (A.8)

where G∗ =
(
ΞkNT,−1Q̂−1

)−1
, with ΞkNT,−1 being assumed to be invertible, Q̂−1 =(

Υ0
kNΛ0F̂x,−1

)−1
and Λ0F̂x,−1

= T−1F0′
x,−1F̂x,−1.
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Lemma 3 Under Assumptions 2-3, the following statements hold for ` = 1, 2, ..., k and s =
1, 2, ..., T :

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

f0y,t [v`i,tv`i,s − E (v`i,tv`i,s)]

∥∥∥∥∥
2

≤ ∆ <∞, (A.9)

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

f0x,t [v`i,tv`i,s − E (v`i,tv`i,s)]

∥∥∥∥∥
2

≤ ∆ <∞, (A.10)

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

vit [v`i,tv`i,s − E (v`i,tv`i,s)]

∥∥∥∥∥
2

≤ ∆ <∞, (A.11)

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

f0x,t−1 [v`i,tv`i,s − E (v`i,tv`i,s)]

∥∥∥∥∥
2

≤ ∆ <∞, (A.12)

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

vit−1 [v`i,tv`i,s − E (v`i,tv`i,s)]

∥∥∥∥∥
2

≤ ∆ <∞. (A.13)

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

f0y,t [v`i,t−1v`i,s−1 − E (v`i,t−1v`i,s−1)]

∥∥∥∥∥
2

≤ ∆ <∞, (A.14)

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

f0x,t [v`i,t−1v`i,s−1 − E (v`i,t−1v`i,s−1)]

∥∥∥∥∥
2

≤ ∆ <∞, (A.15)

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

vit [v`i,t−1v`i,s−1 − E (v`i,t−1v`i,s−1)]

∥∥∥∥∥
2

≤ ∆ <∞. (A.16)

Lemma 4 Under Assumptions 1-3,4(i), as (N,T )
j→∞ such that N/T → c with 0 < c <∞,

T−r/2
∥∥∥F̂x − F0

xG
∥∥∥r = T−r/2

T∑
t=1

∥∥∥f̂x,t −G′f0x,t

∥∥∥r = Op
(
δ−rNT

)
, r = 1, 2, (A.17)

T−r/2
∥∥∥F̂x,−1 − F0

x,−1G
∗
∥∥∥r = T−r/2

T∑
t=1

∥∥∥f̂x,t−1 −G∗′f0x,t−1

∥∥∥r = Op
(
δ−rNT

)
, r = 1, 2, (A.18)

(
F̂x − F0

xG
)′

F̂x

T
= Op

(
δ−2NT

)
;

(
F̂x,−1 − F0

x,−1G
∗
)′

F̂x

T
= Op

(
δ−2NT

)
;

(
F̂x − F0

xG
)′

F̂x,−1

T
= Op

(
δ−2NT

)
,

(A.19)(
F̂x − F0

xG
)′

F0
x

T
= Op

(
δ−2NT

)
;

(
F̂x,−1 − F0

x,−1G
∗
)′

F0
x

T
= Op

(
δ−2NT

)
;

(
F̂x − F0

xG
)′

F0
x,−1

T
= Op

(
δ−2NT

)
,

(A.20)(
F̂x − F0

xG
)′

F0
y

T
= Op

(
δ−2NT

)
;

(
F̂x,−1 − F0

x,−1G
∗
)′

F0
y

T
= Op

(
δ−2NT

)
, (A.21)(

F̂x − F0
xG
)′
εi

T
= Op

(
δ−2NT

)
;

(
F̂x,−1 − F0

x,−1G
∗
)′
εi

T
= Op

(
δ−2NT

)
for i = 1, 2, .., N , (A.22)(

F̂x − F0
xG
)′

v`i

T
= Op

(
δ−2NT

)
;

(
F̂x,−1 − F0

x,−1G
∗
)′

v`i

T
= Op

(
δ−2NT

)
;

(
F̂x − F0

xG
)′

v`i,−1

T
= Op

(
δ−2NT

)
,

(A.23)
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for i = 1, 2, .., N and ` = 1, 2, .., k,(
F̂x − F0

xG
)′

Wi

T
= Op

(
δ−2NT

)
;

(
F̂x,−1 − F0

x,−1G
∗
)′

Wi

T
= Op

(
δ−2NT

)
for i = 1, 2, .., N ,

(A.24)

1√
N

N∑
i=1

(
F̂x − F0

xG
)′

v`i

T
γ0′
`i = O

(
N−1/2

)
+Op

(
δ−2NT

)
for ` = 1, 2, .., k, (A.25)

1√
N

N∑
i=1

(
F̂x,−1 − F0

x,−1G
∗
)′

v`i

T
γ0′
`i = O

(
N−1/2

)
+Op

(
δ−2NT

)
for ` = 1, 2, .., k, (A.26)

1√
N

N∑
i=1

(
F̂x − F0

xG
)′

v`i,−1

T
γ0′
`i = O

(
N−1/2

)
+Op

(
δ−2NT

)
for ` = 1, 2, .., k, (A.27)

GG′ −
(

F0′
x F0

x

T

)−1
= Op

(
δ−2NT

)
; G∗G∗′ −

(
F0′
x,−1F

0
x,−1

T

)−1
= Op

(
δ−2NT

)
, (A.28)

F0′
x F̂x
T

p→ Λ and
F0′
x,−1F̂x,−1

T

p→ Λ−1 as (N,T )
j→∞, where Λ and Λ−1 are invertible

(A.29)
mx ×mx matrices.

Lemma 5 Under Assumptions 1-3,4(i), as (N,T )
j→ ∞ such that N/T → c with 0 < c < ∞,∥∥∥PF̂x

−PF 0
x

∥∥∥ = Op(δ
−1
NT ) and

∥∥∥PF̂x,−1
−PF 0

x,−1

∥∥∥ = Op(δ
−1
NT ).

Lemma 6 Under Assumptions 1-3,4(i), as (N,T )
j→∞ such that N/T → c with 0 < c <∞,

1

NT

N∑
i=1

Ẑ′iMF̂x
Ẑi − Z′iMF 0

x
Zi = op(1), (A.30)

1

NT

N∑
i=1

(
Ẑ′iMF̂x

− Z′iMF 0
x

)
Wi = op(1). (A.31)

Lemma 7 Under Assumptions 1-3,4(i), as (N,T )
j→∞ such that N/T → c with 0 < c <∞,

1√
NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′xF
0
x

T

)−1
F̂′x
(
ΣkNT − Σ̄kNT

)
MF̂x

ui

= Op

(
T−1/2

)
+Op

(
δ−1NT

)
+
√
TOp

(
δ−2NT

)
, (A.32)

and

1√
NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
F̂′x,−1

(
ΣkNT,−1 − Σ̄kNT,−1

)
MF̂x,−1

MF̂x
ui

= Op

(
T−1/2

)
+Op

(
δ−1NT

)
+
√
TOp

(
δ−2NT

)
, (A.33)

where ΣkNT = 1
N

∑k
`=1

∑N
j=1 v`jv

′
`j, ΣkNT,−1 = 1

N

∑k
`=1

∑N
j=1 v`j,−1v

′
`j,−1 and Σ̄kNT =

1
N

∑k
`=1

∑N
j=1E

(
v`jv

′
`j

)
, Σ̄kNT,−1 = 1

N

∑k
`=1

∑N
j=1E

(
v`j,−1v

′
`j,−1

)
.
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Lemma 8 Under Assumptions 1-3,4(i), as (N,T )
j→∞ such that N/T → c with 0 < c <∞,

1√
NT

N∑
i=1

Γ0′
xiF

0′
x MF̂x

ui

= − 1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xjV

′
jMF̂x

ui

− 1√
NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′xF
0
x

T

)−1
F̂′xΣkNTMF̂x

ui

+ op (1) , (A.34)

and

1√
NT

N∑
i=1

Γ0′
xiF

0′
x,−1MF̂x,−1

MF̂x
ui

= − 1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xjV

′
j,−1MF̂x

ui

− 1√
NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
F̂′x,−1ΣkNT,−1MF̂x,−1

MF̂x
ui

+ op (1) . (A.35)

Lemma 9 Under Assumptions 1-3,4(i), as (N,T )
j→∞ such that N/T → c with 0 < c <∞,

1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xjV

′
jMF̂x

ui

=
1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xjV

′
jMF 0

x
ui

+

√
T

N

1

N2

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xn

V′nVj

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x F0

x

T

)−1
F0′
x ui
T

+ op(1), (A.36)

and

1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xjV

′
j,−1MF̂x,−1

MF̂x
ui

=
1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xjV

′
j,−1MF 0

x,−1
MF 0

x
ui

+

√
T

N

1

N2

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xn

V′n,−1Vj,−1

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1MF 0

x
ui

T

+

√
T

N

1

N2

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xn

V′n,−1MF 0
x,−1

Vj

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x F0

x

T

)−1
F0′
x ui
T

+ op(1). (A.37)
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Lemma 10 Under Assumptions 1-3,4(i), as (N,T )
j→∞ such that N/T → c with 0 < c <∞,

1√
NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′xF
0
x

T

)−1
F̂′xΣ̄kNTMF̂x

ui

=
1√

NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN
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and
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x
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+ op (1) . (A.39)

Lemma 11 Under Assumptions 1-3,4(i), as (N,T )
j→∞ such that N/T → c with 0 < c <∞,
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and
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Lemma 12 Under Assumptions 1-3,4(i)(ii), as (N,T )
j→ ∞ such that N/T → c with 0 < c <

∞,

1√
NT

1

N

N∑
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N∑
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Γ0′
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(
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x
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1
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(
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T
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x
ui = op(1), (A.43)
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x
ui = op(1). (A.46)

Proof of Proposition 1. Consider

1√
NT

N∑
i=1

Ẑ′iMF̂x
ui, (A.47)

where Ẑi =
[
Xi,MF̂x,−1

Xi,−1

]
. We start with the second component of Ẑi, which is MF̂x,−1

Xi,−1.

By making use of the result in equation (A.57) in Proposition 2 obtained under Assumptions 1-3

and 4(i) as (N,T )
j→∞ such that N/T → c with 0 < c <∞, and imposing further Assumption

4(ii) yields:
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+
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0
x,−1

T
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T

+

√
T

N
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N

N∑
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N∑
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−
√
N

T
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xi

(
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=
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N∑
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x
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+
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N
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where the second equality is by Lemma 12. By dropping the superscript ”0” without loss of
generality and making use of MFx,−1Fx,−1 = 0 and , we get

1√
NT

N∑
i=1

X′i,−1MF̂x,−1
MF̂x

ui

=
1√
NT

N∑
i=1

(Vi,−1 + Fx,−1Γxi)
′
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+

√
T

N

1

N

N∑
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N∑
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T
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=
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N∑
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√
T
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where

Ṽi,−1 = Vi,−1 −
1

N

N∑
n=1

Vn,−1Γ
′
xnΥ−1kNΓxi

b12NT =
1
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N∑
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N∑
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T
Γ′xjΥ
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kN

(
F′xFx
T

)−1
F′xui
T

.

Next consider the first component of Ẑi, which is Xi. By following the same steps as before
and using the result in equation (A.59) in Proposition 2 which is obtained under Assumptions

1, 2, 3 and 4(i) as (N,T )
j→ ∞ such that N/T → c with 0 < c < ∞ and imposing again

Assumption 4(ii), we get:
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N∑
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=
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x
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N∑
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N∑
j=1
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− 1√
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=
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N∑
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N∑
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(
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x

T

)−1
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x ui
T

+ op (1) . (A.50)

where the second equality is obtained by using Lemma 12. Now, by getting rid of the
superscript ”0” and making use of MFxFx = 0, we obtain

1√
NT

N∑
i=1

X′iMF̂x
ui

=
1√
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N∑
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(Vi + FxΓxi)
′
MFxui

+

√
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N
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N∑
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(
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)−1
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=
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N∑
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√
T
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b11NT + op (1) , (A.51)

where

Ṽi = Vi −
1

N

N∑
n=1

VnΓ′xnΥ−1kNΓxi

b11NT =
1

N

N∑
i=1

N∑
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T
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(
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.
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By putting all the results together, we therefore have

1√
NT

N∑
i=1

Ẑ′iMF̂x
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=
1√
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N∑
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[
Xi,MF̂x,−1
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N∑
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√
T
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′
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=
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N∑
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√
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where Zi =
[
Xi,MFx,−1

Xi,−1
]

and b1NT = [b′11NT ,b
′
12NT ]′, which provides the required ex-

pression stated in Proposition 1.

Proof of Proposition 2. Consider

1√
NT

N∑
i=1

Ẑ′iMF̂x
ui, (A.52)

where Ẑi =
[
Xi,MF̂x,−1

Xi,−1

]
. We begin with the second component of Ẑi, which is MF̂x,−1

Xi,−1.

Firstly, note that
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+
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ui. (A.53)

By using the results of Lemmas 7 and 8, as (N,T )
j→ ∞ such that N/T → c with 0 < c < ∞,

the first term in (A.53) is given by
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NT

N∑
i=1

Γ0′
xiF

0′
x,−1MF̂x,−1

MF̂x
ui

= − 1√
NT

1

N

N∑
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Then, by Lemmas 9 and 10, we have
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By making use of Lemma 11, the second term in (A.53) is given by
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+
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So, by adding (A.55) and (A.56) together and rearranging the terms, we get
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By further using MFx,−1
Fx,−1 = 0 and dropping the superscript ”0” without loss of gener-
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ality, we have
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where
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As for the first component of Ẑi, which is Xi, by following the same steps as before and
using again Lemmas 7, 8, 9, 10 and 11, we obtain
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Next, by using MFx
Fx = 0 and suspending the superscript ”0”, we get
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where
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Hence, we have
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where Z̃i =
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]
, b̃1NT = [b̃′11NT , b̃

′
12NT ]′ and b̃2NT = [b̃′21NT , b̃

′
22NT ]′, which

provides the expression given in Proposition 2.

Lemma 13 Under Assumptions 1-3,4(i)(ii), as (N,T )
j→ ∞ such that N/T → c with 0 < c <

∞,
√

T
N b̂1NT −

√
T
N b1NT = op (1).
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Lemma 14 Under Assumptions 1-3,4(i), as (N,T )
j→∞ such that N/T → c with 0 < c <∞,√

T
N

ˆ̃b1NT −
√

T
N b̃1NT = op (1) and

√
T
N

ˆ̃b2NT −
√

T
N b̃2NT = op (1).

For notational conciseness define

ξF̂ iT = Ẑ′iMF̂x
ui −

b√
NT

, (A.61)

ξ̂F̂ iT = Ẑ′iMF̂x
ûi −

b√
NT

, (A.62)

ξ̃F̂ iT = Ẑ′iMF̂x
ui −

b̃√
NT

, (A.63)

ˆ̃ξF̂ iT = Ẑ′iMF̂x
ûi −

b̃√
NT

, (A.64)

which are centred, where

b = plimN,T→∞

√
T

N
b1NT , (A.65)

b̃ = plimN,T→∞

(√
T

N
b̃1NT +

√
N

T
b̃2NT

)
, (A.66)

which are assumed to exist.

Lemma 15 Under Assumptions 1-3, 4(i)(ii) and 5(i)(ii)(iii), as (N,T )
j→∞ such that N/T →

c with 0 < c <∞, 1
NT

∑N
i=1 ξ̂F̂ iT ξ̂

′
F̂ iT = 1

NT

∑N
i=1 ξF̂ iT ξ

′
F̂ iT

+ op (1), where ξF̂ iT and ξ̂F̂ iT , are
defined by (A.61) and (A.62), respectively.

Lemma 16 Under Assumptions 1-3, 4(i) and 5(i)(ii)(iv), as (N,T )
j→ ∞ such that N/T → c

with 0 < c < ∞, 1
NT

∑N
i=1

ˆ̃
ξF̂ iT

ˆ̃
ξ
′
F̂ iT = 1

NT

∑N
i=1 ξ̃F̂ iT ξ̃

′
F̂ iT + op (1), where ξ̃F̂ iT and

ˆ̃
ξF̂ iT , are

defined by (A.63) and (A.64), respectively.

Lemma 17 Under Assumptions 1-5(i)(ii)(iii), as (N,T )
j→∞ such that N/T → c with 0 < c <

∞, 1
NT

∑N
i=1 ξF̂ iT ξ

′
F̂ iT
−Ω = op (1), where Ω = plimN,T→∞

1
N

∑N
i=1E

(
T−1Z′iMFx

uiu
′
iMFx

Zi
)
.

Also 1
NT

∑N
i=1

(
ξF̂ iT + b√

NT

)(
ξF̂ iT + b√

NT

)′
−Ω = op (1) for any b such that ‖b‖ ≤ ∆ <∞.

Lemma 18 Under Assumptions 1-3, 4(i), 5(i)(ii)(iv) and 6, as (N,T )
j→∞ such that N/T → c

with 0 < c < ∞, 1
NT

∑N
i=1

(
ξ̃F̂ iT + b̃√

NT

)(
ξ̃F̂ iT + b̃√

NT

)′
− Ω̃ = op (1) for any b̃ such that∥∥∥b̃∥∥∥ ≤ ∆ <∞, where Ω̃ is defined in Assumption 5(iv).

Proposition 3 Under Assumptions 1-3, 4(i)(ii) and 5(i)(ii)(iii), as (N,T )
j→ ∞ such that

N/T → c with 0 < c <∞,

1√
NT

N∑
i=1

ξF̂ iT
d→ N (0,Ω) .

Proof. Proposition 1 and Lemma 17, together with Lemma 2, yield the required result.

Lemma 19 Under Assumptions 1-3,4(i)(ii),5(i)(ii)(iv), as (N,T )
j→ ∞ such that N/T → c

with 0 < c < ∞, ÂNT
p→ A, BNT

p→ B, where ÂNT = 1
N

∑N
i=1 T

−1Ẑ′iMF̂x
Wi, B̂NT =

1
N

∑N
i=1 T

−1Ẑ′iMF̂x
Ẑi and A = limN,T→∞

1
N

∑N
i=1E (Ai,T ), B = limN,T→∞

1
N

∑N
i=1E (Bi,T ),

Ai,T = T−1Z′iMFx
Wi, Bi,T = T−1Z′iMFx

Zi.
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Proof of Theorem 1. By using the expression in (15) and the result of Proposition 1, which

states that
√

T
N b1NT is Op(1) when N/T → c with 0 < c < ∞, we have

√
NT

(
θ̂IV − θ

)
=

Op(1), which implies the required result.

Proof of Theorem 2. (i)
√
NT

(̂̂
θIV − θ

)
=
√
NT

(
θ̂IV − θ

)
−
(
Â′NT B̂−1NT ÂNT

)−1
Â′NT B̂−1NT b̂NT =

√
NT

(
θ̂IV − θ

)
−
(
A′B−1A

)−1
A′B−1b+op (1) by Lemmas 19 and 13, assuming plimN,T→∞bNT =

b exists. Next, using Lemma 15 we have
√
NT

(
θ̂IV − θ

)
−
(
A′B−1A

)−1
A′B−1b =

(
A′B−1A

)−1
A′B−1(

1√
NT

∑N
i=1 ξF̂ iT

)
+ op (1). Thus, by the result of Proposition 3, we have

√
NT

(̂̂
θIV − θ

)
→

N (0,Ψ), as required. (ii) Ψ̂−Ψ = op (1) follows immediately from Lemmas 15, 17 and 19.

Proof of Theorem 3. Under Assumptions 1-3, 4(i)(ii) and 5(i)(ii)(iii), together with the
√
NT -

consistency result of θ̂IV , shown in Theorem 1, and the LLN, we have by Lemma 15 Ω̂NT−Ω
p→0

as N → ∞ and T → ∞ jointly in such way that T/N tends to a finite positive constant. The

consistency of Ω̂NT leads to the
√
NT -consistency of

̂̂
θIV 2, and therefore under the null hypoth-

esis a similar discussion for Theorem 2 yields 1√
NT

Ω̂
−1/2
NT

∑N
i=1 Z′iMF̂x

̂̂ui d→ N(0, I2k). Finally,

applying a standard proof for the asymptotic distribution of the overidentifying restrictions test
under the null hypothesis, such as in Arellano (2003), yields the desired result.

Proof of Theorem 4. The proof is obtained making use of the expression in (15) as well

as Proposition 2, which states that
√

T
N b̃1NT and

√
N
T b̃2NT are Op(1) when N/T → c with

0 < c <∞, we have
√
NT

(
θ̂IV − θ

)
= Op(1). This provides the required result.

Proof of Theorem 5. (i)
√
NT

(̂̂̃
θIV − θ

)
=
√
NT

(
θ̂IV − θ

)
−
(
Â′NT B̂−1NT ÂNT

)−1
Â′NT B̂−1NT

ˆ̃bNT =

√
NT

(
θ̂IV − θ

)
−
(
A′B−1A

)−1
A′B−1b̃+op (1) by Lemmas 19 and 14, assuming plimN,T→∞b̃NT =

b̃ exists. Next, using Lemma 16 we have
√
NT

(
θ̂IV − θ

)
−
(
A′B−1A

)−1
A′B−1b̃ =

(
A′B−1A

)−1
A′B−1(

1√
NT

∑N
i=1 ξ̃F̂ iT

)
+op (1). Then, by the Assumption 6, we have

√
NT

(̂̂̃
θIV − θ

)
→ N

(
0, Ψ̃

)
,

as required. (ii) Ψ̂− Ψ̃ = op (1) are obtained by using Lemmas 16, 18 and 19.

Proof of Theorem 6. The proof is analogous to that of Theorem 3 and it is therefore omitted.
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Supplemental Material to

“Instrumental Variable Estimation of Dynamic Linear Panel
Data Models with Defactored Regressors and a Multifactor

Error Structure”

by Milda Norkutė, Vasilis Sarafidis and Takashi Yamagata

Appendix B: Proofs of Lemmas

Proof of Lemma 1. See Proof of Lemma 1 in Appendix, Hansen (2007).

Proof of Lemma 2. See Proof of Lemma 2 in Appendix, Hansen (2007).

Proof of Lemma 3. The proof of Lemma 3 can be obtained in a similar manner based on the
proof of Lemma A.2 provided in Bai (2009, p.1268). Arellano (2003).

Proof of Lemma 4. The proof of (A.17) is given in Bai (2009; Proposition A.1). No modifica-
tion is required because of our assumption of cross-sectional independence and serial correlation
of vit`, see Assumption 2. A similar point applies to the proofs of (A.19)-(A.28), which are given
by Bai (2009) as proofs of corresponding Lemmas A3(ii), A4(i), A4(ii), A3(iv), A4(iii) and A7(i).
The result (A.29) is given as part of Proposition 1 in Bai (2003) with its proof therein.

Proof of Lemma 5.
∥∥∥PF̂x

−PF 0
x

∥∥∥2 = tr

[(
PF̂x

−PF 0
x

)2]
= tr

[
PF̂x

−PF̂x
PF 0

x
−PF 0

x
PF̂x

+ PF 0
x

]
=

tr
[
PF̂x

]
−2tr

[
PF̂x

PF 0
x

]
+tr

[
PF 0

x

]
= 2m−2tr

[
T−1F̂′xPF 0

x
F̂x

]
, where T−1F̂′xPF 0

x
F̂x = T−1F̂′xF

0
xG(

G′F0′
x F0

xG
)−1

G′F0′
x F̂x = T−2

(
F̂′xF

0
xG
)(

G′F0′
x F̂x

)
. By making use of (A.20), we have

T−1G′F0′
x F̂x = T−1G′F0′

x F0
xG + T−1G′F0′

x

(
F̂x − F0

xG
)

= Imx
+ Op

(
δ−2NT

)
. Hence, we have∥∥∥PF̂x

−PF 0
x

∥∥∥2 = 2mx − 2tr
[(
T−1F̂′xF

0
xG
)(

T−1G′F0′
x F̂x

)]
= 2mx − 2tr

[
Imx +Op

(
δ−2NT

)]
=

Op
(
δ−2NT

)
. Following similar arguments, it can be shown that

∥∥∥PF̂x,−1
−PF 0

x,−1

∥∥∥2 = Op
(
δ−2NT

)
,

as required.

Proof of Lemma 6. We begin with (A.30). By using Lemma 5, we have
∥∥∥MF̂x

−MF 0
x

∥∥∥ =∥∥∥PF̂x
−PF 0

x

∥∥∥ = Op(δ
−1
NT ),

∥∥∥MF̂x
MF̂x,−1

−MF 0
x
MF 0

x,−1

∥∥∥ = ||MF̂x
MF̂x,−1

−MF̂x
MF 0

x,−1
+MF̂x

MF 0
x,−1
−

MF 0
x
MF 0

x,−1
|| ≤

∥∥∥MF̂x
‖‖PF̂x,−1

−PF 0
x,−1
‖+‖PF̂x

−PF 0
x

∥∥∥∥∥∥MF 0
x,−1

∥∥∥ = Op(δ
−1
NT ) and ||MF̂x,−1

MF̂x
MF̂x,−1

−
MF 0

x,−1
MF 0

x
MF 0

x,−1
|| = ||MF̂x,−1

MF̂x
MF̂x,−1

−MF 0
x,−1

MF̂x
MF̂x,−1

+MF 0
x,−1

MF̂x
MF̂x,−1

−MF 0
x,−1

MF 0
x
MF 0

x,−1
|| ≤∥∥∥PF̂x,−1

−PF 0
x,−1
‖‖MF̂x

∥∥∥∥∥∥MF̂x,−1

∥∥∥+
∥∥∥MF 0

x,−1

∥∥∥∥∥∥MF̂x
MF̂x,−1

−MF 0
x
MF 0

x,−1

∥∥∥ = Op(δ
−1
NT ), since∥∥∥MF̂x

MF̂x,−1
−MF 0

x
MF 0

x,−1

∥∥∥ = Op(δ
−1
NT ) as shown above. By using this result together with

‖Xi‖√
T

= Op(1) and
‖Xi,−1‖√

T
= Op(1) which can be shown by using Assumptions 2-4(i), we have the

following: 1
NT

∑N
i=1

∥∥∥X′iMF̂x
Xi −XiMF 0

x
Xi

∥∥∥ ≤ 1
N

∑N
i=1

‖Xi‖√
T

∥∥∥PF̂x
−PF 0

x

∥∥∥ ‖Xi‖√
T

= Op(δ
−1
NT ),

1
NT

∑N
i=1

∥∥∥X′iMF̂x
MF̂x,−1

Xi,−1 −XiMF 0
x
MF 0

x,−1
Xi,−1

∥∥∥ ≤ 1
N

∑N
i=1

‖Xi‖√
T

∥∥∥MF̂x
MF̂x,−1

−MF 0
x
MF 0

x,−1

∥∥∥
‖Xi,−1‖√

T
= Op(δ

−1
NT ), and therefore 1

NT

∑N
i=1 ||X′i,−1MF̂x,−1

MF̂x
Xi − Xi,−1MF 0

x,−1
MF 0

x
Xi|| =

Op(δ
−1
NT ) and 1

NT

∑N
i=1

∥∥∥X′i,−1MF̂x,−1
MF̂x

MF̂x,−1
Xi,−1 −Xi,−1MF 0

x,−1
MF 0

x
MF 0

x,−1
Xi,−1

∥∥∥ ≤
1
N

∑N
i=1

‖Xi,−1‖√
T

∥∥∥MF̂x,−1
MF̂x

MF̂x,−1
−MF 0

x,−1
MF 0

x
MF 0

x,−1

∥∥∥ ‖Xi,−1‖√
T

= Op(δ
−1
NT ). Hence, we have
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∥∥∥ 1
NT

∑N
i=1 Ẑ′iMF̂x

Ẑi − Z′iMF 0
x
Zi

∥∥∥ ≤ Op(δ
−1
NT ) which leads to the result in (A.30). The second

equation in (A.31) can be derived in a similar manner.

Proof of Lemma 7. We start with (A.33). First note that by using MF̂x,−1
= IT −

T−1F̂x,−1F̂
′
x,−1 the left-hand-side of (A.33) can be written as

1√
NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
F̂′x,−1

(
ΣkNT,−1 − Σ̄kNT,−1

)
MF̂x,−1

MF̂x
ui

=
1√

NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
F̂′x,−1

(
ΣkNT,−1 − Σ̄kNT,−1

)
MF̂x

ui

− 1√
NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
F̂′x,−1

(
ΣkNT,−1 − Σ̄kNT,−1

) F̂x,−1F̂
′
x,−1

T
MF̂x

ui

= e1 + e2.

e1 =
1√

NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
G∗′F0′

x,−1
(
ΣkNT,−1 − Σ̄kNT,−1

)
MF̂x

ui

+
1√

NT 3/2

N∑
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Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T
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F̂x,−1 − F0

x,−1G
∗
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×
(
ΣkNT,−1 − Σ̄kNT,−1

)
MF̂x

ui

= a1 + a2.

By using now MF̂x
= IT − T−1F̂xF̂′x and ui = F0

xγ
0
i + F0

yλ
0
i + εi, we have

a1 =
1√
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N
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|b1| ≤
1√
T

1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥∥(Υ0
kN

)−1∥∥∥
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(
T−1/2

)
as
∥∥∥(Υ0

kN

)−1∥∥∥ = Op (1) by Assumption 4(i),

∥∥∥∥∥
(

F̂′x,−1F0
x,−1

T

)−1∥∥∥∥∥ = Op (1) by (A.29), ‖G∗‖ =

Op (1),

∥∥∥∥F0′
x,−1

√
N(ΣkNT,−1−Σ̄kNT,−1)√

T

∥∥∥∥ = Op (1) by (A.10),
∥∥∥ F0

x√
T

∥∥∥ = Op (1) by Assumption 3,

and 1
N

∑N
i=1

∥∥Γ0′
xi

∥∥∥∥γ0
i

∥∥ ≤ √
1
N

∑N
i=1

∥∥Γ0′
xi

∥∥2√ 1
N

∑N
i=1 ‖γ0

i ‖
2

= Op (1) by Assumption 4(i).

Similarly, b2 = Op
(
T−1/2

)
and b3 = Op

(
T−1/2

)
.

b4 = − 1√
T

1

N

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
G∗′F0′

x,−1
√
N
(
ΣkNT,−1 − Σ̄kNT,−1

)
F̂x

T

F̂′xF
0
x

T
γ0
i

− 1√
T

1

N

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
G∗′F0′

x,−1
√
N
(
ΣkNT,−1 − Σ̄kNT,−1

)
F̂x

T

F̂′xF
0
y

T
λ0
i

− 1√
T

1

N

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
G∗′F0′

x,−1
√
N
(
ΣkNT,−1 − Σ̄kNT,−1

)
F̂x

T

F̂′xεi
T

= c1 + c2 + c3.

|c1| ≤
1√
T

1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥∥(Υ0
kN

)−1∥∥∥
∥∥∥∥∥∥
(

F̂′x,−1F
0
x,−1

T

)−1∥∥∥∥∥∥ ‖G∗‖
∥∥∥∥∥F0′

x,−1
√
N
(
ΣkNT,−1 − Σ̄kNT,−1

)
√
T

∥∥∥∥∥
×
∥∥∥T−1/2F̂x∥∥∥2 ∥∥∥T−1/2F0

x

∥∥∥ ∥∥γ0
i

∥∥
=

1√
T

∥∥∥(Υ0
kN

)−1∥∥∥
∥∥∥∥∥∥
(

F̂′x,−1F
0
x,−1

T

)−1∥∥∥∥∥∥ ‖G∗‖
∥∥∥∥∥F0′

x,−1
√
N
(
ΣkNT,−1 − Σ̄kNT,−1

)
√
T

∥∥∥∥∥
×
∥∥∥T−1/2F̂x∥∥∥2 ∥∥∥T−1/2F0

x

∥∥∥( 1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥γ0
i

∥∥)
= Op

(
T−1/2

)
,

by making the same arguments as above and because
∥∥∥T−1/2F̂x∥∥∥2 = tr (T−1F̂′xF̂x) = tr (Imx

) =

mx. By similar reasoning, we have c2 = Op
(
T−1/2

)
, c3 = Op

(
T−1/2

)
and therefore b4 =

Op
(
T−1/2

)
. Thus, we conclude a1 = Op

(
T−1/2

)
.

By using similar arguments as above together with (A.15), (A.14) and (A.17), we have
a2 = Op

(
δ−1NT

)
. Thus, e1 = Op

(
T−1/2

)
+Op

(
δ−1NT

)
. Next, consider e2 which is
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|e2| ≤
√
N

T

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥∥∥ ui√
T

∥∥∥∥
)∥∥∥(Υ0

kN

)−1∥∥∥
∥∥∥∥∥∥
(

F̂′x,−1F
0
x,−1

T

)−1∥∥∥∥∥∥
×

∥∥∥∥∥ F̂x,−1
(
ΣkNT,−1 − Σ̄kNT,−1

)
F̂x,−1

T

∥∥∥∥∥
∥∥∥∥∥ F̂′x,−1MF̂x√

T

∥∥∥∥∥
=

√
N

T
Op (1)

∥∥∥∥∥ F̂x,−1
(
ΣkNT,−1 − Σ̄kNT,−1

)
F̂x,−1

T

∥∥∥∥∥ ,

because
∥∥∥T−1/2F̂′x,−1MF̂x

∥∥∥ ≤ ∥∥∥T−1/2F̂′x,−1∥∥∥+
∥∥∥T−3/2F̂′x,−1F̂xF̂′x∥∥∥ ≤ ∥∥∥T−1/2F̂x,−1∥∥∥+

∥∥∥T−1/2F̂x,−1∥∥∥∥∥∥T−1/2F̂x∥∥∥2 = Op (1),
∥∥∥(Υ0

kN

)−1∥∥∥ = Op (1),

∥∥∥∥∥
(

F̂′x,−1F0
x,−1

T

)−1∥∥∥∥∥ = Op (1), and

1

N

N∑
i=1

∥∥Γ0′
xi

∥∥ ∥∥∥∥ ui√
T

∥∥∥∥ ≤ 1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥γ0
i

∥∥∥∥∥∥ F0
x√
T

∥∥∥∥+
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥λ0
i

∥∥ ∥∥∥∥∥ F0
y√
T

∥∥∥∥∥+
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥∥∥ εi√T
∥∥∥∥

= Op (1) ,

by the same arguments as above and Assumptions 1, 3, 4(i). We also have∥∥∥∥∥
√
N

T

1

T
F̂′x,−1

(
ΣkNT,−1 − Σ̄kNT,−1

)
F̂x,−1

∥∥∥∥∥
≤

∥∥∥∥∥
√
N

T

1

T
G∗′F0′

x,−1
(
ΣkNT,−1 − Σ̄kNT,−1

)
F0
x,−1G

∗

∥∥∥∥∥
+

∥∥∥∥∥
√
N

T

1

T
G∗′F0′

x,−1
(
ΣkNT,−1 − Σ̄kNT,−1

) (
F̂x,−1 − F0

x,−1G
∗
)∥∥∥∥∥

+

∥∥∥∥∥
√
N

T

1

T

(
F̂x,−1 − F0

x,−1G
∗
)′ (

ΣkNT,−1 − Σ̄kNT,−1
)
F0
x,−1G

∗

∥∥∥∥∥
+

∥∥∥∥∥
√
N

T

1

T

(
F̂x,−1 − F0

x,−1G
∗
)′ (

ΣkNT,−1 − Σ̄kNT,−1
) (

F̂x,−1 − F0
x,−1G

∗
)∥∥∥∥∥

= ‖L1‖+ ‖L2‖+ ‖L3‖+ ‖L4‖ .

‖L1‖ ≤
√

1

T
‖G∗′‖

∥∥∥∥∥F0′
x,−1
√
N
(
ΣkNT,−1 − Σ̄kNT,−1

)
√
T

∥∥∥∥∥
∥∥∥∥∥F0

x,−1√
T

∥∥∥∥∥ ‖G∗‖ = Op

(
T−1/2

)
,

by (A.10), and Assumption 3

‖L2‖ = ‖L3‖ ≤
√

1

T
‖G∗′‖

∥∥∥∥∥F0′
x,−1
√
N
(
ΣkNT,−1 − Σ̄kNT,−1

)
√
T

∥∥∥∥∥
∥∥∥∥∥ F̂x,−1 − F0

x,−1G
∗

√
T

∥∥∥∥∥
=

√
1

T
Op
(
δ−1NT

)
,

by (A.10) and (A.17).

‖L4‖ =

∥∥∥∥∥
√

1

T

1

T

T∑
t=1

T∑
s=1

(
f̂x,t−1 −G∗′f0x,t−1

)(
f̂x,s−1−G∗′f0x,s−1

)′ 1√
N

k∑
l=1

N∑
i=1

[v`it−1v`is−1 − E (v`it−1v`is−1)]

∥∥∥∥∥ ,
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so that, by the Cauchy-Schwarz inequality we have

‖L4‖ ≤
√
T

(
1

T

∥∥∥F̂x,−1 − F0
x,−1G

∗
∥∥∥2)

×

 1

T 2

T∑
t=1

T∑
s=1

[
1√
N

k∑
`=1

N∑
i=1

[v`it−1v`is−1 − E (v`it−1v`is−1)]

]2
1/2

=
√
TOp

(
δ−2NT

)
.

Thus, e2 = Op
(
T−1/2

)
+
√
TOp

(
δ−2NT

)
. Collecting all the results, the required expression is

obtained. The result in (A.32) is proved in a similar way.

Proof of Lemma 8. We begin with (A.35). From (A.8) we have

1√
NT

N∑
i=1

Γ0′
xiF

0′
x,−1MF̂x,−1

MF̂x
ui

= − 1√
NT

N∑
i=1

Γ0′
xi

[
G∗−1′F̂′x,−1 − F0′

x,−1

]
MF̂x,−1

MF̂x
ui

= − 1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

Γ0′
xiQ̂

′
−1F̂

′
x,−1v`j,−1γ

0′
`jF

0′
x−1MF̂x,−1

MF̂x
ui

− 1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

Γ0′
xiQ̂

′
−1F̂

′
x,−1F

0
x,−1γ

0
`jv
′
`j,−1MF̂x,−1

MF̂x
ui

− 1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

Γ0′
xiQ̂

′
−1F̂

′
x,−1v`j,−1v

′
`j,−1MF̂x,−1

MF̂x
ui

= − (d1 + d2 + d3) .

Start with d1, which is given by

d1√
NT

=
1

NT

N∑
i=1

Γ0′
xiQ̂

′
−1AkNT

[
G∗−1′F̂′x,−1 − F0′

x,−1

]
MF̂x,−1

MF̂x
ui

which is a k × 1 vector, where

AkNT =
1

N

k∑
`=1

N∑
j=1

F̂′x−1v`j,−1

T
γ0′
`j .

We have

1

N

N∑
j=1

F̂′x,−1v`j,−1

T
γ0′
`j =

1

N

N∑
j=1

G∗′
F0′
x,−1v`j,−1

T
γ0′
`j +

1

N

N∑
j=1

(
F̂x−1 − F0

x,−1G
∗
)′

v`j,−1

T
γ0′
`j

= Op

(
T−1/2N−1/2

)
+Op

(
N−1

)
+N−1/2Op

(
δ−2NT

)
,

as the first term is Op
(
T−1/2N−1/2

)
by independence of v`j,−1 and γ0

`j and the second term is

Op
(
N−1

)
+N−1/2Op

(
δ−2NT

)
by (A.27) in Lemma 4. This gives the following

‖AkNT ‖ = Op

(
T−1/2N−1/2

)
+Op

(
N−1

)
+N−1/2Op

(
δ−2NT

)
.
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Next,

|d1|√
NT

≤

∥∥∥∥∥ 1

NT

N∑
i=1

Γ0′
xiQ̂

′
−1AkNT

(
F̂x−1 − F0

x,−1G
∗
)′

ui

∥∥∥∥∥
+

∥∥∥∥∥ 1

NT 2

N∑
i=1

Γ0′
xiQ̂

′
−1AkNT

(
F̂x,−1 − F0

x,−1G
∗
)′

F̂xF̂
′
xui

∥∥∥∥∥
+

∥∥∥∥∥ 1

NT 2

N∑
i=1

Γ0′
xiQ̂

′
−1AkNT

(
F̂x,−1 − F0

x,−1G
∗
)′

F̂x,−1F̂
′
x,−1MF̂x

ui

∥∥∥∥∥
≤

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥γ0
i

∥∥)∥∥∥Q̂′−1∥∥∥ ‖AkNT ‖

∥∥∥∥∥∥∥
(
F̂x,−1 − F0

x,−1G
∗
)′

F0
x

T

∥∥∥∥∥∥∥
+

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥λ0
i

∥∥)∥∥∥Q̂′−1∥∥∥ ‖AkNT ‖

∥∥∥∥∥∥∥
(
F̂x,−1 − F0

x,−1G
∗
)′

F0
y

T

∥∥∥∥∥∥∥
+

 1

N

N∑
i=1

∥∥Γ0′
xi

∥∥
∥∥∥∥∥∥∥
(
F̂x,−1 − F0

x,−1G
∗
)′
εi

T

∥∥∥∥∥∥∥
∥∥∥Q̂′−1∥∥∥ ‖AkNT ‖

+

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥γ0
i

∥∥)
∥∥∥∥∥∥∥
(
F̂x,−1 − F0

x,−1G
∗
)′

F̂x

T

∥∥∥∥∥∥∥
∥∥∥∥∥ F̂′xF

0
x

T

∥∥∥∥∥∥∥∥Q̂′−1∥∥∥ ‖AkNT ‖

+

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥λ0
i

∥∥)
∥∥∥∥∥∥∥
(
F̂x,−1 − F0

x,−1G
∗
)′

F̂x

T

∥∥∥∥∥∥∥
∥∥∥∥∥ F̂′xF

0
y

T

∥∥∥∥∥∥∥∥Q̂′−1∥∥∥ ‖AkNT ‖

+

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥∥∥ εi√T
∥∥∥∥
)∥∥∥∥∥∥∥

(
F̂x,−1 − F0

x,−1G
∗
)′

F̂x

T

∥∥∥∥∥∥∥
∥∥∥∥∥ F̂′x√

T

∥∥∥∥∥ ∥∥∥Q̂′−1∥∥∥ ‖AkNT ‖

+

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥γ0
i

∥∥)
∥∥∥∥∥∥∥
(
F̂x,−1 − F0

x,−1G
∗
)′

F̂x,−1

T

∥∥∥∥∥∥∥
∥∥∥∥∥ F̂′x,−1MF̂x√

T

∥∥∥∥∥
∥∥∥∥ F0

x√
T

∥∥∥∥∥∥∥Q̂′−1∥∥∥ ‖AkNT ‖

+

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥λ0
i

∥∥)
∥∥∥∥∥∥∥
(
F̂x−1 − F0

x,−1G
∗
)′

F̂x,−1

T

∥∥∥∥∥∥∥
∥∥∥∥∥ F̂′x,−1MF̂x√

T

∥∥∥∥∥
∥∥∥∥∥ F0

y√
T

∥∥∥∥∥ ∥∥∥Q̂′−1∥∥∥ ‖AkNT ‖

+

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥∥∥ εi√T
∥∥∥∥
)∥∥∥∥∥∥∥

(
F̂x,−1 − F0

x,−1G
∗
)′

F̂x,−1

T

∥∥∥∥∥∥∥
∥∥∥∥∥ F̂′x,−1MF̂x√

T

∥∥∥∥∥∥∥∥Q̂′−1∥∥∥ ‖AkNT ‖

= Op
(
δ−2NT

) [
Op

(
T−1/2N−1/2

)
+Op

(
N−1

)
+N−1/2Op

(
δ−2NT

)]
,

by (A.19), (A.20), (A.21), (A.22), Assumptions 1, 3, 4(i) and using
∥∥∥T−1F̂′xF0

x

∥∥∥ = Op (1),∥∥∥T−1F̂′xF0
y

∥∥∥ = Op (1),
∥∥∥T−1/2F̂′x,−1MF̂x

∥∥∥ = Op (1) and ‖AkNT ‖ = Op
(
T−1/2N−1/2

)
+Op

(
N−1

)
+

N−1/2Op
(
δ−2NT

)
as shown above. We therefore have

d1 =
√
NTOp

(
δ−2NT

)
×
[
Op

(
T−1/2N−1/2

)
+Op

(
N−1

)
+N−1/2Op

(
δ−2NT

)]
.
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Now consider d2 which can be written as

d2 =
1√
NT

1

N

k∑
`=1

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
γ0
`jv
′
`j,−1MF̂x,−1

MF̂x
ui

=
1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1( k∑
`=1

γ0
`jv
′
`j,−1

)
MF̂x,−1

MF̂x
ui

=
1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xjVj,−1MF̂x,−1

MF̂x
ui,

Consider now d3. Defining ΣkNT,−1 = N−1
∑k
`=1

∑N
j=1 v`j,−1v

′
`j,−1, we have

d3 =
1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

Γ0′
xiQ̂

′
−1F̂

′
x,−1v`j,−1v

′
`j,−1MF̂x,−1

MF̂x
ui

=
1√
NT

1

T

N∑
i=1

Γ0′
xiQ̂

′
−1F̂

′
x,−1

 1

N

k∑
`=1

N∑
j=1

v`j,−1v
′
`j,−1

MF̂x,−1
MF̂x

ui

=
1√

NT 3/2

N∑
i=1

Γ0′
xiQ̂

′
−1F̂

′
x,−1ΣkNT,−1MF̂x,−1

MF̂x
ui

=
1√

NT 3/2

N∑
i=1

Γ0′
xi(Υ

0
kN )−1Λ−1′

0F̂x,−1
F̂′x,−1ΣkNT,−1MF̂x,−1

MF̂x
ui

=
1√

NT 3/2

N∑
i=1

Γ0′
xi(Υ

0
kN )−1

(
F̂′x,−1F

0
x,−1

T

)−1
F̂′x,−1ΣkNT,−1MF̂x,−1

MF̂x
ui.

where the definitions of Q̂−1 and Λ0F̂x,−1
are given above. Hence, the expressions for d1,

d2 and d3 gives the required result in (A.35). The result in (A.34) is obtained in an analogous
manner.

Proof of Lemma 9. First consider (A.37). The left-hand-side of (A.37) can be written as

1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xjV

′
j,−1MF̂x,−1

MF̂x
ui

=
1√
NT

1

N

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1( k∑
`=1

γ0
`jv
′
`j,−1

)
MF̂x,−1

MF̂x
ui

=
1√
NT

1

N

k∑
`=1

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
γ0
`jv
′
`j,−1MF̂x,−1

MF̂x
ui

=
1√
NT

1

N

k∑
`=1

N∑
i=1

N∑
j=1

Γ0′
xi

(
Υ0
kN

)−1
γ0
`ju
′
iMF̂x

MF̂x,−1
v`j,−1

=
1√
NT

1

N

k∑
`=1

N∑
i=1

N∑
j=1

Γ0′
xj

(
Υ0
kN

)−1
γ0
`iu
′
jMF̂x

MF̂x,−1
v`i,−1

=
1√
NT

k∑
`=1

N∑
i=1

 1

N

N∑
j=1

Γ0′
xj

(
Υ0
kN

)−1
γ0
`iu
′
j

MF̂x
MF̂x,−1

v`i,−1

=
1√
NT

k∑
`=1

N∑
i=1

H′`,iMF̂x
MF̂x,−1

v`i,−1,
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where H`,i = 1
N

∑N
j=1 ujγ

0′
`i

(
Υ0
kN

)−1
Γ0
xj . By adding and subtracting terms we get

1√
NT

k∑
`=1

N∑
i=1

H′`,iMF̂x
MF̂x,−1

v`i,−1

=
1√
NT

k∑
`=1

N∑
i=1

H′`,iMF 0
x
MF 0

x,−1
v`i,−1

+
1√
NT

k∑
`=1

N∑
i=1

H′`,i(MF̂x
−MF 0

x
)MF 0

x,−1
v`i,−1

+
1√
NT

k∑
`=1

N∑
i=1

H′`,iMF̂x
(MF̂x,−1

−MF 0
x,−1

)v`i,−1. (A.1)

Now, consider the second term in (A.1). Since F̂′xF̂x/T = Imx
, we have MF̂x

−MF 0
x

=

PF 0
x
−PF̂x

= −
(

F̂xF̂′x
T −PF 0

x

)
. Using this result and by adding and subtracting terms, we get

1√
NT

k∑
`=1

N∑
i=1

H′`,i(MF̂x
−MF 0

x
)MF 0

x,−1
v`i,−1

= − 1√
NT

k∑
`=1

N∑
i=1

H′`,i

(
F̂xF̂

′
x

T
−PF 0

x

)
MF 0

x,−1
v`i,−1

= − 1√
NT

k∑
`=1

N∑
i=1

H′`,i

(
F̂x − F0

xG
)

T
G′F0′

x MF 0
x,−1

v`i,−1

− 1√
NT

k∑
`=1

N∑
i=1

H′`,i

(
F̂x − F0

xG
)

T

(
F̂x − F0

xG
)′

MF 0
x,−1

v`i,−1

− 1√
NT

k∑
`=1

N∑
i=1

H′`,iF
0
x

T
G
(
F̂x − F0

xG
)′

MF 0
x,−1

v`i,−1

− 1√
NT

k∑
`=1

N∑
i=1

H′`,iF
0
x

T

[
GG′ −

(
F0′
x F0

x

T

)−1]
F0′
x MF 0

x,−1
v`i,−1

= − (e1 + e2 + e3 + e4) .

|e1| ≤
1√
NT

k∑
`=1

N∑
i=1

∥∥∥∥∥∥
H′`,i

(
F̂x − F0

xG
)

T
G′F0′

x MF 0
x,−1

v`i,−1

∥∥∥∥∥∥
≤ 1√

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

∥∥∥∥∥∥Γ0′
xj

(
Υ0
kN

)−1
γ0
`i

u′j

(
F̂x − F0

xG
)

T
G′

F0′
x MF 0

x,−1
v`i,−1

√
T

∥∥∥∥∥∥
≤
√
N

 1

N

N∑
j=1

∥∥Γ0
xj

∥∥ ∥∥∥(Υ0
kN

)−1∥∥∥
∥∥∥∥∥∥

u′j

(
F̂x − F0

xG
)

T

∥∥∥∥∥∥


×

(
1

N

k∑
`=1

N∑
i=1

∥∥γ0
`i

∥∥ ‖G‖ ∥∥∥∥∥F0′
x MF 0

x,−1
v`i,−1

√
T

∥∥∥∥∥
)

=
√
NOp

(
δ−2NT

)
,

as

∥∥∥∥u′j(F̂x−F0
xG)

T

∥∥∥∥ ≤ ∥∥γ0′
j

∥∥∥∥∥∥F0′
x (F̂x−F0

xG)
T

∥∥∥∥+
∥∥λ0′

j

∥∥∥∥∥∥F0′
y (F̂x−F0

xG)
T

∥∥∥∥+

∥∥∥∥ε′j(F̂x−F0
xG)

T

∥∥∥∥ = Op
(
δ−2NT

)
by (A.20), (A.21) and (A.22).
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|e2| ≤
1√
NT

k∑
`=1

N∑
i=1

∥∥∥∥∥∥
H′`,i

(
F̂x − F0

xG
)

T

(
F̂x − F0

xG
)′

v`i,−1

∥∥∥∥∥∥
≤ 1√

NT

1

N

k∑
`=1

N∑
i=1

N∑
j=1

∥∥∥∥∥∥Γ0′
xj

(
Υ0
kN

)−1
γ0
`i

u′j

(
F̂x − F0

xG
)

T

(
F̂x − F0

xG
)′

MF 0
x,−1

v`i,−1

∥∥∥∥∥∥
≤
√
NT

 1

N

N∑
j=1

∥∥Γ0
xj

∥∥∥∥∥(Υ0
kN

)−1∥∥∥
∥∥∥∥∥∥

u′j

(
F̂x − F0

xG
)

T

∥∥∥∥∥∥


×

 1

N

k∑
`=1

N∑
i=1

∥∥γ0
`i

∥∥
∥∥∥∥∥∥∥
(
F̂x − F0

xG
)′

MF 0
x,−1

v`i,−1

T

∥∥∥∥∥∥∥


=
√
NTOp

(
δ−4NT

)
,

by using

∥∥∥∥u′j(F̂x−F0
xG)

T

∥∥∥∥ = Op
(
δ−2NT

)
and

∥∥∥∥∥ (F̂x−F0
xG)

′
M

F0
x,−1

v`i,−1

T

∥∥∥∥∥ ≤
∥∥∥∥ (F̂x−F0

xG)
′
v`i,−1

T

∥∥∥∥+ 1√
T

∥∥∥∥ (F̂x−F0
xG)

′
F0

x

T

∥∥∥∥∥∥∥∥(F0′
x F0

x

T

)−1∥∥∥∥∥∥∥F0′
x v`i,−1√

T

∥∥∥ = Op
(
δ−2NT

)
due to (A.20) and (A.23).

e3 =
1√
NT

k∑
`=1

N∑
i=1

H′`,iF
0
x

T
G
(
F̂x − F0

xG
)′

MF 0
x,−1

v`i,−1

=
1√
NT

k∑
`=1

N∑
i=1

H′`,iF
0
x

T
GG′

(
F̂xG

−1 − F0
x

)′
MF 0

x,−1
v`i,−1

=
1√
NT

k∑
`=1

N∑
i=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1 (
F̂xG

−1 − F0
x

)′
MF 0

x,−1
v`i,−1

+
1√
NT

k∑
`=1

N∑
i=1

H′`,iF
0
x

T

[
GG′ −

(
F0′
x F0

x

T

)−1](
F̂xG

−1 − F0
x

)′
MF 0

x,−1
v`i,−1

= a1 + a2.

|e4| ≤
1√
NT

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

[
GG′ −

(
F0′
x F0

x

T

)−1]
F0′
x MF 0

x,−1
v`i,−1

∥∥∥∥∥
≤
√
N

1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

∥∥∥∥∥
∥∥∥∥∥GG′ −

(
F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥∥F0′

x MF 0
x,−1

v`i,−1
√
T

∥∥∥∥∥
=
√
NOp

(
δ−2NT

)
,

by (A.28) and because

∥∥∥∥∥H′`,iF
0
x

T

∥∥∥∥∥ ≤ 1

N

N∑
j=1

∥∥Γ0′
xj

∥∥∥∥∥(Υ0
kN

)−1∥∥∥∥∥γ0
`i

∥∥∥∥∥∥ u′j√
T

∥∥∥∥∥∥∥∥ F0
x√
T

∥∥∥∥ = Op (1) ,

by Assumptions 1, 2, 3, 4(i). Next, consider a1 and a2 in the expression of e3. Start with
a2 which is as follows
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|a2| ≤
1√
NT

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

[
GG′ −

(
F0′
x F0

x

T

)−1](
F̂xG

−1 − F0
x

)′
MF 0

x,−1
v`i,−1

∥∥∥∥∥
≤
√
NT

1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

∥∥∥∥∥
∥∥∥∥∥GG′ −

(
F0′
x F0

x

T

)−1∥∥∥∥∥∥∥G−1∥∥
∥∥∥∥∥∥∥
(
F̂x − F0

xG
)′

MF 0
x,−1

v`i,−1

T

∥∥∥∥∥∥∥
≤
√
NT

1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

∥∥∥∥∥
∥∥∥∥∥GG′ −

(
F0′
x F0

x

T

)−1∥∥∥∥∥∥∥G−1∥∥
∥∥∥∥∥∥∥
(
F̂x − F0

xG
)′

v`i,−1

T

∥∥∥∥∥∥∥
+
√
N

1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

∥∥∥∥∥
∥∥∥∥∥GG′ −

(
F0′
x F0

x

T

)−1∥∥∥∥∥∥∥G−1∥∥
∥∥∥∥∥∥∥
(
F̂x − F0

xG
)′

F0
x,−1

T

∥∥∥∥∥∥∥
×

∥∥∥∥∥∥
(

F0′
x,−1F

0
x,−1

T

)−1∥∥∥∥∥∥
∥∥∥∥∥F0′

x,−1v`i,−1√
T

∥∥∥∥∥
=
√
NTOp

(
δ−4NT

)
,

by (A.20), (A.23), (A.28) and
∥∥∥H′`,iF

0
x

T

∥∥∥ = Op (1), which is shown above. As for a1, we have

a1 =
1√
NT

k∑
`=1

N∑
i=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1 (
F̂xG

−1 − F0
x

)′
MF 0

x,−1
v`i,−1

=
1√
NT

k∑
`=1

N∑
i=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
(E′1 + E′2 + E′3) MF 0

x,−1
v`i,−1

=

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′

k∑
h=1

F̂′xvhj
T

γ0′
hj

F0′
x MF 0

x,−1
v`i,−1

T

+

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′

F̂′xF
0
x

T

k∑
h=1

γ0
hj

v′hjMF 0
x,−1

v`i,−1

T

+

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′

k∑
h=1

F̂′xvhj
T

v′hjMF 0
x,−1

v`i,−1

T

= c1 + c2 + c3.

c1 =

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′

k∑
h=1

F̂′xvhj
T

γ0′
hj

F0′
x MF 0

x,−1
v`i,−1

T

=

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

k∑
h=1

F0′
x vhj
T

γ0′
hj

F0′
x MF 0

x,−1
v`i,−1

T

+

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′

k∑
h=1

(
F̂x − F0

xG
)′

vhj

T
γ0′
hj

F0′
x MF 0

x,−1
v`i,−1

T

= d1 + d2
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|d1| ≤
1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥∥H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

 k∑
h=1

1√
N

N∑
j=1

F0′
x vhj√
T
γ0′
hj

 F0′
x MF 0

x,−1
v`i,−1

T

∥∥∥∥∥∥
≤ T−1/2

(
1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

∥∥∥∥∥
∥∥∥∥∥
(

F0′
x F0

x

T

)−1∥∥∥∥∥ ∥∥∥Q̂′∥∥∥ ‖G′‖
∥∥∥∥∥F0′

x MF 0
x,−1

v`i,−1
√
T

∥∥∥∥∥
)

×

∥∥∥∥∥∥ 1√
N

k∑
h=1

N∑
j=1

F0′
x vhj√
T
γ0′
hj

∥∥∥∥∥∥
= T−1/2Op (1) = Op

(
T−1/2

)
.

|d2| ≤
√
N

1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥∥∥
H′`,iF

0
x

T

(
F0′
x F0

x

T

)−1
Q̂′

 1

N

k∑
h=1

N∑
j=1

(
F̂x − F0

xG
)′

vhj

T
γ0′
hj

 F0′
x MF 0

x,−1
v`i,−1

√
T

∥∥∥∥∥∥∥
≤
√
N

(
1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

∥∥∥∥∥
∥∥∥∥∥
(

F0′
x F0

x

T

)−1∥∥∥∥∥∥∥∥Q̂′∥∥∥
∥∥∥∥∥F0′

x MF 0
x,−1

v`i,−1
√
T

∥∥∥∥∥
)

×

 1

N

k∑
h=1

N∑
j=1

∥∥∥∥∥∥∥
(
F̂x − F0

xG
)′

vhj

T

∥∥∥∥∥∥∥
∥∥γ0′

hj

∥∥


=
√
NOp

(
δ−2NT

)
,

by (A.23).

c2 =

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′

F̂′xF
0
x

T

k∑
h=1

γ0
hj

v′hjMF 0
x,−1

v`i,−1

T

=

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1 (
Υ0
kN

)−1 k∑
h=1

γ0
hj

v′hjMF 0
x,−1

v`i,−1

T
.

c3 =

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′

k∑
h=1

F̂′xvhj
T

v′hjMF 0
x,−1

v`i,−1

T

=

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

k∑
h=1

F0′
x vhj
T

v′hjMF 0
x,−1

v`i,−1

T

+

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

k∑
h=1

(
F̂xG

−1 − F0
x

)′
vhj

T

v′hjMF 0
x,−1

v`i,−1

T

= d1 + d2,
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d1 =

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

k∑
h=1

F0′
x vhj
T

v′hjMF 0
x,−1

v`i,−1

T

=

√
T

N

1

T

k∑
`=1

N∑
i=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

F0′
x Σ̄kNTMF 0

x,−1
v`i,−1

T

+

√
T

N

1

T

k∑
`=1

N∑
i=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

F0′
x

(
ΣkNT − Σ̄kNT

)
MF 0

x,−1
v`i,−1

T

= b1 + b2.

|b1| ≤
√
T

N

1

T

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

F0′
x Σ̄kNTMF 0

x,−1
v`i,−1

T

∥∥∥∥∥
=

√
T

N

1

NT

k∑
`=1

N∑
i=1

N∑
j=1

∥∥∥∥∥Γ0′
xj

(
Υ0
kN

)−1
γ0
`i

u′jF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

F0′
x Σ̄kNTMF 0

x,−1
v`i,−1

T

∥∥∥∥∥
=

√
N

T

1

N2

k∑
`=1

N∑
i=1

N∑
j=1

∥∥∥∥∥Γ0′
xj

(
Υ0
kN

)−1
γ0
`i

v′`i,−1MF 0
x,−1

Σ̄kNTF0
x

T
GQ̂

(
F0′
x F0

x

T

)−1
F0′
x uj
T

∥∥∥∥∥
≤
√
N

T

1√
N

 1

N

N∑
j=1

∥∥Γ0
xj

∥∥∥∥∥∥ uj√
T

∥∥∥∥
∥∥∥(Υ0

kN

)−1∥∥∥∥∥∥∥∥ 1√
NT

k∑
`=1

N∑
i=1

γ0
`iv
′
`i,−1MF 0

x,−1

∥∥∥∥∥
× λmax

(
Σ̄kNT,−1

)
‖G‖

∥∥∥Q̂∥∥∥∥∥∥∥∥
(

F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥ F0

x√
T

∥∥∥∥2 = Op

(
N−1/2

)
,

where λmax

(
Σ̄kNT,−1

)
is the largest eigenvalue of Σ̄kNT,−1, which is Op (1) by Assumption

2. Moreover,

|b2| ≤
√
T

N

1

T

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

F0′
x

(
ΣkNT − Σ̄kNT

)
MF 0

x,−1
v`i,−1

T

∥∥∥∥∥
≤ 1√

T

1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

∥∥∥∥∥
∥∥∥∥∥
(

F0′
x F0

x

T

)−1∥∥∥∥∥ ∥∥∥Q̂′∥∥∥ ‖G′‖
∥∥∥∥∥F0′

x

√
N
(
ΣkNT − Σ̄kNT

)
√
T

∥∥∥∥∥
∥∥∥∥v`i,−1√

T

∥∥∥∥
+

1

T

1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥H′`,iF
0
x

T

∥∥∥∥∥
∥∥∥∥∥
(

F0′
x F0

x

T

)−1∥∥∥∥∥ ∥∥∥Q̂′∥∥∥ ‖G′‖
∥∥∥∥∥F0′

x

√
N
(
ΣkNT − Σ̄kNT

)
√
T

∥∥∥∥∥
∥∥∥∥∥F0′

x,−1√
T

∥∥∥∥∥
×

∥∥∥∥∥∥
(

F0′
x,−1F

0
x,−1

T

)−1∥∥∥∥∥∥
∥∥∥∥∥F0′

x,−1v`i,−1√
T

∥∥∥∥∥
= Op(T

−1/2),

by (A.10). Also, we have
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d2 =

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

k∑
h=1

(
F̂xG

−1 − F0
x

)′
vhj

T

v′hjMF 0
x,−1

v`i,−1

T

=

√
T

N

1

N2

k∑
`=1

k∑
h=1

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xn

(
Υ0
kN

)−1
γ0
`i

u′nF0
x

T

(
F0′
x F0

x

T

)−1
Q̂′G′

×

(
F̂xG

−1 − F0
x

)′
vhj

T

v′hjMF 0
x,−1

v`i,−1

T

=

√
T

N

1

N2

k∑
`=1

k∑
h=1

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xn

(
Υ0
kN

)−1
γ0
`i

v′`i,−1MF 0
x,−1

vhj

T

v′hj

(
F̂xG

−1 − F0
x

)
T

×GQ̂

(
F0′
x F0

x

T

)−1
F0′
x un
T

,

|d2| ≤
√
N

√
T

N

(
1

N

N∑
n=1

∥∥Γ0′
xn

∥∥∥∥∥∥ un√
T

∥∥∥∥
)∥∥∥(Υ0

kN

)−1∥∥∥∥∥∥∥∥ 1√
NT

k∑
`=1

N∑
i=1

γ0
`iv
′
`i,−1MF 0

x,−1

∥∥∥∥∥
×

 1

N

k∑
h=1

N∑
j=1

∥∥∥∥vhj√
T

∥∥∥∥
∥∥∥∥∥∥

v′hj

(
F̂′xG

−1 − F0
x

)
T

∥∥∥∥∥∥
 ‖G‖∥∥∥Q̂∥∥∥∥∥∥∥∥

(
F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x√
T

∥∥∥∥
=
√
NOp

(
δ−2NT

)
,

by (A.23). By putting the results together, we therefore get

1√
NT

k∑
`=1

N∑
i=1

H′`,i(MF̂x
−MF 0

x
)MF 0

x,−1
v`i,−1

=

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1 (
Υ0
kN

)−1 k∑
h=1

γ0
hj

v′hjMF 0
x,−1

v`i,−1

T

+
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
=

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′jMF 0
x,−1

v`i,−1

T

+
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
.

Consider now the third term in (A.1). By following the same steps as in the discussion above
and by replacing H`,i with MF̂x

H`,i, (MF̂x
−MF 0

x
) with (MF̂x,−1

−MF 0
x,−1

), and MF 0
x,−1

v`i,−1
with v`i,−1, we get
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1√
NT

k∑
`=1

N∑
i=1

H′`,iMF̂x
(MF̂x,−1

−MF 0
x,−1

)v`i,−1

=

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iMF̂x
F0
x,−1

T

(
F0′
x,−1F

0
x,−1

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′j,−1v`i,−1

T

+
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
=

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iMF 0
x
F0
x,−1

T

(
F0′
x,−1F

0
x,−1

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′j,−1v`i,−1

T

+

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,i(MF̂x
−MF 0

x
)F0

x,−1

T

(
F0′
x,−1F

0
x,−1

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′j,−1v`i,−1

T

+
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
=

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iMF 0
x
F0
x,−1

T

(
F0′
x,−1F

0
x,−1

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′j,−1v`i,−1

T

=
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
,

since∥∥∥∥∥∥ 1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,i(MF̂x
−MF 0

x
)F0

x,−1

T

(
F0′
x,−1F

0
x,−1

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′j,−1v`i,−1

T

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

N2

k∑
`=1

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xn

(
Υ0
kN

)−1
γ0
`i

u′n(MF̂x
−MF 0

x
)F0

x

T

(
F0′
x F0

x

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′jv`i,−1

T

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

N2

k∑
`=1

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xn

(
Υ0
kN

)−1
γ0
`i

v′`i,−1Vj

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x F0

x

T

)−1 F0′
x (MF̂x

−MF 0
x
)un

T

∥∥∥∥∥∥
≤ 1

N

N∑
n=1

∥∥Γ0′
xn

∥∥∥∥∥(Υ0
kN

)−1∥∥∥∥∥∥∥∥ 1√
N

k∑
`=1

N∑
i=1

γ0
`iv
′
`i,−1√
T

∥∥∥∥∥
∥∥∥∥∥∥ 1√

N

k∑
h=1

N∑
j=1

vhjγ
0′
hj√
T

∥∥∥∥∥∥
×
∥∥∥(Υ0

kN

)−1∥∥∥∥∥∥∥∥
(

F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x√
T

∥∥∥∥ ∥∥∥PF̂x
−PF 0

x

∥∥∥∥∥∥∥ un√
T

∥∥∥∥
= Op

(
δ−1NT

)
,

by Lemma 5. By putting the results together we have

1√
NT

k∑
`=1

N∑
i=1

H′`,iMF̂x
MF̂x,−1

v`i,−1

=
1√
NT

k∑
`=1

N∑
i=1

H′`,iMF 0
x
MF 0

x,−1
v`i,−1

+

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iF
0
x

T

(
F0′
x F0

x

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′jv`i,−1

T

+

√
T

N

1

N

k∑
`=1

N∑
i=1

N∑
j=1

H′`,iMF 0
x
F0
x,−1

T

(
F0′
x,−1F

0
x,−1

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′j,−1v`i,−1

T

+
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
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=
1√
NT

1

N

k∑
`=1

N∑
i=1

N∑
j=1

Γ0′
xj

(
Υ0
kN

)−1
γ0
`iu
′
jMF 0

x
MF 0

x,−1
v`i,−1

+

√
T

N

1

N2

k∑
`=1

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xn

(
Υ0
kN

)−1
γ0
`i

u′nF0
x

T

(
F0′
x F0

x

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′jv`i,−1

T

+

√
T

N

1

N2

k∑
`=1

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xn

(
Υ0
kN

)−1
γ0
`i

u′nMF 0
x
F0
x,−1

T

(
F0′
x,−1F

0
x,−1

T

)−1 (
Υ0
kN

)−1
Γ0
xj

V′j,−1v`i,−1

T

+
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
=

1√
NT

1

N

k∑
`=1

N∑
i=1

N∑
j=1

Γ0′
xj

(
Υ0
kN

)−1
γ0
`iv
′
`i,−1MF 0

x,−1
MF 0

x
uj

+

√
T

N

1

N2

k∑
`=1

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xn

(
Υ0
kN

)−1
γ0
`i

v′`i,−1Vj

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x F0

x

T

)−1
F0′
x un
T

+

√
T

N

1

N2

k∑
`=1

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xn

(
Υ0
kN

)−1
γ0
`i

v′`i,−1Vj,−1

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1MF 0

x
un

T

+
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
=

1√
NT

1

N

N∑
i=1

N∑
n=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xnV′n,−1MF 0

x,−1
MF 0

x
ui

+

√
T

N

1

N2

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xn

V′n,−1Vj

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x F0

x

T

)−1
F0′
x ui
T

+

√
T

N

1

N2

N∑
i=1

N∑
j=1

N∑
n=1

Γ0′
xi

(
Υ0
kN

)−1
Γ0
xn

V′n,−1Vj,−1

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1MF 0

x
ui

T

+
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
, (A.2)

which provides the required result in (A.37). The result in (A.36) is proved in an analogous way.

Proof of Lemma 10. We first prove (A.39). By noting that ÂB̂ = AB+
(
Â−A

)
B̂ + A

(
B̂−B

)
,

the left-hand-side of (A.39) can be written as
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1√
NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
F̂′x,−1Σ̄kNTMF̂x,−1

MF̂x
ui

=
1√

NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1Σ̄kNTMF 0

x,−1
MF̂x

ui

+
1√

NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F̂′x,−1Σ̄kNT

(
MF̂x,−1

−MF 0
x,−1

)
MF̂x

ui

+
1√

NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1 ( F̂′x,−1F
0
x,−1

T

)−1
F̂′x,−1 −

(
F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1


× Σ̄kNTMF̂x,−1

MF̂x
ui

=

√
N

T

1

NT

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1Σ̄kNTMF 0

x,−1
MF̂x

ui

+

√
N

T
(a1 + a2) .

|a1| ≤
1

NT

N∑
i=1

∥∥∥∥∥∥Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F̂′x,−1Σ̄kNT

(
MF̂x,−1

−MF 0
x,−1

)
MF̂x

ui

∥∥∥∥∥∥
≤

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥ ∥∥∥∥ ui√
T

∥∥∥∥
)∥∥∥(Υ0

kN

)−1∥∥∥
∥∥∥∥∥∥
(

F0′
x,−1F

0
x,−1

T

)−1∥∥∥∥∥∥
∥∥∥∥∥ F̂′x,−1√

T

∥∥∥∥∥
× λmax

(
Σ̄kNT,−1

) ∥∥∥PF̂x,−1
−PF 0

x,−1

∥∥∥∥∥∥MF̂x

∥∥∥
= Op

(
δ−1NT

)
,

by Lemma 5 and T−1/2
∥∥∥Σ̄kNT,−1F̂x,−1

∥∥∥ ≤ λmax

(
Σ̄kNT,−1

)
T−1/2

∥∥∥F̂x,−1∥∥∥ = Op (1) by As-

sumption 2 and 3. Next, we have

|a2|

≤ 1

NT

N∑
i=1

∥∥∥∥∥∥Γ0′
xi

(
Υ0
kN

)−1 ( F̂′x,−1F
0
x,−1

T

)−1
F̂′x,−1 −

(
F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1

 Σ̄kNTMF̂x,−1
MF̂x

ui

∥∥∥∥∥∥
≤ 1√

T

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥∥∥ ui√
T

∥∥∥∥
)∥∥∥∥∥∥
F̂x,−1

(
F0′
x,−1F̂x,−1

T

)−1
− F0

x,−1

(
F0′
x,−1F

0
x,−1

T

)−1(Υ0
kN

)−1∥∥∥∥∥∥
× λmax

(
Σ̄kNT

) ∥∥∥MF̂x,−1

∥∥∥∥∥∥MF̂x

∥∥∥
= Op (1)

1√
T

∥∥∥∥∥∥
F̂x,−1

(
F0′
x,−1F̂x,−1

T

)−1
− F0

x,−1

(
F0′
x,−1F

0
x,−1

T

)−1(Υ0
kN

)−1∥∥∥∥∥∥ ,
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by Assumptions 1, 2, 3, 4(i), and because

1√
T

∥∥∥∥∥∥
F̂x,−1

(
F0′
x,−1F̂x,−1

T

)−1
− F0

x,−1

(
F0′
x,−1F

0
x,−1

T

)−1(Υ0
kN

)−1∥∥∥∥∥∥
=

1√
T

∥∥∥∥∥∥
F̂x,−1

(
F0′
x,−1F̂x,−1

T

)−1
− F0

x,−1

(
F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1F̂x,−1

T

(
F0′
x,−1F̂x,−1

T

)−1(Υ0
kN

)−1∥∥∥∥∥∥
=

1√
T

∥∥∥∥∥∥
F̂x,−1

(
F0′
x,−1F̂x,−1

T

)−1
−PF 0

x,−1
F̂x,−1

(
F0′
x,−1F̂x,−1

T

)−1(Υ0
kN

)−1∥∥∥∥∥∥
=

1√
T

∥∥∥∥∥∥MF 0
x,−1

F̂x,−1

(
F0′
x,−1F̂x,−1

T

)−1 (
Υ0
kN

)−1∥∥∥∥∥∥ ≤ 1√
T

∥∥∥MF 0
x,−1

F̂x,−1

∥∥∥
∥∥∥∥∥∥
(

F0′
x,−1F̂x,−1

T

)−1 (
Υ0
kN

)−1∥∥∥∥∥∥
= Op

(
δ−1NT

)
,

since T−1/2
∥∥∥MF 0

x,−1
F̂x,−1

∥∥∥ = T−1/2
∥∥∥(MF 0

x,−1
−MF̂x,−1

)F̂x,−1

∥∥∥ ≤ ∥∥∥MF 0
x,−1
−MF̂x,−1

∥∥∥ T−1/2 ∥∥∥F̂x,−1∥∥∥ =∥∥∥PF 0
x,−1
−PF̂x,−1

∥∥∥T−1/2 ∥∥∥F̂x,−1∥∥∥ = Op
(
δ−1NT

)
by Lemma 5,

∥∥∥∥∥
(

F0′
x,−1F̂x,−1

T

)−1∥∥∥∥∥ = Op (1) and∥∥∥(Υ0
kN

)−1∥∥∥ = Op (1).

Hence, by putting the results together we get the required result in (A.39)

1√
NT 3/2

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1( F̂′x,−1F
0
x,−1

T

)−1
F̂′x,−1Σ̄kNTMF̂x,−1

MF̂x
ui

=

√
N

T

1

NT

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1Σ̄kNTMF 0

x,−1
MF̂x

ui + op(1)

=

√
N

T

1

NT

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1Σ̄kNTMF 0

x,−1
MF 0

x
ui

+

√
N

T

1

NT

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1Σ̄kNTMF 0

x,−1
(MF̂x

−MF 0
x
)ui + op(1)

=

√
N

T

1

NT

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1Σ̄kNTMF 0

x,−1
MF 0

x
ui + op(1),
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where the second term in the second equality is∥∥∥∥∥∥ 1

NT

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1Σ̄kNTMF 0

x,−1
(MF̂x

−MF 0
x
)ui

∥∥∥∥∥∥
≤ 1

NT

N∑
i=1

∥∥∥∥∥∥Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1Σ̄kNTMF 0

x,−1
(MF̂x

−MF 0
x
)ui

∥∥∥∥∥∥
≤

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥γ0
i

∥∥)∥∥∥(Υ0
kN

)−1∥∥∥
∥∥∥∥∥∥
(

F0′
x,−1F

0
x,−1

T

)−1∥∥∥∥∥∥
∥∥∥∥∥F0′

x,−1√
T

∥∥∥∥∥
× λmax

(
Σ̄kNT,−1

) ∥∥∥MF 0
x,−1

∥∥∥∥∥∥PF̂x
−PF 0

x

∥∥∥∥∥∥∥∥ F0
y√
T

∥∥∥∥∥
+

(
1

N

N∑
i=1

∥∥Γ0′
xi

∥∥∥∥∥∥ εi√T
∥∥∥∥
)∥∥∥(Υ0

kN

)−1∥∥∥
∥∥∥∥∥∥
(

F0′
x,−1F

0
x,−1

T

)−1∥∥∥∥∥∥
∥∥∥∥∥F0′

x,−1√
T

∥∥∥∥∥
× λmax

(
Σ̄kNT,−1

) ∥∥∥MF 0
x,−1

∥∥∥∥∥∥PF̂x
−PF 0

x

∥∥∥
= Op

(
δ−1NT

)
,

by Lemma 5 and T−1/2
∥∥∥Σ̄kNT,−1F̂x,−1

∥∥∥ = Op (1). The result in (A.38) is proved by following

the same steps.

Proof of Lemma 11. We start with (A.41), which is given by

1√
NT

N∑
i=1

V′i,−1MF̂x,−1
MF̂x

ui

=
1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

MF 0
x
ui

+
1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

(
MF̂x

−MF 0
x

)
ui

+
1√
NT

N∑
i=1

V′i,−1

(
MF̂x,−1

−MF 0
x,−1

)
MF̂x

ui. (A.3)

Now consider the second term in (A.3). By using MF̂x
−MFx = −

(
F̂xF̂′x
T −PF 0

x

)
, and adding
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and subtracting terms, we get

1√
NT

N∑
i=1

V′i,−1MFx,−1

(
MF̂x

−MFx

)
ui

= − 1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

(
F̂xF̂

′
x

T
−PF 0

x

)
ui

= − 1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

(
F̂x − F0

xG
)

T
G′F0′

x ui

− 1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

(
F̂x − F0

xG
)

T

(
F̂x − F0

xG
)′

ui

− 1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

F0
x

T
G
(
F̂x − F0

xG
)′

ui

− 1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

F0
x

T

[
GG′ −

(
F0′
x F0

x

T

)−1]
F0′
x ui

= − (e1 + e2 + e3 + e4) ,

|e2|

≤
√
NT

1

N

N∑
i=1

∥∥∥∥∥∥
V′i,−1MF 0

x,−1

(
F̂x − F0

xG
)

T

∥∥∥∥∥∥
∥∥∥∥∥∥∥
(
F̂x − F0

xG
)′

ui

T

∥∥∥∥∥∥∥
≤
√
NT

1

N

N∑
i=1

∥∥∥∥∥∥
V′i,−1

(
F̂x − F0

xG
)

T

∥∥∥∥∥∥
∥∥∥∥∥∥∥
(
F̂x − F0

xG
)′

ui

T

∥∥∥∥∥∥∥
+
√
N

1

N

N∑
i=1

∥∥∥∥∥V′i,−1F
0
x,−1√

T

∥∥∥∥∥
∥∥∥∥∥∥
(

F0′
x,−1F

0
x,−1

T

)−1∥∥∥∥∥∥
∥∥∥∥∥∥

F0′
x,−1

(
F̂x − F0

xG
)

T

∥∥∥∥∥∥
∥∥∥∥∥∥∥
(
F̂x − F0

xG
)′

ui

T

∥∥∥∥∥∥∥
=
√
NTOp

(
δ−4NT

)
,

by

∥∥∥∥ (F̂x−F0
xG)

′
ui

T

∥∥∥∥ = Op
(
δ−2NT

)
, (A.20) and (A.23).

|e3| ≤
√
N

1

N

N∑
i=1

∥∥∥∥∥V′i,−1MFx,−1
F0
x√

T

∥∥∥∥∥ ‖G‖
∥∥∥∥∥∥∥
(
F̂x − F0

xG
)′

ui

T

∥∥∥∥∥∥∥
=
√
NOp

(
δ−2NT

)
,

by using again

∥∥∥∥ (F̂x−F0
xG)

′
ui

T

∥∥∥∥ = Op
(
δ−2NT

)
.

|e4| ≤
√
N

1

N

N∑
i=1

∥∥∥∥∥V′i,−1MFx,−1F
0
x√

T

∥∥∥∥∥
∥∥∥∥∥GG′ −

(
F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x√
T

∥∥∥∥∥∥∥∥ ui√
T

∥∥∥∥
=
√
NOp

(
δ−2NT

)
,

by (A.28). Consider now e1 which can be written as
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e1 =
1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

(
F̂x − F0

xG
)

T
G′F0′

x ui

=
1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

(
F̂xG

−1 − F0
x

)
T

GG′F0′
x ui

=
1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

(
F̂xG

−1 − F0
x

)
T

(
F0′
x F0

x

T

)−1
F0′
x ui

+
1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

(
F̂xG

−1 − F0
x

)
T

[
GG′ −

(
F0′
x F0

x

T

)−1]
F0′
x ui

= a1 + a2.

Start with a2 which is given by

|a2| ≤
√
NT

1

N

N∑
i=1

∥∥∥∥∥∥
V′i,−1MF 0

x,−1

(
F̂xG

−1 − F0
x

)
T

∥∥∥∥∥∥
∥∥∥∥∥GG′ −

(
F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x ui
T

∥∥∥∥
≤
√
NT

1

N

N∑
i=1

∥∥∥∥∥∥
V′i,−1

(
F̂xG

−1 − F0
x

)
T

∥∥∥∥∥∥
∥∥∥∥∥GG′ −

(
F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x√
T

∥∥∥∥∥∥∥∥ ui√
T

∥∥∥∥
+
√
NT

1

N

N∑
i=1

∥∥∥∥∥V′i,−1F
0
x,−1√

T

∥∥∥∥∥
∥∥∥∥∥∥
(

F0′
x,−1F

0
x,−1

T

)−1∥∥∥∥∥∥
∥∥∥∥∥∥

F0′
x,−1

(
F̂x − F0

xG
)

T

∥∥∥∥∥∥
×

∥∥∥∥∥GG′ −
(

F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x√
T

∥∥∥∥∥∥∥∥ ui√
T

∥∥∥∥
=
√
NTOp

(
δ−4NT

)
,

by (A.20), (A.23) and (A.28). As for a1 we have

a1 =
1√
NT

N∑
i=1

V′i,−1MF 0
x,−1

(
F̂xG

−1 − F0
x

)
T

(
F0′
x F0

x

T

)−1
F0′
x ui

=
1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

V′i,−1MF 0
x,−1

F0
x

T
γ0
`jv
′
`jF̂xQ̂

(
F0′
x F0

x

T

)−1
F0′
x ui

+
1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

V′i,−1MF 0
x,−1

v`j

T
γ0′
`jF

0′
x F̂xQ̂

(
F0′
x F0

x

T

)−1
F0′
x ui

+
1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

V′i,−1MF 0
x,−1

v`j

T
v′`jF̂xQ̂

(
F0′
x F0

x

T

)−1
F0′
x ui

= d1 + d2 + d3,
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|d1|

≤ 1

N

N∑
i=1

∥∥∥∥∥∥
V′i,−1MF 0

x,−1
F0
x√

T

 1√
N

k∑
`=1

N∑
j=1

γ0
`j

v′`jF̂x

T

 Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui
T

∥∥∥∥∥∥
≤ 1

N

N∑
i=1

∥∥∥∥∥V′i,−1MF 0
x,−1

F0
x√

T

∥∥∥∥∥
∥∥∥∥∥∥ 1√

N

k∑
`=1

N∑
j=1

γ0
`j

v′`j

(
F̂x − F0

xG
)

T

∥∥∥∥∥∥
∥∥∥Q̂∥∥∥∥∥∥∥∥

(
F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x ui√
T

∥∥∥∥
+

1√
T

1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥V′i,−1MF 0
x,−1

F0
x√

T

∥∥∥∥∥
∥∥∥∥∥∥ 1√

N

N∑
j=1

γ0
`j

v′`jF
0
x√

T

∥∥∥∥∥∥ ‖G‖
∥∥∥Q̂∥∥∥∥∥∥∥∥

(
F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x ui√
T

∥∥∥∥
= Op

(
δ−2NT

)
+Op

(
N−1/2

)
+Op

(
T−1/2

)
= Op

(
δ−1NT

)
.

by (A.25).

d2 =
1√
NT

N∑
i=1

1

N

k∑
`=1

N∑
j=1

V′i,−1MF 0
x,−1

v`j

T
γ0′
`j

F0′
x F̂x
T

Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui

=
1√
NT

N∑
i=1

1

N

k∑
`=1

N∑
j=1

V′i,−1MF 0
x,−1

v`j

T
γ0′
`j

(
Υ0
kN

)−1(F0′
x F0

x

T

)−1
F0′
x ui

=

√
T

N

1

N

N∑
i=1

N∑
j=1

V′i,−1MF 0
x,−1

Vj

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x F0

x

T

)−1
F0′
x ui
T

.

d3 =
1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

V′i,−1MF 0
x,−1

v`j

T
v′`jF̂xQ̂

(
F0′
x F0

x

T

)−1
F0′
x ui

=
1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

V′i,−1MF 0
x,−1

v`j

T
v′`j

(
F̂x − F0

xG
)

Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui

+
1√
NT

N∑
i=1

1

NT

k∑
`=1

N∑
j=1

V′i,−1MF 0
x,−1

v`j

T
v′`jF

0
xGQ̂

(
F0′
x F0

x

T

)−1
F0′
x ui

= c1 + c2,

c1 =
1√
NT

1

NT

k∑
`=1

N∑
i=1

N∑
j=1

V′i,−1MF 0
x,−1

v`j

T
v′`j

(
F̂x − F0

xG
)

Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui

=

√
N

T

1

N

N∑
i=1

V′i,−1MF 0
x,−1

Σ̄kNT

(
F̂x − F0

xG
)

T
Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui
T

− 1√
T

1

N

N∑
i=1

V′i,−1MF 0
x,−1

√
N
(
ΣkNT − Σ̄kNT

) (
F̂x − F0

xG
)

T
Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui
T

= b1 + b2.
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|b1| ≤
√
N

T

1

N

N∑
i=1

∥∥∥∥∥∥
V′i,−1MF 0

x,−1
Σ̄kNT

(
F̂x − F0

xG
)

T
Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui
T

∥∥∥∥∥∥
≤ 1√

T

√
N

T

1

N

N∑
i=1

∥∥∥∥V′i,−1√
T

∥∥∥∥∥∥∥MF 0
x,−1

∥∥∥λmax

(
Σ̄kNT

) ∥∥∥∥∥∥
(
F̂x − F0

xG
)

√
T

∥∥∥∥∥∥
∥∥∥Q̂∥∥∥

×

∥∥∥∥∥
(

F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x√
T

∥∥∥∥∥∥∥∥ ui√
T

∥∥∥∥
= Op

(
δ−1NT

)
,

by (A.17).

|b2|

≤ 1√
T

1

N

N∑
i=1

∥∥∥∥∥∥
V′i,−1MF 0

x,−1

√
N
(
ΣkNT − Σ̄kNT

) (
F̂x − F0

xG
)

T
Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui
T

∥∥∥∥∥∥
≤ 1

N

N∑
i=1

∥∥∥∥∥V′i,−1
√
N
(
ΣkNT − Σ̄kNT

)
T

∥∥∥∥∥
∥∥∥∥∥∥
(
F̂x − F0

xG
)

√
T

∥∥∥∥∥∥
∥∥∥Q̂∥∥∥ ∥∥∥∥∥

(
F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x√
T

∥∥∥∥∥∥∥∥ ui√
T

∥∥∥∥
+

1√
T

1

N

N∑
i=1

∥∥∥∥∥V′i,−1F
0
x,−1√

T

∥∥∥∥∥
∥∥∥∥∥∥
(

F0′
x,−1F

0
x,−1

T

)−1∥∥∥∥∥∥
∥∥∥∥∥F0′

x,−1
√
N
(
ΣkNT − Σ̄kNT

)
√
T

∥∥∥∥∥
×

∥∥∥∥∥∥
(
F̂x − F0

xG
)

√
T

∥∥∥∥∥∥
∥∥∥Q̂∥∥∥∥∥∥∥∥

(
F0′
x F0

x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x√
T

∥∥∥∥ ∥∥∥∥ ui√
T

∥∥∥∥
= Op

(
δ−1NT

)
.

by (A.12), (A.13) and (A.17).

c2 =
1√
NT

1

NT

k∑
`=1

N∑
i=1

N∑
j=1

V′i,−1MF 0
x,−1

v`j

T
v′`jF

0
xGQ̂

(
F0′
x F0

x

T

)−1
F0′
x ui

=
1√
T

√
N

T

1

N

N∑
i=1

V′i,−1MF 0
x,−1

Σ̄kNTF0
xG√

T
Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui
T

− 1√
T

1

N

N∑
i=1

V′i,−1MF 0
x,−1

√
N
(
ΣkNT − Σ̄kNT

)
F0
xG

T
Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui
T

= b1 + b2.
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|b1|

≤ 1√
T

√
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T

1

N

N∑
i=1

∥∥∥∥∥V′i,−1MF 0
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Σ̄kNTF0
xG√

T
Q̂

(
F0′
x F0

x

T

)−1
F0′
x ui
T

∥∥∥∥∥
≤ 1√

T

√
N

T

1

N

N∑
i=1

∥∥∥∥∥V′i,−1MF 0
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Σ̄kNTF0
xG√

T
Q̂

(
F0′
x F0

x

T

)−1 mx∑
r=1

F0′
x f0x,r
T
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∥∥∥∥∥
+

1√
T

√
N

T

1

N
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∥∥∥∥∥V′i,−1MF 0
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Σ̄kNTF0
xG√

T
Q̂

(
F0′
x F0

x

T
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r=1

F0′
x f0y,r
T

λ0ri

∥∥∥∥∥
+

1√
T

√
N

T

1

N

N∑
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∥∥∥∥∥V′i,−1MF 0
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xG√

T
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(
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x

T

)−1
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T

∥∥∥∥∥
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N

√
N

T
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(∥∥∥∥∥ 1√
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N∑
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γ0riV
′
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∥∥∥∥∥
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T

∥∥∥∥∥
)
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(
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T
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∥∥∥∥∥
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x F0

x

T

)−1∥∥∥∥∥
+
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√
N

T
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(∥∥∥∥∥ 1√
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′
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∥∥∥∥∥
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∥∥∥∥∥
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(
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x√
T
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∥∥∥∥∥
(

F0′
x F0

x

T

)−1∥∥∥∥∥
+

1√
T

√
N

T

(
1

N

N∑
i=1

∥∥∥∥∥V′i,−1MF 0
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T

∥∥∥∥∥
∥∥∥∥F0′
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T

∥∥∥∥
)
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(
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x√
T
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∥∥∥∥∥
(

F0′
x F0

x

T

)−1∥∥∥∥∥
= Op

(
N−1/2

)
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(
T−1/2

)
.

|b2| ≤
1√
T

1

N

N∑
i=1

∥∥∥∥∥V′i,−1MF 0
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√
N
(
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)
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x

T
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(
F0′
x F0

x

T
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F0′
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T

∥∥∥∥∥
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T

1

N
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∥∥∥∥V′i,−1√
T
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∥∥∥∥∥∥∥∥
√
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T
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×

∥∥∥∥∥
(
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x

T

)−1∥∥∥∥∥
∥∥∥∥F0′

x√
T
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T

∥∥∥∥
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(
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,

by (A.10). By adding everything together we therefore have

1√
NT

k∑
`=1

N∑
i=1

V′i,−1MF 0
x,−1

(MF̂x
−MF 0

x
)ui

=

√
T

N

1

N
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V′i,−1MF 0
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Vj
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Γ0′
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(
Υ0
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x

T
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T

+
√
NOp

(
δ−2NT

)
+Op

(
δ−1NT

)
.

Next consider the third term in (A.3). By following the same steps as in the discussion above
and by replacing MF 0

x,−1
Vi,−1 with Vi,−1, (MF̂x

−MF 0
x
) with (MF̂x,−1

−MF 0
x,−1

) and ui with

MF̂x
ui, we get
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=
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√
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=
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x
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+
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1
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√
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=
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,

where the last equality is by Lemma 5. Collecting the results together, we obtain
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NT

N∑
i=1

V′i,−1MF̂x,−1
MF̂x

ui

=
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x
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+
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√
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,

which is the required result in (A.41). The result in (A.40) can be shown by following the similar
steps as discussed above.

Proof of Lemma 12. We first show (A.44), (A.45) and (A.46). Under Assumptions 1-3,

4(i)(ii), 5(i)(ii)(iv), as (N,T )
j→∞ such that N/T → c with 0 < c <∞, we have∥∥∥∥∥∥ 1√
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∥∥∥∥∥∥
≤ 1√

N

∥∥∥∥∥∥ 1√
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B.24
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Ṽ′i,−1Vj,−1

T
Γ0′
xj

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1MF 0

x
ui

T

∥∥∥∥∥∥
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N∑
j=1
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Ṽ′i,−1v`j,−1

T
γ0′
`j

∥∥∥∥∥∥
∥∥∥(Υ0

kN

)−1∥∥∥
∥∥∥∥∥∥
(

F0′
x,−1F

0
x,−1

T

)−1∥∥∥∥∥∥
∥∥∥∥∥F0′

x,−1MF 0
x
f0y,r

T

∥∥∥∥∥
+

√
N

T

1

N

k∑
`=1

N∑
i=1

∥∥∥∥∥∥ 1√
N

N∑
j=1
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Ṽ′i,−1v`j,−1

T
γ0′
`j

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1√
N

N∑
j=1

V′i,−1v`j,−1

T
γ0′
`j

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1√
N

1

N

N∑
j=1

N∑
n=1

Γ0′
xi(Υ

0
kN )−1Γ0

xn

V′n,−1v`j,−1

T
γ0′
`j

∥∥∥∥∥∥
≤ 1√

N

∥∥∥∥V′i,−1v`i,−1

T
γ0′
`j

∥∥∥∥+
1√
T

∥∥∥∥∥∥ 1√
N

N∑
j 6=i

V′i,−1v`j,−1√
T

γ0′
`j

∥∥∥∥∥∥
+

1√
N

∥∥Γ0′
xi

∥∥∥∥(Υ0
kN )−1

∥∥∥∥∥∥∥∥ 1

N

N∑
j=1

Γ0
xj

V′j,−1v`j,−1

T
γ0′
`j

∥∥∥∥∥∥
+

1√
NT

∥∥Γ0′
xi

∥∥ ∥∥(Υ0
kN )−1

∥∥ ∥∥∥∥∥∥ 1

N

N∑
j=1

N∑
n6=j

Γ0
xn

V′n,−1v`j,−1√
T

γ0′
`j

∥∥∥∥∥∥
= Op(N

−1/2) +Op(T
−1/2),

for every i = 1, 2, ..., N . So, we have:
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1

NT

N∑
i=1

Γ0′
xi

(
Υ0
kN

)−1(F0′
x,−1F

0
x,−1

T

)−1
F0′
x,−1Σ̄kNT,−1MF 0

x,−1
MF 0

x
ui = op(1),

as required. The remaining results in (A.42) and (A.43) are shown in a similar way.

Proof of Lemma 13. This is derived in a similar manner based on the proofs of Lemmas A.11
and A.12, provided in Bai (2009, p.16-19 of the supplement).
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Proof of Lemma 14. The proof is obtained in the same manner as that of Lemma 13.

Proof of Lemma 15. Using the identity ûi = ui −Wi

(
θ̂−θ

)
we have

1

NT

N∑
i=1

ξ̂F̂ iT ξ̂
′
F̂ iT =

1

NT

N∑
i=1

ξF̂ iT ξ
′
F̂ iT

− 1

NT

N∑
i=1

ξF̂ iT

(
θ̂−θ

)′
W′

iMF̂x
Ẑi

− 1

NT

N∑
i=1

Ẑ′iMF̂x
Wi

(
θ̂−θ

)
ξ′
F̂ iT

+
1

NT

N∑
i=1

Ẑ′iMF̂x
Wi

(
θ̂−θ

)(
θ̂−θ

)′
W′

iMF̂x
Ẑi

=
1

NT

N∑
i=1

ξF̂ iT ξ
′
F̂ iT
−E1 −E2 + E3.

We have

‖E1‖ ≤
√
T
∥∥∥θ̂−θ∥∥∥ 1

N

N∑
i=1

∥∥∥∥∥ Ẑ′iMF̂x
Wi

T

∥∥∥∥∥
∥∥ξ′

F̂ iT

∥∥
√
T

= Op

(
1√
N

)
,

since

∥∥∥∥ Ẑ′iMF̂x
Wi

T

∥∥∥∥ ≤ ∥∥∥ Ẑ′iWi

T

∥∥∥+
∥∥∥ Ẑ′iF̂x

T

∥∥∥∥∥∥ F̂′xWi

T

∥∥∥ = Op (1). Similarly, ‖E2‖ = Op

(
1√
N

)
. Also

‖E3‖ ≤ T
∥∥∥θ̂−θ∥∥∥2 1

N

N∑
i=1

∥∥∥∥∥ Ẑ′iMF̂x
Wi

T

∥∥∥∥∥
2

= Op

(
1

N

)
.

Thus,

1

NT

N∑
i=1

ξ̂F̂ iT ξ̂
′
F̂ iT =

1

NT

N∑
i=1

ξF̂ iT ξ
′
F̂ iT

+ op(1).

as required.

Proof of Lemma 16. The proof is obtained by replacing ξ̂F̂ iT , ξF̂ iT , Zi, Ẑi by
ˆ̃
ξF̂ iT , ξ̃F̂ iT , ˆ̃Zi

and Z̃i, respectively, and following the same steps as in the proof of Lemma 15.

Proof of Lemma 17. By Lemma 15 and Proposition 1 we have

1

NT

N∑
i=1

ξF̂ iT ξ
′
F̂ iT

=
1

NT

N∑
i=1

Z′iMFxuiu
′
iMFxZi + op (1) .

Noting that E
(
Z′jMFx

uju
′
iMFx

Zi
)

= 0 for all i 6= j and using Lemma 1, 1
NT

∑N
i=1 Z′iMFx

uiu
′
iMFx

Zi
p→

limN,T→∞
1
NT

∑N
i=1E (Z′iMFx

uiu
′
iMFx

Zi), which yields 1
NT

∑N
i=1 ξF̂ iT ξ

′
F̂ iT
−Ω = op (1) when

(N,T )→∞ jointly, as required. Also it is easily seen that the same result hold for the uncentered

version, namely, 1
NT

∑N
i=1

(
ξF̂ iT + b√

NT

)(
ξF̂ iT + b√

NT

)′
−Ω = op (1).

Proof of Lemma 18. Suppose that Assumption 6 holds true. It makes it clear that for the

uncentered version the following result holds 1
NT

∑N
i=1

(
ξ̃F̂ iT + b̃√

NT

)(
ξ̃F̂ iT + b̃√

NT

)′
− Ω̃ =

op (1).

Proof of Lemma 19. First of all, by Lemma 6, ÂNT − 1
N

∑N
i=1 Ai,T = op (1) and B̂NT −

1
N

∑N
i=1 Bi,T = op (1), then applying Lemma 1 yields the required results.
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