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Abstract

We consider an environment in which a principal hires an agent and evaluates his pro-

ductivity over time in an ongoing relationship. The problem is embedded in a continuous-

time model with both hidden action and hidden information, where the principal must

induce the agent to exert effort to facilitate her learning process. The value of commit-

ting to a deadline is examined in this environment, and factors which make the deadline

more profitable are identified. Our framework generates a unique recursive equilibrium

structure under no commitment which can be exploited to obtain a full characterization

of equilibrium. The analysis allows us to evaluate the exact value of commitment for any

given set of parameters and provides insight into when it is beneficial to commit to an

evaluation deadline at the outset of a relationship.
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1 Introduction

Suppose that an employer needs to hire a worker to carry out a project over time. The

project is ability-intensive in that the worker can successfully complete the project only if he

is sufficiently productive. As is often the case, however, the worker’s sheer productivity is

not directly observable to the employer, who must instead make an inference from a sequence

of observed outputs. Since success cannot be achieved overnight, the employer must exercise

some patience even when things do not appear to be in good shape. Excessive tolerance for

failure, however, diminishes the worker’s incentive to take costly actions that are indispensable

to be successful. A number of issues arise in this dynamic environment. How much time

should the employer give the worker before she terminates the project? Should the employer

commit to a deadline at the outset? If so, under what conditions?

In this paper, we attempt to address these issues by analyzing a situation where a princi-

pal hires an agent and evaluates his productivity over time in an ongoing relationship. The

problem is embedded in a continuous-time framework with both hidden action and hidden

information. At each instant, the agent privately chooses how much effort to supply. The out-

come is either a success or a failure, depending on his effort choice as well as his productivity

type. The game ends immediately when the agent achieves a success (or a “breakthrough”).

The principal’s task in this environment is to determine when to terminate the project, con-

ditional on no success having occurred. Within this setup, we analyze two distinct cases to

illustrate the role of commitment: in one case, the principal sets a deadline and commits to

it at the outset, and the project is terminated automatically when the deadline is reached

without attaining a success; in the other, the principal makes no such commitment, thereby

retaining discretion to terminate the project at any instant, and simply terminates the project

when the continuation payoff is not high enough to justify further experimentation. By di-

rectly comparing these two cases, we evaluate the extent to which the principal benefits from

committing to an evaluation deadline in this dynamic environment.

The driving force of our analysis is a dynamic strategic interaction between the agent’s

effort choice and the principal’s termination strategy. On one hand, the agent’s effort choice

depends clearly on how much time is left until the project is terminated: since the net value

of achieving a success is low when the project is still far from termination, the agent tends

to start off with low effort and gradually shift to higher effort as the expected termination

date approaches. On the other hand, the principal’s willingness to terminate the project

depends also on the agent’s effort choice: when the agent is less motivated and exerts low

effort, less information is revealed about his type, which makes the principal more reluctant
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to terminate the project. This strategic interaction can generate a vicious cycle where the

principal’s reluctance to terminate the project diminishes the agent’s motivation, which in

turn makes the principal even more reluctant. It is in general profitable to commit to a

deadline when each player’s incentive to “procrastinate” is sufficiently strong.

The main contribution of the paper is that we devise an analytical framework that is

tractable enough to admit a complete characterization of pure-strategy equilibria, both with

and without commitment, while capturing this dynamic interaction. Our framework thus

allows us to evaluate the exact value of commitment to an evaluation deadline for any given

set of parameters. To this end, our main analytical focus is on the no-commitment case,

which is generally far more challenging than the commitment case when dynamic interactions

are considered. In the no-commitment case, the principal’s termination strategy must be

sequentially rational along the way, and the belief off the equilibrium path plays a crucial role.

Even in this case, we can show that our framework generates a unique recursive equilibrium

structure which can be exploited to establish the existence and uniqueness of (pure-strategy)

perfect Bayesian equilibrium. We then build on this result to derive a necessary and sufficient

condition under which the principal can strictly benefit from committing to an evaluation

deadline.

As can be expected, the lack of commitment to a deadline entirely alters the dynamic

allocation of effort as well as the timing of project termination. When the principal sets a

deadline at the outset, she does so by taking into account how it affects the agent’s entire effort

sequence. In particular, since extending a deadline in general relaxes the agent’s incentive

compatibility constraint and reduces his total effort supply, the deadline must be set at a

point where the expected benefit (of achieving a success at the next instant) equals the cost

of a decrease in total effort. The situation changes rather drastically when she makes no such

commitment, because her termination decision would have no influence on the agent’s past

behavior. As such, she terminates the project whenever the continuation payoff is about to

turn negative while taking the agent’s effort strategy as given. This fact implies that the cost

of extending a deadline is smaller under no commitment and tends to give her an excessive

incentive to wait for a success.

Given this incentive structure, one may expect that the principal would always wait longer

for a success in equilibrium under no commitment. As it turns out, though, this conjecture

does not always hold true in the current setup. Among other things, an interesting, and

somewhat counterintuitive, property of our model is that the average duration of the project

may not be monotonic with respect to the initial prior belief under no commitment, whereas it

is always weakly increasing under commitment. As a direct consequence of this, the average

2



duration can be either shorter or longer with commitment than without: in other words,

there exists an equilibrium in which the principal prematurely terminates the project when

she does not commit to a deadline.

This result is somewhat surprising, provided that the inefficiency of the problem stems

from the principal’s reluctance to terminate the project in the first place. The principal tends

to terminate the project too early when the agent’s productivity under low effort is sufficiently

small. For the sake of argument, suppose that the agent fails almost surely when he exerts

low effort, in which case the expected instantaneous payoff is negative while the principal can

learn almost nothing from failures (during the phase where the agent is supposed to exert low

effort). The principal’s belief then declines very slowly over time, forcing her to incur a large

amount of loss if she is to wait until she totally loses her confidence in the agent’s ability. If

this expected loss is prohibitively large, the principal may find it optimal to terminate the

project even when the belief is still relatively high.

Of course, in equilibrium, the agent correctly anticipates this reaction and adjusts his

effort allocation accordingly. We show that the equilibrium timing of project termination

can be pinned down by backward induction, where we start from the final critical time (to

be derived) and solve backward. This process gives rise to the aforementioned recursive

equilibrium structure which allows us to establish the uniqueness of equilibrium and also

obtain a diverse set of equilibrium dynamics under no commitment.

The implications of our analysis can be applied broadly to a range of circumstances in

which a principal (an evaluator) must assess an agent’s upside potential that is only gradu-

ally revealed in an ongoing relationship, e.g., a manager who must evaluate subordinates, a

professor who must evaluate graduate students, a head coach in professional sports who must

evaluate players, and so on. Among those possibilities, the most prominent example of eval-

uation schemes with deadlines is perhaps the “up-or-out system,” which is widely observed

in academia and professional service industries such as law, accounting, and consulting. As a

specific application, our framework offers some insight for when up-or-out contracts are more

valuable by identifying several key factors – such as high ability intensity, stable job descrip-

tions, and similar jobs across ranks – which favor the use of an evaluation deadline from a

previously unexplored channel. Each of these factors intensifies either the agent’s incentive to

delay exerting high effort for a given deadline or the principal’s incentive to delay terminating

the project for a given effort sequence (or both), thereby rendering it more profitable to set

a deadline at the outset.

The paper is organized as follows. The literature review is provided in the remainder of

this section. The model is presented in section 2 and analyzed in sections 3 and 4, where we
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characterize both the commitment and no-commitment solutions. These solutions are then

compared in section 5, in order to analyze the value of commitment and derive a necessary

and sufficient condition under which it is strictly optimal to commit to a deadline. Some

extensions of the baseline model and concluding remarks are offered in section 6.

Related Literature: The current analysis is most closely related to the experimentation

literature in that the principal here attempts to uncover the agent’s type through a sequence

of experiments.1 From the principal’s point of view, our model can be seen as a variant of

the canonical two-armed bandit problem with one safe arm (terminating the project) and

one risky arm (continuing the project). Our model is particularly related to the literature on

strategic experimentation which analyzes a situation where a group of individuals, rather than

a single individual, face bandit problems (Bolton and Harris, 1999; Bergemann and Välimäki,

1996, 2000; Keller et al., 2005; Klein and Rady, 2011; Bonatti and Hörner, 2011). A crucial

difference from this strand of literature is that experiments in our context are “intermediated,”

i.e., experiments are conducted not by the principal herself but by an informed intermediary,

the agent, who faces no uncertainty about the project.2

Recently, there have been increasingly many works that explore the optimal provision of

incentives in bandit problems. Manso (2011) considers the classic two-armed bandit problem

and shows that the optimal contract in this context must tolerate, or even reward, early

failures in order to encourage exploratory activities. Bergemann and Hege (1997, 2005) and

Hörner and Samuelson (2013) analyze a financing problem of a venture capitalist where the

principal provides funding to the agent who conducts experiments on a project of unknown

quality.3 Gerardi and Maestri (2012) consider a similar environment where an agent con-

ducts experiments but assume that the outcome of each experiment can only be observed by

the agent. The principal must hence devise a contract not only to induce costly effort but

also to truthfully reveal the information. Halac et al. (2013) analyze a model of long-term

contracting for experimentation with hidden information about the agent’s ability and dy-

namic moral hazard and obtain an explicit characterization of optimal contracts. Aside from

1An early economic application of the bandit problem can be found in Rothschild (1974). See Bergemann
and Välimäki (2008) for a survey.

2Several recent works analyze models of “delegated experimentation” where a principal delegates experi-
mentation to an agent. Guo (2014) analyzes a situation where the principal can specify, with full commitment
power, how the agent should allocate the resource in all future contingencies and solves for the optimal dele-
gation rule. Garfagnini (2011) considers a similar setting to ours but assumes that: (i) the principal and the
agent are symmetrically informed about the state of nature; and (ii) the agent’s payoff is independent of the
state. Chen and Ishida (2015) consider the opposite case in which the principal, with the termination right,
may be privately informed about the project quality while the agent focuses on implementing the project
assigned to him.

3Also, see Buisseret (2016) who considers a two-period model of this setting with a more general, convex
cost function.
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some technical differences,4 these previous works are primarily concerned with characterizing

optimal contracts. In contrast, the aim of this paper is to compare the allocations under full

commitment and no commitment, while considering a less complete contractual environment,

in order to evaluate the extent to which the principal can gain from committing to a deadline

at the outset. Although it is hard to tell a priori which specification is more plausible, as it

depends on the details of the underlying situation, our simple and tractable framework allows

us to identify and illuminate the counterintuitive role of commitment in dynamic performance

evaluation.

Several recent works examine the role of commitment in dynamic moral hazard setting.

Mason and Välimäki (2015) consider a dynamic moral hazard problem and derive optimal

wage contracts, both with and without commitment on wage payments. Hörner and Samuel-

son (2016) consider a repeated-game setting in which the principal chooses the scale of the

project in addition to contingent payments and characterize the set of equilibrium payoff

vectors that can be achieved without commitment.5 A key difference from our model is that

these two works do not consider the principal’s learning, which is our main focus, with no

hidden information about the agent’s type; as a consequence, the project is never terminated

in their models.6 This stands in sharp contrast to our setting in which the principal accu-

mulates information about the agent over time, and the project must be terminated in finite

time.7

It is well known that players often wait until the deadline to reach an agreement in finite-

horizon models. This behavior, which is referred to as the deadline effect, is a topic of utmost

concern in many bargaining and war of attrition models (Hendricks et al., 1988; Spier, 1992;

Fershtman and Seidman, 1993; Hörner and Samuelson, 2011; Chen, 2012; Damiano et al.,

2012; Fuchs and Skrzypacz, 2013). Some recent works also explore the role of deadlines

in dynamic problems with multiple agents. Bonatti and Hörner (2011) analyze a dynamic

4As a key technical difference, we consider a case where the agent knows his own productivity (or the
project quality), so that our model belongs to the class of dynamic signaling (with stochastic signals), rather
than of experimentation, from the agent’s point of view.

5In their model, outcomes are privately observed by the agent, and the moral-hazard problem regards the
truthful disclosure of this private information.

6Georgiadis et al. (2014) analyze the role of commitment in a dynamic contribution games where the
manager has the decision right over the project size. With multiple agent types and dynamic learning, Bonatti
and Hörner (2017) analyze a (symmetric-information) experimentation model in which wages are determined
competitively a la Holmström (1999) and characterize effort and wage dynamics with an exogenous termination
date.

7A subtle technical difference which directly arises from this fact lies in the ways in which to construct
an equilibrium. Mason and Välimäki (2016) and Hörner and Samuelson (2017) construct an equilibrium via
arguments found in the analysis of infinitely repeated games (reversion to the worst continuation equilibrium),
and as such, their analyses yield a non-degenerate set of equilibria. In our analysis, an equilibrium is obtained
via backward induction which gives rise to a unique equilibrium.
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moral-hazard problem with a team in which multiple agents work on a project of unknown

quality and briefly discuss the optimal deadline in this context. Campbell et al. (2013)

consider a similar environment where two agents work jointly on a project. They assume

that there is only one project type but assume that one’s own outcomes are his private

information. Each agent can exert effort to produce a breakthrough individually, and a

successful agent can reveal that he has been successful. The focus of these works is placed

on the interaction between the agents, especially the freerider problem, whereas ours is on

the dynamic interaction between the principal’s termination decisions and the agent’s effort

choices.

2 A dynamic model of performance evaluation

Environment: We employ a continuous-time model because of its greater tractability. Con-

sider a situation where a principal (female) hires an agent (male) to complete a project. The

game ends either when the agent attains a success (a “breakthrough”) or when the princi-

pal terminates the project. The agent is either good with prior probability p0 ∈ (0, 1) or

mediocre with probability 1 − p0. The ability type is the agent’s private information and

is not directly observable to the principal who must instead evaluate it from a sequence of

observed outcomes.

Production: The agent makes unobservable effort at ∈ {l, h} at each instant t.8 We interpret

that low effort (at = l) refers to the minimum level of effort that can be induced via input

monitoring while high effort (at = h) refers to any part of effort that cannot be directly

monitored by any means. The instantaneous cost of effort a is denoted by da where dh = d > 0

and dl = 0. A success arrives stochastically, depending on the effort choice as well as the

agent’s type. If the good type chooses at = a over time [t, t+ dt), he attains a success with

probability λadt where λh > λl > 0. In contrast, the mediocre type can never succeed with

any effort level.9 Define ∆λ := λh − λl.

Payoff: We consider an incomplete-contracting environment where contingent rewards on

the arrival of a success cannot be enforced.10 A success yields a net present value of y > 0

8Our focus on binary effort reflects our implicit presumption that the effort cost and success probability
are linear, as usually assumed in this literature (e.g., Keller et al, 2005; Bonatti and Horner, 2011, for most
of their analysis). As long as this structure is maintained, an extension to continuous effort, say at ∈ [l, h],
yields exactly the same allocation and is hence irrelevant.

9Our model specification is thus the “breakthrough” type in which one success can resolve all the uncertainty
regarding the agent’s type – an assumption that is predominant in the experimentation literature. See, for
instance, Keller et al. (2005) and Bonatti and Hörner (2011, 2017).

10In reality, we rarely observe complete wage contracts in industries comprised of professionals. For instance,
few academic institutions, if any, offer rewards specifically contingent on verifiable measures of output: salaries
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to the principal and b > 0 to the agent;11 otherwise, they both receive zero. Aside from this,

the principal must also pay a flow wage w > 0 to the agent as long as the project continues.12

We assume that w is exogenously given for most part; the case with an endogenous wage is

briefly discussed in the concluding section. The reservation payoff is assumed to be zero for

both players. The common discount rate is denoted by r ∈ (0,∞).

Contract: The only contractible decision for the principal in this environment is whether

to set a deadline, and if so, at what point. If the principal commits to a deadline, she

terminates the project at the deadline (but never before) if the agent has not attained a

success up to that point. If the principal chooses not to commit to any specific deadline, on

the other hand, she retains discretion to terminate the project at any instant. As mentioned

earlier, our analytical focus is on the latter case which requires that both players’ strategies

be sequentially rational.

3 Analysis

3.1 Agent’s effort decision

The agent decides whether or not to exert high effort at each instant. To analyze this

problem, it is important to note that the principal’s belief affects the agent’s payoff only

through her termination decision. The agent’s optimal effort choice thus depends only on

the remaining time to the termination date (hereafter, simply the remaining time), i.e., the

maximum length of time for which the principal continues the project without attaining a

success. The remaining time is obvious when the principal sets a deadline at time τ , in which

case the remaining time at time t is simply given by τ − t. Even without such an explicit

commitment, however, the remaining time can be computed from the principal’s equilibrium

strategy in essentially the same manner as we shall discuss below. For now, we proceed with

the presumption that the remaining time exists and is well-defined at any given point in time.

are determined through bilateral negotiations, often dictated by market forces, in some countries whereas they
are subject to bureaucratic regulations in others. One possible reason for the lack of complete wage contracts
in those industries is that it is often difficult, and perhaps prohibitively costly, to measure the exact value of
a “success” in a verifiable manner. Additionally, this assumption makes our analytical framework applicable
to a wider range of circumstances. One such possibility is that the benefit of achieving a success accrues from
non-transferrable (psychological) gains such as prestige, authority, and the sense of achievement, and extrinsic
rewards are hence of secondary importance. There are also many cases where contingent monetary transfers
are neither feasible nor desirable, as in a professor-student relationship.

11An obvious interpretation is that y and b represent the continuation payoffs of achieving a success, including
not only the intrinsic value of a successful outcome but also other benefits of identifying/signaling talent.

12Alternatively, w can be regarded as a flow cost of production (e.g., hiring an agent). Of course, under
this interpretation, w is no longer a transfer payment to the agent and does not appear in his payoff. It is
straightforward to make the setup consistent with this interpretation without having any qualitative impact
on our results.
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The agent’s problem is rather straightforward since the mediocre type, knowing that his

marginal value of effort is zero, never exerts high effort. As such, we can focus on the good

type whom we refer to simply as the agent in what follows. Denote by U(k) the agent’s value

function when the remaining time is k. Taking k > 0 as given, the value function can be

written as

U(k) = max
a∈{l,h}

(

(λab− da + w)dt+ e−rdt(1− λadt)U(k − dt)
)

.

Taking the limit dt → 0, we obtain the Bellman equation:

rU(k) = max
a∈{l,h}

(

λab− da + w − λaU(k)− U̇(k)
)

, (1)

with limk↓0 U(k) = 0. It is clear from this that the agent chooses high effort if and only if

∆λ

(

b− U(k)
)

≥ d.

As usual in this type of setup (see, e.g., Bergemann and Hege, 2005), the continuation

payoff U(k) captures the agent’s reservation payoff which he receives in case of a failure. The

cost of not succeeding today is obviously small when he has a high reservation payoff. Since

the continuation payoff is higher when the agent has more time to prove himself, the agent

has a stronger incentive to work hard as the project approaches the termination date. This

is a manifestation of the deadline effect that lies at the core of our entire analysis.

Proposition 1 If

d

∆λ

>
rb− w

λl + r
, (2)

there exists k∗ such that the good type exerts high effort if the remaining time is less than or

equal to k∗ and low effort otherwise. The threshold k∗ is given by

k∗ =







− 1
λh+r

ln
(

1−
(λh+r)(b− d

∆λ
)

λhb−d+w

)

if b > d
∆λ

,

0 if d
∆λ

≥ b.
(3)

If (2) does not hold, the agent always exerts high effort.

Proof: See Appendix.

When ∆λb ≤ d, the static incentive is too weak for the agent to exert high effort for any

remaining time. In contrast, when (2) fails to hold, the static incentive is strong enough to

overcome the dynamic agency cost, and the agent is willing to supply high effort under any

circumstance. As these cases only result in trivial solutions and are clearly of less interest

for the question we pose here, we restrict our attention to the case where the strength of the

static incentive lies in some intermediate range by making the following assumption.
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Assumption 1 λhb−d+w
λh+r

> b− d
∆λ

> 0.

Among other things, the assumption implies that the optimal threshold k∗ is bounded from

above and away from zero, i.e., k∗ ∈ (0,∞).

3.2 Principal’s termination decision

Let pt denote the principal’s belief that the agent is good at time t, conditional on no success

having occurred. Given some effort sequence {as}
t
s=0, the updated belief is then given by

pt =
p0e

−
∫ t

0
λasds

1− p0 + p0e
−

∫ t

0 λasds
. (4)

Alternatively, taking the time derivative, we obtain

ṗt = −λatpt(1− pt). (5)

It is clear that the belief is strictly decreasing over time for any effort choice (due to the fact

that λl > 0) until the agent attains a success, in which case the belief immediately jumps up

to one.

The principal’s problem is to determine when to terminate the project, conditional on no

success having occurred. Now suppose that the principal intends to terminate the project at

time τ > t. Taking the effort sequence as given, the principal’s continuation payoff can also

be written as a function of the remaining time k and the current belief pt where

V (k, pt) =

∫ t+k

t

(λaspsy − w)e−
∫ s

t
(λaupu+r)duds,

subject to (5).

It is immediate to see that for a given effort level, there exists a threshold belief below

which the principal’s instantaneous payoff is strictly negative. We denote by qa := min{ w
λay

, 1}

the “break-even” belief at which the instantaneous payoff equals zero under effort a. Com-

bined with the fact that the belief is strictly decreasing over time for any effort sequence, qh

represents the absolute lower bound of the belief, as the principal clearly has no incentive to

continue the project once her belief dips below this level. Since the belief must reach this

level sooner or later (due to the fact that λl > 0 and w > 0), the presence of such a lower

bound suggests that the game must end in some finite time. This allows us to solve the game

by backward induction.

Finally, if the value of a success is too small, the model only admits a trivial solution

where the principal chooses to stop immediately (or not to hire the agent in the first place).

In what follows, therefore, we assume that the value of a success is large enough for the

principal to hire the agent at least for some positive duration.
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Assumption 2 p0 > qh = w
λhy

.

Since the principal’s continuation payoff depends on her belief, it is often convenient

for the subsequent analysis to explicitly relate the current and termination beliefs to the

remaining time. Suppose that the current belief is p and the principal intends to terminate

the project when the belief reaches q. If the agent adopts the best response, the remaining

time can be written as K(p, q) such that

pe−λl max{K(p,q)−k∗,0}−λh min{K(p,q),k∗}

1− p+ pe−λl max{K(p,q)−k∗,0}−λh min{K(p,q),k∗}
= q,

which reduces to

pe−λlK(p,q)−∆λk
∗

1− p+ pe−λlK(p,q)−∆λk
∗ = q,

if K(p, q) > k∗. In addition, it is also convenient to define a backward operator φ(q) such

that

φ(q)e−λhk
∗

1− φ(q) + φ(q)e−λhk
∗ = q.

The backward operator suggests that if pt = φ(q) and the agent exerts high effort for t ∈

[t, t+ k∗], then pt+k∗ = q; alternatively, if the agent expects the project to be terminated at

pt = q, φ(q) indicates the belief at which he must switch to high effort. Note that these two

notions are closely related in that K(p, q) > k∗ if and only if p > φ(q).

4 Equilibrium

4.1 The cooperative solution: a benchmark

Before we move on to analyze our model, we first examine as a benchmark the case where

both the principal and the agent attempt to maximize the sum of their individual payoffs to

derive the first-best allocation. More precisely, the instantaneous payoff in the cooperative

case, common to both players, is the difference between the expected benefit from a success

minus the effort cost, i.e., λap(y + b)− da for a given effort a.13

The agent’s problem is essentially the same and only needs a slight modification. Letting

Ũ(k) denote the agent’s continuation payoff, the agent exerts high effort if and only if

∆λ

(

(y + b)− Ũ(k)
)

≥ d.

13If the agent shared the same objective as we assume here, his private information could in principle be
induced at no cost: given that the agent’s reservation payoff is zero, the mediocre type is indifferent between
participating and dropping out immediately (before time 0), as he would obtain zero payoff in either case for
any given deadline. As it turns out, however, the optimal deadline is independent of the initial belief p0 and
the analysis holds irrespective of whether or not the principal can immediately screen out the mediocre type.
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As in the noncooperative case, there exists a threshold k̃∗ such that the good type exerts

high effort if and only if the remaining time is less than or equal to k̃∗. Under the main-

tained assumptions, one can easily verify that the agent is generally more motivated in the

cooperative case than in the noncooperative case, i.e., k̃∗ > k∗.

Given this, it is fairly straightforward to derive the cooperative solution. Since there is

no social cost of hiring the mediocre type, the joint surplus from hiring the agent is strictly

positive for any belief level, and as such, it is efficient for the principal to continue the project

indefinitely until a success is attained. This implies that the good type will eventually succeed

at some point, although he only exerts low effort all the way if k̃∗ is finite.

Proposition 2 In the cooperative case, the principal never terminates the project, and the

game continues indefinitely. The agent always exerts low effort if

d

∆λ

>
r(b+ y)

λl + r
, (6)

and high effort otherwise.

Proof: See Appendix.

Note the difference between (2) and (6). In the cooperative case, the joint expected payoff

of exerting low effort indefinitely is r(b+y)
λl+r

because the value of a success is now b+ y, instead

of just b, and there is no flow cost w.

4.2 The commitment solution

The principal’s problem under commitment is to choose a termination date τ which maximizes

her expected payoff at time 0 while restricting attention to deterministic deadlines.14 We focus

exclusively on deterministic deadlines primarily because it is generally difficult to commit to

a lottery, even when it is possible to commit to a particular termination date. To see this

point, consider a contract where the principal terminates the project at τ1 or τ2, τ1 < τ2, each

with probability strictly less than one. At time τ1, however, the principal’s preferences are

generically strict, i.e., it is strictly better either to stop (the continuation payoff is negative) or

to continue (positive), so that there is no incentive to randomize at that point. If it is strictly

better to stop at time τ1, for instance, the principal stops at time τ1 with probability one but

14If stochastic deadlines are feasible, the principal may screen out the low type by offering a menu of
contracts, one with a deterministic deadline and the other with stochastic ones. We do not pursue this
possibility both because we do not think that it is realistic (given the enforcement problem) and because it is
outside the scope of our analysis (given that our focus is on comparing the commitment and no-commitment
solutions). Note that this screening cannot be done if deadlines are deterministic, because both types always
strictly prefer a longer deadline.
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knowing that, the contract is effectively reduced to the one with a deterministic deadline. The

lack of credible enforcement is perhaps the reason why we almost never observe a contract

with stochastic deadlines.

As we have already seen, the agent exerts high effort if and only if the remaining time

is less than or equal to k∗. We denote by V ∗(k, pt) the continuation payoff when the agent

adopts this best response, where k is the remaining time and pt is the principal’s belief. This

can be written as

V ∗(k, pt) =

∫ t+ν

t

(λlpsy − w)e−
∫ s

0 (λlpu+r)duds

+ e−
∫ t+ν

t
(λlpu+r)du

∫ t+k

t+ν

(λhpsy − w)e−
∫ s

ν
(λhpu+r)duds

=
ptπl

λl + r
(1− e−(λl+r)ν) +

pte
−(λl+r)νπh

λh + r
(1− e−(λh+r)(k−ν))−

(1− pt)w

r
(1− e−rk),

(7)

where ν := max{k − k∗, 0} and πa := λay − w. The first two terms represent the expected

gain from the good type whereas the last term represents the expected loss from the mediocre

type.

Since the termination date is equivalent to the remaining time at time 0, the commitment

solution, denoted by τC , is given by

τC(p0) := argmaxτ V ∗(τ, p0).

The continuation payoff is continuous but kinked at τ = k∗. For τ ∈ (0, k∗), the first-order

condition is given by

p0πhe
−λhτ − (1− p0)w = 0. (8)

For τ ∈ (k∗,∞), it is given by

M(τ, p0) := p0e
−(λl+r)(τ−k∗)

(

πl −
λl + r

λh + r
πh(1− e−(λh+r)k∗)

)

− (1− p0)we
−rτ = 0. (9)

To better understand this condition, it is instructive to rewrite this as

(

p0πhe
−(λl(τ−k∗)+λhk

∗) − (1− p0)w
)

e−rτ =
p0∆λe

−(λl+r)(τ−k∗)

λh + r

(

w + ry + πhe
−(λh+r)k∗

)

.

Note that the left-hand side is the expected instantaneous payoff for the principal at the time

of termination, whereas the right-hand side is the marginal cost of extending the deadline.

Since the right-hand side is strictly positive, the principal must set the deadline at a point

where the expected instantaneous payoff is positive if τ > k∗.

12



Since the instantaneous payoff is negative for any effort level once the belief dips below

qh, there is clearly no incentive to set τ > K(p0, qh). When the initial belief is sufficiently

close to qh (φ(qh) ≥ p0), it is optimal to let the agent work until the belief reaches this lower

bound. When it is far from it (p0 > φ(qh)), on the other hand, the principal must terminate

the project at a point where the belief is still above the lower bound. There are two cases,

depending on the value of M(k∗, p0).
15 If

λl + r

λh + r
πh(1− e−(λh+r)k∗) > πl, (10)

M(k∗, p0) < 0 for any p0 ∈ (qh, 1), and we let p̂ = 1 in this case. If (10) fails to hold, on

the other hand, there exists a unique p̂ such that M(k∗, p̂) = 0. Then, for p0 > p̂, there

exists a unique interior solution τ̂(p0) such that M(τ̂(p0), p0) = 0. When the initial prior is

in this range, it is not so costly to have a phase where the agent exerts low effort, and as

such, the principal would wait beyond time k∗. Of course, extending the deadline beyond

time k∗ means that the agent would slack off at the beginning, thereby pushing back the

realization of the high-effort phase. The principal trades off the gain of inducing low effort

for an additional instant against the cost of realizing the high-effort phase an instant later

and sets the termination date at a point where they are equalized.

For clarity, we summarize the set of parameters by Θ := (b, y, w, d, λh, λl, r). We can then

make the following statement.

Proposition 3 For any given set of parameters (Θ, p0) satisfying Assumptions 1 and 2, there

exists a unique commitment solution τC(p0) ∈ (0,K(p0, qh)]. For φ(qh) ≥ p0, the commitment

solution is given by τC(p0) = K(p0, qh). For p0 > φ(qh), there exists some p̂ ∈ (ql, 1] such

that

τC(p0) =

{

k∗ if p̂ ≥ p0 > φ(qh),

τ̂(p0) if p0 > p̂,

where: (i) p̂ > ql if 1 > ql; and (ii) p̂ = 1 if and only if (10) holds. The commitment solution

is weakly increasing in p0.

Proof: See Appendix.

Note that K(p0, qh) constitutes the upper bound of τC(p0). Since K(p0, qh) is bounded

from above when qh > 0, the proposition suggests that the project must be terminated in

finite time, meaning that some good projects are bound to be terminated prematurely. This

draws clear contrast with the cooperative solution where the project is never terminated.

15Note that M(k, p0) < 0 for any k > k∗ and p0 if and only if M(k∗, p0) < 0.
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4.3 The no-commitment solution

The situation becomes more complicated, and perhaps more intriguing, when the principal

makes no commitment at the outset and hence her termination decision must be sequentially

rational. Because of this, the principal’s termination strategy now needs to be specified

in a different way, as her strategy off the equilibrium path (after the project is supposed

to be terminated) may matter. More precisely, the principal’s strategy is given by a set

of termination dates T which consists of a first termination date and further dates along

off-equilibrium continuation paths. Formally, for this no-commitment case, we solve for a

pure-strategy perfect Bayesian equilibrium (hereafter, simply an equilibrium) in which the

principal terminates the project with probability one at each termination date (a formal

definition is given below).16

To illustrate how we specify the principal’s strategy, consider a simple example where

the principal’s strategy consists of two distinct termination dates, i.e., T = {τ1, τ2} where

τ1 < τ2. Under this strategy, the principal terminates the project with probability one at

each τ i, i = 1, 2, conditional on the continuation of the game.17 This means that the project

is surely terminated at time τ1 on the equilibrium path. To show that this constitutes an

equilibrium, however, one must assure that the principal cannot profitably deviate from this

strategy. To see this, suppose that the principal unexpectedly continues the project at time

τ1. The game then enters into a new phase where the agent now expects the project to

be terminated at the next termination date τ2 and chooses his effort accordingly (at = h if

k∗ ≥ τ2− t and at = l otherwise). Note also that the principal’s belief about the agent’s type

is not affected by the deviation: given T and the agent’s best response, we can still apply

Bayes’ rule to compute how the belief evolves both on and off the equilibrium path.18 This

gives the continuation payoff when the principal deviates which must be non-positive.

How long does this process continue? It generally goes on until the principal has no

16We restrict our attention to pure-strategy equilibria by assuming that the principal terminates the project
with probability one when the continuation payoff is zero. Since the principal is actually indifferent at this
point, however, there may exist other mixed-strategy equilibria in which the principal terminates the project
with probability less than one at each termination date. We do not pursue this possibility for two reasons.
First, we do not believe that such an equilibrium is particularly realistic and hence appealing. Second, even
with randomization, the game still must end with probability one by time τ 1, and the continuation equilibrium
is exactly the same once the game enters the final interval (τ 1, τ 2); solving backwards, one can see that the
structure of equilibrium is essentially the same where the agent starts exerting high effort as t approaches each
termination date and switches back to low effort if the project is not terminated at the termination date.

17If the game continues beyond time τ 2, the principal terminates the project immediately as we will see
below.

18Technically, we assume that the belief depends only on the agent’s past effort and is given by (4) even
off the equilibrium path. This is actually the “no signaling what you don’t know” condition (Fudenberg and
Tirole, 1991) although it is a rather obvious restriction in games with two players (it only implies that the
principal’s belief should not be affected by her own deviation).
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incentive to continue the project regardless of the agent’s effort choice or, in other words,

until the belief reaches the lower bound qh. With slight abuse of notation, we denote by pt

the equilibrium belief at time t, conditional on the continuation of the game (including the

off-equilibrium path). Let τn denote the time at which pt reaches qh for some n (which is

unknown at this point). We can then restrict our attention to t ∈ (0, τn], for it is a dominant

strategy for the principal to terminate the project once the belief reaches this lower bound.19

Lemma 1 In any equilibrium, T is a finite set.

Proof: The lemma is directly implied by the fact that any two adjacent termination dates

must satisfy τ i − τ i−1 ≥ k∗ > 0. To see this, suppose otherwise, i.e., k∗ > τ i − τ i−1. Suppose

further that the principal deviates and continues the project at time τ i−1. Then, it is strictly

better for the agent to exert high effort because k∗ > τ i − τ i−1. Note, however, that since

pt > qh for any t ∈ (0, τn) by definition, the instantaneous payoff is strictly positive until the

belief reaches the next termination belief. This is a contradiction because the principal can

strictly benefit from deviating and not stopping at time τ i−1. Given this, it is clear that we

can only have finitely many termination dates in (0, τn].

Given this result, we denote each element of T by τ i where τ1 < τ2 < · · · < τn for some

n. Accordingly, the game is divided into n distinct segments T i, i = 1, 2, ..., n by termination

dates, where T i = (τ i−1, τ i) for i = 1, 2, ..., n with τ0 = 0. The remaining time at time t is

now given by τ i − t for t ∈ T i while it is zero for all t > τn (see footnote 19). Let qi := pτ i

denote the corresponding termination belief. Only the first segment T 1 is actually played on

the equilibrium path, as the game ends with probability one by the time the game reaches

time τ1. For expositional clarity, we call τ1 the no-commitment solution and denote it by

τNC(p0) to indicate its dependence on p0. The formal definition of our equilibrium is given

below.

Definition 1 A perfect Bayesian equilibrium in this game is a pair of strategies {as}
∞
s=0 and

T := {τ i}ni=1 and a belief system such that:

• given T , the (good-type) agent chooses at at each t to maximize his continuation payoff,

i.e., chooses high effort if and only if the remaining time at time t is less than or equal

to k∗;

19 Suppose that the principal deviates and continues beyond time τn. In this case, the principal’s instan-
taneous payoff is negative even if the agent chooses at = h, so that it is a dominant strategy to terminate
immediately for all t > τn. Given this, since the remaining time is invariably zero, the agent always chooses
at = h. This is the unique continuation equilibrium after time τn (although, to describe this process formally,
we need to consider a discrete-time counterpart of our model where there is a minimum time unit, and take
the limit as the time unit goes to zero).
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• given {as}
∞
s=t and the current belief, the principal terminates the project at time t if

and only if the continuation payoff is non-positive;

• The belief at time t depends only on the effort sequence {as}
t
s=0 and is given by (4),

both on and off the equilibrium path.

To pin down the equilibrium termination dates, we need to pay closer attention to the

principal’s continuation payoff. Since the agent’s best response is the same, the principal’s

continuation payoff can still be written as V ∗(k, pt). The only difference is that the principal’s

strategy must now be sequentially rational, which amount to the following two equilibrium

conditions which the principal’s termination strategy T must satisfy.

Condition T: (i) qn = qh and (ii) if n > 1, for each i = 2, ..., n, V ∗(K(qi−1, qi), qi−1) = 0.

Condition C: For each i = 1, 2, ..., n, V ∗(τ i − t, pt) > 0 for all t ∈ T i.

Condition T is the usual indifference condition that requires the principal to terminate the

project when the continuation payoff (when she deviates) is non-positive at each τ i. This

indifference condition alone is in general not sufficient because the instantaneous payoff may

not be monotonically decreasing over time: in any segment T i, the agent may start off with

low effort, during which the instantaneous payoff could be so small that the principal is

tempted to stop prematurely. Condition C assures that the principal does not stop before

the intended termination date τ i is reached.

The next result establishes that there exists a perfect Bayesian equilibrium that is always

unique even under no commitment.

Proposition 4 For any given set of parameters (Θ, p0) satisfying Assumptions 1 and 2,

there exists a (generically) unique pure-strategy equilibrium. Given Θ, the belief space (qh, 1)

is partitioned into m(Θ) ≥ 1 distinct intervals {(P j , P j−1)}
m(Θ)
j=1 where Pm(Θ) = qh and

P 0 = 1. For p0 ∈ (P j, P j−1), j = 1, 2, ...,m(Θ), the equilibrium strategies are as follows:

• The principal’s equilibrium strategy is characterized by a set of n = m(Θ)−j+1 distinct

termination dates {τ i}ni=1 where qi = P i+j−1 and τ i − τ i−1 > k∗;20

• The agent exerts high effort if the remaining time is less than or equal to k∗ and low

effort otherwise.

Moreover, if m(Θ) > 1, then ql > P 1.

20As discussed in footnote 19, at = 0 for all t ≥ τn.
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Proof: See Appendix A.

As the proposition suggests, the structure of equilibrium is thoroughly characterized by

how the belief space is partitioned into intervals. A crucial determinant of the partition

{(P j , P j−1)}
m(Θ)
j=1 is the profitability under low effort which is captured by πl.

21 Below, we

first briefly illustrate how we pin down m(Θ) and {(P j , P j−1)}
m(Θ)
j=1 from a given Θ (in what

follows, we simply denote m = m(Θ) to save notation). Once they are obtained, it is quite

straightforward to derive the equilibrium strategy T for a given p0.

Suppose first that the profitability under low effort is sufficiently high, so that the princi-

pal’s instantaneous payoff is positive even under low effort. In this case, the principal is not

tempted to stop prematurely, and only Condition T is sufficient to pin down the equilibrium.

Figure 1 depicts this situation where m = 1: the agent starts off with low effort and switches

to high effort when the remaining time is k∗; the principal stops when the belief reaches the

lower bound P 1 = qh at time τ1. Formally, m = 1 and hence n = 1 for all p0 ∈ (qh, 1) if and

only if V ∗(K(ql, qh), ql) > 0, i.e.,

qlπl

λl + r
(1− e−(λl+r)ν) +

qle
−(λl+r)νπh

λh + r
(1− e−(λh+r)(k−ν)) >

(1− pt)w

r
(1− e−rk), (11)

where µ = max{K(ql, qh) − k∗, 0} (see the proof of Proposition 4, especially Lemma 2, for

more detail). Note that (11) depends only on Θ. The no-commitment solution τNC(p0) is

monotonic in p0 if and only if this condition holds.

[Figure 1 about here]

In contrast, the instantaneous payoff may become negative under low effort when the

success probability under low effort is relatively low, in which case we may have a situation

where the principal’s continuation payoff also becomes negative before the belief reaches qh.

Figures 2 and 3 show the evolution of the belief and the expected payoff when m = 2 while

fixing the principal’s strategy at T = {τ1}. In the figures, ql is so high that the instantaneous

payoff is negative for the entire interval during which the agent exerts low effort, and there

exists a point τ ′ (in Figure 3) such that the continuation payoff is negative for t ∈ (0, τ ′).

This implies that T = {τ1} does not constitute an equilibrium as it violates Condition C.

In this case, the game is divided into two segments, T 1 and T 2, as illustrated in Figure 4.

The pair of strategies now satisfies the equilibrium conditions since the instantaneous payoff

is always positive in T 1. Formally, if V ∗(K(ql, qh), ql) < 0, there must exist p′ ∈ (qh, ql) such

21Note that the partition {(P j , P j−1)}
m(Θ)
j=1 is determined solely by Θ while qi depends also on the initial

prior p0.
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that V ∗(K(p′, qh), p
′) = 0, in which case we redefine P 1 = p′ and P 2 = qh. As above, m = 2

if and only if V ∗(K(ql, P
1), ql) > 0.

[Figures 2-4 about here]

We can continue this process until we find P 1 such that V ∗(K(ql, P
1), ql) > 0.22 Once

the partition is pinned down, we can then easily derive the equilibrium strategies: for p0 ∈

(P j , P j−1), the principal’s equilibrium strategy consists of n = m − i + 1 termination dates

where qi = P i+j−1 and

τNC = τ1 = K(p0, q
1), τ i =

i−1
∑

i′=1

τ i
′

+K(qi−1, qi) for i = 2, 3, ..., n.

Note also that qi−1 > φ(qi) > qi because the continuation payoff is always strictly positive

when the belief is in (qi, φ(qi)), the range where the remaining time is less than k∗ and the

agent exerts high effort. This alternatively means τ i − τ i−1 > k∗, i.e., the length between

any two adjacent termination dates must be larger than k∗.

Finally, we would also like to note that the constructed equilibrium is generically unique

for any given set of parameters. This uniqueness result stems crucially from the fact that there

is a lower bound of the belief qh below which the principal would never continue the project.

As stated above, together with the fact that λl > 0, this implies that the game must end

in some finite time, which allows us to solve the game via backward induction analogously

to the “gap case” of the durable-good monopoly problem (Fudenberg et al., 1985). More

precisely, since the agent’s strategy depends only on the remaining time, we know exactly

how the game must end as the belief approaches the lower bound. Applying this reasoning

backward, we can identify a unique continuation equilibrium for each pt > qh and all the way

back to the initial prior p0.

5 Discussion

5.1 The value of commitment

Our framework yields unique commitment and no-commitment solutions which enable us to

directly assess the value of commitment to an evaluation deadline. Given that both τC and

τNC can be written as functions of p0, the expected equilibrium payoffs can also be written

as functions of p0. Let

V C(p0) := V ∗(τC(p0), p0), V NC(p0) := V ∗(τNC(p0), p0).

22When ql = 1, there is no such q1 and m will go to infinity. If ql < 1, on the other hand, this process must
converge after a finite number of rounds.
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The value of commitment is then defined as

∆V (p0) := V C(p0)− V NC(p0).

In principle, we can compute the exact value of ∆V (p0) for any given p0. The following

statement is the main result of the paper which analytically characterizes how the value of

commitment varies with respect to p0.

Proposition 5 (i) ∆V (p0) = 0 for p0 ∈ (Pm, φ(Pm)) where Pm = qh. (ii) If m > 1,

for each j = 2, 3, ...,m, ∆V is strictly increasing in p0 for p0 ∈ (φ(P j), P j−1) and strictly

decreasing for p0 ∈ (P j−1, φ(P j−1)) with ∆V (φ(P j)) = 0. (iii) ∆V (φ(P 1)) = 0 if and only if

p̂ ≥ φ(P 1) where p̂ is the threshold defined in Proposition 3. (iv) limp0→1∆V (p0) = 0 if and

only if 1 > p̂.

Proof: See Appendix.

The proposition suggests that the value of commitment changes in a non-monotonic way as

p0 increases, precisely due to the non-monotonic nature of V NC . Despite this, we can still find

some regularities except for the last segment (φ(P 1), 1).23 Take an interval (φ(P j), φ(P j−1))

for j = 2, 3, ...,m where φ(P j−1) > P j−1 > φ(P j). In each of these intervals, (i) the value

of commitment is single-peaked and maximized at P j−1 (at which point the no-commitment

solution yields a zero payoff); (ii) the value of commitment is zero at both ends of the

interval (at which point the two solutions are identical). Important features of Proposition

5 are captured by Figure 5 which shows a typical path of the value of commitment when

m = 2.24

[Figure 5 about here]

To see how ∆V changes with respect to p0, observe that the only feasible history at any

continuation game is the one consisting only of failures up to that point, and the principal

hence has no additional information other than the fact that the agent has achieved no success.

This immediately implies that the no-commitment solution can yield no higher payoff than

the commitment solution, i.e., ∆V (p0) ≥ 0 for all p0. Clearly, the no-commitment solution

23In the last segment, the profitability under low effort can be high enough (if p0 > ql), and the expected
payoff can go up even during the low-effort phase. Moreover, in this range, τC(φ(P 1)) = τNC(φ(P 1)) may
not even be satisfied since τC(φ(P 1)) can be larger than k∗. As a consequence, the value of commitment can
either go up or down (and can even be non-monotonic). See Appendix B for more detail.

24For the figure, the parameters are set as follows: λh = 0.1, λl = 0.04, b = y = 1, w = 0.035, d = 0.02,
r = 0.05.
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gives the principal a different, and necessarily lower, payoff when τC 6= τNC . Still, the no-

commitment solution can replicate the same allocation as the commitment solution when

τC = τNC , because Proposition 1 ensures the unique equilibrium given the same horizon. It

follows from Proposition 5 that the commitment solution generically yields a strictly higher

expected payoff for the principal than the no-commitment solution if and only if p0 > φ(qh),
25

i.e.,

p0 >
qh

qh + (1− qh)e−λhk
∗ ⇔

1− qh

qh

(

1−
(λh + r)(b− d

∆λ
)

λhb− d+ w

)

λh
λh+r

>
1− p0

p0
. (12)

Conversely, when this condition fails to hold, the absence of commitment entails no additional

cost, and the no-commitment solution becomes strictly profitable in the presence of a (possibly

very small) commitment cost.26

The proposition states that the principal benefits from committing to a deadline if the

initial prior belief p0 exceeds a certain threshold φ(qh), i.e., if the initial prior is so high

that the belief at time k∗ is above the lower bound qh even if the agent exerts high effort

for t ∈ [0, k∗]. The value of a deadline depends crucially on each player’s propensity to

“procrastinate.” In short, the threshold is lower and hence favors the commitment solution

for a given initial belief either when the agent delays exerting high effort for a given deadline

or when the principal delays terminating the project for a given effort sequence. Below, we

briefly summarize how each player’s propensity to procrastinate is determined:

1. The agent’s propensity to procrastinate is determined by the tradeoff between the

current gain of attaining a success and the potential loss of future payoffs. For a given

deadline, the agent tends to procrastinate more (a small k∗) when the potential loss of

future payoffs is large relative to the current gain.

2. The principal’s propensity to procrastinate depends on the break-even belief and the

likelihood of a success under high effort. The break-even belief is evidently the major

force determining how patient the principal can be, where the principal is more tempted

to wait for an eventual success when qh is low. Further, for a given qh, the principal

tends to wait longer when λh is small, because the information about the agent’s type

is revealed only slowly in that case.

25To be more precise, as Proposition 5 suggests, there could be some non-generic cases where the expected
payoffs are identical.

26An obvious commitment cost is that the principal must give up flexibility to adjust ex post to any uncer-
tainty that may resolve during the course of play. Although we have thus far assumed away this aspect for
clarity, we extend the analysis to incorporate uncertainty into the current setup in section 6: there, we show
that the commitment solution is not always weakly optimal. The commitment cost may also arise from the
cost of writing and enforcing a formal contract.
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Before we move on, it is important to note that our characterization result owes largely

to the fact that we consider a binary effort choice or, more importantly, that there is an

upperbound for effort. In contrast, if the effort domain is unbounded with a convex effort cost,

the commitment solution in general yields a strictly higher payoff than the no-commitment

solution.27 Even in this case, however, the nature of the problem remains largely intact. The

intuition provided above carries over to this more general case as well because the value of

a deadline is still determined in essentially the same way, although the analysis would be

substantially more complicated.

5.2 Too early or too late?

In the absence of commitment, the principal often fails to stop at the right time because she

has a strong incentive to wait for a success. This reasoning seems to indicate that the prin-

cipal always terminates the project earlier with commitment than without, or equivalently,

τNC(p0) ≥ τC(p0) for all p0. As indicated in Figures 3 and 4, however, this does not neces-

sarily hold in the current setup. When the principal knows that she cannot stop soon enough,

and it is too costly for her, she may terminate the project even when the instantaneous payoff

is still strictly positive.

From Proposition 3, it is conceptually straightforward to compute the commitment solu-

tion τC . Figures 6a and 6b illustrate τC as a function of p0, using the same parameters as

in Figure 5 except for λl. The qualitative nature of τC depends largely on the productivity

under low effort as captured by λl. Figure 6a is the case where λl is relatively high. In this

case, the principal does not lose much during the low-effort phase, and is willing to extend

beyond k∗ when the initial prior is sufficiently high. In contrast, when λl is relatively low, as

depicted in Figure 6b, the principal sets τC ≤ k∗ to assure that the agent always exerts high

effort. In either case, for p0 > φ(qh), τ
C is set strictly below the upper bound K(p0, qh) so

that the project is terminated before the belief reaches qh.

[Figures 6a and b about here]

As we show in the proof of Proposition 4, we can also explicitly derive the no-commitment

solution τNC(p0) although it may take a much more complicated form. Figure 7 depicts

τNC(p0) along with τC(p0), which confirms that the average duration of the project can

be longer with commitment than without, using the same parameters as in Figure 5. The

figure also reveals that the no-commitment may not be monotonically increasing in p0, in

27On the other hand, we can obtain essentially the same result even if the effort level is continuous as long
as the feasible effort level is bounded from above.
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clear contrast to the commitment solution which is always weakly increasing. When the

initial belief is relatively high, it takes long for the belief to reach the lowerbound qh, and

the principal may have to incur large losses if she is to wait until the moment at which the

instantaneous payoff equals zero. To avoid this situation and discipline the agent, the principal

must act early, i.e., she may need to pull the trigger earlier for ex ante more promising agents

in some cases. This is more likely to be the case when λl is low, in which case the principal

must incur losses in the low-effort phase. Formally, we can make the following statement.

Proposition 6 τNC(p0) can be larger or smaller than τC(p0). Moreover, τC(p0) > τNC(p0)

for almost all p0 ∈ (φ(qh), 1) as λl tends to zero.

Proof: It is clear that τNC(p0) can be larger than τC(p0) for some p0, because τ
NC(p0) > k∗

for p0 slightly larger than φ(qh) while τ
C(p0) = k∗ for p0 ∈ (φ(qh), p̂). We can also show that

τNC(p0) can be smaller if m ≥ 2, because limp0↓P 1 τNC(p0) = 0 < k∗ ≤ τC(P 1).

As for the second statement, It follows from Proposition 3 that τC(p0) ≥ k∗ for

p0 ∈ (φ(qh), 1). To prove the proposition, it thus suffices to show that k∗ > τNC(p0) in this

range. Suppose otherwise, i.e., τNC(p0) ≥ k∗ for some p0 ∈ (φ(qh), 1). This happens if and

only if p0 ∈ (φ(P j), P j−1) for j = 1, 2, ...,m or, in other words, P j−1 must be bounded away

from φ(P j). This is a contradiction, however, as limλl→0 V
∗(K(P j−1, P j), P j−1) < 0 for any

P j−1 > φ(P j).

[Figure 7 about here]

Our results yield some empirical implications. An obvious one is that the initial prior

p0 is not necessarily a reliable predictor of future success under no commitment. Aside

from this, it is also worth emphasizing that the equilibrium allocation depends crucially

on what happens off the equilibrium path. As a consequence, two organizations that are

observationally similar may exhibit drastically different equilibrium outcomes. To put this

idea in context, consider two distinct organizations, A and B, each characterized by λi
l,

i = A,B, and the corresponding no-commitment solution τNC,i (while assuming that the two

organizations are equivalent in every other dimension). Suppose further that λA
l > λB

l and

λB
l → 0. In this case, as Proposition 6 suggests, τNC,B(p0) < k∗ for almost all p0, meaning

that we almost never observe the low-effort phase in organization B, and hence λB
l cannot be

estimated from actual data. The two organizations are thus observationally indistinguishable

even though their respective no-commitment solutions can be totally different from each

other.
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5.3 An application: when is up-or-out optimal?

The most prominent example of evaluation schemes with deadlines is arguably what is called

the “up-or-out system” – a promotion scheme that is widely observed in academia and pro-

fessional service industries such as law, accounting, and consulting (Lazear and Gibbs, 2014;

Eriksson, 2016).28 Under a typical up-or-out contract, the employer sets a deadline by which

a promotion must occur, and the worker must leave the firm if he is not promoted by the

deadline. In academia, it is often the case that incoming assistant professors must be pro-

moted within a certain period of time (typically around six years). Outside of academia, a

leading example of industries with up-or-out is the legal service industry. Many law firms

traditionally adopt a set of managerial practices, known as the Cravath system, which include

up-or-out (or “partnership track”) where incoming associates must make partner within a

certain period of time (roughly seven to ten years). This contrasts sharply with other typical

firm organizations which almost never specify deadlines by which workers must be promoted.

Here, we attempt to shed some light on this issue by examining under what conditions (12)

is likely to be satisfied. There are of course some caveats. First and foremost, our theoretical

framework is perhaps too simplistic to capture all the important details of this diverse set of

industries; some of our arguments may thus be applied only to a subset of those industries.29

Second, there is also a danger in comparing allocations under different incentives structures.

One particular concern is the potential endogeneity of parameter values that are taken as

exogenous here.30 With those qualifications in mind, our framework can still provide some

useful, though preliminary, insight for when it pays to commit to a promotion deadline as in

the case of up-or-out.

Ability intensity: It is often argued that knowledge intensity is one of the most fundamental

characteristics of professional service industries (von Nordenflycht, 2010). Combined with the

fact that they are also less capital intensive,31 the productivity of an organization depends

28For brevity, we refer to those industries characterized by up-or-out, including academia, broadly as profes-
sional service industries. The military is another example which is characterized by up-or-out, but we do not
consider this case because the underlying structure appears to be quite different. See Kahn and Huberman
(1988), Waldman (1990), O’Flaherty and Siow (1992), and Ghosh and Waldman (2010) for formal analyses of
up-or-out contracts.

29For instance, our exponential specification implies that success is very rare and information is coarse, as
assumed in Bonatti and Hörner (2017), which might be applicable to some industries but not to some others.
Also, team production may play a bigger role in some industries than in others.

30It is likely that y and b may vary with the contract duration when we interpret them as the net continuation
payoffs of achieving a success. In particular, we normalize the continuation payoff at zero when the project
is terminated, but this could well be a function of the contract duration (or the market belief at the time of
termination).

31High knowledge intensity and low capital intensity are not equivalent in the strict sense of the word
because, as argued by von Nordenflycht (2010), an industry can be both knowledge- and capital-intensive at
the same time. For the purpose of this study, however, we do not make any distinction between them.
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crucially on the extent of knowledge embodied in individuals (Starbuck, 1992; Winch and

Schneider, 1993). A likely consequence of this fact is that innate ability matters and creates

value that cannot be easily substituted by sheer effort, at least in the short run – a feature

which we call ability intensity for expositional clarity.

Since the mediocre type can never attain a success in the current setup, one way to

measure the extent of ability intensity is by the (good type’s) success probabilities. We say

that the project is more ability-intensive when λl and λh are larger with a fixed ∆λ. Note

that an increase in λh, while fixing ∆λ, yields three conflicting effects. First, it raises the

agent’s productivity at the margin, which in turn lowers the threshold qh. Second, it gives

the agent a stronger incentive to procrastinate (a lower k∗) as it raises his expected future

payoff under high effort. Finally, it also facilitates the principal’s learning as each failure

reveals more information. The first two effects raises the value of up-or-out while the last

lowers it, such that the overall impact is not immediately clear.

One can readily show, however, that there exists some threshold λ̄ such that it is strictly

optimal to set a deadline, thereby favoring the use of up-or-out, for λh > λ̄. To see this, we

rewrite (12) as

p0

1− p0
>

qh

(1− qh)e−λhk
∗ =

w

(λhy − w)e−λhk
∗ . (13)

Under the maintained assumptions, λh > λ := max{ w
p0y

, ∆λ

d

(

r(b− d
∆λ

)+d−w
)

}. If ∆λ

d

(

r(b−

d
∆λ

) + d−w > w
p0y

, we have limλh→λ k
∗ = ∞, and hence, (13) is never satisfied if λh is small.

In contrast, we have

lim
λh→∞

qh

(1 − qh)e−λhk
∗ = 0,

implying that (13) must hold if λh is sufficiently large.

Stable job descriptions: Another distinctive feature of professional service industries is a

professionalized workforce that builds on a particular knowledge base (Torres, 1991; von Nor-

denflycht, 2010). This in turn creates well-defined job boundaries and stable job descriptions.

Due to various professional requirements and accreditation processes, workers in professional

service industries are typically responsible only for a narrow and clear set of tasks, compared

to workers in other industries. This implies that the nature of tasks that they are expected

to carry out is very stable over time, and the production environment is relatively immune

to stochastic shocks. For instance, a demand or technology shock that entirely changes the

job description of a lawyer or a college professor is highly unlikely.

We can interpret r as the rate at which the project is terminated for exogenous reasons,
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e.g., the arrival of a stochastic shock that makes the project completely worthless.32 Define

r̄ such that

λhb− d+ w

λh + r̄
= b−

d

∆λ

.

Assumption 1 then implies that r must be bounded between (0, r̄). It is clearly not profitable

to commit to a deadline if r is sufficiently close to r̄ because limr→r̄ k
∗ = ∞. In contrast,

there exists some r such that it is profitable to commit to a deadline for r < r if

1− qh

qh

(

1−
λ1(b−

d
∆λ

)

λhb− d+ w

)

>
1− p0

p0
.

It can be seen from this argument that a decrease in r (a more stable relationship) in general

raises the value of up-or-out because the agent can be more forward-looking and tends to

procrastinate more, which in turn makes the principal unable to stop at the right time.

Job similarity across ranks: Another immediate consequence of stable job descriptions

is that jobs necessarily become similar across different ranks.33 In the current setup, this

aspect may be captured by y, which can be interpreted as the expected payoff of promoting

a good-type agent. If entry- and senior-level jobs are similar, y tends to be larger because

a success at the entry level is a reliable predictor of productivity at the senior level. This is

not necessarily the case in typical firm organizations where jobs across ranks can differ to a

considerable extent, as often discussed in the context of the Peter Principle.34

The effect of a change in y is fairly straightforward, as it only affects the break-even belief

with no impact on the agent’s behavior. A large value of y implies a small value of qh which

gives the principal a stronger incentive to wait for a breakthrough. Given this, the agent

also has a stronger incentive to procrastinate, hoping to achieve a breakthrough with low

effort. The principal can then unambiguously benefit from committing to a deadline when

y is sufficiently large, implying that the value of up-or-out is higher in industries where jobs

are similar and there is a strong correlation between performances at different ranks.

32Here, we allow the principal to terminate the project when the shock arrives; see section 6 for the case
where the principal must abide by the deadline under any circumstance.

33Ghosh and Waldman (2010) also raises job similarity as one of the distinctive characteristics of academia.
Job similarity is also crucial in Kahn and Huberman’s (1988) classic argument because if jobs are sufficiently
different, we may use promotions to solve the double moral-hazard problem as suggested by Prendergast
(1993). However, our argument here may be more applicable to academia (at least in humanities and social
sciences) but less so to other professional service industries such as law where the role of a partner is more
about bringing in business (or “rainmaking”).

34The Peter Principle states that every post tends to be occupied by an employee who is incompetent to
carry out its duties, because employees are promoted through positions where they have excelled until they
reach a level of incompetence (Peter and Hull, 1969). A premise of this argument is that jobs are inherently
different and become progressively harder as one climbs though ranks.
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6 Conclusion

This paper presents a simple stylized model of dynamic performance evaluation with par-

ticular emphasis on the role of commitment to an evaluation deadline. We consider an

environment where the principal chooses whether to commit to a deadline and if so, at what

time. Within this framework, we obtain a complete characterization of equilibrium and derive

a necessary and sufficient condition for committing to a deadline to be optimal. The simple

framework also allows us to conduct various comparative statics exercises to give insight into

when it is beneficial to set an evaluation deadline at the outset.

Since our model is deliberately stylized to obtain sharp analytical characterizations, there

are naturally several avenues to extend the current analysis. Before we conclude, we briefly

discuss two of those possible extensions (see Appendices C and D for more formal analyses

of these cases).

Uncertainty: An important cost of making commitment arises from the fact that the prin-

cipal loses flexibility to adjust to future stochastic shocks. The baseline model does not

capture this cost because the only feasible history at each continuation game consists only of

failures up to that point; as a consequence, it is weakly optimal to commit to a deadline in

the baseline model. This is apparently unsatisfactory, provided that we live in a world filled

with uncertainty where there is clearly value in being flexible.

One way to cope with this possibility is to consider a setup where a permanent produc-

tivity shock may strike with some probability, which totally changes the nature of the task

and subsequently makes the agent unproductive, i.e., λh = λl = 0.35 For simplicity, suppose

that (i) the shock is permanent and arrives at most once, with a Poisson arrival rate β, and

(ii) the arrival of the shock is publicly observable. In this situation, the principal can retain

the flexibility to adjust to a negative shock by immediately terminating the project whenever

it strikes. We can then show that due to this benefit, there arises a situation where the

principal strictly benefits from not committing to a deadline.

Exogenous wages: In the baseline model, we have assumed that the contractual environ-

ment is highly incomplete in that no contingent wage contracts can be written. Even in

such an environment, it may still be possible to agree on the flow wage contingent on the

continuation of the project. Of course, since the flow wage in this context is a pure transfer

35Once the principal chooses to commit to a deadline, the principal must abide by it and is not allowed
to terminate the project, unlike in the discussion of stable job descriptions in section 5.3 where we allow the
principal to terminate the project whenever a stochastic shock arrives. If the principal is allowed to terminate
the project at any time before the committed deadline, the commitment solution then yields a weakly higher
payoff than the no-commitment solution.
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payment with no incentive effect on the agent’s side, there is no reason for the principal to

offer any wage beyond the minimum level if she can stop at the right time. However, as we

have seen, this is not always true when the principal makes no commitment to a deadline, in

which case the flow wage can be used as a substitute for a deadline. This can be potentially

useful if the commitment cost is prohibitively large for some reason.

To explore whether there are circumstances in which she offers any strictly positive w to

this effect, suppose that the principal can deliberately choose any w ≥ 0 at time 0.36 The

benefit of raising w above zero is clear if we look at the case where w = 0: in this case,

the instantaneous payoff is always strictly positive (as in the cooperative case), no matter

how unlikely the agent is to succeed; as a consequence, the principal can never terminate

the project, and given this, the agent never exerts high effort. The principal can alter this

structure by raising w above zero because the flow cost of employment is now positive,

rendering the instantaneous payoff negative at some point. This can be profit-enhancing for

the principal because with the credible threat of termination, she can induce the agent to

exert high effort, which is especially beneficial when the success probability under low effort

is low: formally, we can show that the optimal flow wage is strictly positive if λl is sufficiently

small. This reasoning is similar to Buisseret (2016) in that a higher flow wage is used as a

commitment device to stop at the right time and reduce future rents for the agent.37
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Appendix A: Proofs

Proof of Proposition 1: It is intuitively clear that the value function is strictly increasing

in k. Formally, define

rUa(k) =
(

(λab− da + w)− λaUa(k)− U̇a(k)
)

(14)

as the value function when the effort level is fixed at a = l, h. Solving this differential equation

and imposing the boundary condition U(0) = 0, we derive

Uh(k) =
λhb− d+ w

λh + r
(1− e−(λh+r)k).

If ∆λb > d, it is optimal for the agent to exert high effort as long as Uh(k) is sufficiently

small. Moreover, since Uh(k) is strictly increasing in k, the agent would never switch back
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to low effort, once U(k) reaches this critical point. Then, k∗ is obtained as a solution to

Uh(k
∗) = b− d

∆λ
, which can be written as

λhb− d+ w

λh + r
(1− e−(λh+r)k∗) = b−

d

∆λ

. (15)

Note that the agent always exerts high effort if

b−
d

∆λ

≥
λhb− d+ w

λh + r
⇔

rb− w

λl + r
≥

d

∆λ

,

while he never does so if d
∆λ

≥ b. For in-between cases, solving (15) yields

k∗ = −
1

λh + r
ln

(

1−
(λh + r)(b− d

∆λ
)

λhb− d+ w

)

,

so that the agent exerts high effort when the remaining time is less than or equal to k∗. For

k > k∗, the agent exerts low effort because U(k) ≥ Uh(k) > b− d
∆λ

.

Proof of Proposition 2: The agent always exerts high effort in the noncooperative case if

(2) fails to hold. An analogous condition for the cooperative case is given by

λh(y + b)− d

λh + r
> y + b−

d

∆λ

⇔
d

∆λ

>
r

λl + r
(y + b).

Applying the same argument as in Proposition 1, we obtain

k̃∗ = −
1

λh + r
ln

(

1−
(λh + r)(y + b− d

∆λ
)

λh(y + b)− d

)

.

To see that the project is never terminated, we first show that if it is ever optimal to set

a deadline in some finite time, the only possibility is to set it at time k̃∗, so that the agent

exerts high effort from the beginning. To see this, the principal extends the deadline beyond

time k̃∗ if and only if

λl(y + b) >
λl + r

λh + r

(

λh(y + b)− d
)

(1− e−(λh+r)k̃∗). (16)

Note that this condition is independent of the deadline. As such, if this condition holds, it

is then optimal to continue the project indefinitely until the project succeeds. If it fails to

hold, on the other hand, it is clearly optimal to set a deadline at time k̃∗.

Since, by definition,

y + b−
d

∆λ

= Ũ(k̃∗) =

(

λh(y + b)− d
)

λh + r
(1− e−(λh+r)k̃∗).
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we can modify (16) as

λl(y + b)

λl + r
> y + b−

d

∆λ

.

The left-hand side is the expected payoff of exerting low effort indefinitely while the right-

hand side is that of exerting high effort from time 0 to time k̃∗ which must equal the static

gain.

This condition must hold for any finite k̃∗ when (6) is satisfied, meaning that it is

strictly better to let the project continue indefinitely. If (6) fails to hold, on the other hand,

k̃∗ → ∞, and again it is better to let the project continue indefinitely. This shows that no

finite deadline can improve the social surplus in the cooperative case.

Proof of Proposition 3: First, if φ(qh) ≥ p0 > qh (the latter inequality holds by Assumption

2), there exists a unique deadline τC ∈ (0, k∗] that satisfies

p0e
−λhτ

C

1− p0 + p0e−λhτ
C

= qh.

There is clearly no reason to wait beyond this point because the instantaneous payoff is

strictly negative for any effort choice. It is also not optimal to stop before τC because the

instantaneous payoff is still strictly positive. The optimal termination date is then τC and it

is unique in this range.

Second, suppose that p0 > φ(qh), in which case the first-order condition is given by

M(τC , p0) = 0. If M(k∗, p0) ≤ 0, the expected payoff is strictly decreasing in τC for τC > k∗,

and the optimal termination date is τC = k∗. Alternatively, define p̂ ∈ (0, 1) such that

M(k∗, p̂) = 0 if (10) holds and p̂ = 1 otherwise. Then, the optimal termination date is

k∗ for p0 ≤ p̂. If p0 > p̂, on the other hand, there must exist a unique τ̂(p0) such that

M(τ̂(p0), p0) = 0. Since the instantaneous payoff is strictly positive for τ̂(p0) > τC and

negative for τC > τ̂(p0), the optimal termination date in this case is τ̂(p0).

Finally, to show that p̂ > ql if 1 > ql, there are two cases. If (10) holds (but 1 > ql), then

p̂ = 1 > ql. If (10) fails to hold, on the other hand, M(k∗, p0) is increasing in p0 for any k∗.

Given that 1 > ql, it suffices to show that M(k∗, ql) < 0, i.e.,

(1− ql)we
−rk∗ > ql

(

πl −
λl + r

λh + r
πh(1− e−(λh+r)k∗)

)

.

This can be written as

−erk
∗

(

ql
λl + r

λh + r
πhe

−λhk
∗

− (1− ql)w

)

> ql

(

πl −
λl + r

λh + r
πh

)

.
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which is further reduced to

−erk
∗(

qlπle
−λhk

∗

− (1− ql)w
)

> ql(1− e−(λh+r)k∗)

(

πl −
λl + r

λh + r
πh

)

.

Note that the left-hand side is positive by definition while the right-hand side is negative, so

that this condition holds for any k∗. From the preceding argument, we can see that p̂ = 1 if

and only if (10) holds. It is also evident that τC(p0) is weakly increasing in p0.

Proof of Proposition 4: We show the existence and uniqueness of the equilibrium by

construction. We start with a candidate strategy T 1 = {τ1} and the corresponding best

response such that

at =

{

l for t ∈ [0,max{τ1 − k∗, 0}),

h for t ∈ [max{τ1 − k∗, 0}, τ1].
(17)

This pair of strategies constitutes an equilibrium if V ∗(K(p, qh), p) > 0 for all p ∈ (qh, p0].

Alternatively, we check for what interval of p0 this condition is satisfied. To this end, the

following result is useful.

Lemma 2 Let ql > q. Then, V ∗(K(p0, q), p0) > 0 for all p0 ∈ (q, 1) if and only if

lim
p↑ql

V ∗(K(p, q), p) > 0.

Proof: Since the necessity is evident by definition, we only prove the sufficiency part. Since

the case with ql = 1 can be proved analogously (by taking the limit), we suppose for now

that 1 > ql > q.

First, if p0 ≥ ql, V
∗(K(ql, q), ql) > 0 directly implies V ∗(K(p0, q), p0) > 0 for all p0 ≥ ql

because the instantaneous payoff is strictly positive for any effort choice when the belief is

above ql. Note also that V ∗(K(p0, q), p0) > 0 for all p0 ∈ (q, φ(qh)] since the high type always

exerts high effort in this case. This implies that V ∗(K(p0, q), p0) > 0 for all p0 ∈ (q, 1) if

φ(q) ≥ ql. In what follows, therefore, we assume ql > φ(q).

Given this, it suffices to show that

V ∗(K(ql, q), ql) > 0 ⇒ V ∗(K(p0, q), p0) > 0 for all p0 ∈ (φ(q), ql).

Suppose on the contrary that V ∗(K(ql, q), ql) > 0 but V ∗(K(p, q), p) ≤ 0 for some p ∈

(φ(q), ql). If this is the case, there must exist some z ∈ (φ(q), ql) such that V ∗(K(z, q), z) = 0.

Since

V ∗(K(p, q), p) =
p(λly − w)

λl + r

(

1− e−(λl+r)(K(p,q)−K(p′,q))
)

−
(1− p)w

r

(

1− e−r(K(p,q)−K(p′,q))
)

+
(

1− p+ pe−λl(K(p,q)−K(p′,q))
)

e−r(K(p,q)−K(p′,q))V ∗(K(p′, q), p′),
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for any p > p′ > φ(q), due to the recursive structure of the expected payoff, we have

V ∗(K(ql, q), ql) =
ql(λly − w)

λl + r

(

1− e−(λl+r)∆K
)

−
(1− ql)w

r

(

1− e−r∆K
)

+ (1− ql + qle
−λl∆K)e−r∆KV ∗(K(z, q), z)

=
ql(λly − w)

λl + r

(

1− e−(λl+r)∆K
)

−
(1− ql)w

r

(

1− e−r∆K
)

,

where ∆K := K(ql, q) − K(z, q). This is strictly negative by definition, and therefore a

contradiction.

The lemma shows that we only need to check the continuation payoff at ql to see whether

a given strategy is sequentially rational. An immediate corollary of the lemma is that

V ∗(K(p0, qh), p0) > 0 for all p0 if φ(qh) ≥ ql. In this case, m(Θ) = 1, P 1 = qh and T = {τ1}

constitutes an equilibrium for any p0.

We now suppose that ql > φ(qh) and check if the candidate strategy can satisfy the

equilibrium conditions. From Lemma 2, this is the case if and only if V ∗(K(ql, qh), ql) > 0,

i.e.,

qlπl

λl + r

(

1− e−(λl+r)(K−k∗)
)

+
qlπh

λh + r
e−(λl+r)(K−k∗)

(

1− e−(λh+r)k∗
)

>
(1− ql)w

r

(

1− e−rK
)

.

(18)

where K = K(ql, qh). If (18) holds, the expected payoff is always positive for any p0, so

we can apply the same argument as in Case 2 to show the existence and uniqueness of the

equilibrium.

The situation becomes more complicated when (18) fails to hold, in which case the princi-

pal has an incentive to deviate and stop at some point, and the candidate strategy no longer

constitutes an equilibrium. In this case, there instead exists a critical belief that satisfies (18)

with equality, because V ∗(K(p, qh), p) is continuous in p with V ∗(K(φ(qh), qh), φ(qh)) > 0 >

V ∗(K(ql, qh), ql). We now redefine P 1 = min{q : V ∗(K(q, qh), q) = 0} and P 2 = qh. Given

the critical belief, we can then consider another candidate strategy T 2 = {τ1, τ2} for p0 > P 1

where pτ1 = q1, and the best response is given by

at =























l for t ∈ [0,max{τ1 − k∗, 0}),

h for t ∈ [max{τ1 − k∗, 0}, τ1),

l for t ∈ (τ1, τ2 − k∗),

h for t ∈ [τ2 − k∗, τ2].

Note that q1 > φ(q2) > q2 = qh or τ2 > τ1 + k∗.

The game is now divided into two segments. First, we can show that the equilibrium is

unique after time τ1 (as done in Case 2). Before time τ1, we can apply the same procedure to
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the truncated interval [0, τ1] to see whether T 2 can be an equilibrium strategy. More precisely,

we need to check if V ∗(K(p, P 1), P 1) > 0 for all p ∈ [p0, φ(P
1)). Applying Lemma 2, T 2

is an equilibrium strategy for all p0 ∈ (P 1, 1) if V (K(ql, P
1), ql) > 0. For p0 ∈ (P 1, 1), the

principal’s equilibrium strategy consists of two termination dates. Given that the continuation

equilibrium after time τ1 is unique, we can establish the uniqueness by applying the same

argument.

If V (K(ql, P
1), ql) ≤ 0, on the other hand, we can find yet another critical belief in

(φ(P 1), ql]. We again redefine P 1 analogously and repeat the same process until we find

P 1 such that V (K(ql, P
1), ql) > 0. In the end, this process would give us m(Θ) intervals

{(P j , P j−1)}mj=1 where the principal’s equilibrium strategy consists of n = m(Θ) − j + 1

termination dates if p0 falls into (P j , P j−1). Note also that since V ∗(K(P 1, P 2), P 1) = 0 by

definition, it must be that ql > P 1 if m(Θ) > 1.

Proof of Proposition 5: (i) For p0 ∈ (qh, φ(qh)), τ
C(p0) = τNC(p0) = K(p0, qh). Since the

agent’s strategy depends only on the remaining time, the two cases yield the same expected

payoff for the principal.

(ii) To show this, we first examine how V C and V NC vary with respect to p0 for p0 ∈ (φ(qh), 1).

It is evident that V C must monotonically increase with the initial prior. To see this, note

that

dV C

dp0
=

∂V ∗

∂p0
+

∂V ∗

∂τC
dτC

dp0
.

The last term is the indirect effect though an increase in τC which is invariably zero because

either ∂V ∗

∂τC
= 0 or dτC

dp0
= 0 must hold by the optimality condition. Since the direct effect ∂V ∗

∂p0

is unambiguously positive, V C is strictly increasing in p0. More precisely, we obtain

dV C

dp0
=

πh

λh + r
(1− e−(λh+r)k∗) +

w

r
(1− e−rk∗)

= p0πh − (1− p0)w − (p0λh + r)V C(p0)−
(

p0e
−λhk

∗

πh − (1− p0)w
)

e−rk∗ , (19)

for p0 ∈ (φ(qh), p̂), and

dV C

dp0
=

πl

λl + r
(1− e−(λl+r)(τC−k∗)) +

e−(λl+r)(τC−k∗)πh

λh + r
(1− e−(λh+r)k∗) +

w

r
(1− e−rτC )

= p0πl
λh + r

λl + r
(1− e−(λl+r)(τC−k∗)) + p0πhe

−(λl+r)(τC−k∗) − (1− p0)w

− (p0λh + r)V C(p0)−
(

p0πhe
−λl(τ

C−k∗)−λhk
∗

− (1− p0)w
)

e−rτC , (20)

for p0 ∈ (p̂, 1).
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In contrast, V NC changes with p0 in a non-monotonic way if m > 1. Consider p0 ∈

(φ(P j), φ(P j−1)) for j = 2, 3, ...,m. Since V NC(p0) = V ∗(K(p0, q), p0) where q is the closest

termination belief, it follows that

dV NC

dp0
=

∂V ∗

∂p0
+

∂V ∗

∂k

∂K

∂p0
=

∂V ∗

∂p0
+

1

λlp0(1− p0)

∂V ∗

∂k
.

First, for p0 ∈ (φ(P j), P j−1), we obtain

dV NC

dp0
=

πl

λl + r
(1− e−(λl+r)(K−k∗)) +

πhe
−(λl+r)(K−k∗)

λh + r
(1− e−(λh+r)k∗) +

w

r
(1− e−rK)

+
e−(λl+r)(K−k∗)

λl(1− p0)

(

πl

λl + r
−

πh

λh + r
(1− e−(λl+r)k∗)

)

−
we−rK

λlp0

= p0πl − (1− p0)w − (p0λl + r)V NC(p0), (21)

which is negative because ql > P 1 > p0. For p0 ∈ (P j−1, φ(P j−1)), we obtain

dV NC

dp0
=

πh

λh + r
(1− e−(λh+r)K) +

w

r
(1− e−rK) +

e−rK

λhp0(1− p0)

(

p0πhe
−λhK − (1− p0)w

)

= p0πh − (1− p0)w − (p0λh + r)V NC(p0), (22)

which is positive for any p0 > qh.

We are now ready to see how ∆V changes with respect to p0. First, it is clear that ∆V

is strictly increasing in p0 for p0 ∈ (φ(P j), P j−1) because V C is increasing while V NC is

decreasing. In contrast, for p0 ∈ (P j−1, φ(P j−1)), both V C and V NC are increasing in p0.

For p̂ > p0, it follows from (19) and (22) that

d∆V

dp0
< 0 ⇔ (p0λh + r)

(

V C(p0)− V NC(p0)
)

> −
(

p0e
−λ∗

k − (1− p0)w
)

e−rk∗.

This condition always holds because p0e
−λhk

∗
> (1− p0)w and V C(p0) ≥ V NC(p0) by defini-

tion. Similarly, for p0 > p̂, comparing (20) and (21) yields

p0

(

πh −
λh + r

λl + r
πl

)

(1− e−(λl+r)(τC−k∗)) + (p0λh + r)
(

V C(p0)− V NC(p0)
)

> −
(

p0e
−λl(τ

C−k∗)−λ∗
k − (1− p0)w

)

e−rτC ,

which again always holds.

(iii) If p̂ ≥ φ(P 1), then τC(φ(P 1)) = k∗. Since τNC(φ(P 1)) = k∗ by definition, ∆V (φ(P 1)) =

0. To see the necessity, note that ∆V (p0) = 0 implies τC(p0) = τNC(p0). Since τ
NC(φ(P 1)) =

k∗, we must have τC(φ(P 1)) = k∗ which holds if and only if p̂ ≥ φ(P 1).
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(iv) Suppose first that 1 > p̂, in which case τC and τNC solve

e−λτC(p0) =
1− p0

p0

(

(λh + r)we−(λ+r)k∗

(λh + r)πl − (λl + r)πh(1− e−(λh+r)k∗)

)

=:
1− p0

p0
ΦC ,

e−λlτ
NC(p0) =

1− p0

p0

(

q1

(1− q1)e−∆λk
∗

)

=:
1− p0

p0
ΦNC ,

respectively, for p0 > p̂. Note that both ΦC and ΦNC are independent of p0. From this, since

limp0→1 τ
C(p0) = ∞ and limp0→1 τ

NC(p0) = ∞, we obtain

lim
p0→1

V C(p0) = lim
p0→1

V NC(p0) =
p0πl

λl + r
−

(1− p0)w

r
.

If p̂ = 1, on the other hand, τC(p0) = k∗ for all p0, but as we have seen, limp0→1 τ
NC(p0) = ∞.

Appendix B: the value of commitment in (φ(P 1), 1)

As we have seen in Proposition 5, the value of commitment moves with some regularities for

p0 ∈ (qh, φ(P
1)). The exception is the last segment (φ(P 1), 1). The reason is that for this

(and only this) segment, we could have φ(P 1) > p̂ > ql (see Propositions 3 and 4), so that

the instantaneous payoff under low effort can be positive and τC(p0) > k∗ for p0 ∈ (φ(P 1), 1).

There are three cases we need to consider, depending on the value of p̂.

Case 1: φ(P 1) > p̂

In this case, τC(φ(P 1)) > τNC(φ(P 1)) = k∗ and hence ∆V (φ(P 1)) > 0 (as we show in

(iii) of Proposition 4). For p0 > φ(P 1), τC(p0) and τNC(p0) increase proportionally (see the

proof of Proposition 4), with both diverging to infinity as p0 → 1. As we show in (iv) of

Proposition 4, ∆V (p0) converges to zero as p0 → 1.

Case 2: p̂ > φ(P 1)

In this case, τC(φ(P 1)) = τNC(φ(P 1)) = k∗ and hence ∆V (φ(P 1)) = 0. For p0 ∈

(φ(P 1), p̂), τNC(p0) continues to go up while τC(p0) stays at k∗; as a consequence, ∆V (p0)

gradually increases in this range. Once p0 goes above p̂, τC(p0) also gradually increase, but

again proportionally to τNC(p0). Since τ
NC(p0) > τC(p0) for p0 ∈ (p̂, 1) in this case, ∆V (p0)

gradually decreases and converges to zero as p0 → 1.38

38If p̂ = φ(P 1), then τC(p0) = τNC(p0) and hence ∆V (p0) = 0 for p0 ∈ (p̂, 1). We ignore this non-generic
case.
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Case 3: p̂ = 1

This is the most straightforward case. Given that p̂ = 1, τC(p0) = k∗ for p0 ∈ (p̂, 1) and

hence τC(p0) and τNC(p0) diverge away from each other in this range. As a consequence,

∆V (p0) increases as in all the preceding intervals.

Appendix C: The case with uncertainty

We analyze an extended version of the baseline model where a permanent productivity shock

may strike with some probability. For simplicity, we assume that a shock arrives with a

Poisson arrival rate β; once it arrives, the agent becomes totally unproductive thereafter,

i.e., λh = λl = 0. We also assume that the arrival of a shock is publicly observable. Other

more complicated cases, e.g., those with transitory shocks, can in principle be analyzed in an

analogous manner.

The agent: The agent’s problem requires a slight modification. The augmented Bellman

equation is obtained as

rU j(k) = max
a∈{l,h}

(

(bλa − da + w)− (λa + β)U(k) + βŨ j(k)− U̇(k)
)

, j = C,NC

where Ũ j denotes the value function after the shock has arrived. Since the principal’s reaction

to the shock differs, Ũ j , and hence U j(k), depend on whether or not the principal makes

commitment. As in the baseline model, the incentive compatibility constraint (before the

shock strikes) can be written as

∆λ

(

b− U j(k)
)

≥ d,

although the value function U j(k) now differs. As such, the agent exerts high effort only when

the project is sufficiently close to termination. We let kC and kNC denote the threshold under

commitment and no commitment, respectively.

Proposition 7 For any Θ and β, kNC > kC . Both kNC and kC are strictly increasing in β

if bλh−d+w
λh+β+r

> b− d
∆λ

> 0.

Proof: We first consider the case where the principal commits to a deadline. Note that the

principal cannot terminate the project even if the shock arrives before the deadline. Since the

agent has no incentive to exert high effort, we have ŨC(k) = w(1−e−rk)
r

. Let UC
a (k) denote

the value function under commitment when the effort level is fixed at a. We then obtain

UC
h (k) =

bλh − d+ w

λh + β + r
(1− e−(λh+β+r)k) +

βw

r

(

1− e−(λh+β+r)k

λh + β + r
−

e−rk(1− e−(λh+β)k)

λh + β

)

.
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The threshold under commitment is a solution to UC
h (kC) = b− d

∆λ
.

The problem is much more straightforward when the principal makes no commitment. In

this case, the optimal choice for the principal is to terminate the project as soon as the shock

arrives, which implies ŨNC(k) = 0 for all k. As above, define UNC
a (k) as the value function

under no commitment with fixed effort a, which is given by

UNC
h (k) =

bλh − d+w

λh + β + r
(1− e−(λh+β+r)k).

If bλh−d+w
λh+β+r

> b− d
∆λ

> 0, there exists an interior threshold kNC given by

kNC = −
1

λh + β + r
ln

(

1−
(λh + β + r)(b− d

∆λ
)

bλh − d+ w

)

.

It is evident that kNC > kC because the expected payoff must be higher under commit-

ment for a given horizon. Formally, we need to show that

1− e−(λh+β+r)k

λh + β + r
>

e−rk(1− e−(λh+β)k)

λh + β
,

which can also be written as

∫ k

0
e−(λh+β+r)sds >

∫ k

0
e−(λh+β)s−rkds.

This condition holds because

e−(λh+β+r)s > e−(λh+β)s−rk ⇔ e−rs > e−rk,

for any s < k.

Finally, note that kC , kNC ∈ (0,∞) when bλh−d+w
λh+β+r

> b − d
∆λ

> 0. We can then show

that kj , j = C,NC, is increasing in β if U j
a(k) is decreasing in β for k ≤ kj . Straightforward

computation shows that UNC
h (k) is strictly decreasing in β. In contrast, it is a little more

involved to show the same for UC
h (k). To see this, with some computation, we obtain

UC
h (k) =

bλh − d

λh + β + r
(1− e−(λh+β+r)k)−

λhw

r

(

1− e−(λh+β+r)k

λh + β + r
−

e−rk(1− e−(λh+β)k)

λh + β

)

+
w(1− e−rk)

r

=
bλh − d− λh

w(1−e−rk)
r

λh + β + r
(1− e−(λh+β+r)k) +

λhwe
−rk

r

(

1− e−(λh+β)k

λh + β
−

1− e−(λh+β+r)k

λh + β + r

)

+
w(1− e−rk)

r
.
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First, it is easy to verify that 1−e−αk

α
is strictly decreasing for any α > 0. Further, observe

that the second term is strictly decreasing in β. These two facts imply that it suffices to show

that

bλh − d > λh

w(1− e−rk)

r
,

for k ≤ kC . To show this, since bλh − d > bλh −
λh

∆λ
d ≥ λhU

C
h (k) for k ≤ kC , we have

UC
h (k) >

λh(U
C
h (k) − w(1−e−rk)

r
)

λh + β + r
(1− e−(λh+β+r)k) +

λhwe
−rk

r

(

1− e−(λh+β)k

λh + β
−

1− e−(λh+β+r)k

λh + β + r

)

+
w(1− e−rk)

r
,

for k ≤ kC . This is further reduced to
(

1−
λh(1− e−(λh+β+r)k)

λh + β + r

)(

UC
h (k)−

w(1 − e−rk)

r

)

>
λhwe

−rk

r

(

1− e−(λh+β)k

λh + β
−

1− e−(λh+β+r)k

λh + β + r

)

,

which gives UC
h (k) > w(1−e−rk)

r
.

It is interesting to note that the possibility of a negative shock generally lowers the

expected future payoff and hence induces the agent to exert high effort for longer, either

with or without commitment (kNC > kC > k∗). First, with commitment, the best the agent

can do after the shock strikes is to exert low effort and earn the flow payoff w, which is the

lowest possible payoff as long as the project survives. The situation is even worse without

commitment, however, because the principal can immediately terminate the project, thereby

leaving no rent for the agent. The extent of the loss is therefore larger when the principal

makes no commitment, which amounts to the fact that kNC > kC and in turn favors the

no-commitment solution.

The principal: We start with the case where the principal commits to a deadline at the

outset. Let V C(k, p0) denote the principal’s expected payoff at time 0 under commitment,

which can be written as

V C(k, p0) =

∫ νC

0
(λlpsy − w)e−

∫ s

0 (λlpu+β+r)duds

+ e−
∫ νC

0 (λlpu+β+r)du

∫ k

νC
(λhpsy − w)e−

∫ s

νC
(λhpu+β+r)duds

−
β

r

∫ νC

0
w(1− e−r(k−s))e−

∫ s

0
(λlpu+β+r)duds

−
β

r
e−

∫ νC

0 (λlpu+β+r)du

∫ k

νC
w(1 − e−r(k−s))e−

∫ s

νC
(λhpu+β+r)duds. (23)
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where νC := max{τC −kC , 0}. The difference from the previous case is that a negative shock

may now strike with some probability, in which case the principal earns zero from that point

on. The commitment solution is obtained as

τC = argmaxτV
C
0 (τ).

As can be seen from (23), the marginal benefit of extending the deadline decreases with β,

which prompts the principal to terminate earlier than in the case with no uncertainty.

In contrast, the problem is roughly the same as in the baseline model when the principal

makes no commitment because the principal only pays attention to the instantaneous pay-

off. As in the baseline model, the principal stops when the instantaneous payoff becomes

sufficiently low. To be more precise, define

φNC(p) :=
p

p+ (1− p)e−λhk
NC

.

Given that no shock has arrived, if φNC(qh) > ql, the principal stops when the belief reaches

qh. The only difference is that when the shock strikes, the instantaneous payoff falls to −w,

which prompts her to stop immediately. The principal’s expected payoff is given by

V NC(k, p) =

∫ νNC

0
(λlpsy − w)e−

∫ s

0
(λlpu+β+r)duds

+ e−
∫ νNC

0 (λlpu+β+r)du

∫ k

νNC(q)
(λhpsy − w)e−

∫ s

νNC (λhpu+β+r)duds, (24)

where νNC is defined analogously. Note that for the same time horizon, V NC(k, p0) >

V C
0 (k, p0) for any p0.

The optimal incentive scheme: In the baseline model with no uncertainty, any allocation

which can be realized without commitment can be realized with commitment as well. This

is no longer the case with uncertainty because the principal cannot foresee if and when the

shock strikes, in which case she needs to immediately terminate the project. We can then

make the following statement.

Proposition 8 The principal strictly benefits from not committing to a deadline for any

β > 0 if φNC(qh) ≥ p0.

Proof: If φNC(qh) ≥ p0, the agent exerts high effort from the beginning under no commit-

ment. The principal’s payoff is maximized, and the principal strictly benefits from making

no commitment in this case. To see this, observe that kNC > kC implies φNC(qh) > φC(qh).

If φNC(qh) ≥ p0 > φC(qh), the agent starts off with low effort, and the principal is forced to

41



set a deadline before the belief reaches qh. The profit is clearly lower than V NC(τNC , p0). On

the other hand, if φNC(qh) > φC(qh) ≥ p0, the agent exerts high effort from the beginning

even under commitment. The profit is still lower, however, because the principal must incur

a flow loss when the shock strikes whereas she can immediately terminate the project if she

makes no commitment.

The presence of uncertainty lowers the value of commitment through two channels. First,

by making no commitment, the principal can retain the flexibility to adjust to the negative

shock by immediately terminating the project whenever it strikes. Aside from this con-

ventional effect of flexibility, there also arises another force that favors the no-commitment

solution: in the face of uncertainty, the agent is better motivated by the constant threat of

project termination, and thus, he starts exerting high effort earlier. Since φNC(qh) > φ(qh)

for any β > 0 by Proposition 7, we could have φNC(qh) ≥ p0 > φ(qh), in which case the value

of commitment is strictly negative with uncertainty whereas it is strictly positive without.

7 Appendix D: The case with endogenous wages

We consider a setup where the principal can deliberate choose w ≥ 0 at time 0. In general,

an increase in w above zero yields two opposing effects. On one hand, it raises the critical

value qh, which may give the principal the incentive to stop earlier than otherwise. On the

other hand, it also raises the expected future payoff which in turn lowers k∗ and gives the

agent the incentive to procrastinate even more. A necessary condition for w > 0 is that the

first effect dominates the second, or alternatively that τNC − k∗ decreases with w.39 We can

then make the following statement.

Proposition 9 It is optimal to set w > 0 if λl is sufficiently small.

Proof: As w → 0, we have qh → 0 and ql → 0, which implies τNC(p0) → ∞ for any p0. The

expected payoff then converges to

lim
w→0

V ∗(τNC , p0) =
p0λly

λl + r
, (25)

for any p0. Define µ(w) such that φ( w
λhy

) = µ(w), i.e.,

µ(w)−λhk
∗

1− µ(w) + µ(w)−λk∗
= qh =

w

λhy
.

39Note that τNC − k∗ is the interval during which the agent exerts low effort. If it is longer with a smaller
k∗, the principal’s expected payoff is necessarily lower.
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Note that

1− µ(w)

µ(w)
=

1− qh

qh
e−λhk

∗

=
λhy − w

w

(

1−
(λh + r)(b− d

∆λ
)

λhb− d+ w

)

λh
λh+r

.

Since limw→0 µ(w) = 0 and µ(λhy) = 1, there must exist at least one w̃ such that µ(w̃) = p0.

If we set w = w̃, then τNC = k∗ > 0 by definition, and the expected payoff is

V (k∗, p0) =

∫ k∗

0
(λhypsy − w̃)e−

∫ s

0 (λhpu+r)duds,

which is always strictly positive and larger than (25) if λl is sufficiently small.
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Figure 1: Evolution of the belief on the equilibrium path (m(Θ) = 1)
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Figure 2: A violation of Condition C: the belief (m(Θ) = 2)
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Figure 3: A violation of Condition C: the continuation payoff
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Figure 4: Evolution of the belief, on and off the equilibrium path
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P 1 φ(P 1)

Figure 5: The expected payoffs with and without commitment
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Figure 6a: The commitment solution when λl is relatively high (λl = 0.07)
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Figure 6b: The commitment solution when λl is relatively low (λl = 0.04)
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Figure 7: The no-commitment solution
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1 Introduction

Suppose that an employer needs to hire a worker to carry out a project over time. The

project is ability-intensive in that the worker can successfully complete the project only if he

is sufficiently productive. As is often the case, however, the worker’s sheer productivity is

not directly observable to the employer, who must instead make an inference from a sequence

of observed outputs. Since success cannot be achieved overnight, the employer must exercise

some patience even when things do not appear to be in good shape. Excessive tolerance for

failure, however, diminishes the worker’s incentive to take costly actions that are indispensable

to be successful. A number of issues arise in this dynamic environment. How much time

should the employer give the worker before she terminates the project? Should the employer

commit to a deadline at the outset? If so, under what conditions?

In this paper, we attempt to address these issues by analyzing a situation where a princi-

pal hires an agent and evaluates his productivity over time in an ongoing relationship. The

problem is embedded in a continuous-time framework with both hidden action and hidden

information. At each instant, the agent privately chooses how much effort to supply. The out-

come is either a success or a failure, depending on his effort choice as well as his productivity

type. The game ends immediately when the agent achieves a success (or a “breakthrough”).

The principal’s task in this environment is to determine when to terminate the project, con-

ditional on no success having occurred. Within this setup, we analyze two distinct cases to

illustrate the role of commitment: in one case, the principal sets a deadline and commits to

it at the outset, and the project is terminated automatically when the deadline is reached

without attaining a success; in the other, the principal makes no such commitment, thereby

retaining discretion to terminate the project at any instant, and simply terminates the project

when the continuation payoff is not high enough to justify further experimentation. By di-

rectly comparing these two cases, we evaluate the extent to which the principal benefits from

committing to an evaluation deadline in this dynamic environment.

The driving force of our analysis is a dynamic strategic interaction between the agent’s

effort choice and the principal’s termination strategy. On one hand, the agent’s effort choice

depends clearly on how much time is left until the project is terminated: since the net value

of achieving a success is low when the project is still far from termination, the agent tends

to start off with low effort and gradually shift to higher effort as the expected termination

date approaches. On the other hand, the principal’s willingness to terminate the project

depends also on the agent’s effort choice: when the agent is less motivated and exerts low

effort, less information is revealed about his type, which makes the principal more reluctant
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to terminate the project. This strategic interaction can generate a vicious cycle where the

principal’s reluctance to terminate the project diminishes the agent’s motivation, which in

turn makes the principal even more reluctant. It is in general profitable to commit to a

deadline when each player’s incentive to “procrastinate” is sufficiently strong.

The main contribution of the paper is that we devise an analytical framework that is

tractable enough to admit a complete characterization of pure-strategy equilibria, both with

and without commitment, while capturing this dynamic interaction. Our framework thus

allows us to evaluate the exact value of commitment to an evaluation deadline for any given

set of parameters. To this end, our main analytical focus is on the no-commitment case,

which is generally far more challenging than the commitment case when dynamic interactions

are considered. In the no-commitment case, the principal’s termination strategy must be

sequentially rational along the way, and the belief off the equilibrium path plays a crucial role.

Even in this case, we can show that our framework generates a unique recursive equilibrium

structure which can be exploited to establish the existence and uniqueness of (pure-strategy)

perfect Bayesian equilibrium. We then build on this result to derive a necessary and sufficient

condition under which the principal can strictly benefit from committing to an evaluation

deadline.

As can be expected, the lack of commitment to a deadline entirely alters the dynamic

allocation of effort as well as the timing of project termination. When the principal sets a

deadline at the outset, she does so by taking into account how it affects the agent’s entire effort

sequence. In particular, since extending a deadline in general relaxes the agent’s incentive

compatibility constraint and reduces his total effort supply, the deadline must be set at a

point where the expected benefit (of achieving a success at the next instant) equals the cost

of a decrease in total effort. The situation changes rather drastically when she makes no such

commitment, because her termination decision would have no influence on the agent’s past

behavior. As such, she terminates the project whenever the continuation payoff is about to

turn negative while taking the agent’s effort strategy as given. This fact implies that the cost

of extending a deadline is smaller under no commitment and tends to give her an excessive

incentive to wait for a success.

Given this incentive structure, one may expect that the principal would always wait longer

for a success in equilibrium under no commitment. As it turns out, though, this conjecture

does not always hold true in the current setup. Among other things, an interesting, and

somewhat counterintuitive, property of our model is that the average duration of the project

may not be monotonic with respect to the initial prior belief under no commitment, whereas it

is always weakly increasing under commitment. As a direct consequence of this, the average
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duration can be either shorter or longer with commitment than without: in other words,

there exists an equilibrium in which the principal prematurely terminates the project when

she does not commit to a deadline.

This result is somewhat surprising, provided that the inefficiency of the problem stems

from the principal’s reluctance to terminate the project in the first place. The principal tends

to terminate the project too early when the agent’s productivity under low effort is sufficiently

small. For the sake of argument, suppose that the agent fails almost surely when he exerts

low effort, in which case the expected instantaneous payoff is negative while the principal can

learn almost nothing from failures (during the phase where the agent is supposed to exert low

effort). The principal’s belief then declines very slowly over time, forcing her to incur a large

amount of loss if she is to wait until she totally loses her confidence in the agent’s ability. If

this expected loss is prohibitively large, the principal may find it optimal to terminate the

project even when the belief is still relatively high.

Of course, in equilibrium, the agent correctly anticipates this reaction and adjusts his

effort allocation accordingly. We show that the equilibrium timing of project termination

can be pinned down by backward induction, where we start from the final critical time (to

be derived) and solve backward. This process gives rise to the aforementioned recursive

equilibrium structure which allows us to establish the uniqueness of equilibrium and also

obtain a diverse set of equilibrium dynamics under no commitment.

The implications of our analysis can be applied broadly to a range of circumstances in

which a principal (an evaluator) must assess an agent’s upside potential that is only gradu-

ally revealed in an ongoing relationship, e.g., a manager who must evaluate subordinates, a

professor who must evaluate graduate students, a head coach in professional sports who must

evaluate players, and so on. Among those possibilities, the most prominent example of eval-

uation schemes with deadlines is perhaps the “up-or-out system,” which is widely observed

in academia and professional service industries such as law, accounting, and consulting. As a

specific application, our framework offers some insight for when up-or-out contracts are more

valuable by identifying several key factors – such as high ability intensity, stable job descrip-

tions, and similar jobs across ranks – which favor the use of an evaluation deadline from a

previously unexplored channel. Each of these factors intensifies either the agent’s incentive to

delay exerting high effort for a given deadline or the principal’s incentive to delay terminating

the project for a given effort sequence (or both), thereby rendering it more profitable to set

a deadline at the outset.

The paper is organized as follows. The literature review is provided in the remainder of

this section. The model is presented in section 2 and analyzed in sections 3 and 4, where we
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characterize both the commitment and no-commitment solutions. These solutions are then

compared in section 5, in order to analyze the value of commitment and derive a necessary

and sufficient condition under which it is strictly optimal to commit to a deadline. Some

extensions of the baseline model and concluding remarks are offered in section 6.

Related Literature: The current analysis is most closely related to the experimentation

literature in that the principal here attempts to uncover the agent’s type through a sequence

of experiments.1 From the principal’s point of view, our model can be seen as a variant of

the canonical two-armed bandit problem with one safe arm (terminating the project) and

one risky arm (continuing the project). Our model is particularly related to the literature on

strategic experimentation which analyzes a situation where a group of individuals, rather than

a single individual, face bandit problems (Bolton and Harris, 1999; Bergemann and Välimäki,

1996, 2000; Keller et al., 2005; Klein and Rady, 2011; Bonatti and Hörner, 2011). A crucial

difference from this strand of literature is that experiments in our context are “intermediated,”

i.e., experiments are conducted not by the principal herself but by an informed intermediary,

the agent, who faces no uncertainty about the project.2

Recently, there have been increasingly many works that explore the optimal provision of

incentives in bandit problems. Manso (2011) considers the classic two-armed bandit problem

and shows that the optimal contract in this context must tolerate, or even reward, early

failures in order to encourage exploratory activities. Bergemann and Hege (1997, 2005) and

Hörner and Samuelson (2013) analyze a financing problem of a venture capitalist where the

principal provides funding to the agent who conducts experiments on a project of unknown

quality.3 Gerardi and Maestri (2012) consider a similar environment where an agent con-

ducts experiments but assume that the outcome of each experiment can only be observed by

the agent. The principal must hence devise a contract not only to induce costly effort but

also to truthfully reveal the information. Halac et al. (2013) analyze a model of long-term

contracting for experimentation with hidden information about the agent’s ability and dy-

namic moral hazard and obtain an explicit characterization of optimal contracts. Aside from

1An early economic application of the bandit problem can be found in Rothschild (1974). See Bergemann
and Välimäki (2008) for a survey.

2Several recent works analyze models of “delegated experimentation” where a principal delegates experi-
mentation to an agent. Guo (2014) analyzes a situation where the principal can specify, with full commitment
power, how the agent should allocate the resource in all future contingencies and solves for the optimal dele-
gation rule. Garfagnini (2011) considers a similar setting to ours but assumes that: (i) the principal and the
agent are symmetrically informed about the state of nature; and (ii) the agent’s payoff is independent of the
state. Chen and Ishida (2015) consider the opposite case in which the principal, with the termination right,
may be privately informed about the project quality while the agent focuses on implementing the project
assigned to him.

3Also, see Buisseret (2016) who considers a two-period model of this setting with a more general, convex
cost function.
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some technical differences,4 these previous works are primarily concerned with characterizing

optimal contracts. In contrast, the aim of this paper is to compare the allocations under full

commitment and no commitment, while considering a less complete contractual environment,

in order to evaluate the extent to which the principal can gain from committing to a deadline

at the outset. Although it is hard to tell a priori which specification is more plausible, as it

depends on the details of the underlying situation, our simple and tractable framework allows

us to identify and illuminate the counterintuitive role of commitment in dynamic performance

evaluation.

Several recent works examine the role of commitment in dynamic moral hazard setting.

Mason and Välimäki (2015) consider a dynamic moral hazard problem and derive optimal

wage contracts, both with and without commitment on wage payments. Hörner and Samuel-

son (2016) consider a repeated-game setting in which the principal chooses the scale of the

project in addition to contingent payments and characterize the set of equilibrium payoff

vectors that can be achieved without commitment.5 A key difference from our model is that

these two works do not consider the principal’s learning, which is our main focus, with no

hidden information about the agent’s type; as a consequence, the project is never terminated

in their models.6 This stands in sharp contrast to our setting in which the principal accu-

mulates information about the agent over time, and the project must be terminated in finite

time.7

It is well known that players often wait until the deadline to reach an agreement in finite-

horizon models. This behavior, which is referred to as the deadline effect, is a topic of utmost

concern in many bargaining and war of attrition models (Hendricks et al., 1988; Spier, 1992;

Fershtman and Seidman, 1993; Hörner and Samuelson, 2011; Chen, 2012; Damiano et al.,

2012; Fuchs and Skrzypacz, 2013). Some recent works also explore the role of deadlines

in dynamic problems with multiple agents. Bonatti and Hörner (2011) analyze a dynamic

4As a key technical difference, we consider a case where the agent knows his own productivity (or the
project quality), so that our model belongs to the class of dynamic signaling (with stochastic signals), rather
than of experimentation, from the agent’s point of view.

5In their model, outcomes are privately observed by the agent, and the moral-hazard problem regards the
truthful disclosure of this private information.

6Georgiadis et al. (2014) analyze the role of commitment in a dynamic contribution games where the
manager has the decision right over the project size. With multiple agent types and dynamic learning, Bonatti
and Hörner (2017) analyze a (symmetric-information) experimentation model in which wages are determined
competitively a la Holmström (1999) and characterize effort and wage dynamics with an exogenous termination
date.

7A subtle technical difference which directly arises from this fact lies in the ways in which to construct
an equilibrium. Mason and Välimäki (2016) and Hörner and Samuelson (2017) construct an equilibrium via
arguments found in the analysis of infinitely repeated games (reversion to the worst continuation equilibrium),
and as such, their analyses yield a non-degenerate set of equilibria. In our analysis, an equilibrium is obtained
via backward induction which gives rise to a unique equilibrium.
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moral-hazard problem with a team in which multiple agents work on a project of unknown

quality and briefly discuss the optimal deadline in this context. Campbell et al. (2013)

consider a similar environment where two agents work jointly on a project. They assume

that there is only one project type but assume that one’s own outcomes are his private

information. Each agent can exert effort to produce a breakthrough individually, and a

successful agent can reveal that he has been successful. The focus of these works is placed

on the interaction between the agents, especially the freerider problem, whereas ours is on

the dynamic interaction between the principal’s termination decisions and the agent’s effort

choices.

2 A dynamic model of performance evaluation

Environment: We employ a continuous-time model because of its greater tractability. Con-

sider a situation where a principal (female) hires an agent (male) to complete a project. The

game ends either when the agent attains a success (a “breakthrough”) or when the princi-

pal terminates the project. The agent is either good with prior probability p0 ∈ (0, 1) or

mediocre with probability 1 − p0. The ability type is the agent’s private information and

is not directly observable to the principal who must instead evaluate it from a sequence of

observed outcomes.

Production: The agent makes unobservable effort at ∈ {l, h} at each instant t.8 We interpret

that low effort (at = l) refers to the minimum level of effort that can be induced via input

monitoring while high effort (at = h) refers to any part of effort that cannot be directly

monitored by any means. The instantaneous cost of effort a is denoted by da where dh = d > 0

and dl = 0. A success arrives stochastically, depending on the effort choice as well as the

agent’s type. If the good type chooses at = a over time [t, t+ dt), he attains a success with

probability λadt where λh > λl > 0. In contrast, the mediocre type can never succeed with

any effort level.9 Define ∆λ := λh − λl.

Payoff: We consider an incomplete-contracting environment where contingent rewards on

the arrival of a success cannot be enforced.10 A success yields a net present value of y > 0

8Our focus on binary effort reflects our implicit presumption that the effort cost and success probability
are linear, as usually assumed in this literature (e.g., Keller et al, 2005; Bonatti and Horner, 2011, for most
of their analysis). As long as this structure is maintained, an extension to continuous effort, say at ∈ [l, h],
yields exactly the same allocation and is hence irrelevant.

9Our model specification is thus the “breakthrough” type in which one success can resolve all the uncertainty
regarding the agent’s type – an assumption that is predominant in the experimentation literature. See, for
instance, Keller et al. (2005) and Bonatti and Hörner (2011, 2017).

10In reality, we rarely observe complete wage contracts in industries comprised of professionals. For instance,
few academic institutions, if any, offer rewards specifically contingent on verifiable measures of output: salaries
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to the principal and b > 0 to the agent;11 otherwise, they both receive zero. Aside from this,

the principal must also pay a flow wage w > 0 to the agent as long as the project continues.12

We assume that w is exogenously given for most part; the case with an endogenous wage is

briefly discussed in the concluding section. The reservation payoff is assumed to be zero for

both players. The common discount rate is denoted by r ∈ (0,∞).

Contract: The only contractible decision for the principal in this environment is whether

to set a deadline, and if so, at what point. If the principal commits to a deadline, she

terminates the project at the deadline (but never before) if the agent has not attained a

success up to that point. If the principal chooses not to commit to any specific deadline, on

the other hand, she retains discretion to terminate the project at any instant. As mentioned

earlier, our analytical focus is on the latter case which requires that both players’ strategies

be sequentially rational.

3 Analysis

3.1 Agent’s effort decision

The agent decides whether or not to exert high effort at each instant. To analyze this

problem, it is important to note that the principal’s belief affects the agent’s payoff only

through her termination decision. The agent’s optimal effort choice thus depends only on

the remaining time to the termination date (hereafter, simply the remaining time), i.e., the

maximum length of time for which the principal continues the project without attaining a

success. The remaining time is obvious when the principal sets a deadline at time τ , in which

case the remaining time at time t is simply given by τ − t. Even without such an explicit

commitment, however, the remaining time can be computed from the principal’s equilibrium

strategy in essentially the same manner as we shall discuss below. For now, we proceed with

the presumption that the remaining time exists and is well-defined at any given point in time.

are determined through bilateral negotiations, often dictated by market forces, in some countries whereas they
are subject to bureaucratic regulations in others. One possible reason for the lack of complete wage contracts
in those industries is that it is often difficult, and perhaps prohibitively costly, to measure the exact value of
a “success” in a verifiable manner. Additionally, this assumption makes our analytical framework applicable
to a wider range of circumstances. One such possibility is that the benefit of achieving a success accrues from
non-transferrable (psychological) gains such as prestige, authority, and the sense of achievement, and extrinsic
rewards are hence of secondary importance. There are also many cases where contingent monetary transfers
are neither feasible nor desirable, as in a professor-student relationship.

11An obvious interpretation is that y and b represent the continuation payoffs of achieving a success, including
not only the intrinsic value of a successful outcome but also other benefits of identifying/signaling talent.

12Alternatively, w can be regarded as a flow cost of production (e.g., hiring an agent). Of course, under
this interpretation, w is no longer a transfer payment to the agent and does not appear in his payoff. It is
straightforward to make the setup consistent with this interpretation without having any qualitative impact
on our results.
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The agent’s problem is rather straightforward since the mediocre type, knowing that his

marginal value of effort is zero, never exerts high effort. As such, we can focus on the good

type whom we refer to simply as the agent in what follows. Denote by U(k) the agent’s value

function when the remaining time is k. Taking k > 0 as given, the value function can be

written as

U(k) = max
a∈{l,h}

(

(λab− da + w)dt+ e−rdt(1− λadt)U(k − dt)
)

.

Taking the limit dt → 0, we obtain the Bellman equation:

rU(k) = max
a∈{l,h}

(

λab− da + w − λaU(k)− U̇(k)
)

, (1)

with limk↓0 U(k) = 0. It is clear from this that the agent chooses high effort if and only if

∆λ

(

b− U(k)
)

≥ d.

As usual in this type of setup (see, e.g., Bergemann and Hege, 2005), the continuation

payoff U(k) captures the agent’s reservation payoff which he receives in case of a failure. The

cost of not succeeding today is obviously small when he has a high reservation payoff. Since

the continuation payoff is higher when the agent has more time to prove himself, the agent

has a stronger incentive to work hard as the project approaches the termination date. This

is a manifestation of the deadline effect that lies at the core of our entire analysis.

Proposition 1 If

d

∆λ

>
rb− w

λl + r
, (2)

there exists k∗ such that the good type exerts high effort if the remaining time is less than or

equal to k∗ and low effort otherwise. The threshold k∗ is given by

k∗ =







− 1
λh+r

ln
(

1−
(λh+r)(b− d

∆λ
)

λhb−d+w

)

if b > d
∆λ

,

0 if d
∆λ

≥ b.
(3)

If (2) does not hold, the agent always exerts high effort.

Proof: See Appendix.

When ∆λb ≤ d, the static incentive is too weak for the agent to exert high effort for any

remaining time. In contrast, when (2) fails to hold, the static incentive is strong enough to

overcome the dynamic agency cost, and the agent is willing to supply high effort under any

circumstance. As these cases only result in trivial solutions and are clearly of less interest

for the question we pose here, we restrict our attention to the case where the strength of the

static incentive lies in some intermediate range by making the following assumption.
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Assumption 1 λhb−d+w
λh+r

> b− d
∆λ

> 0.

Among other things, the assumption implies that the optimal threshold k∗ is bounded from

above and away from zero, i.e., k∗ ∈ (0,∞).

3.2 Principal’s termination decision

Let pt denote the principal’s belief that the agent is good at time t, conditional on no success

having occurred. Given some effort sequence {as}
t
s=0, the updated belief is then given by

pt =
p0e

−
∫ t

0
λasds

1− p0 + p0e
−

∫ t

0 λasds
. (4)

Alternatively, taking the time derivative, we obtain

ṗt = −λatpt(1− pt). (5)

It is clear that the belief is strictly decreasing over time for any effort choice (due to the fact

that λl > 0) until the agent attains a success, in which case the belief immediately jumps up

to one.

The principal’s problem is to determine when to terminate the project, conditional on no

success having occurred. Now suppose that the principal intends to terminate the project at

time τ > t. Taking the effort sequence as given, the principal’s continuation payoff can also

be written as a function of the remaining time k and the current belief pt where

V (k, pt) =

∫ t+k

t

(λaspsy − w)e−
∫ s

t
(λaupu+r)duds,

subject to (5).

It is immediate to see that for a given effort level, there exists a threshold belief below

which the principal’s instantaneous payoff is strictly negative. We denote by qa := min{ w
λay

, 1}

the “break-even” belief at which the instantaneous payoff equals zero under effort a. Com-

bined with the fact that the belief is strictly decreasing over time for any effort sequence, qh

represents the absolute lower bound of the belief, as the principal clearly has no incentive to

continue the project once her belief dips below this level. Since the belief must reach this

level sooner or later (due to the fact that λl > 0 and w > 0), the presence of such a lower

bound suggests that the game must end in some finite time. This allows us to solve the game

by backward induction.

Finally, if the value of a success is too small, the model only admits a trivial solution

where the principal chooses to stop immediately (or not to hire the agent in the first place).

In what follows, therefore, we assume that the value of a success is large enough for the

principal to hire the agent at least for some positive duration.

9



Assumption 2 p0 > qh = w
λhy

.

Since the principal’s continuation payoff depends on her belief, it is often convenient

for the subsequent analysis to explicitly relate the current and termination beliefs to the

remaining time. Suppose that the current belief is p and the principal intends to terminate

the project when the belief reaches q. If the agent adopts the best response, the remaining

time can be written as K(p, q) such that

pe−λl max{K(p,q)−k∗,0}−λh min{K(p,q),k∗}

1− p+ pe−λl max{K(p,q)−k∗,0}−λh min{K(p,q),k∗}
= q,

which reduces to

pe−λlK(p,q)−∆λk
∗

1− p+ pe−λlK(p,q)−∆λk
∗ = q,

if K(p, q) > k∗. In addition, it is also convenient to define a backward operator φ(q) such

that

φ(q)e−λhk
∗

1− φ(q) + φ(q)e−λhk
∗ = q.

The backward operator suggests that if pt = φ(q) and the agent exerts high effort for t ∈

[t, t+ k∗], then pt+k∗ = q; alternatively, if the agent expects the project to be terminated at

pt = q, φ(q) indicates the belief at which he must switch to high effort. Note that these two

notions are closely related in that K(p, q) > k∗ if and only if p > φ(q).

4 Equilibrium

4.1 The cooperative solution: a benchmark

Before we move on to analyze our model, we first examine as a benchmark the case where

both the principal and the agent attempt to maximize the sum of their individual payoffs to

derive the first-best allocation. More precisely, the instantaneous payoff in the cooperative

case, common to both players, is the difference between the expected benefit from a success

minus the effort cost, i.e., λap(y + b)− da for a given effort a.13

The agent’s problem is essentially the same and only needs a slight modification. Letting

Ũ(k) denote the agent’s continuation payoff, the agent exerts high effort if and only if

∆λ

(

(y + b)− Ũ(k)
)

≥ d.

13If the agent shared the same objective as we assume here, his private information could in principle be
induced at no cost: given that the agent’s reservation payoff is zero, the mediocre type is indifferent between
participating and dropping out immediately (before time 0), as he would obtain zero payoff in either case for
any given deadline. As it turns out, however, the optimal deadline is independent of the initial belief p0 and
the analysis holds irrespective of whether or not the principal can immediately screen out the mediocre type.
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As in the noncooperative case, there exists a threshold k̃∗ such that the good type exerts

high effort if and only if the remaining time is less than or equal to k̃∗. Under the main-

tained assumptions, one can easily verify that the agent is generally more motivated in the

cooperative case than in the noncooperative case, i.e., k̃∗ > k∗.

Given this, it is fairly straightforward to derive the cooperative solution. Since there is

no social cost of hiring the mediocre type, the joint surplus from hiring the agent is strictly

positive for any belief level, and as such, it is efficient for the principal to continue the project

indefinitely until a success is attained. This implies that the good type will eventually succeed

at some point, although he only exerts low effort all the way if k̃∗ is finite.

Proposition 2 In the cooperative case, the principal never terminates the project, and the

game continues indefinitely. The agent always exerts low effort if

d

∆λ

>
r(b+ y)

λl + r
, (6)

and high effort otherwise.

Proof: See Appendix.

Note the difference between (2) and (6). In the cooperative case, the joint expected payoff

of exerting low effort indefinitely is r(b+y)
λl+r

because the value of a success is now b+ y, instead

of just b, and there is no flow cost w.

4.2 The commitment solution

The principal’s problem under commitment is to choose a termination date τ which maximizes

her expected payoff at time 0 while restricting attention to deterministic deadlines.14 We focus

exclusively on deterministic deadlines primarily because it is generally difficult to commit to

a lottery, even when it is possible to commit to a particular termination date. To see this

point, consider a contract where the principal terminates the project at τ1 or τ2, τ1 < τ2, each

with probability strictly less than one. At time τ1, however, the principal’s preferences are

generically strict, i.e., it is strictly better either to stop (the continuation payoff is negative) or

to continue (positive), so that there is no incentive to randomize at that point. If it is strictly

better to stop at time τ1, for instance, the principal stops at time τ1 with probability one but

14If stochastic deadlines are feasible, the principal may screen out the low type by offering a menu of
contracts, one with a deterministic deadline and the other with stochastic ones. We do not pursue this
possibility both because we do not think that it is realistic (given the enforcement problem) and because it is
outside the scope of our analysis (given that our focus is on comparing the commitment and no-commitment
solutions). Note that this screening cannot be done if deadlines are deterministic, because both types always
strictly prefer a longer deadline.
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knowing that, the contract is effectively reduced to the one with a deterministic deadline. The

lack of credible enforcement is perhaps the reason why we almost never observe a contract

with stochastic deadlines.

As we have already seen, the agent exerts high effort if and only if the remaining time

is less than or equal to k∗. We denote by V ∗(k, pt) the continuation payoff when the agent

adopts this best response, where k is the remaining time and pt is the principal’s belief. This

can be written as

V ∗(k, pt) =

∫ t+ν

t

(λlpsy − w)e−
∫ s

0 (λlpu+r)duds

+ e−
∫ t+ν

t
(λlpu+r)du

∫ t+k

t+ν

(λhpsy − w)e−
∫ s

ν
(λhpu+r)duds

=
ptπl

λl + r
(1− e−(λl+r)ν) +

pte
−(λl+r)νπh

λh + r
(1− e−(λh+r)(k−ν))−

(1− pt)w

r
(1− e−rk),

(7)

where ν := max{k − k∗, 0} and πa := λay − w. The first two terms represent the expected

gain from the good type whereas the last term represents the expected loss from the mediocre

type.

Since the termination date is equivalent to the remaining time at time 0, the commitment

solution, denoted by τC , is given by

τC(p0) := argmaxτ V ∗(τ, p0).

The continuation payoff is continuous but kinked at τ = k∗. For τ ∈ (0, k∗), the first-order

condition is given by

p0πhe
−λhτ − (1− p0)w = 0. (8)

For τ ∈ (k∗,∞), it is given by

M(τ, p0) := p0e
−(λl+r)(τ−k∗)

(

πl −
λl + r

λh + r
πh(1− e−(λh+r)k∗)

)

− (1− p0)we
−rτ = 0. (9)

To better understand this condition, it is instructive to rewrite this as

(

p0πhe
−(λl(τ−k∗)+λhk

∗) − (1− p0)w
)

e−rτ =
p0∆λe

−(λl+r)(τ−k∗)

λh + r

(

w + ry + πhe
−(λh+r)k∗

)

.

Note that the left-hand side is the expected instantaneous payoff for the principal at the time

of termination, whereas the right-hand side is the marginal cost of extending the deadline.

Since the right-hand side is strictly positive, the principal must set the deadline at a point

where the expected instantaneous payoff is positive if τ > k∗.
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Since the instantaneous payoff is negative for any effort level once the belief dips below

qh, there is clearly no incentive to set τ > K(p0, qh). When the initial belief is sufficiently

close to qh (φ(qh) ≥ p0), it is optimal to let the agent work until the belief reaches this lower

bound. When it is far from it (p0 > φ(qh)), on the other hand, the principal must terminate

the project at a point where the belief is still above the lower bound. There are two cases,

depending on the value of M(k∗, p0).
15 If

λl + r

λh + r
πh(1− e−(λh+r)k∗) > πl, (10)

M(k∗, p0) < 0 for any p0 ∈ (qh, 1), and we let p̂ = 1 in this case. If (10) fails to hold, on

the other hand, there exists a unique p̂ such that M(k∗, p̂) = 0. Then, for p0 > p̂, there

exists a unique interior solution τ̂(p0) such that M(τ̂(p0), p0) = 0. When the initial prior is

in this range, it is not so costly to have a phase where the agent exerts low effort, and as

such, the principal would wait beyond time k∗. Of course, extending the deadline beyond

time k∗ means that the agent would slack off at the beginning, thereby pushing back the

realization of the high-effort phase. The principal trades off the gain of inducing low effort

for an additional instant against the cost of realizing the high-effort phase an instant later

and sets the termination date at a point where they are equalized.

For clarity, we summarize the set of parameters by Θ := (b, y, w, d, λh, λl, r). We can then

make the following statement.

Proposition 3 For any given set of parameters (Θ, p0) satisfying Assumptions 1 and 2, there

exists a unique commitment solution τC(p0) ∈ (0,K(p0, qh)]. For φ(qh) ≥ p0, the commitment

solution is given by τC(p0) = K(p0, qh). For p0 > φ(qh), there exists some p̂ ∈ (ql, 1] such

that

τC(p0) =

{

k∗ if p̂ ≥ p0 > φ(qh),

τ̂(p0) if p0 > p̂,

where: (i) p̂ > ql if 1 > ql; and (ii) p̂ = 1 if and only if (10) holds. The commitment solution

is weakly increasing in p0.

Proof: See Appendix.

Note that K(p0, qh) constitutes the upper bound of τC(p0). Since K(p0, qh) is bounded

from above when qh > 0, the proposition suggests that the project must be terminated in

finite time, meaning that some good projects are bound to be terminated prematurely. This

draws clear contrast with the cooperative solution where the project is never terminated.

15Note that M(k, p0) < 0 for any k > k∗ and p0 if and only if M(k∗, p0) < 0.
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4.3 The no-commitment solution

The situation becomes more complicated, and perhaps more intriguing, when the principal

makes no commitment at the outset and hence her termination decision must be sequentially

rational. Because of this, the principal’s termination strategy now needs to be specified

in a different way, as her strategy off the equilibrium path (after the project is supposed

to be terminated) may matter. More precisely, the principal’s strategy is given by a set

of termination dates T which consists of a first termination date and further dates along

off-equilibrium continuation paths. Formally, for this no-commitment case, we solve for a

pure-strategy perfect Bayesian equilibrium (hereafter, simply an equilibrium) in which the

principal terminates the project with probability one at each termination date (a formal

definition is given below).16

To illustrate how we specify the principal’s strategy, consider a simple example where

the principal’s strategy consists of two distinct termination dates, i.e., T = {τ1, τ2} where

τ1 < τ2. Under this strategy, the principal terminates the project with probability one at

each τ i, i = 1, 2, conditional on the continuation of the game.17 This means that the project

is surely terminated at time τ1 on the equilibrium path. To show that this constitutes an

equilibrium, however, one must assure that the principal cannot profitably deviate from this

strategy. To see this, suppose that the principal unexpectedly continues the project at time

τ1. The game then enters into a new phase where the agent now expects the project to

be terminated at the next termination date τ2 and chooses his effort accordingly (at = h if

k∗ ≥ τ2− t and at = l otherwise). Note also that the principal’s belief about the agent’s type

is not affected by the deviation: given T and the agent’s best response, we can still apply

Bayes’ rule to compute how the belief evolves both on and off the equilibrium path.18 This

gives the continuation payoff when the principal deviates which must be non-positive.

How long does this process continue? It generally goes on until the principal has no

16We restrict our attention to pure-strategy equilibria by assuming that the principal terminates the project
with probability one when the continuation payoff is zero. Since the principal is actually indifferent at this
point, however, there may exist other mixed-strategy equilibria in which the principal terminates the project
with probability less than one at each termination date. We do not pursue this possibility for two reasons.
First, we do not believe that such an equilibrium is particularly realistic and hence appealing. Second, even
with randomization, the game still must end with probability one by time τ 1, and the continuation equilibrium
is exactly the same once the game enters the final interval (τ 1, τ 2); solving backwards, one can see that the
structure of equilibrium is essentially the same where the agent starts exerting high effort as t approaches each
termination date and switches back to low effort if the project is not terminated at the termination date.

17If the game continues beyond time τ 2, the principal terminates the project immediately as we will see
below.

18Technically, we assume that the belief depends only on the agent’s past effort and is given by (4) even
off the equilibrium path. This is actually the “no signaling what you don’t know” condition (Fudenberg and
Tirole, 1991) although it is a rather obvious restriction in games with two players (it only implies that the
principal’s belief should not be affected by her own deviation).
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incentive to continue the project regardless of the agent’s effort choice or, in other words,

until the belief reaches the lower bound qh. With slight abuse of notation, we denote by pt

the equilibrium belief at time t, conditional on the continuation of the game (including the

off-equilibrium path). Let τn denote the time at which pt reaches qh for some n (which is

unknown at this point). We can then restrict our attention to t ∈ (0, τn], for it is a dominant

strategy for the principal to terminate the project once the belief reaches this lower bound.19

Lemma 1 In any equilibrium, T is a finite set.

Proof: The lemma is directly implied by the fact that any two adjacent termination dates

must satisfy τ i − τ i−1 ≥ k∗ > 0. To see this, suppose otherwise, i.e., k∗ > τ i − τ i−1. Suppose

further that the principal deviates and continues the project at time τ i−1. Then, it is strictly

better for the agent to exert high effort because k∗ > τ i − τ i−1. Note, however, that since

pt > qh for any t ∈ (0, τn) by definition, the instantaneous payoff is strictly positive until the

belief reaches the next termination belief. This is a contradiction because the principal can

strictly benefit from deviating and not stopping at time τ i−1. Given this, it is clear that we

can only have finitely many termination dates in (0, τn].

Given this result, we denote each element of T by τ i where τ1 < τ2 < · · · < τn for some

n. Accordingly, the game is divided into n distinct segments T i, i = 1, 2, ..., n by termination

dates, where T i = (τ i−1, τ i) for i = 1, 2, ..., n with τ0 = 0. The remaining time at time t is

now given by τ i − t for t ∈ T i while it is zero for all t > τn (see footnote 19). Let qi := pτ i

denote the corresponding termination belief. Only the first segment T 1 is actually played on

the equilibrium path, as the game ends with probability one by the time the game reaches

time τ1. For expositional clarity, we call τ1 the no-commitment solution and denote it by

τNC(p0) to indicate its dependence on p0. The formal definition of our equilibrium is given

below.

Definition 1 A perfect Bayesian equilibrium in this game is a pair of strategies {as}
∞
s=0 and

T := {τ i}ni=1 and a belief system such that:

• given T , the (good-type) agent chooses at at each t to maximize his continuation payoff,

i.e., chooses high effort if and only if the remaining time at time t is less than or equal

to k∗;

19 Suppose that the principal deviates and continues beyond time τn. In this case, the principal’s instan-
taneous payoff is negative even if the agent chooses at = h, so that it is a dominant strategy to terminate
immediately for all t > τn. Given this, since the remaining time is invariably zero, the agent always chooses
at = h. This is the unique continuation equilibrium after time τn (although, to describe this process formally,
we need to consider a discrete-time counterpart of our model where there is a minimum time unit, and take
the limit as the time unit goes to zero).
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• given {as}
∞
s=t and the current belief, the principal terminates the project at time t if

and only if the continuation payoff is non-positive;

• The belief at time t depends only on the effort sequence {as}
t
s=0 and is given by (4),

both on and off the equilibrium path.

To pin down the equilibrium termination dates, we need to pay closer attention to the

principal’s continuation payoff. Since the agent’s best response is the same, the principal’s

continuation payoff can still be written as V ∗(k, pt). The only difference is that the principal’s

strategy must now be sequentially rational, which amount to the following two equilibrium

conditions which the principal’s termination strategy T must satisfy.

Condition T: (i) qn = qh and (ii) if n > 1, for each i = 2, ..., n, V ∗(K(qi−1, qi), qi−1) = 0.

Condition C: For each i = 1, 2, ..., n, V ∗(τ i − t, pt) > 0 for all t ∈ T i.

Condition T is the usual indifference condition that requires the principal to terminate the

project when the continuation payoff (when she deviates) is non-positive at each τ i. This

indifference condition alone is in general not sufficient because the instantaneous payoff may

not be monotonically decreasing over time: in any segment T i, the agent may start off with

low effort, during which the instantaneous payoff could be so small that the principal is

tempted to stop prematurely. Condition C assures that the principal does not stop before

the intended termination date τ i is reached.

The next result establishes that there exists a perfect Bayesian equilibrium that is always

unique even under no commitment.

Proposition 4 For any given set of parameters (Θ, p0) satisfying Assumptions 1 and 2,

there exists a (generically) unique pure-strategy equilibrium. Given Θ, the belief space (qh, 1)

is partitioned into m(Θ) ≥ 1 distinct intervals {(P j , P j−1)}
m(Θ)
j=1 where Pm(Θ) = qh and

P 0 = 1. For p0 ∈ (P j, P j−1), j = 1, 2, ...,m(Θ), the equilibrium strategies are as follows:

• The principal’s equilibrium strategy is characterized by a set of n = m(Θ)−j+1 distinct

termination dates {τ i}ni=1 where qi = P i+j−1 and τ i − τ i−1 > k∗;20

• The agent exerts high effort if the remaining time is less than or equal to k∗ and low

effort otherwise.

Moreover, if m(Θ) > 1, then ql > P 1.

20As discussed in footnote 19, at = 0 for all t ≥ τn.
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Proof: See Appendix A.

As the proposition suggests, the structure of equilibrium is thoroughly characterized by

how the belief space is partitioned into intervals. A crucial determinant of the partition

{(P j , P j−1)}
m(Θ)
j=1 is the profitability under low effort which is captured by πl.

21 Below, we

first briefly illustrate how we pin down m(Θ) and {(P j , P j−1)}
m(Θ)
j=1 from a given Θ (in what

follows, we simply denote m = m(Θ) to save notation). Once they are obtained, it is quite

straightforward to derive the equilibrium strategy T for a given p0.

Suppose first that the profitability under low effort is sufficiently high, so that the princi-

pal’s instantaneous payoff is positive even under low effort. In this case, the principal is not

tempted to stop prematurely, and only Condition T is sufficient to pin down the equilibrium.

Figure 1 depicts this situation where m = 1: the agent starts off with low effort and switches

to high effort when the remaining time is k∗; the principal stops when the belief reaches the

lower bound P 1 = qh at time τ1. Formally, m = 1 and hence n = 1 for all p0 ∈ (qh, 1) if and

only if V ∗(K(ql, qh), ql) > 0, i.e.,

qlπl

λl + r
(1− e−(λl+r)ν) +

qle
−(λl+r)νπh

λh + r
(1− e−(λh+r)(k−ν)) >

(1− pt)w

r
(1− e−rk), (11)

where µ = max{K(ql, qh) − k∗, 0} (see the proof of Proposition 4, especially Lemma 2, for

more detail). Note that (11) depends only on Θ. The no-commitment solution τNC(p0) is

monotonic in p0 if and only if this condition holds.

[Figure 1 about here]

In contrast, the instantaneous payoff may become negative under low effort when the

success probability under low effort is relatively low, in which case we may have a situation

where the principal’s continuation payoff also becomes negative before the belief reaches qh.

Figures 2 and 3 show the evolution of the belief and the expected payoff when m = 2 while

fixing the principal’s strategy at T = {τ1}. In the figures, ql is so high that the instantaneous

payoff is negative for the entire interval during which the agent exerts low effort, and there

exists a point τ ′ (in Figure 3) such that the continuation payoff is negative for t ∈ (0, τ ′).

This implies that T = {τ1} does not constitute an equilibrium as it violates Condition C.

In this case, the game is divided into two segments, T 1 and T 2, as illustrated in Figure 4.

The pair of strategies now satisfies the equilibrium conditions since the instantaneous payoff

is always positive in T 1. Formally, if V ∗(K(ql, qh), ql) < 0, there must exist p′ ∈ (qh, ql) such

21Note that the partition {(P j , P j−1)}
m(Θ)
j=1 is determined solely by Θ while qi depends also on the initial

prior p0.
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that V ∗(K(p′, qh), p
′) = 0, in which case we redefine P 1 = p′ and P 2 = qh. As above, m = 2

if and only if V ∗(K(ql, P
1), ql) > 0.

[Figures 2-4 about here]

We can continue this process until we find P 1 such that V ∗(K(ql, P
1), ql) > 0.22 Once

the partition is pinned down, we can then easily derive the equilibrium strategies: for p0 ∈

(P j , P j−1), the principal’s equilibrium strategy consists of n = m − i + 1 termination dates

where qi = P i+j−1 and

τNC = τ1 = K(p0, q
1), τ i =

i−1
∑

i′=1

τ i
′

+K(qi−1, qi) for i = 2, 3, ..., n.

Note also that qi−1 > φ(qi) > qi because the continuation payoff is always strictly positive

when the belief is in (qi, φ(qi)), the range where the remaining time is less than k∗ and the

agent exerts high effort. This alternatively means τ i − τ i−1 > k∗, i.e., the length between

any two adjacent termination dates must be larger than k∗.

Finally, we would also like to note that the constructed equilibrium is generically unique

for any given set of parameters. This uniqueness result stems crucially from the fact that there

is a lower bound of the belief qh below which the principal would never continue the project.

As stated above, together with the fact that λl > 0, this implies that the game must end

in some finite time, which allows us to solve the game via backward induction analogously

to the “gap case” of the durable-good monopoly problem (Fudenberg et al., 1985). More

precisely, since the agent’s strategy depends only on the remaining time, we know exactly

how the game must end as the belief approaches the lower bound. Applying this reasoning

backward, we can identify a unique continuation equilibrium for each pt > qh and all the way

back to the initial prior p0.

5 Discussion

5.1 The value of commitment

Our framework yields unique commitment and no-commitment solutions which enable us to

directly assess the value of commitment to an evaluation deadline. Given that both τC and

τNC can be written as functions of p0, the expected equilibrium payoffs can also be written

as functions of p0. Let

V C(p0) := V ∗(τC(p0), p0), V NC(p0) := V ∗(τNC(p0), p0).

22When ql = 1, there is no such q1 and m will go to infinity. If ql < 1, on the other hand, this process must
converge after a finite number of rounds.
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The value of commitment is then defined as

∆V (p0) := V C(p0)− V NC(p0).

In principle, we can compute the exact value of ∆V (p0) for any given p0. The following

statement is the main result of the paper which analytically characterizes how the value of

commitment varies with respect to p0.

Proposition 5 (i) ∆V (p0) = 0 for p0 ∈ (Pm, φ(Pm)) where Pm = qh. (ii) If m > 1,

for each j = 2, 3, ...,m, ∆V is strictly increasing in p0 for p0 ∈ (φ(P j), P j−1) and strictly

decreasing for p0 ∈ (P j−1, φ(P j−1)) with ∆V (φ(P j)) = 0. (iii) ∆V (φ(P 1)) = 0 if and only if

p̂ ≥ φ(P 1) where p̂ is the threshold defined in Proposition 3. (iv) limp0→1∆V (p0) = 0 if and

only if 1 > p̂.

Proof: See Appendix.

The proposition suggests that the value of commitment changes in a non-monotonic way as

p0 increases, precisely due to the non-monotonic nature of V NC . Despite this, we can still find

some regularities except for the last segment (φ(P 1), 1).23 Take an interval (φ(P j), φ(P j−1))

for j = 2, 3, ...,m where φ(P j−1) > P j−1 > φ(P j). In each of these intervals, (i) the value

of commitment is single-peaked and maximized at P j−1 (at which point the no-commitment

solution yields a zero payoff); (ii) the value of commitment is zero at both ends of the

interval (at which point the two solutions are identical). Important features of Proposition

5 are captured by Figure 5 which shows a typical path of the value of commitment when

m = 2.24

[Figure 5 about here]

To see how ∆V changes with respect to p0, observe that the only feasible history at any

continuation game is the one consisting only of failures up to that point, and the principal

hence has no additional information other than the fact that the agent has achieved no success.

This immediately implies that the no-commitment solution can yield no higher payoff than

the commitment solution, i.e., ∆V (p0) ≥ 0 for all p0. Clearly, the no-commitment solution

23In the last segment, the profitability under low effort can be high enough (if p0 > ql), and the expected
payoff can go up even during the low-effort phase. Moreover, in this range, τC(φ(P 1)) = τNC(φ(P 1)) may
not even be satisfied since τC(φ(P 1)) can be larger than k∗. As a consequence, the value of commitment can
either go up or down (and can even be non-monotonic). See Appendix B for more detail.

24For the figure, the parameters are set as follows: λh = 0.1, λl = 0.04, b = y = 1, w = 0.035, d = 0.02,
r = 0.05.
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gives the principal a different, and necessarily lower, payoff when τC 6= τNC . Still, the no-

commitment solution can replicate the same allocation as the commitment solution when

τC = τNC , because Proposition 1 ensures the unique equilibrium given the same horizon. It

follows from Proposition 5 that the commitment solution generically yields a strictly higher

expected payoff for the principal than the no-commitment solution if and only if p0 > φ(qh),
25

i.e.,

p0 >
qh

qh + (1− qh)e−λhk
∗ ⇔

1− qh

qh

(

1−
(λh + r)(b− d

∆λ
)

λhb− d+ w

)

λh
λh+r

>
1− p0

p0
. (12)

Conversely, when this condition fails to hold, the absence of commitment entails no additional

cost, and the no-commitment solution becomes strictly profitable in the presence of a (possibly

very small) commitment cost.26

The proposition states that the principal benefits from committing to a deadline if the

initial prior belief p0 exceeds a certain threshold φ(qh), i.e., if the initial prior is so high

that the belief at time k∗ is above the lower bound qh even if the agent exerts high effort

for t ∈ [0, k∗]. The value of a deadline depends crucially on each player’s propensity to

“procrastinate.” In short, the threshold is lower and hence favors the commitment solution

for a given initial belief either when the agent delays exerting high effort for a given deadline

or when the principal delays terminating the project for a given effort sequence. Below, we

briefly summarize how each player’s propensity to procrastinate is determined:

1. The agent’s propensity to procrastinate is determined by the tradeoff between the

current gain of attaining a success and the potential loss of future payoffs. For a given

deadline, the agent tends to procrastinate more (a small k∗) when the potential loss of

future payoffs is large relative to the current gain.

2. The principal’s propensity to procrastinate depends on the break-even belief and the

likelihood of a success under high effort. The break-even belief is evidently the major

force determining how patient the principal can be, where the principal is more tempted

to wait for an eventual success when qh is low. Further, for a given qh, the principal

tends to wait longer when λh is small, because the information about the agent’s type

is revealed only slowly in that case.

25To be more precise, as Proposition 5 suggests, there could be some non-generic cases where the expected
payoffs are identical.

26An obvious commitment cost is that the principal must give up flexibility to adjust ex post to any uncer-
tainty that may resolve during the course of play. Although we have thus far assumed away this aspect for
clarity, we extend the analysis to incorporate uncertainty into the current setup in section 6: there, we show
that the commitment solution is not always weakly optimal. The commitment cost may also arise from the
cost of writing and enforcing a formal contract.
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Before we move on, it is important to note that our characterization result owes largely

to the fact that we consider a binary effort choice or, more importantly, that there is an

upperbound for effort. In contrast, if the effort domain is unbounded with a convex effort cost,

the commitment solution in general yields a strictly higher payoff than the no-commitment

solution.27 Even in this case, however, the nature of the problem remains largely intact. The

intuition provided above carries over to this more general case as well because the value of

a deadline is still determined in essentially the same way, although the analysis would be

substantially more complicated.

5.2 Too early or too late?

In the absence of commitment, the principal often fails to stop at the right time because she

has a strong incentive to wait for a success. This reasoning seems to indicate that the prin-

cipal always terminates the project earlier with commitment than without, or equivalently,

τNC(p0) ≥ τC(p0) for all p0. As indicated in Figures 3 and 4, however, this does not neces-

sarily hold in the current setup. When the principal knows that she cannot stop soon enough,

and it is too costly for her, she may terminate the project even when the instantaneous payoff

is still strictly positive.

From Proposition 3, it is conceptually straightforward to compute the commitment solu-

tion τC . Figures 6a and 6b illustrate τC as a function of p0, using the same parameters as

in Figure 5 except for λl. The qualitative nature of τC depends largely on the productivity

under low effort as captured by λl. Figure 6a is the case where λl is relatively high. In this

case, the principal does not lose much during the low-effort phase, and is willing to extend

beyond k∗ when the initial prior is sufficiently high. In contrast, when λl is relatively low, as

depicted in Figure 6b, the principal sets τC ≤ k∗ to assure that the agent always exerts high

effort. In either case, for p0 > φ(qh), τ
C is set strictly below the upper bound K(p0, qh) so

that the project is terminated before the belief reaches qh.

[Figures 6a and b about here]

As we show in the proof of Proposition 4, we can also explicitly derive the no-commitment

solution τNC(p0) although it may take a much more complicated form. Figure 7 depicts

τNC(p0) along with τC(p0), which confirms that the average duration of the project can

be longer with commitment than without, using the same parameters as in Figure 5. The

figure also reveals that the no-commitment may not be monotonically increasing in p0, in

27On the other hand, we can obtain essentially the same result even if the effort level is continuous as long
as the feasible effort level is bounded from above.
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clear contrast to the commitment solution which is always weakly increasing. When the

initial belief is relatively high, it takes long for the belief to reach the lowerbound qh, and

the principal may have to incur large losses if she is to wait until the moment at which the

instantaneous payoff equals zero. To avoid this situation and discipline the agent, the principal

must act early, i.e., she may need to pull the trigger earlier for ex ante more promising agents

in some cases. This is more likely to be the case when λl is low, in which case the principal

must incur losses in the low-effort phase. Formally, we can make the following statement.

Proposition 6 τNC(p0) can be larger or smaller than τC(p0). Moreover, τC(p0) > τNC(p0)

for almost all p0 ∈ (φ(qh), 1) as λl tends to zero.

Proof: It is clear that τNC(p0) can be larger than τC(p0) for some p0, because τ
NC(p0) > k∗

for p0 slightly larger than φ(qh) while τ
C(p0) = k∗ for p0 ∈ (φ(qh), p̂). We can also show that

τNC(p0) can be smaller if m ≥ 2, because limp0↓P 1 τNC(p0) = 0 < k∗ ≤ τC(P 1).

As for the second statement, It follows from Proposition 3 that τC(p0) ≥ k∗ for

p0 ∈ (φ(qh), 1). To prove the proposition, it thus suffices to show that k∗ > τNC(p0) in this

range. Suppose otherwise, i.e., τNC(p0) ≥ k∗ for some p0 ∈ (φ(qh), 1). This happens if and

only if p0 ∈ (φ(P j), P j−1) for j = 1, 2, ...,m or, in other words, P j−1 must be bounded away

from φ(P j). This is a contradiction, however, as limλl→0 V
∗(K(P j−1, P j), P j−1) < 0 for any

P j−1 > φ(P j).

[Figure 7 about here]

Our results yield some empirical implications. An obvious one is that the initial prior

p0 is not necessarily a reliable predictor of future success under no commitment. Aside

from this, it is also worth emphasizing that the equilibrium allocation depends crucially

on what happens off the equilibrium path. As a consequence, two organizations that are

observationally similar may exhibit drastically different equilibrium outcomes. To put this

idea in context, consider two distinct organizations, A and B, each characterized by λi
l,

i = A,B, and the corresponding no-commitment solution τNC,i (while assuming that the two

organizations are equivalent in every other dimension). Suppose further that λA
l > λB

l and

λB
l → 0. In this case, as Proposition 6 suggests, τNC,B(p0) < k∗ for almost all p0, meaning

that we almost never observe the low-effort phase in organization B, and hence λB
l cannot be

estimated from actual data. The two organizations are thus observationally indistinguishable

even though their respective no-commitment solutions can be totally different from each

other.
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5.3 An application: when is up-or-out optimal?

The most prominent example of evaluation schemes with deadlines is arguably what is called

the “up-or-out system” – a promotion scheme that is widely observed in academia and pro-

fessional service industries such as law, accounting, and consulting (Lazear and Gibbs, 2014;

Eriksson, 2016).28 Under a typical up-or-out contract, the employer sets a deadline by which

a promotion must occur, and the worker must leave the firm if he is not promoted by the

deadline. In academia, it is often the case that incoming assistant professors must be pro-

moted within a certain period of time (typically around six years). Outside of academia, a

leading example of industries with up-or-out is the legal service industry. Many law firms

traditionally adopt a set of managerial practices, known as the Cravath system, which include

up-or-out (or “partnership track”) where incoming associates must make partner within a

certain period of time (roughly seven to ten years). This contrasts sharply with other typical

firm organizations which almost never specify deadlines by which workers must be promoted.

Here, we attempt to shed some light on this issue by examining under what conditions (12)

is likely to be satisfied. There are of course some caveats. First and foremost, our theoretical

framework is perhaps too simplistic to capture all the important details of this diverse set of

industries; some of our arguments may thus be applied only to a subset of those industries.29

Second, there is also a danger in comparing allocations under different incentives structures.

One particular concern is the potential endogeneity of parameter values that are taken as

exogenous here.30 With those qualifications in mind, our framework can still provide some

useful, though preliminary, insight for when it pays to commit to a promotion deadline as in

the case of up-or-out.

Ability intensity: It is often argued that knowledge intensity is one of the most fundamental

characteristics of professional service industries (von Nordenflycht, 2010). Combined with the

fact that they are also less capital intensive,31 the productivity of an organization depends

28For brevity, we refer to those industries characterized by up-or-out, including academia, broadly as profes-
sional service industries. The military is another example which is characterized by up-or-out, but we do not
consider this case because the underlying structure appears to be quite different. See Kahn and Huberman
(1988), Waldman (1990), O’Flaherty and Siow (1992), and Ghosh and Waldman (2010) for formal analyses of
up-or-out contracts.

29For instance, our exponential specification implies that success is very rare and information is coarse, as
assumed in Bonatti and Hörner (2017), which might be applicable to some industries but not to some others.
Also, team production may play a bigger role in some industries than in others.

30It is likely that y and b may vary with the contract duration when we interpret them as the net continuation
payoffs of achieving a success. In particular, we normalize the continuation payoff at zero when the project
is terminated, but this could well be a function of the contract duration (or the market belief at the time of
termination).

31High knowledge intensity and low capital intensity are not equivalent in the strict sense of the word
because, as argued by von Nordenflycht (2010), an industry can be both knowledge- and capital-intensive at
the same time. For the purpose of this study, however, we do not make any distinction between them.
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crucially on the extent of knowledge embodied in individuals (Starbuck, 1992; Winch and

Schneider, 1993). A likely consequence of this fact is that innate ability matters and creates

value that cannot be easily substituted by sheer effort, at least in the short run – a feature

which we call ability intensity for expositional clarity.

Since the mediocre type can never attain a success in the current setup, one way to

measure the extent of ability intensity is by the (good type’s) success probabilities. We say

that the project is more ability-intensive when λl and λh are larger with a fixed ∆λ. Note

that an increase in λh, while fixing ∆λ, yields three conflicting effects. First, it raises the

agent’s productivity at the margin, which in turn lowers the threshold qh. Second, it gives

the agent a stronger incentive to procrastinate (a lower k∗) as it raises his expected future

payoff under high effort. Finally, it also facilitates the principal’s learning as each failure

reveals more information. The first two effects raises the value of up-or-out while the last

lowers it, such that the overall impact is not immediately clear.

One can readily show, however, that there exists some threshold λ̄ such that it is strictly

optimal to set a deadline, thereby favoring the use of up-or-out, for λh > λ̄. To see this, we

rewrite (12) as

p0

1− p0
>

qh

(1− qh)e−λhk
∗ =

w

(λhy − w)e−λhk
∗ . (13)

Under the maintained assumptions, λh > λ := max{ w
p0y

, ∆λ

d

(

r(b− d
∆λ

)+d−w
)

}. If ∆λ

d

(

r(b−

d
∆λ

) + d−w > w
p0y

, we have limλh→λ k
∗ = ∞, and hence, (13) is never satisfied if λh is small.

In contrast, we have

lim
λh→∞

qh

(1 − qh)e−λhk
∗ = 0,

implying that (13) must hold if λh is sufficiently large.

Stable job descriptions: Another distinctive feature of professional service industries is a

professionalized workforce that builds on a particular knowledge base (Torres, 1991; von Nor-

denflycht, 2010). This in turn creates well-defined job boundaries and stable job descriptions.

Due to various professional requirements and accreditation processes, workers in professional

service industries are typically responsible only for a narrow and clear set of tasks, compared

to workers in other industries. This implies that the nature of tasks that they are expected

to carry out is very stable over time, and the production environment is relatively immune

to stochastic shocks. For instance, a demand or technology shock that entirely changes the

job description of a lawyer or a college professor is highly unlikely.

We can interpret r as the rate at which the project is terminated for exogenous reasons,
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e.g., the arrival of a stochastic shock that makes the project completely worthless.32 Define

r̄ such that

λhb− d+ w

λh + r̄
= b−

d

∆λ

.

Assumption 1 then implies that r must be bounded between (0, r̄). It is clearly not profitable

to commit to a deadline if r is sufficiently close to r̄ because limr→r̄ k
∗ = ∞. In contrast,

there exists some r such that it is profitable to commit to a deadline for r < r if

1− qh

qh

(

1−
λ1(b−

d
∆λ

)

λhb− d+ w

)

>
1− p0

p0
.

It can be seen from this argument that a decrease in r (a more stable relationship) in general

raises the value of up-or-out because the agent can be more forward-looking and tends to

procrastinate more, which in turn makes the principal unable to stop at the right time.

Job similarity across ranks: Another immediate consequence of stable job descriptions

is that jobs necessarily become similar across different ranks.33 In the current setup, this

aspect may be captured by y, which can be interpreted as the expected payoff of promoting

a good-type agent. If entry- and senior-level jobs are similar, y tends to be larger because

a success at the entry level is a reliable predictor of productivity at the senior level. This is

not necessarily the case in typical firm organizations where jobs across ranks can differ to a

considerable extent, as often discussed in the context of the Peter Principle.34

The effect of a change in y is fairly straightforward, as it only affects the break-even belief

with no impact on the agent’s behavior. A large value of y implies a small value of qh which

gives the principal a stronger incentive to wait for a breakthrough. Given this, the agent

also has a stronger incentive to procrastinate, hoping to achieve a breakthrough with low

effort. The principal can then unambiguously benefit from committing to a deadline when

y is sufficiently large, implying that the value of up-or-out is higher in industries where jobs

are similar and there is a strong correlation between performances at different ranks.

32Here, we allow the principal to terminate the project when the shock arrives; see section 6 for the case
where the principal must abide by the deadline under any circumstance.

33Ghosh and Waldman (2010) also raises job similarity as one of the distinctive characteristics of academia.
Job similarity is also crucial in Kahn and Huberman’s (1988) classic argument because if jobs are sufficiently
different, we may use promotions to solve the double moral-hazard problem as suggested by Prendergast
(1993). However, our argument here may be more applicable to academia (at least in humanities and social
sciences) but less so to other professional service industries such as law where the role of a partner is more
about bringing in business (or “rainmaking”).

34The Peter Principle states that every post tends to be occupied by an employee who is incompetent to
carry out its duties, because employees are promoted through positions where they have excelled until they
reach a level of incompetence (Peter and Hull, 1969). A premise of this argument is that jobs are inherently
different and become progressively harder as one climbs though ranks.
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6 Conclusion

This paper presents a simple stylized model of dynamic performance evaluation with par-

ticular emphasis on the role of commitment to an evaluation deadline. We consider an

environment where the principal chooses whether to commit to a deadline and if so, at what

time. Within this framework, we obtain a complete characterization of equilibrium and derive

a necessary and sufficient condition for committing to a deadline to be optimal. The simple

framework also allows us to conduct various comparative statics exercises to give insight into

when it is beneficial to set an evaluation deadline at the outset.

Since our model is deliberately stylized to obtain sharp analytical characterizations, there

are naturally several avenues to extend the current analysis. Before we conclude, we briefly

discuss two of those possible extensions (see Appendices C and D for more formal analyses

of these cases).

Uncertainty: An important cost of making commitment arises from the fact that the prin-

cipal loses flexibility to adjust to future stochastic shocks. The baseline model does not

capture this cost because the only feasible history at each continuation game consists only of

failures up to that point; as a consequence, it is weakly optimal to commit to a deadline in

the baseline model. This is apparently unsatisfactory, provided that we live in a world filled

with uncertainty where there is clearly value in being flexible.

One way to cope with this possibility is to consider a setup where a permanent produc-

tivity shock may strike with some probability, which totally changes the nature of the task

and subsequently makes the agent unproductive, i.e., λh = λl = 0.35 For simplicity, suppose

that (i) the shock is permanent and arrives at most once, with a Poisson arrival rate β, and

(ii) the arrival of the shock is publicly observable. In this situation, the principal can retain

the flexibility to adjust to a negative shock by immediately terminating the project whenever

it strikes. We can then show that due to this benefit, there arises a situation where the

principal strictly benefits from not committing to a deadline.

Exogenous wages: In the baseline model, we have assumed that the contractual environ-

ment is highly incomplete in that no contingent wage contracts can be written. Even in

such an environment, it may still be possible to agree on the flow wage contingent on the

continuation of the project. Of course, since the flow wage in this context is a pure transfer

35Once the principal chooses to commit to a deadline, the principal must abide by it and is not allowed
to terminate the project, unlike in the discussion of stable job descriptions in section 5.3 where we allow the
principal to terminate the project whenever a stochastic shock arrives. If the principal is allowed to terminate
the project at any time before the committed deadline, the commitment solution then yields a weakly higher
payoff than the no-commitment solution.
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payment with no incentive effect on the agent’s side, there is no reason for the principal to

offer any wage beyond the minimum level if she can stop at the right time. However, as we

have seen, this is not always true when the principal makes no commitment to a deadline, in

which case the flow wage can be used as a substitute for a deadline. This can be potentially

useful if the commitment cost is prohibitively large for some reason.

To explore whether there are circumstances in which she offers any strictly positive w to

this effect, suppose that the principal can deliberately choose any w ≥ 0 at time 0.36 The

benefit of raising w above zero is clear if we look at the case where w = 0: in this case,

the instantaneous payoff is always strictly positive (as in the cooperative case), no matter

how unlikely the agent is to succeed; as a consequence, the principal can never terminate

the project, and given this, the agent never exerts high effort. The principal can alter this

structure by raising w above zero because the flow cost of employment is now positive,

rendering the instantaneous payoff negative at some point. This can be profit-enhancing for

the principal because with the credible threat of termination, she can induce the agent to

exert high effort, which is especially beneficial when the success probability under low effort

is low: formally, we can show that the optimal flow wage is strictly positive if λl is sufficiently

small. This reasoning is similar to Buisseret (2016) in that a higher flow wage is used as a

commitment device to stop at the right time and reduce future rents for the agent.37
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Appendix A: Proofs

Proof of Proposition 1: It is intuitively clear that the value function is strictly increasing

in k. Formally, define

rUa(k) =
(

(λab− da + w)− λaUa(k)− U̇a(k)
)

(14)

as the value function when the effort level is fixed at a = l, h. Solving this differential equation

and imposing the boundary condition U(0) = 0, we derive

Uh(k) =
λhb− d+ w

λh + r
(1− e−(λh+r)k).

If ∆λb > d, it is optimal for the agent to exert high effort as long as Uh(k) is sufficiently

small. Moreover, since Uh(k) is strictly increasing in k, the agent would never switch back
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to low effort, once U(k) reaches this critical point. Then, k∗ is obtained as a solution to

Uh(k
∗) = b− d

∆λ
, which can be written as

λhb− d+ w

λh + r
(1− e−(λh+r)k∗) = b−

d

∆λ

. (15)

Note that the agent always exerts high effort if

b−
d

∆λ

≥
λhb− d+ w

λh + r
⇔

rb− w

λl + r
≥

d

∆λ

,

while he never does so if d
∆λ

≥ b. For in-between cases, solving (15) yields

k∗ = −
1

λh + r
ln

(

1−
(λh + r)(b− d

∆λ
)

λhb− d+ w

)

,

so that the agent exerts high effort when the remaining time is less than or equal to k∗. For

k > k∗, the agent exerts low effort because U(k) ≥ Uh(k) > b− d
∆λ

.

Proof of Proposition 2: The agent always exerts high effort in the noncooperative case if

(2) fails to hold. An analogous condition for the cooperative case is given by

λh(y + b)− d

λh + r
> y + b−

d

∆λ

⇔
d

∆λ

>
r

λl + r
(y + b).

Applying the same argument as in Proposition 1, we obtain

k̃∗ = −
1

λh + r
ln

(

1−
(λh + r)(y + b− d

∆λ
)

λh(y + b)− d

)

.

To see that the project is never terminated, we first show that if it is ever optimal to set

a deadline in some finite time, the only possibility is to set it at time k̃∗, so that the agent

exerts high effort from the beginning. To see this, the principal extends the deadline beyond

time k̃∗ if and only if

λl(y + b) >
λl + r

λh + r

(

λh(y + b)− d
)

(1− e−(λh+r)k̃∗). (16)

Note that this condition is independent of the deadline. As such, if this condition holds, it

is then optimal to continue the project indefinitely until the project succeeds. If it fails to

hold, on the other hand, it is clearly optimal to set a deadline at time k̃∗.

Since, by definition,

y + b−
d

∆λ

= Ũ(k̃∗) =

(

λh(y + b)− d
)

λh + r
(1− e−(λh+r)k̃∗).
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we can modify (16) as

λl(y + b)

λl + r
> y + b−

d

∆λ

.

The left-hand side is the expected payoff of exerting low effort indefinitely while the right-

hand side is that of exerting high effort from time 0 to time k̃∗ which must equal the static

gain.

This condition must hold for any finite k̃∗ when (6) is satisfied, meaning that it is

strictly better to let the project continue indefinitely. If (6) fails to hold, on the other hand,

k̃∗ → ∞, and again it is better to let the project continue indefinitely. This shows that no

finite deadline can improve the social surplus in the cooperative case.

Proof of Proposition 3: First, if φ(qh) ≥ p0 > qh (the latter inequality holds by Assumption

2), there exists a unique deadline τC ∈ (0, k∗] that satisfies

p0e
−λhτ

C

1− p0 + p0e−λhτ
C

= qh.

There is clearly no reason to wait beyond this point because the instantaneous payoff is

strictly negative for any effort choice. It is also not optimal to stop before τC because the

instantaneous payoff is still strictly positive. The optimal termination date is then τC and it

is unique in this range.

Second, suppose that p0 > φ(qh), in which case the first-order condition is given by

M(τC , p0) = 0. If M(k∗, p0) ≤ 0, the expected payoff is strictly decreasing in τC for τC > k∗,

and the optimal termination date is τC = k∗. Alternatively, define p̂ ∈ (0, 1) such that

M(k∗, p̂) = 0 if (10) holds and p̂ = 1 otherwise. Then, the optimal termination date is

k∗ for p0 ≤ p̂. If p0 > p̂, on the other hand, there must exist a unique τ̂(p0) such that

M(τ̂(p0), p0) = 0. Since the instantaneous payoff is strictly positive for τ̂(p0) > τC and

negative for τC > τ̂(p0), the optimal termination date in this case is τ̂(p0).

Finally, to show that p̂ > ql if 1 > ql, there are two cases. If (10) holds (but 1 > ql), then

p̂ = 1 > ql. If (10) fails to hold, on the other hand, M(k∗, p0) is increasing in p0 for any k∗.

Given that 1 > ql, it suffices to show that M(k∗, ql) < 0, i.e.,

(1− ql)we
−rk∗ > ql

(

πl −
λl + r

λh + r
πh(1− e−(λh+r)k∗)

)

.

This can be written as

−erk
∗

(

ql
λl + r

λh + r
πhe

−λhk
∗

− (1− ql)w

)

> ql

(

πl −
λl + r

λh + r
πh

)

.
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which is further reduced to

−erk
∗(

qlπle
−λhk

∗

− (1− ql)w
)

> ql(1− e−(λh+r)k∗)

(

πl −
λl + r

λh + r
πh

)

.

Note that the left-hand side is positive by definition while the right-hand side is negative, so

that this condition holds for any k∗. From the preceding argument, we can see that p̂ = 1 if

and only if (10) holds. It is also evident that τC(p0) is weakly increasing in p0.

Proof of Proposition 4: We show the existence and uniqueness of the equilibrium by

construction. We start with a candidate strategy T 1 = {τ1} and the corresponding best

response such that

at =

{

l for t ∈ [0,max{τ1 − k∗, 0}),

h for t ∈ [max{τ1 − k∗, 0}, τ1].
(17)

This pair of strategies constitutes an equilibrium if V ∗(K(p, qh), p) > 0 for all p ∈ (qh, p0].

Alternatively, we check for what interval of p0 this condition is satisfied. To this end, the

following result is useful.

Lemma 2 Let ql > q. Then, V ∗(K(p0, q), p0) > 0 for all p0 ∈ (q, 1) if and only if

lim
p↑ql

V ∗(K(p, q), p) > 0.

Proof: Since the necessity is evident by definition, we only prove the sufficiency part. Since

the case with ql = 1 can be proved analogously (by taking the limit), we suppose for now

that 1 > ql > q.

First, if p0 ≥ ql, V
∗(K(ql, q), ql) > 0 directly implies V ∗(K(p0, q), p0) > 0 for all p0 ≥ ql

because the instantaneous payoff is strictly positive for any effort choice when the belief is

above ql. Note also that V ∗(K(p0, q), p0) > 0 for all p0 ∈ (q, φ(qh)] since the high type always

exerts high effort in this case. This implies that V ∗(K(p0, q), p0) > 0 for all p0 ∈ (q, 1) if

φ(q) ≥ ql. In what follows, therefore, we assume ql > φ(q).

Given this, it suffices to show that

V ∗(K(ql, q), ql) > 0 ⇒ V ∗(K(p0, q), p0) > 0 for all p0 ∈ (φ(q), ql).

Suppose on the contrary that V ∗(K(ql, q), ql) > 0 but V ∗(K(p, q), p) ≤ 0 for some p ∈

(φ(q), ql). If this is the case, there must exist some z ∈ (φ(q), ql) such that V ∗(K(z, q), z) = 0.

Since

V ∗(K(p, q), p) =
p(λly − w)

λl + r

(

1− e−(λl+r)(K(p,q)−K(p′,q))
)

−
(1− p)w

r

(

1− e−r(K(p,q)−K(p′,q))
)

+
(

1− p+ pe−λl(K(p,q)−K(p′,q))
)

e−r(K(p,q)−K(p′,q))V ∗(K(p′, q), p′),
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for any p > p′ > φ(q), due to the recursive structure of the expected payoff, we have

V ∗(K(ql, q), ql) =
ql(λly − w)

λl + r

(

1− e−(λl+r)∆K
)

−
(1− ql)w

r

(

1− e−r∆K
)

+ (1− ql + qle
−λl∆K)e−r∆KV ∗(K(z, q), z)

=
ql(λly − w)

λl + r

(

1− e−(λl+r)∆K
)

−
(1− ql)w

r

(

1− e−r∆K
)

,

where ∆K := K(ql, q) − K(z, q). This is strictly negative by definition, and therefore a

contradiction.

The lemma shows that we only need to check the continuation payoff at ql to see whether

a given strategy is sequentially rational. An immediate corollary of the lemma is that

V ∗(K(p0, qh), p0) > 0 for all p0 if φ(qh) ≥ ql. In this case, m(Θ) = 1, P 1 = qh and T = {τ1}

constitutes an equilibrium for any p0.

We now suppose that ql > φ(qh) and check if the candidate strategy can satisfy the

equilibrium conditions. From Lemma 2, this is the case if and only if V ∗(K(ql, qh), ql) > 0,

i.e.,

qlπl

λl + r

(

1− e−(λl+r)(K−k∗)
)

+
qlπh

λh + r
e−(λl+r)(K−k∗)

(

1− e−(λh+r)k∗
)

>
(1− ql)w

r

(

1− e−rK
)

.

(18)

where K = K(ql, qh). If (18) holds, the expected payoff is always positive for any p0, so

we can apply the same argument as in Case 2 to show the existence and uniqueness of the

equilibrium.

The situation becomes more complicated when (18) fails to hold, in which case the princi-

pal has an incentive to deviate and stop at some point, and the candidate strategy no longer

constitutes an equilibrium. In this case, there instead exists a critical belief that satisfies (18)

with equality, because V ∗(K(p, qh), p) is continuous in p with V ∗(K(φ(qh), qh), φ(qh)) > 0 >

V ∗(K(ql, qh), ql). We now redefine P 1 = min{q : V ∗(K(q, qh), q) = 0} and P 2 = qh. Given

the critical belief, we can then consider another candidate strategy T 2 = {τ1, τ2} for p0 > P 1

where pτ1 = q1, and the best response is given by

at =























l for t ∈ [0,max{τ1 − k∗, 0}),

h for t ∈ [max{τ1 − k∗, 0}, τ1),

l for t ∈ (τ1, τ2 − k∗),

h for t ∈ [τ2 − k∗, τ2].

Note that q1 > φ(q2) > q2 = qh or τ2 > τ1 + k∗.

The game is now divided into two segments. First, we can show that the equilibrium is

unique after time τ1 (as done in Case 2). Before time τ1, we can apply the same procedure to
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the truncated interval [0, τ1] to see whether T 2 can be an equilibrium strategy. More precisely,

we need to check if V ∗(K(p, P 1), P 1) > 0 for all p ∈ [p0, φ(P
1)). Applying Lemma 2, T 2

is an equilibrium strategy for all p0 ∈ (P 1, 1) if V (K(ql, P
1), ql) > 0. For p0 ∈ (P 1, 1), the

principal’s equilibrium strategy consists of two termination dates. Given that the continuation

equilibrium after time τ1 is unique, we can establish the uniqueness by applying the same

argument.

If V (K(ql, P
1), ql) ≤ 0, on the other hand, we can find yet another critical belief in

(φ(P 1), ql]. We again redefine P 1 analogously and repeat the same process until we find

P 1 such that V (K(ql, P
1), ql) > 0. In the end, this process would give us m(Θ) intervals

{(P j , P j−1)}mj=1 where the principal’s equilibrium strategy consists of n = m(Θ) − j + 1

termination dates if p0 falls into (P j , P j−1). Note also that since V ∗(K(P 1, P 2), P 1) = 0 by

definition, it must be that ql > P 1 if m(Θ) > 1.

Proof of Proposition 5: (i) For p0 ∈ (qh, φ(qh)), τ
C(p0) = τNC(p0) = K(p0, qh). Since the

agent’s strategy depends only on the remaining time, the two cases yield the same expected

payoff for the principal.

(ii) To show this, we first examine how V C and V NC vary with respect to p0 for p0 ∈ (φ(qh), 1).

It is evident that V C must monotonically increase with the initial prior. To see this, note

that

dV C

dp0
=

∂V ∗

∂p0
+

∂V ∗

∂τC
dτC

dp0
.

The last term is the indirect effect though an increase in τC which is invariably zero because

either ∂V ∗

∂τC
= 0 or dτC

dp0
= 0 must hold by the optimality condition. Since the direct effect ∂V ∗

∂p0

is unambiguously positive, V C is strictly increasing in p0. More precisely, we obtain

dV C

dp0
=

πh

λh + r
(1− e−(λh+r)k∗) +

w

r
(1− e−rk∗)

= p0πh − (1− p0)w − (p0λh + r)V C(p0)−
(

p0e
−λhk

∗

πh − (1− p0)w
)

e−rk∗ , (19)

for p0 ∈ (φ(qh), p̂), and

dV C

dp0
=

πl

λl + r
(1− e−(λl+r)(τC−k∗)) +

e−(λl+r)(τC−k∗)πh

λh + r
(1− e−(λh+r)k∗) +

w

r
(1− e−rτC )

= p0πl
λh + r

λl + r
(1− e−(λl+r)(τC−k∗)) + p0πhe

−(λl+r)(τC−k∗) − (1− p0)w

− (p0λh + r)V C(p0)−
(

p0πhe
−λl(τ

C−k∗)−λhk
∗

− (1− p0)w
)

e−rτC , (20)

for p0 ∈ (p̂, 1).
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In contrast, V NC changes with p0 in a non-monotonic way if m > 1. Consider p0 ∈

(φ(P j), φ(P j−1)) for j = 2, 3, ...,m. Since V NC(p0) = V ∗(K(p0, q), p0) where q is the closest

termination belief, it follows that

dV NC

dp0
=

∂V ∗

∂p0
+

∂V ∗

∂k

∂K

∂p0
=

∂V ∗

∂p0
+

1

λlp0(1− p0)

∂V ∗

∂k
.

First, for p0 ∈ (φ(P j), P j−1), we obtain

dV NC

dp0
=

πl

λl + r
(1− e−(λl+r)(K−k∗)) +

πhe
−(λl+r)(K−k∗)

λh + r
(1− e−(λh+r)k∗) +

w

r
(1− e−rK)

+
e−(λl+r)(K−k∗)

λl(1− p0)

(

πl

λl + r
−

πh

λh + r
(1− e−(λl+r)k∗)

)

−
we−rK

λlp0

= p0πl − (1− p0)w − (p0λl + r)V NC(p0), (21)

which is negative because ql > P 1 > p0. For p0 ∈ (P j−1, φ(P j−1)), we obtain

dV NC

dp0
=

πh

λh + r
(1− e−(λh+r)K) +

w

r
(1− e−rK) +

e−rK

λhp0(1− p0)

(

p0πhe
−λhK − (1− p0)w

)

= p0πh − (1− p0)w − (p0λh + r)V NC(p0), (22)

which is positive for any p0 > qh.

We are now ready to see how ∆V changes with respect to p0. First, it is clear that ∆V

is strictly increasing in p0 for p0 ∈ (φ(P j), P j−1) because V C is increasing while V NC is

decreasing. In contrast, for p0 ∈ (P j−1, φ(P j−1)), both V C and V NC are increasing in p0.

For p̂ > p0, it follows from (19) and (22) that

d∆V

dp0
< 0 ⇔ (p0λh + r)

(

V C(p0)− V NC(p0)
)

> −
(

p0e
−λ∗

k − (1− p0)w
)

e−rk∗.

This condition always holds because p0e
−λhk

∗
> (1− p0)w and V C(p0) ≥ V NC(p0) by defini-

tion. Similarly, for p0 > p̂, comparing (20) and (21) yields

p0

(

πh −
λh + r

λl + r
πl

)

(1− e−(λl+r)(τC−k∗)) + (p0λh + r)
(

V C(p0)− V NC(p0)
)

> −
(

p0e
−λl(τ

C−k∗)−λ∗
k − (1− p0)w

)

e−rτC ,

which again always holds.

(iii) If p̂ ≥ φ(P 1), then τC(φ(P 1)) = k∗. Since τNC(φ(P 1)) = k∗ by definition, ∆V (φ(P 1)) =

0. To see the necessity, note that ∆V (p0) = 0 implies τC(p0) = τNC(p0). Since τ
NC(φ(P 1)) =

k∗, we must have τC(φ(P 1)) = k∗ which holds if and only if p̂ ≥ φ(P 1).
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(iv) Suppose first that 1 > p̂, in which case τC and τNC solve

e−λτC(p0) =
1− p0

p0

(

(λh + r)we−(λ+r)k∗

(λh + r)πl − (λl + r)πh(1− e−(λh+r)k∗)

)

=:
1− p0

p0
ΦC ,

e−λlτ
NC(p0) =

1− p0

p0

(

q1

(1− q1)e−∆λk
∗

)

=:
1− p0

p0
ΦNC ,

respectively, for p0 > p̂. Note that both ΦC and ΦNC are independent of p0. From this, since

limp0→1 τ
C(p0) = ∞ and limp0→1 τ

NC(p0) = ∞, we obtain

lim
p0→1

V C(p0) = lim
p0→1

V NC(p0) =
p0πl

λl + r
−

(1− p0)w

r
.

If p̂ = 1, on the other hand, τC(p0) = k∗ for all p0, but as we have seen, limp0→1 τ
NC(p0) = ∞.

Appendix B: the value of commitment in (φ(P 1), 1)

As we have seen in Proposition 5, the value of commitment moves with some regularities for

p0 ∈ (qh, φ(P
1)). The exception is the last segment (φ(P 1), 1). The reason is that for this

(and only this) segment, we could have φ(P 1) > p̂ > ql (see Propositions 3 and 4), so that

the instantaneous payoff under low effort can be positive and τC(p0) > k∗ for p0 ∈ (φ(P 1), 1).

There are three cases we need to consider, depending on the value of p̂.

Case 1: φ(P 1) > p̂

In this case, τC(φ(P 1)) > τNC(φ(P 1)) = k∗ and hence ∆V (φ(P 1)) > 0 (as we show in

(iii) of Proposition 4). For p0 > φ(P 1), τC(p0) and τNC(p0) increase proportionally (see the

proof of Proposition 4), with both diverging to infinity as p0 → 1. As we show in (iv) of

Proposition 4, ∆V (p0) converges to zero as p0 → 1.

Case 2: p̂ > φ(P 1)

In this case, τC(φ(P 1)) = τNC(φ(P 1)) = k∗ and hence ∆V (φ(P 1)) = 0. For p0 ∈

(φ(P 1), p̂), τNC(p0) continues to go up while τC(p0) stays at k∗; as a consequence, ∆V (p0)

gradually increases in this range. Once p0 goes above p̂, τC(p0) also gradually increase, but

again proportionally to τNC(p0). Since τ
NC(p0) > τC(p0) for p0 ∈ (p̂, 1) in this case, ∆V (p0)

gradually decreases and converges to zero as p0 → 1.38

38If p̂ = φ(P 1), then τC(p0) = τNC(p0) and hence ∆V (p0) = 0 for p0 ∈ (p̂, 1). We ignore this non-generic
case.
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Case 3: p̂ = 1

This is the most straightforward case. Given that p̂ = 1, τC(p0) = k∗ for p0 ∈ (p̂, 1) and

hence τC(p0) and τNC(p0) diverge away from each other in this range. As a consequence,

∆V (p0) increases as in all the preceding intervals.

Appendix C: The case with uncertainty

We analyze an extended version of the baseline model where a permanent productivity shock

may strike with some probability. For simplicity, we assume that a shock arrives with a

Poisson arrival rate β; once it arrives, the agent becomes totally unproductive thereafter,

i.e., λh = λl = 0. We also assume that the arrival of a shock is publicly observable. Other

more complicated cases, e.g., those with transitory shocks, can in principle be analyzed in an

analogous manner.

The agent: The agent’s problem requires a slight modification. The augmented Bellman

equation is obtained as

rU j(k) = max
a∈{l,h}

(

(bλa − da + w)− (λa + β)U(k) + βŨ j(k)− U̇(k)
)

, j = C,NC

where Ũ j denotes the value function after the shock has arrived. Since the principal’s reaction

to the shock differs, Ũ j , and hence U j(k), depend on whether or not the principal makes

commitment. As in the baseline model, the incentive compatibility constraint (before the

shock strikes) can be written as

∆λ

(

b− U j(k)
)

≥ d,

although the value function U j(k) now differs. As such, the agent exerts high effort only when

the project is sufficiently close to termination. We let kC and kNC denote the threshold under

commitment and no commitment, respectively.

Proposition 7 For any Θ and β, kNC > kC . Both kNC and kC are strictly increasing in β

if bλh−d+w
λh+β+r

> b− d
∆λ

> 0.

Proof: We first consider the case where the principal commits to a deadline. Note that the

principal cannot terminate the project even if the shock arrives before the deadline. Since the

agent has no incentive to exert high effort, we have ŨC(k) = w(1−e−rk)
r

. Let UC
a (k) denote

the value function under commitment when the effort level is fixed at a. We then obtain

UC
h (k) =

bλh − d+ w

λh + β + r
(1− e−(λh+β+r)k) +

βw

r

(

1− e−(λh+β+r)k

λh + β + r
−

e−rk(1− e−(λh+β)k)

λh + β

)

.
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The threshold under commitment is a solution to UC
h (kC) = b− d

∆λ
.

The problem is much more straightforward when the principal makes no commitment. In

this case, the optimal choice for the principal is to terminate the project as soon as the shock

arrives, which implies ŨNC(k) = 0 for all k. As above, define UNC
a (k) as the value function

under no commitment with fixed effort a, which is given by

UNC
h (k) =

bλh − d+w

λh + β + r
(1− e−(λh+β+r)k).

If bλh−d+w
λh+β+r

> b− d
∆λ

> 0, there exists an interior threshold kNC given by

kNC = −
1

λh + β + r
ln

(

1−
(λh + β + r)(b− d

∆λ
)

bλh − d+ w

)

.

It is evident that kNC > kC because the expected payoff must be higher under commit-

ment for a given horizon. Formally, we need to show that

1− e−(λh+β+r)k

λh + β + r
>

e−rk(1− e−(λh+β)k)

λh + β
,

which can also be written as

∫ k

0
e−(λh+β+r)sds >

∫ k

0
e−(λh+β)s−rkds.

This condition holds because

e−(λh+β+r)s > e−(λh+β)s−rk ⇔ e−rs > e−rk,

for any s < k.

Finally, note that kC , kNC ∈ (0,∞) when bλh−d+w
λh+β+r

> b − d
∆λ

> 0. We can then show

that kj , j = C,NC, is increasing in β if U j
a(k) is decreasing in β for k ≤ kj . Straightforward

computation shows that UNC
h (k) is strictly decreasing in β. In contrast, it is a little more

involved to show the same for UC
h (k). To see this, with some computation, we obtain

UC
h (k) =

bλh − d

λh + β + r
(1− e−(λh+β+r)k)−

λhw

r

(

1− e−(λh+β+r)k

λh + β + r
−

e−rk(1− e−(λh+β)k)

λh + β

)

+
w(1− e−rk)

r

=
bλh − d− λh

w(1−e−rk)
r

λh + β + r
(1− e−(λh+β+r)k) +

λhwe
−rk

r

(

1− e−(λh+β)k

λh + β
−

1− e−(λh+β+r)k

λh + β + r

)

+
w(1− e−rk)

r
.
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First, it is easy to verify that 1−e−αk

α
is strictly decreasing for any α > 0. Further, observe

that the second term is strictly decreasing in β. These two facts imply that it suffices to show

that

bλh − d > λh

w(1− e−rk)

r
,

for k ≤ kC . To show this, since bλh − d > bλh −
λh

∆λ
d ≥ λhU

C
h (k) for k ≤ kC , we have

UC
h (k) >

λh(U
C
h (k) − w(1−e−rk)

r
)

λh + β + r
(1− e−(λh+β+r)k) +

λhwe
−rk

r

(

1− e−(λh+β)k

λh + β
−

1− e−(λh+β+r)k

λh + β + r

)

+
w(1− e−rk)

r
,

for k ≤ kC . This is further reduced to
(

1−
λh(1− e−(λh+β+r)k)

λh + β + r

)(

UC
h (k)−

w(1 − e−rk)

r

)

>
λhwe

−rk

r

(

1− e−(λh+β)k

λh + β
−

1− e−(λh+β+r)k

λh + β + r

)

,

which gives UC
h (k) > w(1−e−rk)

r
.

It is interesting to note that the possibility of a negative shock generally lowers the

expected future payoff and hence induces the agent to exert high effort for longer, either

with or without commitment (kNC > kC > k∗). First, with commitment, the best the agent

can do after the shock strikes is to exert low effort and earn the flow payoff w, which is the

lowest possible payoff as long as the project survives. The situation is even worse without

commitment, however, because the principal can immediately terminate the project, thereby

leaving no rent for the agent. The extent of the loss is therefore larger when the principal

makes no commitment, which amounts to the fact that kNC > kC and in turn favors the

no-commitment solution.

The principal: We start with the case where the principal commits to a deadline at the

outset. Let V C(k, p0) denote the principal’s expected payoff at time 0 under commitment,

which can be written as

V C(k, p0) =

∫ νC

0
(λlpsy − w)e−

∫ s

0 (λlpu+β+r)duds

+ e−
∫ νC

0 (λlpu+β+r)du

∫ k

νC
(λhpsy − w)e−

∫ s

νC
(λhpu+β+r)duds

−
β

r

∫ νC

0
w(1− e−r(k−s))e−

∫ s

0
(λlpu+β+r)duds

−
β

r
e−

∫ νC

0 (λlpu+β+r)du

∫ k

νC
w(1 − e−r(k−s))e−

∫ s

νC
(λhpu+β+r)duds. (23)
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where νC := max{τC −kC , 0}. The difference from the previous case is that a negative shock

may now strike with some probability, in which case the principal earns zero from that point

on. The commitment solution is obtained as

τC = argmaxτV
C
0 (τ).

As can be seen from (23), the marginal benefit of extending the deadline decreases with β,

which prompts the principal to terminate earlier than in the case with no uncertainty.

In contrast, the problem is roughly the same as in the baseline model when the principal

makes no commitment because the principal only pays attention to the instantaneous pay-

off. As in the baseline model, the principal stops when the instantaneous payoff becomes

sufficiently low. To be more precise, define

φNC(p) :=
p

p+ (1− p)e−λhk
NC

.

Given that no shock has arrived, if φNC(qh) > ql, the principal stops when the belief reaches

qh. The only difference is that when the shock strikes, the instantaneous payoff falls to −w,

which prompts her to stop immediately. The principal’s expected payoff is given by

V NC(k, p) =

∫ νNC

0
(λlpsy − w)e−

∫ s

0
(λlpu+β+r)duds

+ e−
∫ νNC

0 (λlpu+β+r)du

∫ k

νNC(q)
(λhpsy − w)e−

∫ s

νNC (λhpu+β+r)duds, (24)

where νNC is defined analogously. Note that for the same time horizon, V NC(k, p0) >

V C
0 (k, p0) for any p0.

The optimal incentive scheme: In the baseline model with no uncertainty, any allocation

which can be realized without commitment can be realized with commitment as well. This

is no longer the case with uncertainty because the principal cannot foresee if and when the

shock strikes, in which case she needs to immediately terminate the project. We can then

make the following statement.

Proposition 8 The principal strictly benefits from not committing to a deadline for any

β > 0 if φNC(qh) ≥ p0.

Proof: If φNC(qh) ≥ p0, the agent exerts high effort from the beginning under no commit-

ment. The principal’s payoff is maximized, and the principal strictly benefits from making

no commitment in this case. To see this, observe that kNC > kC implies φNC(qh) > φC(qh).

If φNC(qh) ≥ p0 > φC(qh), the agent starts off with low effort, and the principal is forced to
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set a deadline before the belief reaches qh. The profit is clearly lower than V NC(τNC , p0). On

the other hand, if φNC(qh) > φC(qh) ≥ p0, the agent exerts high effort from the beginning

even under commitment. The profit is still lower, however, because the principal must incur

a flow loss when the shock strikes whereas she can immediately terminate the project if she

makes no commitment.

The presence of uncertainty lowers the value of commitment through two channels. First,

by making no commitment, the principal can retain the flexibility to adjust to the negative

shock by immediately terminating the project whenever it strikes. Aside from this con-

ventional effect of flexibility, there also arises another force that favors the no-commitment

solution: in the face of uncertainty, the agent is better motivated by the constant threat of

project termination, and thus, he starts exerting high effort earlier. Since φNC(qh) > φ(qh)

for any β > 0 by Proposition 7, we could have φNC(qh) ≥ p0 > φ(qh), in which case the value

of commitment is strictly negative with uncertainty whereas it is strictly positive without.

7 Appendix D: The case with endogenous wages

We consider a setup where the principal can deliberate choose w ≥ 0 at time 0. In general,

an increase in w above zero yields two opposing effects. On one hand, it raises the critical

value qh, which may give the principal the incentive to stop earlier than otherwise. On the

other hand, it also raises the expected future payoff which in turn lowers k∗ and gives the

agent the incentive to procrastinate even more. A necessary condition for w > 0 is that the

first effect dominates the second, or alternatively that τNC − k∗ decreases with w.39 We can

then make the following statement.

Proposition 9 It is optimal to set w > 0 if λl is sufficiently small.

Proof: As w → 0, we have qh → 0 and ql → 0, which implies τNC(p0) → ∞ for any p0. The

expected payoff then converges to

lim
w→0

V ∗(τNC , p0) =
p0λly

λl + r
, (25)

for any p0. Define µ(w) such that φ( w
λhy

) = µ(w), i.e.,

µ(w)−λhk
∗

1− µ(w) + µ(w)−λk∗
= qh =

w

λhy
.

39Note that τNC − k∗ is the interval during which the agent exerts low effort. If it is longer with a smaller
k∗, the principal’s expected payoff is necessarily lower.
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Note that

1− µ(w)

µ(w)
=

1− qh

qh
e−λhk

∗

=
λhy − w

w

(

1−
(λh + r)(b− d

∆λ
)

λhb− d+ w

)

λh
λh+r

.

Since limw→0 µ(w) = 0 and µ(λhy) = 1, there must exist at least one w̃ such that µ(w̃) = p0.

If we set w = w̃, then τNC = k∗ > 0 by definition, and the expected payoff is

V (k∗, p0) =

∫ k∗

0
(λhypsy − w̃)e−

∫ s

0 (λhpu+r)duds,

which is always strictly positive and larger than (25) if λl is sufficiently small.
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t

pt

ql

P 1 = qh

k∗

τ 1τ 1 − k∗

Figure 1: Evolution of the belief on the equilibrium path (m(Θ) = 1)

t

pt

ql

P 1 = qh

k∗

q′

V ∗(τ 1 − t, pt) < 0

τ 1τ 1 − k∗τ ′

Figure 2: A violation of Condition C: the belief (m(Θ) = 2)
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t

V ∗

k∗

V ∗(τ 1 − t, pt) < 0

0

τ 1τ 1 − k∗τ ′

Figure 3: A violation of Condition C: the continuation payoff

t

pt

ql

P 2 = qh

k∗k∗

P 1

τ 2τ 2 − k∗
τ 1 = τNCτNC − k∗

Figure 4: Evolution of the belief, on and off the equilibrium path
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p0

V ∗

V NC (p0)

φ(P 2)P 2 = qh

V C(p0)

P 1 φ(P 1)

Figure 5: The expected payoffs with and without commitment

p0

τ

τC(p0)

φ(qh)qh

K(p0, qh)

Figure 6a: The commitment solution when λl is relatively high (λl = 0.07)

46



p0

τ

τC(p0)

φ(qh)qh

K(p0, qh)

Figure 6b: The commitment solution when λl is relatively low (λl = 0.04)

p0

τ

τC(p0)

φ(P 2)P 2 = qh

τNC(p0)

P 1 φ(P 1)

Figure 7: The no-commitment solution
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