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Abstract

A standard incomplete-information war of attrition is extended to incorporate ex-

perimentation and private learning. We obtain a characterization of all equilibria in this

extended setup and use this setup to illuminate a tradeoff between short-run and long-run

gains of experimentation. The extension yields qualitative impacts on the strategic nature

of the problem. The option value of experimentation serves as a credible commitment

device to stay in the game, which is instrumental in inducing the other player to concede

earlier. As a direct consequence, there may be an equilibrium in which the strictly less

efficient player can get the better end of the deal, implying that slow learning can be a

blessing in this type of competition. Our analysis gives insight into why an apparently in-

ferior technology often survives in many standards competitions and more broadly offers

implications for technology adoption and industry dynamics. We also show that there is

a non-degenerate set of parameters that can support the Pareto-efficient allocation as an

equilibrium outcome whereas it is never possible in the standard setup.
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1 Introduction

In many standards competitions, we observe instances where an apparently less efficient or less

matured technology survives in the end as the defacto standard, as exemplified most notably

by the video format war between Betamax and VHS.1 Although standards competitions often

take the form of a war of attrition, this observation seems to be at odds with theoretical

predictions from some standard versions of it, suggesting that there may be a missing link

that has been overlooked in the literature. In this paper, we attempt to fill this gap by

extending a standard war of attrition to ask whether there are factors, other than sheer

technological superiority, which affect the outcome of this type of economic competition in

any significant way.

One observation stands out in search of this missing link: standards competitions typically

take place in innovation-intensive industries, such as telecommunications, home VCR, audio,

operating systems, high-speed rail and automated driving. In most of these cases, incoming

firms, or standards, are initially still technologically premature but gradually improve their

productive efficiency or profitability over time via experimentation. The fact that competing

standards may innovate alters the strategic nature of competition at least in two ways. First,

it is not only the current efficiency level but also the margin of experimentation, i.e., how much

room for improvement a given technology is expected to possess, which can play a decisive

role: a player with large room for improvement clearly has more incentive to experiment and

hence less incentive to drop out. Second, the possibility of technological progress also implies

that it is ex ante not clear how many standards can survive in a given market. Although

the market for standards is typically not large enough to accommodate many inefficient

ones, there are still cases where multiple standards attain enough efficiency to coexist for a

substantial duration of time, as in the competition between Windows and Mac in operating

systems or among Nintendo, SONY and Microsoft in video game consoles. When multiple

standards emerge, the strategic nature of the problem tips over, for it is no longer a war of

attrition with no point in waiting for the rival to drop out.

To describe this situation, we extend a two-player incomplete-information war of attrition

to incorporate experimentation and private learning. The setup is quite standard, except that

each player’s type may change over time as a result of (learning-by-doing) experimentation.

Each player’s type, which is either weak or strong, is his own private information. If a player

1There is naturally an extensive literature discussing whether and how a society gets “locked in” with an
inefficient standard, mainly focusing on various issues arising from network effects (Katz and Shapiro [13],
[14], Farrell and Saloner [9], [10], Arthur [2], Choi [7]). Also, see Katz and Shapiro [15] and Stango [24] for
surveys.
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is weak, however, he may achieve a technological breakthrough and become strong with some

probability as long as he stays in the game. The probability of achieving a breakthrough

depends on the unobservable state of nature which is not directly observable and must be

uncovered via experimentation. Finally, we assume that a strong player can earn positive

payoff regardless of the other player’s presence, so that it is a dominant strategy for him

to stay in the game indefinitely. It is this last assumption which gives rise to the ex ante

uncertainty about how many players can survive in the end.

We obtain a characterization of all equilibria in this extended setup. The extension to

incorporate experimentation is technically rather straightforward but yields some qualitative

impacts on the strategic nature of the problem. In our extended setup, a weak player may

stay in the game just because he may achieve a breakthrough tomorrow. The option value of

experimentation thus serves as a credible commitment device to stay in the game, which is

instrumental in inducing the other player to concede earlier. As a direct consequence of this

force, we find an equilibrium in which the strictly less efficient player, but with more room for

experimentation, can get the better end of the deal, i.e., slow learning can be a blessing. This

stands in sharp contrast to the standard setup with no experimentation (hereafter, simply

the standard war of attrition) where the equilibrium payoff is monotonic with respect to a

player’s “efficiency” level. Our analysis sheds new light on the tradeoff between short-run and

long-run gains of experimentation from a previously unexplored channel and suggests some

practical implications for technology choice and industry dynamics. On a more specific level,

it gives insight into why an inferior technology often survives in standards competitions.

From a more technical point of view, it is also worth noting that there may exist an

efficient equilibrium (in the sense of Pareto) in our extended setup, again in clear contrast to

the standard war of attrition where there generically exists no efficient equilibrium. This is

because the efficient allocation requires that any weak player exit immediately unless both

of them are weak. A way to (approximately) achieve this allocation is that: one player, say

player 1, exits with probability one at time 0 if he is weak; player 2 then exits with probability

one an instant later if he is weak and player 1 did not exit. There is no such equilibrium,

however, because if player 1 knows that player 2 will exit with strictly positive probability an

instant later, he is always better off with waiting than exiting immediately. More generally,

in any equilibrium of the standard setup, at most one player can exit with strictly positive

probability, which immediately excludes the possibility of realizing the efficient allocation.

The situation changes rather drastically once the element of experimentation is introduced

into the setup. In the model with experimentation, the efficient allocation typically involves

delay, as it leads to better informed decisions. A player may exit with strictly positive
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probability when the option value of experimentation equals the flow cost, the timing of which

may arrive differently between the players. This property is crucial for the construction of

equilibrium in general and can be exploited to construct an equilibrium in which both of the

players exit with strictly positive probability at some (different) points of the game. More

importantly, due to this property, there exists a non-degenerate set of parameters that can

support the efficient allocation as an equilibrium outcome.

Related literature: A war of attrition, which originates from theoretical biology, is well

suited for various economic situations, such as standards competitions, where multiple parties

compete for a fixed resource. In many economic applications, however, participating players

may innovate and improve their “fitness” in a relatively short span of time. This could be

an important departure from biological settings where genetic evolution occurs rather slowly

and such a possibility is almost negligible.

An essential feature of our war of attrition is that there is a type of player who would never

concede. Without the element of experimentation, our model becomes a variant of Fudenberg

and Tirole [11] who analyze a war of attrition when there are types who would never concede.

Among other things, they establish the uniqueness of equilibrium when some types may never

exit – a property which is also retained in our setup – whereas there is typically a continuum

of equilibria when there are no such types. Similarly, Ordover and Rubinstein [21] analyze a

concession game in which one player is informed about the disagreement outcome; there, a

player who knows that the disagreement outcome is favorable never concedes. In this vein,

our model is also related to reputational models of bargaining, such as Abreu and Gul [1]

and Kambe [12], which include a stubborn type who “irrationally” sticks to his own demand

and never concedes.

Kim and Lee [16] analyze information acquisition in a war of attrition where the war

terminates stochastically, in which case each player receives a payoff according to the under-

lying state of nature. In this setup, they consider a situation where each player can observe

the state of nature by engaging in costly information acquisition. Our analysis shares an

aspect with this work in that learning takes place in a war of attrition but differs in the way

players acquire information: in theirs, information acquisition is done once and for all when

a player incurs the cost whereas in ours, it is through time-consuming experimentation with

information being revealed only gradually over time. This difference is crucial as the speed

of learning, or the margin of experimentation, is one of the main focuses of our analysis.

Chen and Ishida [6] analyze a hierarchial model of experimentation in which a principal

retains the authority to terminate the joint project while an agent focuses strictly on running

the project assigned to him. A key departure of the analysis is the possibility that the
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principal may be informed about the project type, so that her termination decision becomes

a signal of the project quality. In equilibrium, a principal who knows that the project is good

never terminates the project, just like the strong type in the current setup who never exits.

The model can thus be seen as a hybrid of experimentation and war of attrition models. The

focus of that work is on characterizing the agent’s effort dynamics and how they depend on

factors such as the principal’s ability to evaluate the eventual value of a project.

Several works examine the optimal timing of exit with information externalities among

players. Chamley and Gale [5] consider a model of strategic investment in which there are

N players, a random number n of whom have an investment option. Assuming that the

value of investment depends positively on the random number n, there is an incentive to

wait and see others’ investment decisions. Decamps and Mariotti [8] also consider a setup in

which the value of investment is common across the players while the cost is only privately

known. Murto and Välimäki [20] analyze an exit game with private learning where each

player receives a signal in each period which partially reveals his own type. In those models,

the players’ payoffs are positively correlated through the aggregate state of nature: a good

(aggregate) state is a good news for all players in the game. In contrast, in our setup, the

state of nature is individual-specific and a good state for one player is necessarily a bad news

for the other.

Finally, one driving force of our model is the ex ante uncertainty about the number of

players who can survive in the end. Some previous works explore this issue mainly by focusing

on demand-side uncertainty. Most notably, Rob [22] analyzes entry dynamics of firms in a

situation where uncertainty exists with respect to the “limit of the market” and it is costly

to overshoot the market limit. See Vettas [25], Rob and Vettas [23], and Barbarino and

Jovanovic [3] for various extensions of this approach.

2 Model

Environment: Consider a war of attrition between two players, indexed by i = 1, 2. The

basic setup is a standard war of attrition under incomplete information, except that a player’s

type may change over time as a result of experimentation. Time is continuous, extending from

zero to infinity, and each player decides whether to stay in the game or exit from it at each

instant with a decision to exit irreversible and publicly observable. Below, we first outline the

standard part and then describe how we augment it with the possibility of experimentation

and private learning.

Standard war of attrition: A player is either weak or strong at each point in time. There
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is asymmetry of information between the players where each player’s type is his private

information and cannot be observed by the other player. The flow payoff to a player is one

if he is strong or the other player has exited from the game; otherwise, the flow payoff is −ρi

where ρi ∈ (0,∞) captures the flow cost of staying in the game for player i. This specification

implies that there are two (equally effective) ways for a weak player to earn positive payoff,

either to achieve a breakthrough or to wait for the other player to exit. The reservation

payoff, which a player earns when he exits, is normalized at zero. Each player discounts

payoffs by a common discount rate r. For the sake of exposition, we refer to this particular

setup as the standard war of attrition in what follows.

Experimentation: We augment the above setup by introducing the hidden state of nature

for each player which indirectly influences his type. More precisely, before the game begins,

nature chooses the state for each player i, denoted by θi ∈ {0, 1}. The realized state (θ1, θ2)

is not observable to anyone and drawn independently with P (θi = 1) = αi. Given the state,

nature then chooses the initial type of each player where

P (player i weak | θi = 0) = 1, P (player i weak | θi = 1) = ηi.

The unconditional probability that player i is strong at time 0 is hence given by (1 − ηi)αi.

We assume, however, that a player who is initially weak may achieve a breakthrough and

become strong over time: if a weak player stays in the game for [t, t + dt), a breakthrough

arrives with probability λiθidt. For clarity, we call λi ∈ (0,∞) the learning rate for player

i. Note that in this specification, a player can be strong only if the underlying state is good

(θi = 1).

Interpretation: Throughout the analysis, we in particular focus on two parameters, αi and

ηi, as they admit economically relevant interpretations. First, since a player can be strong

only if the state is good, αi indicates the upper bound of the probability that player i is

strong, i.e., if player i stays in the game indefinitely, the probability that he is good converges

to αi. For this reason, we refer to αi as the asymptotic efficiency of player i. Second, ηi

measures how much room for experimentation player i has, which we refer to as the margin of

experimentation. As a practical interpretation, we take this as capturing the “technological

maturity” of player i, where a low ηi means that the player is in a technologically more

advanced or matured stage with less room for experimentation. Note that the learning rate

plays a similar, though not equivalent, role to the margin of experimentation since 1− ηi can

alternatively be regarded as the mass probability of achieving a breakthrough at time 0.
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3 Analysis

3.1 Preliminaries

Given the payoff structure, it is a dominant strategy for a strong player to stay in the game

indefinitely with no further decisions to make. We can thus focus on a weak player, provided

that both players are still in the game. Throughout the analysis, we denote a generic player

by i and “the other player” by j.

Let pi(t) denote the belief that the state for player i is good (θi = 1) at time t, conditional

on being weak. Since a breakthrough occurs at a constant rate, the belief depends only on

time and is given by

pi(t) =
αiηie

−λit

Qi(t)
,

where Qi(t) := 1− αi + αiηie
−λt. Note that the belief declines monotonically over time, i.e.,

no news is a bad news.

If a player is strong or the only player has exited, he earns a continuation payoff of

1
r
. As such, rρi measures the cost-benefit ratio of staying in the game for player i. If the

learning rate is low relative to the cost-benefit ratio, a player has no incentive to experiment,

and the game is effectively reduced to the standard war of attrition. To focus on relevant

and interesting cases, therefore, we assume throughout the analysis that the option value of

experimentation is sufficiently large.

Assumption 1 λi > rρi.

3.2 The optimality conditions

The strategy for player i is Gi which specifies the unconditional distribution of exiting time.

Define gi as its corresponding density, which represents the rate at which player i exits. We

assume that Gi is right continuous.

At each instant t, each player decides whether to stay or exit. If a player exits, he earns a

continuation payoff of zero. In contrast, if a player stays and exits at the next instant, he can

achieve a breakthrough with probability pi,tλdt while the rival player exits with probability
gj(t)dt
1−Gj(t)

; in either case, the player earns 1
r
. Since the flow cost is ρidt, a necessary condition

for player i to exit at t is

rρi ≥ pi(t)λi +
gj(t)

1−Gj(t)
, (1)
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which shows the key tradeoff between exiting now and waiting for an instant. If there is

no possibility of a breakthrough (λi = 0), the model becomes the standard war of attrition

where the hazard rate is constant over time.

If αiηi ≥
rρi
λi

, there exists τi such that

pi(τi) =
αiηie

−λiτi

Qi(τi)
=
rρi

λi
, (2)

which is the point at which the option value of experimentation equals the flow cost for player

i. From (2), we obtain

τi =
1

λi
ln

[

(λi − rρi)αiηi

rρi(1− αi)

]

.

Let τi = 0 if rρi
λi

> αjηj . For the subsequent analysis, we suppose τ2 > τ1 ≥ 0 and define

∆τ := τ2 − τ1. This is of course not without loss of generality, as it excludes the possibility

that τ1 = τ2. We exclude the symmetric case because it is a knife-edge case exhibiting some

peculiar properties and also because the analysis of this case is relatively straightforward (see

section 4.1 for a brief discussion on the symmetric case).2

Assumption 2 τ2 > τ1 ≥ 0.

We first establish some useful properties that must hold in any equilibrium.

Lemma 1 Gi(t) = 0 for t < τi, i.e., player i never exits before τi.

Proof. For t < τi, λpi(t) > rρi regardless of the other player’s strategy Gj . As such, it is a

dominant strategy to stay in the game.

Lemma 2 For t > τ2, Gi is given by

Gi(t) = 1− (1−Gi(τ2))φj(t), (3)

where φj(t) := e−rρj(t−τ2)Qj(τ2)
Qj(t)

, until no weak player remains in the game.

Proof. See Appendix.

These results mark two key departures from the standard war of attrition. First, there is

a tipping point τi which can arrive strictly later than time 0. Second, the optimal strategy

2Although we only discuss the case where τ1 = τ2 = 0, we can essentially apply the same argument to any
τ1 = τ2 > 0.

7



must take into account how the other player acquires information over time, which is captured

by
Qj(τ2)
Qj(t)

. If there is no learning, i.e., λj = 0, then
Qj(τ2)
Qj(t)

= 1 for all t, and the model is

reduced to the standard war of attrition as we have seen. If λj > 0, on the other hand,
Qj(τ2)
Qj(t)

is strictly increasing in t, prompting the player to exit at an accelerating rate.

Given that a weak player must exit at some positive rate, there may be a point at which

no weak player remains in the game. To compute this termination point, define Wi(t) as the

probability that player i is not strong (either is weak or has exited) at time t which is assumed

to be left continuous.3 Note that if player i never exits, the probability that he is weak at t

is Qi(t) which constitutes the lower bound for Wi(t). Also, Wi(t) ≥ Gi(t) by definition. We

will later discuss in detail how we construct this function Wi, but for now, we take that such

a function exists and is well defined for any given t.

Let Ti := inf{t : Gi(t) = Wi(t)} denote the termination point for player i. If there exists

Ti < ∞, gi(t) = 0 and Gi stays constant for all t > Ti, i.e., any remaining player must be

strong and never exits once the game reaches the termination point.

3.3 In the gap

For t > τ2, it is quite straightforward to obtain the continuation equilibrium which is char-

acterized by the indifference condition (3). We also know that before τi, player i never exits,

i.e., Gi(t) = 0 for t < τi. What remains to be seen is the case in-between, i.e., for t ∈ [τ1, τ2].

The following statement clarifies what could possibly happen in this interval.

Lemma 3 In equilibrium, generically, one of the following must happen:4

1. Player 1 exits with strictly positive probability at τ1;

2. Player 2 exits with strictly positive probability at τ2;

3. Both players 1 and 2 exit with strictly positive probability at τ1 and τ2, respectively.

Moreover, no player exits in (τ1, τ2).

Proof. For t ∈ [τ1, τ2), player 2 never exits by Lemma 1. Given this, it is never optimal for

player 1 to exit at any t ∈ (τ1, τ2), because he strictly prefers to exit at τ1 rather than at any

t ∈ (τ1, τ2). To prove the lemma, therefore, it suffices to show that player 1 never exits with

positive probability at τ2. If G2(τ2) = 0, player 1 strictly prefers to exit at τ1 than at τ2. If

3Note that Gi is assumed to be right continuous, so that we implicitly consider the timing structure in
which Wi(t) is realized first and then Gi is chosen.

4There is also a case where τ1 = τ2 and T1(0) = T2(0), so that neither player exits with positive probability
in equilibrium. Throughout the analysis, we ignore this non-generic case.
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G2(τ2) > 0, player 1 strictly prefers to wait until τ2 + dt than exiting at τ2. This means that

G1 can make a discrete jump only at τ1.

This result suggests that any equilibrium of this game is thoroughly characterized by a

pair (G1(τ1), G2(τ2)) where G1(τ1) = G1(τ2) by Lemma 3. Let G∗
i := Gi(τi), W

∗
i := Wi(τi)

and p∗i := pi(τi) to save notation.

We now derive Wi(t) to see how the termination point Ti is related to G∗
i . Note that

Wi(t) = Qi(t) if player i has never exited. On the other hand, once player i starts exiting,

we in general have Wi(t) > Qi(t) because Wi(t) includes those who exited but would have

become strong later had they stayed in the game. More precisely, for a player who exits at t′,

the probability that he would achieve a breakthrough by t if he stayed is pi(t
′)(1−e−λi(t−t′)).

Since player i may exit with positive probability only at τi, we obtain

Wi(t) =

{

Qi(t) for t ∈ [0, τi],

Qi(t) +G∗
i p

∗
i (1− e−λi(t−τi)) +

∫ t

τ2
gi(s)pi(s)(1− e−λi(t−s))ds for t ∈ (τi, Ti],

where gi(t) = (rρj − pj(t)λj)(1−G∗
i )φj(t). For t > Ti, Wi(t) stays constant at Gi(Ti).

By definition, Gi(Ti) = Wi(Ti). Letting Φi(t) := (rρj − pj(t)λj)φj(t), the termination

point Ti must solve

1− (1−G∗
i )φj(Ti) = Qi(t) +G∗

i p
∗
i (1− e−λi(Ti−τi)) + (1−G∗

i )

∫ Ti

τ2

Φj(s)pi(s)(1− e−λi(Ti−s))ds,

Note that {Gi(s)}
Ti
s=τ2

is uniquely determined from (3) once we pin down G∗
i while pi(t) is

independent of Gi. As such, the termination date is essentially determined by G∗
i , and we

write Ti(G
∗
i ) to indicate its dependence on G∗

i .

Lemma 4 There must exist a unique Ti(G
∗
i ) < ∞ for any G∗

i ∈ [0,W ∗
i ]. Ti(G

∗
i ) is strictly

decreasing in G∗
i with Ti(W

∗
i ) = τ2.

Proof. See Appendix.

For a given G∗
i , player i exits according to (3) from τ2 to Ti(G

∗
i ). At Ti(G

∗
i ), the probability

that player i is strong conditional on the continuation of the game reaches one, and hence

gi(t) = 0 for t > Ti(G
∗
i ). We denote by T ∗

i the equilibrium termination point. By standard

argument, we can then show that T ∗
i = T ∗

j must hold in equilibrium if the game continues

beyond τ2, which implies that (G∗
1, G

∗
2) must be chosen so that the two players stop exiting

at the same time.

Lemma 5 T ∗
1 = T ∗

2 if max{T ∗
1 , T

∗
2 } > τ2.
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Proof. Suppose on the contrary that T ∗
i > T ∗

j while T ∗
i > τ2. That is, only player i exits for

t ∈ (T ∗
j , T

∗
i ). However, given that player j never exits, it is strictly better for player i to exit

at max{T ∗
j , τi} rather than waiting until T ∗

i , which is a contradiction.

We now consider player 1’s problem at τ1, where his viable choice is either to exit with

some positive probability at τ1 or to wait at least until τ2. Suppose that player 1 waits

until τ2. At time τ2, player 2 exits with probability G∗
2, in which case player 1 can earn a

continuation payoff of 1
r
. If player 2 does not exit, which occurs with probability 1 − G∗

2,

player 1 stays in the game and earns positive payoff if and only if he achieves a breakthrough

by τ2. Therefore, player 1 has an incentive to wait until τ2, rather than exiting at τ1, only if

p∗1
(λ1 − rρ1)(1− e−(r+λ1)∆τ )

r + λ1
+G∗

2e
−r∆τ (1− p∗1 + p∗1e

−λ1∆τ ) ≥ (1− p∗1)(1− e−r∆τ )ρ1. (4)

Clearly, player 1 has a stronger incentive to stay in the game when player 2 is more likely to

exit at τ2. In fact, G∗
2 > 0 is a necessary condition for G∗

1 < W ∗
1 , as we will see below.

Lemma 6 For any ∆τ > 0, (4) fails to hold if G∗
2 is sufficiently small.

Proof. From (4), it suffices to show that

(1− p∗1)(1 − e−r∆τ )ρ1 > p∗1
(λ1 − rρ1)(1− e−(r+λ1)∆τ )

r + λ1
.

Note that p∗1 = min{ rρ1
λ1
, p0} by definition. If p∗1 =

rρ1
λ1

, this condition is reduced to

1− e−r∆τ

r
>

1− e−(r+λ1)∆τ

r + λ1
,

which holds for any ∆τ > 0. Clearly, the same condition should also hold for any p0 <
rρ1
λ1

.

Which of the three possibilities emerges in equilibrium depends largely on the termination

points (T1, T2). What is in particular crucial is the termination point when the player does

not exit with positive probability, i.e., Ti(0).

Lemma 7 If T1(0) ≥ T2(0), player 1 must exit with positive probability at τ1, i.e., G
∗
1 > 0.

Proof. Suppose on the contrary that G∗
1 = 0. This means that G∗

2 > 0 by Lemma

3. In equilibrium, however, we must have T1(0) = T2(G
∗
2), which cannot be satisfied if

T1(0) ≥ T2(0) > T2(G
∗
2).
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4 Equilibrium characterization

4.1 Benchmark: no learning with fixed type

With the preceding lemmas, we are now ready to characterize the equilibrium of the entire

game. Before we proceed further, however, we first consider a benchmark case where the

players’ types are fixed over time, i.e., λ1 = λ2 = 0, in order to single out the impact of

experimentation in our setup. This particular example merits some independent attention as

it is not a special case of our analysis which assumes τ1 6= τ2. When the type is fixed over

time, ηi is irrelevant and we simply assume η1 = η2 = 0 to save notation.

Given that λ1 = λ2 = 0, the model actually reduces to a standard war of attrition

under incomplete information a la Fudenberg and Tirole (1986). Since the option value of

experimentation is invariably zero, we have τ1 = τ2 = 0, implying that both players must

exit at some positive rate from the outset. Moreover, generically, either one of the players

must exit with strictly positive probability at time 0. To see this, Ti is now given by

1− e−rρjTi(1−Gi(0)) = 1− αi.

If αi > 0, then we can find a finite Ti that satisfies this condition for a given Gi(0). Simple

computation yields

Ti(Gi(0)) =
ln[1−Gi(0)] − lnαi

rρj
.

Although our argument thus far excludes the symmetric case where τ1 = τ2, we can

apply essentially the same argument to this case to derive the equilibrium of this special

case. First, we must still have the players stop exiting at the same time in equilibrium, i.e.,

T1(G1(0)) = T2(G2(0)). Second, we can also show by standard argument that the two players

cannot exit with strictly positive probability at the same time, for there would always be an

incentive to wait and exit an instant later. This suggests that player i must exit with strictly

positive probability at time 0 if

ρj lnαj > ρi lnαi.

The equilibrium probability of immediate concession, Gi(0), must satisfy

ln[1−Gi(0)] − lnαi

ρj
= −

lnαj

ρi
. (5)

It is well known that this is the unique equilibrium of this special case. Note that neither

player exits with positive probability if and only if T1(0) = T2(0) or ρ1 lnα1 = ρ2 lnα2.

11



Several remarks are in order. First, the equilibrium is unique for any given set of param-

eters, which stems from the fact that there is a termination point which must be reached in

finite time. Although a war of attrition often admits a continuum of equilibria, Fudenberg

and Tirole (1986) show that the equilibrium can be uniquely pinned down when there are

types who never concede, such as the strong type in our setup. As we will see below, this

uniqueness result is also retained in our model which incorporates experimentation.

Second, the equilibrium allocation is determined entirely by the asymptotic efficiency αi

and the flow cost ρi or more precisely by ψi := ρi lnαi. Note that ψi is strictly increasing in

αi and decreasing in ρi with limαi→1 ψi = limρi→0 ψi = 0. In particular, if the players share

the same flow cost, the one who is expected to be stronger (a higher αi) can induce the other

player to give in and concede earlier. As a consequence, the player with a higher αi (or more

generally ρi lnαi) always earns a higher payoff in equilibrium.

Finally, there exists no efficient equilibrium in the sense of Pareto. Since it is a pure waste

of resource for two weak players to stay in the game simultaneously, the efficient allocation

must have one player, say player 1, exit immediately if he is weak. Formally, this requires

G1(0) = 1− α1. Clearly, this is not feasible for any (α1, α2) ∈ (0, 1)2 and (ρ1, ρ2) ∈ (0,∞)2:

from (5), Gi(0) < 1−αi, so that the game continues beyond time 0 with a probability strictly

larger than zero even when both players are weak. Intuitively, if G1(0) = 1−α1, player 1 can

signal that he is strong by not exiting at time 0. Given this, player 2 must exit at the next

instant if he is weak. If this is the case, however, player 1 no longer has an incentive to exit

at time 0 even when he is weak because he strictly prefers to wait and see player 2’s action.

4.2 Equilibrium with private learning

We now turn to the model which incorporates experimentation to see how this additional op-

tion alters the equilibrium allocation. Although there could be different types of equilibrium,

of particular interest is whether there exists a pure-strategy equilibrium which implements

the efficient allocation, i.e., G∗
1 = W ∗

1 and G∗
2 = W ∗

2 .
5 To see this possibility, note that if

G∗
1 = W ∗

1 , then g1(t) = 0 for all t > τ1. Given this, player 2 has no incentive to continue

beyond τ2 if weak, and as such, G∗
2 = W ∗

2 . This implies that the pure-strategy equilibrium

exists if and only if

(1− p∗1)(1− e−r∆τ )ρ1 ≥ p∗1
(λ1 − rρ1)(1− e−(r+λ1)∆τ )

r + λ1
+W ∗

2 e
−r∆τ (1− p∗1 + p∗1e

−λ1∆τ ). (6)

5It is easy to verify that this allocation is Pareto efficient. To improve player 2’s payoff, player 1 must exit
earlier than τ1, but this necessarily lowers his payoff. The same argument applies to player 2.
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In particular, if τ1 > 0, this condition becomes

rρ1

(1− e−r∆τ

r
−

1− e−(r+λ1)∆τ

r + λ1

)

≥W ∗
2 e

−r∆τ
λ1 − rρ1(1− e−λ1∆τ )

λ1 − rρ1
.

Proposition 1 If (6) holds, there exists a unique equilibrium in which G∗
1 = W ∗

1 and G∗
2 =

W ∗
2 .

Proof. If (6) holds with strict inequality, it is a dominant strategy for player 1 to exit

completely at τi. Given this, the pure-strategy equilibrium is clearly the only possible equi-

librium. If (6) holds with equality, player 1 is indifferent. If G∗
2 < W ∗

2 , however, (7) is

violated, implying that G∗
1 =W ∗

1 must hold.

The proposition implies that there exists a non-degenerate set of parameters which sup-

port the efficient allocation as an equilibrium outcome: among other things, (6) is satisfied if

∆τ is sufficiently large. This stands in clear contrast to the standard setup where the efficient

allocation can never be attained. If τ1 and τ2 are sufficiently close to each other, on the other

hand, (6) fails to hold, in which case the termination points (T1, T2) play a crucial role in

determining the equilibrium allocation. Given that (6) does not hold, Lemma 6 implies that

there must exist G2 ∈ (0,W ∗
2 ) such that

(1− p∗1)(1− e−r∆τ )ρ1 = p∗1
(λ1 − rρ1)(1 − e−(r+λ1)∆τ )

r + λ1
+G2e

−r∆τ (1− p∗1 + p∗1e
−λ1∆τ ). (7)

When (7) holds, player 1 is indifferent between exiting at τ1 and at τ2 (or after).

Proposition 2 Suppose that (6) does not hold. Then, there exists a unique equilibrium in

which

1. G∗
1 ∈ (0,W ∗

1 ) and G
∗
2 = G2 ∈ (0,W ∗

2 ) such that T1(G
∗
1) = T2(G2) if T1(0) > T2(G2);

2. G∗
1 = 0 and G∗

2 ∈ (0,W ∗
2 ) such that T1(0) = T2(G

∗
2) if T2(G2) ≥ T1(0).

Proof. Suppose that player 2 exits at τ2 with probability G2, in which case player 1 is

indifferent. If T1(0) > T2(G2), then player 1 can pick G∗
1 which satisfies T1(G

∗
1) = T2(G2). If

T2(G2) ≥ T1(0), then G
∗
2 must be high enough to satisfy T1(0) = T2(G

∗
2). Given this, player

1 has no incentive to exit at τ1, i.e., G
∗
1 = 0.

We can also show that no other equilibrium exists. Observe that if G∗
1 = W ∗

1 , then

G∗
2 = W ∗

2 , which gives player 1 an incentive to deviate and stay in the game. This im-

plies that G∗
1 < W ∗

1 . If G∗
2 = W ∗

2 , on the other hand, player 1 has a strict incentive to

stay in the game, i.e., G∗
1 = 0. This cannot constitute an equilibrium, however, because
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T1(0) > T2(W
∗
2 ) = τ2. Given that G∗

1 ∈ [0,W ∗
1 ) and G

∗
2 ∈ (0,W ∗

2 ), the indifference condition

and the termination condition must be satisfied, giving a unique pair (G∗
1, G

∗
2).

Propositions 1 and 2 characterize all equilibria in this setup. Remarkably, player 2 must

exit with some positive probability in any equilibrium of this game. The reason for this is

that if G∗
2 = 0, then player 1 has no incentive to stay in the game if he is weak. Given that

G∗
1 = W ∗

1 , however, player 2 also has no incentive to stay in the game beyond τ2 if he is

weak. Therefore, G∗
2 = 0 cannot be sustained as an equilibrium, and player 2 must exit with

positive probability at τ2.

4.3 Discussion: experimentation versus private learning

Our model incorporates experimentation and private learning into an otherwise standard war

of attrition, meaning that our learning process consists of two distinct elements. The first

necessary element is private learning where each player’s type changes over time when a one-

time breakthrough arrives. The second element, which turns out to be equally important,

is experimentation where each player cannot directly observe his own state of nature. If we

take out the first element, it is a model with fixed types which has already been discussed in

section 4.1. Here, we examine the role of the second element by assuming that each player i

can (privately) observe his own state θi.

Consider first the problem faced by a player who knows that the state is good. For this

player, the belief pi(t) stays invariably at one for all t, regardless of the history of the game.

Under the assumption that λi > rρi, it is a dominant strategy to stay in the game, i.e., a

player who knows that the state is good never exits.

Given this strategy, what should a player do if he knows that the state is bad? Since

pi,t = 0, player i exits at t if

rρi ≥
gj(t)

1−Gj(t)
,

which is the same condition as in section 4.1. Integrating both sides, the equilibrium strategy

is given by

Gi(t) = 1− (1−Gi(0))e
−rρj t,

until Gi(t) = 1− αi. We can then follow the same procedure to obtain Ti(0) and Gi(0) and

derive the equilibrium.

This argument shows that when the state is directly observable, the model is essentially

equivalent to the benchmark case with fixed types, provided that λi is large enough to satisfy
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Assumption 1. In other words, a player’s behavior does not depend on whether a player is

currently strong or not, as long as he knows that the state is good. This shows that although

the element of private learning is clearly indispensable, it is not enough by itself to alter the

equilibrium allocation in a qualitative sense; all of our main results can be obtained only

when it is combined with the element of experimentation.

5 Example: one-sided learning

5.1 The asymptotic efficiency and the equilibrium payoff

An interesting special case of our model is where only one player can experiment and learn

while the other player’s type is fixed over time. The case with one-sided learning illuminates

the role of experimentation and how it can affect the equilibrium payoffs in a clear way. We

in particular show that slow learning can be a blessing, as it provides a credible commitment

device to stay in the game and is hence instrumental in inducing the other player to concede

earlier. This stands in sharp contrast to the standard setup in which the stronger player

always earns a higher payoff.

Now suppose that η1 = 0 and η2 = 1, so that player 1 has no margin of experimentation.

To assure that this is the only source of heterogeneity, we fix other parameters at the same

level: αi = α, λi = λ and ρi = ρ for i = 1, 2. Under this specification, the probability that

player 1 is strong stays constant at α, leaving no room for experimentation regardless of λ.

In contrast, the probability that player 2 is strong at t is α(1 − e−λt) which is strictly lower

than α at any finite t, i.e., player 2 is strictly less efficient than player 1.

Player 1 knows that if he is weak at time 0, he will always be weak. Since τ1 = 0,

player 1 must decide whether to exit immediately or wait until τ2 := 1
λ
ln[ (λ−rρ)α

rρ(1−α) ]. Given

p1,0 = αη1 = 0, from Proposition 1, player 1 exits immediately if and only if

(1− e−rτ2)ρ ≥W ∗
2 e

−rτ2 = (1− α+ αe−λτ2)e−rτ2 .

which can be written as

(

1−
( rρ(1− α)

(λ− rρ)α

)
r
λ
)

ρ ≥ (1− α)
( rρ(1− α)

(λ− rρ)α

)
r
λ λ

λ− rρ
. (8)

If (8) is satisfied, player 1, if he is weak, exits immediately in the unique equilibrium.

As a consequence, player 1 earns positive payoff if and only if he is strong at time 0. Let

Πi(G
∗
i , G

∗
j ) denote player i’s expected equilibrium payoff. The equilibrium payoff for player

1 is then given by

rΠ1(W
∗
1 ,W

∗
2 ) = α.
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In contrast, player 2 can earn positive payoff from the outset with probability 1 − α. With

the remaining probability, player 1 is strong and stays in the game indefinitely. Given this,

player 2 waits until τ2 and exits once and for all if he cannot achieve a breakthrough by then.

The equilibrium payoff for player 2 is hence given by

rΠ2(W
∗
2 ,W

∗
1 ) = 1− α+ α

(

α
(λ− rρ)(1− e−(r+λ)τ2)

r + λ
− (1− α)(1 − e−rτ2)ρ

)

> 1− α.

It is immediate to see that player 2, who is strictly inefficient, can earn a higher payoff if

0.5 ≥ α. The question is then if (8) can be satisfied for some α ∈ (0, 0.5]. The following

statement shows that this is indeed possible when experimentation is less costly, provided

that the players are relatively impatient.

Proposition 3 For any α ∈ (0, 0.5], if r ≥ λ > 0, there exists ρ(α, r
λ
) ∈ (0, αλ

r
) such that

there exits an equilibrium in which the strictly inefficient player earns a higher payoff for

ρ < ρ(α, r
λ
).

Proof. A necessary condition for this statement is τ2 > 0 which can be written as α > rρ
λ
. To

prove this, therefore, it suffices to show that there exists some α ∈ (0, 0.5] which satisfies both

α > rρ
λ

and (8). To this end, fix ρ = αλ
(1+x)r for some given α ∈ (0, 0.5], so that α > rρ

λ
= α

1+x

holds for any x > 0. Then, (8) can be written as

α
(

1 + (1 + x
1−α

)−
r
λ

)(1 + x
1−α

)1+
r
λ

(1 + x)2
≥
λ

r
,

which holds for a sufficiently large x for any α ∈ (0, 0.5] if r
λ
≥ 1. It is clear from this that

the threshold value can be obtained as a function of α and r
λ
.

The impact of a decrease in ρ is not immediately clear, as it yields two opposing effects:

on one hand, it lowers the cost of staying in the game, rendering player 1 less willing to exit

immediately; on the other hand, it can also lower the cost of experimentation for player 2,

allowing him to extend τ2. Intuitively, the latter effect dominates the former when player 1

is less patient and the benefit of waiting (until τ2) is smaller. The proposition suggests that

for any r ≥ λ > 0, we can find ρ that is low enough to let player 1 concede immediately.

There is another way to interpret this result. Consider an alternative specification in

which η1 = η2 = 1 but λ1 > λ2 = λ > 0. The case with one-sided learning can then be

seen as the limit case where λ1 → ∞. In this sense, Proposition 3 implies that slow learning

can be a blessing when outlasting the opponent is the major concern. With a high λi, the

belief pi(t) goes down and the option value of experimentation dissipates rather quickly; in
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fact, as λi → ∞, pi(t) → 0 for any arbitrarily small t > 0, thereby approximating a situation

where ηi = 0. In contrast, if λi is small, the belief pi(t) goes down only gradually, and the

option value of experimentation is hence kept relatively high over time. Due to this effect,

slow learning can actually be beneficial, as it induces the other player to concede early even

if he is strictly more efficient in the asymptotic sense.

5.2 Implications

Standards competitions: One application which fits our framework particularly well is

standards competitions, mainly on two accounts. First, standards competitions are a typical

example of war of attrition in that the market can accommodate only a few standards in the

end largely due to network externalities. Second, it is also important to note that many of

those competitions have historically taken place in innovation-intensive industries. To analyse

a standards competition as a war of attrition, it seem imperative to take into account the

possibility of innovation and technological progress.

Concerning standards competitions, a puzzle that has attracted much attention in the

literature is that we often observe instances where what appears to be an inferior technology

survives and emerges as the defacto standard. One of the most famous anecdotes of this sort

is perhaps the video format war between Betamax and VHS. In this new market for home

VCR, Sony – the creator of Betamax – was the predecessor and quickly captured the entire

market share by the end of 1975 before VHS was introduced in the following year. Sony at the

time also possessed a more matured technology due to its prior involvement in the U-matic

system – one of the first cassette-based tape formats. In fact, many recognized Betamax as

the superior technology to VHS, with its better resolution, superior sound, more stable image,

faster response to operating keys, and so on. Despite all these advantages, however, Betamax

somehow faded out of popularity, forcing SONY to retreat from the format effectively by the

end of the 1980s.

Many explanations have been suggested to account for why Betamax lost in the war,6 but

our analysis sheds new light on this issue from a previously unexplored channel, by providing a

mechanism through which a technologically less matured standard can outlast other possibly

more matured predecessors in this type of competition. Although a lot remains to be seen

at this point,7 we argue that the margin of experimentation, which has largely been ignored,

6The literature generally focuses on SONY’s pricing and marketing strategies. Many also argue that
Betamax’s shorter recording time was a crucial deciding factor. See, e.g., Casumano et al. [4] and Liebowitz
and Margolis [18].

7One important caveat is that a war of attrition is typically characterized by a mixed-strategy equilibrium,
so almost any outcome, when it is seen in isolation, is consistent with theory. It is also emphasized in the
literature that network externalities may give rise to the multiplicity of equilibrium, with some more efficient
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can be a powerful force that can dictate the outcome of a standards competition, thereby

offering some empirical implications.

Technology adoption: From a broader perspective, our analysis yields an important im-

plication for technology adoption where there are choices over how to develop a particular

standard. To put this idea in context, suppose that there are two available technologies, a

(more matured) fast technology λF and a (less matured) slow technology λS where λF > λS .

Suppose further that a player can choose which technology to adopt at time 0 (to simplify the

argument, suppose that only one of the players has this choice). Our analysis then implies

that there are cases where it is optimal to deliberately choose the slow technology λS , which

takes more time to develop, even when the two technologies are perfectly equivalent in every

other dimension.

Of course, in reality, technology adoption often involves a tradeoff between short-run and

long-run gains. Although we consider an extreme case where the two technologies differ

only in the learning rate for the sake of illustration, it is more realistic to assume that some

technologies take more time to develop but are more efficient in the long run. One way to

capture this possibility is to consider technologies that differ also in the asymptotic efficiency,

i.e., a fast technology (αF , λF ) and a slow technology (αS , λS) where αS > αF . This type of

tradeoff is often present in the choice between exploitation (of old ideas) and exploration (of

new ideas): it is extensively discussed in the innovation literature that exploration inherently

entails more uncertainty and is more time-consuming but potentially brings about a bigger

benefit (March [19]). Our analysis then implies that there arises an additional value of

exploration in particular, and long-run innovation strategies in general, when a firm faces a

war-of-attrition type of competition.

Industry dynamics: Consider yet another variant of our model where one player, say player

1, enters the game earlier at time −t̃, and the other player, player 2, joins later at time 0.

Suppose that the two players are homogeneous in every aspect, except for the timing of entry.

Then, having been in existence for a duration t̃ of time, the probability that player 1 is weak

at time 0 is 1−α+αηe−λt̃. Letting η1 := ηe−λt̃ and η2 = η, therefore, the game is equivalent

to the one in which the players differ in ηi. Taken at face value, our model thus predicts

that younger firms, with less matured technologies, tend to outperform older counterparts,

thereby generating and accelerating product life cycle. Although this hypothesis is hard to

test empirically due to the lack of information about innovation and also to the difficulty in

than others, and an inefficient equilibrium can at least in theory emerge due to the lack of coordination. Even
in this case, one still needs an explanation for why concerned parties coordinate on the wrong side. Our
framework building on a war of attrition can provide a way.
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controlling for the asymptotic efficiency,8 our analysis suggests a testable implication linking

firm age and survival.

6 Conclusion

In this paper, we provide a simple extension of a standard war of attrition to incorporate the

possibility that players may innovate through experimentation. We find that this extension

yields some qualitative impacts on the strategic nature of the problem. Most notably, we

show that the option value of experimentation provides a credible commitment device which

affects the equilibrium allocation in a non-trivial way. As a direct consequence of this effect,

there arises an equilibrium in which the strictly less efficient player, but with larger room for

experimentation, can earn a higher payoff in equilibrium. Our analysis provide a plausible

mechanism through which an inferior technology survives and becomes the de facto standard

in a standards competition, and more broadly offers implications for technology adoption and

industry dynamics.
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Appendix

Proof of Lemma 2. We first establish that Gi must be strictly increasing and continuous,

which implies that the players must be held indifferent. We can show that Gi must be

increasing by standard argument. Suppose otherwise, i.e., there exists an interval [t′, t′′] such

that Gi(t) is constant for t ∈ [t′, t′′] and increases for t > t′′. Then, it is strictly better for

player j to exit at t rather at any point in an interval shortly after t′′. However, if gj(t) = 0

for t ∈ [t′′, t′′ + ε], it is strictly better for player i to exit at t′′ rather than in this interval,

which is a contradiction. This means that Gi must be strictly increasing for t > τ until until

no weak player remains in the game.

To show that Gi must be continuous, suppose that Gi makes a discrete jump at some

t > τ2. Then, the other player strictly prefers to wait and exit at t+ dt rather than at any

time shortly before t, which contradicts that Gi is strictly increasing.

These results suggest that in any continuation equilibrium after τ2, a weak player must

be held indifferent, i.e.,

gi(t)

1−Gi(t)
= rρj − pj(t)λj

Integrating both sides yields

ln[1−Gi(τ2)]− ln[1−Gi(t)] = rρj(t− τ2) + lnQj(t)− lnQj(τ2).

Alternatively, this can be written as

Gi(t) = 1− e−rρj(t−τ2)(1−Gi(τ2))
Qj(τ2)

Qj(t)
,
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which shows the necessary optimality condition that must be satisfied for t > τ2.

Proof of Lemma 4. Since Gi is a distribution function, it must be weakly increasing. Note

also that Wi(t) is strictly decreasing by definition, given that a player can only switch from

weak to strong, but not the other way around. Moreover, for any G∗
i ∈ [0,W ∗

i ],

lim
t→∞

Gi(t) = 1 > lim
t→∞

Wi(t).

there must exist a unique Ti(G
∗
i ) <∞.

To show that Ti is decreasing in G∗
i , observe first that

∂Gi(Ti)

∂Ti

∂Ti

∂G∗
i

+
∂Gi(Ti)

∂G∗
i

=
∂Wi(Ti)

∂Ti

∂Ti

∂G∗
i

+
∂Wi(Ti)

∂G∗
i

.

Since ∂Gi(Ti)
∂Ti

− ∂Wi(Ti)
∂Ti

> 0, we need to show

∂Ti

∂G∗
i

< 0 ⇔
∂Gi(Ti)

∂G∗
i

>
∂Wi(Ti)

∂G∗
i

,

which can be written as

φj(Ti) > p∗i (1− e−λi(Ti−τi))−

∫ Ti

τ2

Φj(s)(1− e−λ(Ti−s))ds. (9)

Note that Wi(Ti) = Gi(Ti) by definition, i.e.,

1− (1−G∗
i )φj(Ti) = Qi(t) +G∗

i p
∗
i (1− e−λi(Ti−τi)) + (1−G∗

i )

∫ Ti

τ2

Φj(s)pi(s)(1− e−λi(Ti−s))ds,

which can be written as
∫ Ti

τ2

Φj(s)pi(s)(1− e−λi(Ti−s))ds =
1−Qi(t)−G∗

i p
∗
i (1− e−λi(Ti−τi))

1−G∗
i

− φj(Tj).

Plugging this into (9) yields

1−Qi(t)−G∗
i p

∗
i (1− e−λi(Ti−τi))

1−G∗
i

> p∗i (1− e−λi(Ti−τ2)),

which is simplified to

1−Qi(Ti) > p∗i (1− e−λi(Ti−τ2)).

This condition can be written as

αi(1− ηie
−λiTi) >

αiηie
−λiTi

1− αi + αiηie−λiTi
(1− e−λi(Ti−τ2)),

which holds because αi ≥
αiηie

−λiTi

1−αi+αiηie
−λiTi

and 1− ηie
−λiTi > 1− e−λi(Ti−τ2).
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1 Introduction

In many standards competitions, we observe instances where an apparently less efficient or less

matured technology survives in the end as the defacto standard, as exemplified most notably

by the video format war between Betamax and VHS.1 Although standards competitions often

take the form of a war of attrition, this observation seems to be at odds with theoretical

predictions from some standard versions of it, suggesting that there may be a missing link

that has been overlooked in the literature. In this paper, we attempt to fill this gap by

extending a standard war of attrition to ask whether there are factors, other than sheer

technological superiority, which affect the outcome of this type of economic competition in

any significant way.

One observation stands out in search of this missing link: standards competitions typically

take place in innovation-intensive industries, such as telecommunications, home VCR, audio,

operating systems, high-speed rail and automated driving. In most of these cases, incoming

firms, or standards, are initially still technologically premature but gradually improve their

productive efficiency or profitability over time via experimentation. The fact that competing

standards may innovate alters the strategic nature of competition at least in two ways. First,

it is not only the current efficiency level but also the margin of experimentation, i.e., how much

room for improvement a given technology is expected to possess, which can play a decisive

role: a player with large room for improvement clearly has more incentive to experiment and

hence less incentive to drop out. Second, the possibility of technological progress also implies

that it is ex ante not clear how many standards can survive in a given market. Although

the market for standards is typically not large enough to accommodate many inefficient

ones, there are still cases where multiple standards attain enough efficiency to coexist for a

substantial duration of time, as in the competition between Windows and Mac in operating

systems or among Nintendo, SONY and Microsoft in video game consoles. When multiple

standards emerge, the strategic nature of the problem tips over, for it is no longer a war of

attrition with no point in waiting for the rival to drop out.

To describe this situation, we extend a two-player incomplete-information war of attrition

to incorporate experimentation and private learning. The setup is quite standard, except that

each player’s type may change over time as a result of (learning-by-doing) experimentation.

Each player’s type, which is either weak or strong, is his own private information. If a player

1There is naturally an extensive literature discussing whether and how a society gets “locked in” with an
inefficient standard, mainly focusing on various issues arising from network effects (Katz and Shapiro [13],
[14], Farrell and Saloner [9], [10], Arthur [2], Choi [7]). Also, see Katz and Shapiro [15] and Stango [24] for
surveys.
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is weak, however, he may achieve a technological breakthrough and become strong with some

probability as long as he stays in the game. The probability of achieving a breakthrough

depends on the unobservable state of nature which is not directly observable and must be

uncovered via experimentation. Finally, we assume that a strong player can earn positive

payoff regardless of the other player’s presence, so that it is a dominant strategy for him

to stay in the game indefinitely. It is this last assumption which gives rise to the ex ante

uncertainty about how many players can survive in the end.

We obtain a characterization of all equilibria in this extended setup. The extension to

incorporate experimentation is technically rather straightforward but yields some qualitative

impacts on the strategic nature of the problem. In our extended setup, a weak player may

stay in the game just because he may achieve a breakthrough tomorrow. The option value of

experimentation thus serves as a credible commitment device to stay in the game, which is

instrumental in inducing the other player to concede earlier. As a direct consequence of this

force, we find an equilibrium in which the strictly less efficient player, but with more room for

experimentation, can get the better end of the deal, i.e., slow learning can be a blessing. This

stands in sharp contrast to the standard setup with no experimentation (hereafter, simply

the standard war of attrition) where the equilibrium payoff is monotonic with respect to a

player’s “efficiency” level. Our analysis sheds new light on the tradeoff between short-run and

long-run gains of experimentation from a previously unexplored channel and suggests some

practical implications for technology choice and industry dynamics. On a more specific level,

it gives insight into why an inferior technology often survives in standards competitions.

From a more technical point of view, it is also worth noting that there may exist an

efficient equilibrium (in the sense of Pareto) in our extended setup, again in clear contrast to

the standard war of attrition where there generically exists no efficient equilibrium. This is

because the efficient allocation requires that any weak player exit immediately unless both

of them are weak. A way to (approximately) achieve this allocation is that: one player, say

player 1, exits with probability one at time 0 if he is weak; player 2 then exits with probability

one an instant later if he is weak and player 1 did not exit. There is no such equilibrium,

however, because if player 1 knows that player 2 will exit with strictly positive probability an

instant later, he is always better off with waiting than exiting immediately. More generally,

in any equilibrium of the standard setup, at most one player can exit with strictly positive

probability, which immediately excludes the possibility of realizing the efficient allocation.

The situation changes rather drastically once the element of experimentation is introduced

into the setup. In the model with experimentation, the efficient allocation typically involves

delay, as it leads to better informed decisions. A player may exit with strictly positive
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probability when the option value of experimentation equals the flow cost, the timing of which

may arrive differently between the players. This property is crucial for the construction of

equilibrium in general and can be exploited to construct an equilibrium in which both of the

players exit with strictly positive probability at some (different) points of the game. More

importantly, due to this property, there exists a non-degenerate set of parameters that can

support the efficient allocation as an equilibrium outcome.

Related literature: A war of attrition, which originates from theoretical biology, is well

suited for various economic situations, such as standards competitions, where multiple parties

compete for a fixed resource. In many economic applications, however, participating players

may innovate and improve their “fitness” in a relatively short span of time. This could be

an important departure from biological settings where genetic evolution occurs rather slowly

and such a possibility is almost negligible.

An essential feature of our war of attrition is that there is a type of player who would never

concede. Without the element of experimentation, our model becomes a variant of Fudenberg

and Tirole [11] who analyze a war of attrition when there are types who would never concede.

Among other things, they establish the uniqueness of equilibrium when some types may never

exit – a property which is also retained in our setup – whereas there is typically a continuum

of equilibria when there are no such types. Similarly, Ordover and Rubinstein [21] analyze a

concession game in which one player is informed about the disagreement outcome; there, a

player who knows that the disagreement outcome is favorable never concedes. In this vein,

our model is also related to reputational models of bargaining, such as Abreu and Gul [1]

and Kambe [12], which include a stubborn type who “irrationally” sticks to his own demand

and never concedes.

Kim and Lee [16] analyze information acquisition in a war of attrition where the war

terminates stochastically, in which case each player receives a payoff according to the under-

lying state of nature. In this setup, they consider a situation where each player can observe

the state of nature by engaging in costly information acquisition. Our analysis shares an

aspect with this work in that learning takes place in a war of attrition but differs in the way

players acquire information: in theirs, information acquisition is done once and for all when

a player incurs the cost whereas in ours, it is through time-consuming experimentation with

information being revealed only gradually over time. This difference is crucial as the speed

of learning, or the margin of experimentation, is one of the main focuses of our analysis.

Chen and Ishida [6] analyze a hierarchial model of experimentation in which a principal

retains the authority to terminate the joint project while an agent focuses strictly on running

the project assigned to him. A key departure of the analysis is the possibility that the
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principal may be informed about the project type, so that her termination decision becomes

a signal of the project quality. In equilibrium, a principal who knows that the project is good

never terminates the project, just like the strong type in the current setup who never exits.

The model can thus be seen as a hybrid of experimentation and war of attrition models. The

focus of that work is on characterizing the agent’s effort dynamics and how they depend on

factors such as the principal’s ability to evaluate the eventual value of a project.

Several works examine the optimal timing of exit with information externalities among

players. Chamley and Gale [5] consider a model of strategic investment in which there are

N players, a random number n of whom have an investment option. Assuming that the

value of investment depends positively on the random number n, there is an incentive to

wait and see others’ investment decisions. Decamps and Mariotti [8] also consider a setup in

which the value of investment is common across the players while the cost is only privately

known. Murto and Välimäki [20] analyze an exit game with private learning where each

player receives a signal in each period which partially reveals his own type. In those models,

the players’ payoffs are positively correlated through the aggregate state of nature: a good

(aggregate) state is a good news for all players in the game. In contrast, in our setup, the

state of nature is individual-specific and a good state for one player is necessarily a bad news

for the other.

Finally, one driving force of our model is the ex ante uncertainty about the number of

players who can survive in the end. Some previous works explore this issue mainly by focusing

on demand-side uncertainty. Most notably, Rob [22] analyzes entry dynamics of firms in a

situation where uncertainty exists with respect to the “limit of the market” and it is costly

to overshoot the market limit. See Vettas [25], Rob and Vettas [23], and Barbarino and

Jovanovic [3] for various extensions of this approach.

2 Model

Environment: Consider a war of attrition between two players, indexed by i = 1, 2. The

basic setup is a standard war of attrition under incomplete information, except that a player’s

type may change over time as a result of experimentation. Time is continuous, extending from

zero to infinity, and each player decides whether to stay in the game or exit from it at each

instant with a decision to exit irreversible and publicly observable. Below, we first outline the

standard part and then describe how we augment it with the possibility of experimentation

and private learning.

Standard war of attrition: A player is either weak or strong at each point in time. There
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is asymmetry of information between the players where each player’s type is his private

information and cannot be observed by the other player. The flow payoff to a player is one

if he is strong or the other player has exited from the game; otherwise, the flow payoff is −ρi

where ρi ∈ (0,∞) captures the flow cost of staying in the game for player i. This specification

implies that there are two (equally effective) ways for a weak player to earn positive payoff,

either to achieve a breakthrough or to wait for the other player to exit. The reservation

payoff, which a player earns when he exits, is normalized at zero. Each player discounts

payoffs by a common discount rate r. For the sake of exposition, we refer to this particular

setup as the standard war of attrition in what follows.

Experimentation: We augment the above setup by introducing the hidden state of nature

for each player which indirectly influences his type. More precisely, before the game begins,

nature chooses the state for each player i, denoted by θi ∈ {0, 1}. The realized state (θ1, θ2)

is not observable to anyone and drawn independently with P (θi = 1) = αi. Given the state,

nature then chooses the initial type of each player where

P (player i weak | θi = 0) = 1, P (player i weak | θi = 1) = ηi.

The unconditional probability that player i is strong at time 0 is hence given by (1 − ηi)αi.

We assume, however, that a player who is initially weak may achieve a breakthrough and

become strong over time: if a weak player stays in the game for [t, t + dt), a breakthrough

arrives with probability λiθidt. For clarity, we call λi ∈ (0,∞) the learning rate for player

i. Note that in this specification, a player can be strong only if the underlying state is good

(θi = 1).

Interpretation: Throughout the analysis, we in particular focus on two parameters, αi and

ηi, as they admit economically relevant interpretations. First, since a player can be strong

only if the state is good, αi indicates the upper bound of the probability that player i is

strong, i.e., if player i stays in the game indefinitely, the probability that he is good converges

to αi. For this reason, we refer to αi as the asymptotic efficiency of player i. Second, ηi

measures how much room for experimentation player i has, which we refer to as the margin of

experimentation. As a practical interpretation, we take this as capturing the “technological

maturity” of player i, where a low ηi means that the player is in a technologically more

advanced or matured stage with less room for experimentation. Note that the learning rate

plays a similar, though not equivalent, role to the margin of experimentation since 1− ηi can

alternatively be regarded as the mass probability of achieving a breakthrough at time 0.
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3 Analysis

3.1 Preliminaries

Given the payoff structure, it is a dominant strategy for a strong player to stay in the game

indefinitely with no further decisions to make. We can thus focus on a weak player, provided

that both players are still in the game. Throughout the analysis, we denote a generic player

by i and “the other player” by j.

Let pi(t) denote the belief that the state for player i is good (θi = 1) at time t, conditional

on being weak. Since a breakthrough occurs at a constant rate, the belief depends only on

time and is given by

pi(t) =
αiηie

−λit

Qi(t)
,

where Qi(t) := 1− αi + αiηie
−λt. Note that the belief declines monotonically over time, i.e.,

no news is a bad news.

If a player is strong or the only player has exited, he earns a continuation payoff of

1
r
. As such, rρi measures the cost-benefit ratio of staying in the game for player i. If the

learning rate is low relative to the cost-benefit ratio, a player has no incentive to experiment,

and the game is effectively reduced to the standard war of attrition. To focus on relevant

and interesting cases, therefore, we assume throughout the analysis that the option value of

experimentation is sufficiently large.

Assumption 1 λi > rρi.

3.2 The optimality conditions

The strategy for player i is Gi which specifies the unconditional distribution of exiting time.

Define gi as its corresponding density, which represents the rate at which player i exits. We

assume that Gi is right continuous.

At each instant t, each player decides whether to stay or exit. If a player exits, he earns a

continuation payoff of zero. In contrast, if a player stays and exits at the next instant, he can

achieve a breakthrough with probability pi,tλdt while the rival player exits with probability
gj(t)dt
1−Gj(t)

; in either case, the player earns 1
r
. Since the flow cost is ρidt, a necessary condition

for player i to exit at t is

rρi ≥ pi(t)λi +
gj(t)

1−Gj(t)
, (1)
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which shows the key tradeoff between exiting now and waiting for an instant. If there is

no possibility of a breakthrough (λi = 0), the model becomes the standard war of attrition

where the hazard rate is constant over time.

If αiηi ≥
rρi
λi

, there exists τi such that

pi(τi) =
αiηie

−λiτi

Qi(τi)
=
rρi

λi
, (2)

which is the point at which the option value of experimentation equals the flow cost for player

i. From (2), we obtain

τi =
1

λi
ln

[

(λi − rρi)αiηi

rρi(1− αi)

]

.

Let τi = 0 if rρi
λi

> αjηj . For the subsequent analysis, we suppose τ2 > τ1 ≥ 0 and define

∆τ := τ2 − τ1. This is of course not without loss of generality, as it excludes the possibility

that τ1 = τ2. We exclude the symmetric case because it is a knife-edge case exhibiting some

peculiar properties and also because the analysis of this case is relatively straightforward (see

section 4.1 for a brief discussion on the symmetric case).2

Assumption 2 τ2 > τ1 ≥ 0.

We first establish some useful properties that must hold in any equilibrium.

Lemma 1 Gi(t) = 0 for t < τi, i.e., player i never exits before τi.

Proof. For t < τi, λpi(t) > rρi regardless of the other player’s strategy Gj . As such, it is a

dominant strategy to stay in the game.

Lemma 2 For t > τ2, Gi is given by

Gi(t) = 1− (1−Gi(τ2))φj(t), (3)

where φj(t) := e−rρj(t−τ2)Qj(τ2)
Qj(t)

, until no weak player remains in the game.

Proof. See Appendix.

These results mark two key departures from the standard war of attrition. First, there is

a tipping point τi which can arrive strictly later than time 0. Second, the optimal strategy

2Although we only discuss the case where τ1 = τ2 = 0, we can essentially apply the same argument to any
τ1 = τ2 > 0.
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must take into account how the other player acquires information over time, which is captured

by
Qj(τ2)
Qj(t)

. If there is no learning, i.e., λj = 0, then
Qj(τ2)
Qj(t)

= 1 for all t, and the model is

reduced to the standard war of attrition as we have seen. If λj > 0, on the other hand,
Qj(τ2)
Qj(t)

is strictly increasing in t, prompting the player to exit at an accelerating rate.

Given that a weak player must exit at some positive rate, there may be a point at which

no weak player remains in the game. To compute this termination point, define Wi(t) as the

probability that player i is not strong (either is weak or has exited) at time t which is assumed

to be left continuous.3 Note that if player i never exits, the probability that he is weak at t

is Qi(t) which constitutes the lower bound for Wi(t). Also, Wi(t) ≥ Gi(t) by definition. We

will later discuss in detail how we construct this function Wi, but for now, we take that such

a function exists and is well defined for any given t.

Let Ti := inf{t : Gi(t) = Wi(t)} denote the termination point for player i. If there exists

Ti < ∞, gi(t) = 0 and Gi stays constant for all t > Ti, i.e., any remaining player must be

strong and never exits once the game reaches the termination point.

3.3 In the gap

For t > τ2, it is quite straightforward to obtain the continuation equilibrium which is char-

acterized by the indifference condition (3). We also know that before τi, player i never exits,

i.e., Gi(t) = 0 for t < τi. What remains to be seen is the case in-between, i.e., for t ∈ [τ1, τ2].

The following statement clarifies what could possibly happen in this interval.

Lemma 3 In equilibrium, generically, one of the following must happen:4

1. Player 1 exits with strictly positive probability at τ1;

2. Player 2 exits with strictly positive probability at τ2;

3. Both players 1 and 2 exit with strictly positive probability at τ1 and τ2, respectively.

Moreover, no player exits in (τ1, τ2).

Proof. For t ∈ [τ1, τ2), player 2 never exits by Lemma 1. Given this, it is never optimal for

player 1 to exit at any t ∈ (τ1, τ2), because he strictly prefers to exit at τ1 rather than at any

t ∈ (τ1, τ2). To prove the lemma, therefore, it suffices to show that player 1 never exits with

positive probability at τ2. If G2(τ2) = 0, player 1 strictly prefers to exit at τ1 than at τ2. If

3Note that Gi is assumed to be right continuous, so that we implicitly consider the timing structure in
which Wi(t) is realized first and then Gi is chosen.

4There is also a case where τ1 = τ2 and T1(0) = T2(0), so that neither player exits with positive probability
in equilibrium. Throughout the analysis, we ignore this non-generic case.
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G2(τ2) > 0, player 1 strictly prefers to wait until τ2 + dt than exiting at τ2. This means that

G1 can make a discrete jump only at τ1.

This result suggests that any equilibrium of this game is thoroughly characterized by a

pair (G1(τ1), G2(τ2)) where G1(τ1) = G1(τ2) by Lemma 3. Let G∗
i := Gi(τi), W

∗
i := Wi(τi)

and p∗i := pi(τi) to save notation.

We now derive Wi(t) to see how the termination point Ti is related to G∗
i . Note that

Wi(t) = Qi(t) if player i has never exited. On the other hand, once player i starts exiting,

we in general have Wi(t) > Qi(t) because Wi(t) includes those who exited but would have

become strong later had they stayed in the game. More precisely, for a player who exits at t′,

the probability that he would achieve a breakthrough by t if he stayed is pi(t
′)(1−e−λi(t−t′)).

Since player i may exit with positive probability only at τi, we obtain

Wi(t) =

{

Qi(t) for t ∈ [0, τi],

Qi(t) +G∗
i p

∗
i (1− e−λi(t−τi)) +

∫ t

τ2
gi(s)pi(s)(1− e−λi(t−s))ds for t ∈ (τi, Ti],

where gi(t) = (rρj − pj(t)λj)(1−G∗
i )φj(t). For t > Ti, Wi(t) stays constant at Gi(Ti).

By definition, Gi(Ti) = Wi(Ti). Letting Φi(t) := (rρj − pj(t)λj)φj(t), the termination

point Ti must solve

1− (1−G∗
i )φj(Ti) = Qi(t) +G∗

i p
∗
i (1− e−λi(Ti−τi)) + (1−G∗

i )

∫ Ti

τ2

Φj(s)pi(s)(1− e−λi(Ti−s))ds,

Note that {Gi(s)}
Ti
s=τ2

is uniquely determined from (3) once we pin down G∗
i while pi(t) is

independent of Gi. As such, the termination date is essentially determined by G∗
i , and we

write Ti(G
∗
i ) to indicate its dependence on G∗

i .

Lemma 4 There must exist a unique Ti(G
∗
i ) < ∞ for any G∗

i ∈ [0,W ∗
i ]. Ti(G

∗
i ) is strictly

decreasing in G∗
i with Ti(W

∗
i ) = τ2.

Proof. See Appendix.

For a given G∗
i , player i exits according to (3) from τ2 to Ti(G

∗
i ). At Ti(G

∗
i ), the probability

that player i is strong conditional on the continuation of the game reaches one, and hence

gi(t) = 0 for t > Ti(G
∗
i ). We denote by T ∗

i the equilibrium termination point. By standard

argument, we can then show that T ∗
i = T ∗

j must hold in equilibrium if the game continues

beyond τ2, which implies that (G∗
1, G

∗
2) must be chosen so that the two players stop exiting

at the same time.

Lemma 5 T ∗
1 = T ∗

2 if max{T ∗
1 , T

∗
2 } > τ2.
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Proof. Suppose on the contrary that T ∗
i > T ∗

j while T ∗
i > τ2. That is, only player i exits for

t ∈ (T ∗
j , T

∗
i ). However, given that player j never exits, it is strictly better for player i to exit

at max{T ∗
j , τi} rather than waiting until T ∗

i , which is a contradiction.

We now consider player 1’s problem at τ1, where his viable choice is either to exit with

some positive probability at τ1 or to wait at least until τ2. Suppose that player 1 waits

until τ2. At time τ2, player 2 exits with probability G∗
2, in which case player 1 can earn a

continuation payoff of 1
r
. If player 2 does not exit, which occurs with probability 1 − G∗

2,

player 1 stays in the game and earns positive payoff if and only if he achieves a breakthrough

by τ2. Therefore, player 1 has an incentive to wait until τ2, rather than exiting at τ1, only if

p∗1
(λ1 − rρ1)(1− e−(r+λ1)∆τ )

r + λ1
+G∗

2e
−r∆τ (1− p∗1 + p∗1e

−λ1∆τ ) ≥ (1− p∗1)(1− e−r∆τ )ρ1. (4)

Clearly, player 1 has a stronger incentive to stay in the game when player 2 is more likely to

exit at τ2. In fact, G∗
2 > 0 is a necessary condition for G∗

1 < W ∗
1 , as we will see below.

Lemma 6 For any ∆τ > 0, (4) fails to hold if G∗
2 is sufficiently small.

Proof. From (4), it suffices to show that

(1− p∗1)(1 − e−r∆τ )ρ1 > p∗1
(λ1 − rρ1)(1− e−(r+λ1)∆τ )

r + λ1
.

Note that p∗1 = min{ rρ1
λ1
, p0} by definition. If p∗1 =

rρ1
λ1

, this condition is reduced to

1− e−r∆τ

r
>

1− e−(r+λ1)∆τ

r + λ1
,

which holds for any ∆τ > 0. Clearly, the same condition should also hold for any p0 <
rρ1
λ1

.

Which of the three possibilities emerges in equilibrium depends largely on the termination

points (T1, T2). What is in particular crucial is the termination point when the player does

not exit with positive probability, i.e., Ti(0).

Lemma 7 If T1(0) ≥ T2(0), player 1 must exit with positive probability at τ1, i.e., G
∗
1 > 0.

Proof. Suppose on the contrary that G∗
1 = 0. This means that G∗

2 > 0 by Lemma

3. In equilibrium, however, we must have T1(0) = T2(G
∗
2), which cannot be satisfied if

T1(0) ≥ T2(0) > T2(G
∗
2).
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4 Equilibrium characterization

4.1 Benchmark: no learning with fixed type

With the preceding lemmas, we are now ready to characterize the equilibrium of the entire

game. Before we proceed further, however, we first consider a benchmark case where the

players’ types are fixed over time, i.e., λ1 = λ2 = 0, in order to single out the impact of

experimentation in our setup. This particular example merits some independent attention as

it is not a special case of our analysis which assumes τ1 6= τ2. When the type is fixed over

time, ηi is irrelevant and we simply assume η1 = η2 = 0 to save notation.

Given that λ1 = λ2 = 0, the model actually reduces to a standard war of attrition

under incomplete information a la Fudenberg and Tirole (1986). Since the option value of

experimentation is invariably zero, we have τ1 = τ2 = 0, implying that both players must

exit at some positive rate from the outset. Moreover, generically, either one of the players

must exit with strictly positive probability at time 0. To see this, Ti is now given by

1− e−rρjTi(1−Gi(0)) = 1− αi.

If αi > 0, then we can find a finite Ti that satisfies this condition for a given Gi(0). Simple

computation yields

Ti(Gi(0)) =
ln[1−Gi(0)] − lnαi

rρj
.

Although our argument thus far excludes the symmetric case where τ1 = τ2, we can

apply essentially the same argument to this case to derive the equilibrium of this special

case. First, we must still have the players stop exiting at the same time in equilibrium, i.e.,

T1(G1(0)) = T2(G2(0)). Second, we can also show by standard argument that the two players

cannot exit with strictly positive probability at the same time, for there would always be an

incentive to wait and exit an instant later. This suggests that player i must exit with strictly

positive probability at time 0 if

ρj lnαj > ρi lnαi.

The equilibrium probability of immediate concession, Gi(0), must satisfy

ln[1−Gi(0)] − lnαi

ρj
= −

lnαj

ρi
. (5)

It is well known that this is the unique equilibrium of this special case. Note that neither

player exits with positive probability if and only if T1(0) = T2(0) or ρ1 lnα1 = ρ2 lnα2.

11



Several remarks are in order. First, the equilibrium is unique for any given set of param-

eters, which stems from the fact that there is a termination point which must be reached in

finite time. Although a war of attrition often admits a continuum of equilibria, Fudenberg

and Tirole (1986) show that the equilibrium can be uniquely pinned down when there are

types who never concede, such as the strong type in our setup. As we will see below, this

uniqueness result is also retained in our model which incorporates experimentation.

Second, the equilibrium allocation is determined entirely by the asymptotic efficiency αi

and the flow cost ρi or more precisely by ψi := ρi lnαi. Note that ψi is strictly increasing in

αi and decreasing in ρi with limαi→1 ψi = limρi→0 ψi = 0. In particular, if the players share

the same flow cost, the one who is expected to be stronger (a higher αi) can induce the other

player to give in and concede earlier. As a consequence, the player with a higher αi (or more

generally ρi lnαi) always earns a higher payoff in equilibrium.

Finally, there exists no efficient equilibrium in the sense of Pareto. Since it is a pure waste

of resource for two weak players to stay in the game simultaneously, the efficient allocation

must have one player, say player 1, exit immediately if he is weak. Formally, this requires

G1(0) = 1− α1. Clearly, this is not feasible for any (α1, α2) ∈ (0, 1)2 and (ρ1, ρ2) ∈ (0,∞)2:

from (5), Gi(0) < 1−αi, so that the game continues beyond time 0 with a probability strictly

larger than zero even when both players are weak. Intuitively, if G1(0) = 1−α1, player 1 can

signal that he is strong by not exiting at time 0. Given this, player 2 must exit at the next

instant if he is weak. If this is the case, however, player 1 no longer has an incentive to exit

at time 0 even when he is weak because he strictly prefers to wait and see player 2’s action.

4.2 Equilibrium with private learning

We now turn to the model which incorporates experimentation to see how this additional op-

tion alters the equilibrium allocation. Although there could be different types of equilibrium,

of particular interest is whether there exists a pure-strategy equilibrium which implements

the efficient allocation, i.e., G∗
1 = W ∗

1 and G∗
2 = W ∗

2 .
5 To see this possibility, note that if

G∗
1 = W ∗

1 , then g1(t) = 0 for all t > τ1. Given this, player 2 has no incentive to continue

beyond τ2 if weak, and as such, G∗
2 = W ∗

2 . This implies that the pure-strategy equilibrium

exists if and only if

(1− p∗1)(1− e−r∆τ )ρ1 ≥ p∗1
(λ1 − rρ1)(1− e−(r+λ1)∆τ )

r + λ1
+W ∗

2 e
−r∆τ (1− p∗1 + p∗1e

−λ1∆τ ). (6)

5It is easy to verify that this allocation is Pareto efficient. To improve player 2’s payoff, player 1 must exit
earlier than τ1, but this necessarily lowers his payoff. The same argument applies to player 2.
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In particular, if τ1 > 0, this condition becomes

rρ1

(1− e−r∆τ

r
−

1− e−(r+λ1)∆τ

r + λ1

)

≥W ∗
2 e

−r∆τ
λ1 − rρ1(1− e−λ1∆τ )

λ1 − rρ1
.

Proposition 1 If (6) holds, there exists a unique equilibrium in which G∗
1 = W ∗

1 and G∗
2 =

W ∗
2 .

Proof. If (6) holds with strict inequality, it is a dominant strategy for player 1 to exit

completely at τi. Given this, the pure-strategy equilibrium is clearly the only possible equi-

librium. If (6) holds with equality, player 1 is indifferent. If G∗
2 < W ∗

2 , however, (7) is

violated, implying that G∗
1 =W ∗

1 must hold.

The proposition implies that there exists a non-degenerate set of parameters which sup-

port the efficient allocation as an equilibrium outcome: among other things, (6) is satisfied if

∆τ is sufficiently large. This stands in clear contrast to the standard setup where the efficient

allocation can never be attained. If τ1 and τ2 are sufficiently close to each other, on the other

hand, (6) fails to hold, in which case the termination points (T1, T2) play a crucial role in

determining the equilibrium allocation. Given that (6) does not hold, Lemma 6 implies that

there must exist G2 ∈ (0,W ∗
2 ) such that

(1− p∗1)(1− e−r∆τ )ρ1 = p∗1
(λ1 − rρ1)(1 − e−(r+λ1)∆τ )

r + λ1
+G2e

−r∆τ (1− p∗1 + p∗1e
−λ1∆τ ). (7)

When (7) holds, player 1 is indifferent between exiting at τ1 and at τ2 (or after).

Proposition 2 Suppose that (6) does not hold. Then, there exists a unique equilibrium in

which

1. G∗
1 ∈ (0,W ∗

1 ) and G
∗
2 = G2 ∈ (0,W ∗

2 ) such that T1(G
∗
1) = T2(G2) if T1(0) > T2(G2);

2. G∗
1 = 0 and G∗

2 ∈ (0,W ∗
2 ) such that T1(0) = T2(G

∗
2) if T2(G2) ≥ T1(0).

Proof. Suppose that player 2 exits at τ2 with probability G2, in which case player 1 is

indifferent. If T1(0) > T2(G2), then player 1 can pick G∗
1 which satisfies T1(G

∗
1) = T2(G2). If

T2(G2) ≥ T1(0), then G
∗
2 must be high enough to satisfy T1(0) = T2(G

∗
2). Given this, player

1 has no incentive to exit at τ1, i.e., G
∗
1 = 0.

We can also show that no other equilibrium exists. Observe that if G∗
1 = W ∗

1 , then

G∗
2 = W ∗

2 , which gives player 1 an incentive to deviate and stay in the game. This im-

plies that G∗
1 < W ∗

1 . If G∗
2 = W ∗

2 , on the other hand, player 1 has a strict incentive to

stay in the game, i.e., G∗
1 = 0. This cannot constitute an equilibrium, however, because
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T1(0) > T2(W
∗
2 ) = τ2. Given that G∗

1 ∈ [0,W ∗
1 ) and G

∗
2 ∈ (0,W ∗

2 ), the indifference condition

and the termination condition must be satisfied, giving a unique pair (G∗
1, G

∗
2).

Propositions 1 and 2 characterize all equilibria in this setup. Remarkably, player 2 must

exit with some positive probability in any equilibrium of this game. The reason for this is

that if G∗
2 = 0, then player 1 has no incentive to stay in the game if he is weak. Given that

G∗
1 = W ∗

1 , however, player 2 also has no incentive to stay in the game beyond τ2 if he is

weak. Therefore, G∗
2 = 0 cannot be sustained as an equilibrium, and player 2 must exit with

positive probability at τ2.

4.3 Discussion: experimentation versus private learning

Our model incorporates experimentation and private learning into an otherwise standard war

of attrition, meaning that our learning process consists of two distinct elements. The first

necessary element is private learning where each player’s type changes over time when a one-

time breakthrough arrives. The second element, which turns out to be equally important,

is experimentation where each player cannot directly observe his own state of nature. If we

take out the first element, it is a model with fixed types which has already been discussed in

section 4.1. Here, we examine the role of the second element by assuming that each player i

can (privately) observe his own state θi.

Consider first the problem faced by a player who knows that the state is good. For this

player, the belief pi(t) stays invariably at one for all t, regardless of the history of the game.

Under the assumption that λi > rρi, it is a dominant strategy to stay in the game, i.e., a

player who knows that the state is good never exits.

Given this strategy, what should a player do if he knows that the state is bad? Since

pi,t = 0, player i exits at t if

rρi ≥
gj(t)

1−Gj(t)
,

which is the same condition as in section 4.1. Integrating both sides, the equilibrium strategy

is given by

Gi(t) = 1− (1−Gi(0))e
−rρj t,

until Gi(t) = 1− αi. We can then follow the same procedure to obtain Ti(0) and Gi(0) and

derive the equilibrium.

This argument shows that when the state is directly observable, the model is essentially

equivalent to the benchmark case with fixed types, provided that λi is large enough to satisfy
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Assumption 1. In other words, a player’s behavior does not depend on whether a player is

currently strong or not, as long as he knows that the state is good. This shows that although

the element of private learning is clearly indispensable, it is not enough by itself to alter the

equilibrium allocation in a qualitative sense; all of our main results can be obtained only

when it is combined with the element of experimentation.

5 Example: one-sided learning

5.1 The asymptotic efficiency and the equilibrium payoff

An interesting special case of our model is where only one player can experiment and learn

while the other player’s type is fixed over time. The case with one-sided learning illuminates

the role of experimentation and how it can affect the equilibrium payoffs in a clear way. We

in particular show that slow learning can be a blessing, as it provides a credible commitment

device to stay in the game and is hence instrumental in inducing the other player to concede

earlier. This stands in sharp contrast to the standard setup in which the stronger player

always earns a higher payoff.

Now suppose that η1 = 0 and η2 = 1, so that player 1 has no margin of experimentation.

To assure that this is the only source of heterogeneity, we fix other parameters at the same

level: αi = α, λi = λ and ρi = ρ for i = 1, 2. Under this specification, the probability that

player 1 is strong stays constant at α, leaving no room for experimentation regardless of λ.

In contrast, the probability that player 2 is strong at t is α(1 − e−λt) which is strictly lower

than α at any finite t, i.e., player 2 is strictly less efficient than player 1.

Player 1 knows that if he is weak at time 0, he will always be weak. Since τ1 = 0,

player 1 must decide whether to exit immediately or wait until τ2 := 1
λ
ln[ (λ−rρ)α

rρ(1−α) ]. Given

p1,0 = αη1 = 0, from Proposition 1, player 1 exits immediately if and only if

(1− e−rτ2)ρ ≥W ∗
2 e

−rτ2 = (1− α+ αe−λτ2)e−rτ2 .

which can be written as

(

1−
( rρ(1− α)

(λ− rρ)α

)
r
λ
)

ρ ≥ (1− α)
( rρ(1− α)

(λ− rρ)α

)
r
λ λ

λ− rρ
. (8)

If (8) is satisfied, player 1, if he is weak, exits immediately in the unique equilibrium.

As a consequence, player 1 earns positive payoff if and only if he is strong at time 0. Let

Πi(G
∗
i , G

∗
j ) denote player i’s expected equilibrium payoff. The equilibrium payoff for player

1 is then given by

rΠ1(W
∗
1 ,W

∗
2 ) = α.
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In contrast, player 2 can earn positive payoff from the outset with probability 1 − α. With

the remaining probability, player 1 is strong and stays in the game indefinitely. Given this,

player 2 waits until τ2 and exits once and for all if he cannot achieve a breakthrough by then.

The equilibrium payoff for player 2 is hence given by

rΠ2(W
∗
2 ,W

∗
1 ) = 1− α+ α

(

α
(λ− rρ)(1− e−(r+λ)τ2)

r + λ
− (1− α)(1 − e−rτ2)ρ

)

> 1− α.

It is immediate to see that player 2, who is strictly inefficient, can earn a higher payoff if

0.5 ≥ α. The question is then if (8) can be satisfied for some α ∈ (0, 0.5]. The following

statement shows that this is indeed possible when experimentation is less costly, provided

that the players are relatively impatient.

Proposition 3 For any α ∈ (0, 0.5], if r ≥ λ > 0, there exists ρ(α, r
λ
) ∈ (0, αλ

r
) such that

there exits an equilibrium in which the strictly inefficient player earns a higher payoff for

ρ < ρ(α, r
λ
).

Proof. A necessary condition for this statement is τ2 > 0 which can be written as α > rρ
λ
. To

prove this, therefore, it suffices to show that there exists some α ∈ (0, 0.5] which satisfies both

α > rρ
λ

and (8). To this end, fix ρ = αλ
(1+x)r for some given α ∈ (0, 0.5], so that α > rρ

λ
= α

1+x

holds for any x > 0. Then, (8) can be written as

α
(

1 + (1 + x
1−α

)−
r
λ

)(1 + x
1−α

)1+
r
λ

(1 + x)2
≥
λ

r
,

which holds for a sufficiently large x for any α ∈ (0, 0.5] if r
λ
≥ 1. It is clear from this that

the threshold value can be obtained as a function of α and r
λ
.

The impact of a decrease in ρ is not immediately clear, as it yields two opposing effects:

on one hand, it lowers the cost of staying in the game, rendering player 1 less willing to exit

immediately; on the other hand, it can also lower the cost of experimentation for player 2,

allowing him to extend τ2. Intuitively, the latter effect dominates the former when player 1

is less patient and the benefit of waiting (until τ2) is smaller. The proposition suggests that

for any r ≥ λ > 0, we can find ρ that is low enough to let player 1 concede immediately.

There is another way to interpret this result. Consider an alternative specification in

which η1 = η2 = 1 but λ1 > λ2 = λ > 0. The case with one-sided learning can then be

seen as the limit case where λ1 → ∞. In this sense, Proposition 3 implies that slow learning

can be a blessing when outlasting the opponent is the major concern. With a high λi, the

belief pi(t) goes down and the option value of experimentation dissipates rather quickly; in
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fact, as λi → ∞, pi(t) → 0 for any arbitrarily small t > 0, thereby approximating a situation

where ηi = 0. In contrast, if λi is small, the belief pi(t) goes down only gradually, and the

option value of experimentation is hence kept relatively high over time. Due to this effect,

slow learning can actually be beneficial, as it induces the other player to concede early even

if he is strictly more efficient in the asymptotic sense.

5.2 Implications

Standards competitions: One application which fits our framework particularly well is

standards competitions, mainly on two accounts. First, standards competitions are a typical

example of war of attrition in that the market can accommodate only a few standards in the

end largely due to network externalities. Second, it is also important to note that many of

those competitions have historically taken place in innovation-intensive industries. To analyse

a standards competition as a war of attrition, it seem imperative to take into account the

possibility of innovation and technological progress.

Concerning standards competitions, a puzzle that has attracted much attention in the

literature is that we often observe instances where what appears to be an inferior technology

survives and emerges as the defacto standard. One of the most famous anecdotes of this sort

is perhaps the video format war between Betamax and VHS. In this new market for home

VCR, Sony – the creator of Betamax – was the predecessor and quickly captured the entire

market share by the end of 1975 before VHS was introduced in the following year. Sony at the

time also possessed a more matured technology due to its prior involvement in the U-matic

system – one of the first cassette-based tape formats. In fact, many recognized Betamax as

the superior technology to VHS, with its better resolution, superior sound, more stable image,

faster response to operating keys, and so on. Despite all these advantages, however, Betamax

somehow faded out of popularity, forcing SONY to retreat from the format effectively by the

end of the 1980s.

Many explanations have been suggested to account for why Betamax lost in the war,6 but

our analysis sheds new light on this issue from a previously unexplored channel, by providing a

mechanism through which a technologically less matured standard can outlast other possibly

more matured predecessors in this type of competition. Although a lot remains to be seen

at this point,7 we argue that the margin of experimentation, which has largely been ignored,

6The literature generally focuses on SONY’s pricing and marketing strategies. Many also argue that
Betamax’s shorter recording time was a crucial deciding factor. See, e.g., Casumano et al. [4] and Liebowitz
and Margolis [18].

7One important caveat is that a war of attrition is typically characterized by a mixed-strategy equilibrium,
so almost any outcome, when it is seen in isolation, is consistent with theory. It is also emphasized in the
literature that network externalities may give rise to the multiplicity of equilibrium, with some more efficient
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can be a powerful force that can dictate the outcome of a standards competition, thereby

offering some empirical implications.

Technology adoption: From a broader perspective, our analysis yields an important im-

plication for technology adoption where there are choices over how to develop a particular

standard. To put this idea in context, suppose that there are two available technologies, a

(more matured) fast technology λF and a (less matured) slow technology λS where λF > λS .

Suppose further that a player can choose which technology to adopt at time 0 (to simplify the

argument, suppose that only one of the players has this choice). Our analysis then implies

that there are cases where it is optimal to deliberately choose the slow technology λS , which

takes more time to develop, even when the two technologies are perfectly equivalent in every

other dimension.

Of course, in reality, technology adoption often involves a tradeoff between short-run and

long-run gains. Although we consider an extreme case where the two technologies differ

only in the learning rate for the sake of illustration, it is more realistic to assume that some

technologies take more time to develop but are more efficient in the long run. One way to

capture this possibility is to consider technologies that differ also in the asymptotic efficiency,

i.e., a fast technology (αF , λF ) and a slow technology (αS , λS) where αS > αF . This type of

tradeoff is often present in the choice between exploitation (of old ideas) and exploration (of

new ideas): it is extensively discussed in the innovation literature that exploration inherently

entails more uncertainty and is more time-consuming but potentially brings about a bigger

benefit (March [19]). Our analysis then implies that there arises an additional value of

exploration in particular, and long-run innovation strategies in general, when a firm faces a

war-of-attrition type of competition.

Industry dynamics: Consider yet another variant of our model where one player, say player

1, enters the game earlier at time −t̃, and the other player, player 2, joins later at time 0.

Suppose that the two players are homogeneous in every aspect, except for the timing of entry.

Then, having been in existence for a duration t̃ of time, the probability that player 1 is weak

at time 0 is 1−α+αηe−λt̃. Letting η1 := ηe−λt̃ and η2 = η, therefore, the game is equivalent

to the one in which the players differ in ηi. Taken at face value, our model thus predicts

that younger firms, with less matured technologies, tend to outperform older counterparts,

thereby generating and accelerating product life cycle. Although this hypothesis is hard to

test empirically due to the lack of information about innovation and also to the difficulty in

than others, and an inefficient equilibrium can at least in theory emerge due to the lack of coordination. Even
in this case, one still needs an explanation for why concerned parties coordinate on the wrong side. Our
framework building on a war of attrition can provide a way.
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controlling for the asymptotic efficiency,8 our analysis suggests a testable implication linking

firm age and survival.

6 Conclusion

In this paper, we provide a simple extension of a standard war of attrition to incorporate the

possibility that players may innovate through experimentation. We find that this extension

yields some qualitative impacts on the strategic nature of the problem. Most notably, we

show that the option value of experimentation provides a credible commitment device which

affects the equilibrium allocation in a non-trivial way. As a direct consequence of this effect,

there arises an equilibrium in which the strictly less efficient player, but with larger room for

experimentation, can earn a higher payoff in equilibrium. Our analysis provide a plausible

mechanism through which an inferior technology survives and becomes the de facto standard

in a standards competition, and more broadly offers implications for technology adoption and

industry dynamics.
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Appendix

Proof of Lemma 2. We first establish that Gi must be strictly increasing and continuous,

which implies that the players must be held indifferent. We can show that Gi must be

increasing by standard argument. Suppose otherwise, i.e., there exists an interval [t′, t′′] such

that Gi(t) is constant for t ∈ [t′, t′′] and increases for t > t′′. Then, it is strictly better for

player j to exit at t rather at any point in an interval shortly after t′′. However, if gj(t) = 0

for t ∈ [t′′, t′′ + ε], it is strictly better for player i to exit at t′′ rather than in this interval,

which is a contradiction. This means that Gi must be strictly increasing for t > τ until until

no weak player remains in the game.

To show that Gi must be continuous, suppose that Gi makes a discrete jump at some

t > τ2. Then, the other player strictly prefers to wait and exit at t+ dt rather than at any

time shortly before t, which contradicts that Gi is strictly increasing.

These results suggest that in any continuation equilibrium after τ2, a weak player must

be held indifferent, i.e.,

gi(t)

1−Gi(t)
= rρj − pj(t)λj

Integrating both sides yields

ln[1−Gi(τ2)]− ln[1−Gi(t)] = rρj(t− τ2) + lnQj(t)− lnQj(τ2).

Alternatively, this can be written as

Gi(t) = 1− e−rρj(t−τ2)(1−Gi(τ2))
Qj(τ2)

Qj(t)
,
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which shows the necessary optimality condition that must be satisfied for t > τ2.

Proof of Lemma 4. Since Gi is a distribution function, it must be weakly increasing. Note

also that Wi(t) is strictly decreasing by definition, given that a player can only switch from

weak to strong, but not the other way around. Moreover, for any G∗
i ∈ [0,W ∗

i ],

lim
t→∞

Gi(t) = 1 > lim
t→∞

Wi(t).

there must exist a unique Ti(G
∗
i ) <∞.

To show that Ti is decreasing in G∗
i , observe first that

∂Gi(Ti)

∂Ti

∂Ti

∂G∗
i

+
∂Gi(Ti)

∂G∗
i

=
∂Wi(Ti)

∂Ti

∂Ti

∂G∗
i

+
∂Wi(Ti)

∂G∗
i

.

Since ∂Gi(Ti)
∂Ti

− ∂Wi(Ti)
∂Ti

> 0, we need to show

∂Ti

∂G∗
i

< 0 ⇔
∂Gi(Ti)

∂G∗
i

>
∂Wi(Ti)

∂G∗
i

,

which can be written as

φj(Ti) > p∗i (1− e−λi(Ti−τi))−

∫ Ti

τ2

Φj(s)(1− e−λ(Ti−s))ds. (9)

Note that Wi(Ti) = Gi(Ti) by definition, i.e.,

1− (1−G∗
i )φj(Ti) = Qi(t) +G∗

i p
∗
i (1− e−λi(Ti−τi)) + (1−G∗

i )

∫ Ti

τ2

Φj(s)pi(s)(1− e−λi(Ti−s))ds,

which can be written as
∫ Ti

τ2

Φj(s)pi(s)(1− e−λi(Ti−s))ds =
1−Qi(t)−G∗

i p
∗
i (1− e−λi(Ti−τi))

1−G∗
i

− φj(Tj).

Plugging this into (9) yields

1−Qi(t)−G∗
i p

∗
i (1− e−λi(Ti−τi))

1−G∗
i

> p∗i (1− e−λi(Ti−τ2)),

which is simplified to

1−Qi(Ti) > p∗i (1− e−λi(Ti−τ2)).

This condition can be written as

αi(1− ηie
−λiTi) >

αiηie
−λiTi

1− αi + αiηie−λiTi
(1− e−λi(Ti−τ2)),

which holds because αi ≥
αiηie

−λiTi

1−αi+αiηie
−λiTi

and 1− ηie
−λiTi > 1− e−λi(Ti−τ2).
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