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Abstract

The situation of a limited availability of historical data is frequently encountered in portfolio
risk estimation, especially in credit risk estimation. This makes it, for example, difficult
to find temporal structures with statistical significance in the data on the single asset
level. By contrast, there is often a broader availability of cross-sectional data, i.e., a
large number of assets in the portfolio. This paper proposes a stochastic dynamic model
which takes this situation into account. The modelling framework is based on multivariate
elliptical processes which model portfolio risk via sub-portfolio specific volatility indices
called portfolio risk drivers. The dynamics of the risk drivers are modelled by multiplicative
error models (MEM) - as introduced by Engle (2002) - or by traditional ARMA models.
The model is calibrated to Moody’s KMV Credit Monitor asset returns (also known as
firm-value returns) given on a monthly basis for 756 listed European companies at 115
time points from 1996 to 2005. This database is used by financial institutions to assess the
credit quality of firms. The proposed risk drivers capture the volatility structure of asset
returns in different industry sectors. A characteristic temporal structure of the risk drivers,
cyclical as well as a seasonal, is found across all industry sectors. In addition, each risk
driver exhibits idiosyncratic developments. We also identify correlations between the risk
drivers and selected macroeconomic variables. These findings may improve the estimation
of risk measures such as the (portfolio) Value at Risk. The proposed methods are general
and can be applied to any series of multivariate asset or equity returns in finance and
insurance.

Key words: Portfolio risk modelling, Elliptical processes, Credit risk, multiplicative error
model, volatility clustering, Moody’s KMV Credit Monitor database.

JEL classification: C51, C16, C13



Non-technical summary

Over the past years, the availability of data for financial analysis in general and portfolio
risk analysis in particular has substantially improved. This situation enables the use of
more sophisticated methods for portfolio management and risk analysis and has attracted
many scholars from the industry, academia, and banking supervision.

The present research project proposes a multidimensional stochastic dynamic model that
identifies portfolio risk drivers via volatilities in two dimensions, over time and across in-
dustry sectors. The identification and the need of modelling volatility dynamics in financial
data goes (at least) back to the research by the Nobel laureate Robert Engle and has gained
importance during the last two decades. The volatility is often referred to as the key driver
of risk in a financial portfolio, and many performance measures or risk measures express
the amount of risk via the volatility.

The model is applied to market-based credit risk data (monthly asset returns also known
as firm-value returns) covering a limited period of time but comprising a large number of
assets. The proposed method is particularly useful in the situation of a broad availability
of cross-sectional data, i.e., a large number of assets in the portfolio. The data are obtained
from the Moody’s KMV Credit Monitor database.

It is shown that the model is able to identify volatility patterns that remain otherwise
hidden on the single-firm level. In this way, insights into the underlying factors which drive
portfolio risk are possible. A characteristic temporal structure of the risk drivers, cyclical
as well as a seasonal, is found across all industry sectors. In addition, each risk driver
exhibits idiosyncratic developments. We also identify correlations between the risk drivers
and selected macroeconomic variables. The findings may be used for the improvement
and validation of Value at Risk estimates. The proposed methods are general and can be
applied to any series of multivariate asset or equity returns in finance.



Nicht-technische Zusammenfassung

In den letzten Jahren hat sich die Verfügbarkeit von Mikrodaten für finanzwirtschaftliche
Untersuchungen, speziell im Bereich des Portfoliomanagements, deutlich verbessert. Im
Zuge dessen ist das Interesse von Praktikern und Wissenschaftlern an komplexen stochasti-
schen Methoden zur Anwendung im Bereich des Portfoliomanagements gewachsen. Nach
wie vor besteht jedoch im Bereich der Kreditrisikoanalyse Nachholbedarf bei der Model-
lierung und Validierung von Portfoliorisiken.

Die Autoren entwickeln ein mehrdimensionales stochastisches Modell, um dynamische
Volatilitätsstrukturen zu identifizieren, welche das Portfoliorisiko treiben. Die Identifizierung
und Modellierung von Volatilitäten in Finanzmarktzeitreihen spielt nicht zuletzt seit den
bahnbrechenden Forschungsarbeiten des Nobelpreisträgers Robert Engle eine grundlegende
Rolle für die Analyse von Portfoliorisiken. Die Volatilität wird oft als der wichtigste Treiber
des Portfoliorisikos bezeichnet und eine Vielzahl von bekannten Risiko- und Performance-
maßen beschreibt das Risiko explizit anhand der Volatilität.

Das vorgeschlagene stochastische Modell wird auf eine Zeitreihe von Kreditrisikodaten
(monatliche Asset Renditen bzw. so genannte Firmwert Renditen) der Moody’s KMV
Credit Monitor Datenbank angewendet. Dieser Datensatz besitzt zwar eine beschränkte
Historie, umfaßt jedoch eine große Anzahl von Firmen. Das stochastische Modell ist dabei
besonders für diese Art von Datensituation geeignet.

Es zeigt sich, dass mit Hilfe des Modells Volatilitätsstrukturen erkannt werden können, die
ansonsten auf Einzelfirmenebene verborgen blieben. Hierbei sind besonders konjunkturbe-
dingte Strukturen, unterjährige Saisonalitäten und branchenspezifische Charakteristiken
von Interesse. Weiterhin werden Korrelationen zwischen den Risikotreibern und verschiede-
nen makroökonomischen Indikatoren festgestellt. Die Ergebnisse können verwendet wer-
den, um die Modellierung und Schätzung von Portfoliorisiken zu verbessern. Darüber hin-
aus eignet sich die Methode generell auch für andere finanzwirtschaftliche Fragestellungen,
im Rahmen derer Portfoliorisiken modelliert und analysiert werden.
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Modelling dynamic portfolio risk using risk drivers of
elliptical processes1

1 Introduction

The motivation of this paper is based on a common situation in portfolio risk modelling,
in particular credit risk modelling: time series data are sparse, while cross-sectional data
are broadly available.2 The limitation of historical data may have various reasons, e.g.,
a limited collection or observation horizon, or a structural break due to a change in the
collection methodology. Systematic data collection in financial institutions principally
started during the last decade when sophisticated IT and database systems have been
established. The database used in this study - Moody’s KMV Credit Monitor (in short:
MKMV) database - is one of the most valuable sources for credit risk modelling and credit
risk analysis. The database comprises credit risk relevant data of listed companies, such
as credit exposures, expected default frequencies (EDFs), asset values or asset returns.
Amongst others, this database has been used to calibrate the Basel II one-factor credit
risk model, see Basel Committee on Banking Supervision (2006). MKMV asset returns
are frequently used by financial institutions to estimate the asset correlations in structural
credit risk models, cf. Lopez (2004) and Berndt et al. (2005). The data history of this
database goes back to the beginning of the 1990s, but exhibits a structural break around
the year 1995/1996. Thus for consistency reasons, the shorter time interval - from 1996 to
2005 - comprising only 115 monthly time observations for 756 listed European companies
is considered. We propose a high-dimensional stochastic model which takes this data
situation into account and is capable of capturing the temporal structure of portfolio risk
via so-called risk drivers.

These risk drivers model the behavior of the sub-portfolio specific volatilities on an aggre-
gated level. The identification and the need of modelling volatility dynamics in financial
data goes (at least) back to the seminal work by Engle (1982) and Bollerslev (1986) and
has gained importance during the last two decades.3 The volatility is often referred to
as the key driver of risk in a financial portfolio, and many performance measures or risk
measures - such as the Sharpe ratio or the Value at Risk (VaR) in a Gaussian model -
express the amount of risk via the volatility, cf. Jorion (2006). The general multivariate
stochastic process, proposed in this paper, models the volatility using so-called risk drivers.
These risk drivers enter the model as multiplicative factors and can be retrieved from the
data. The stochastic process is termed elliptical process if it includes one single risk driver
or generalized elliptical process if it includes multiple risk drivers, which are for example
industry-specific. The risk drivers deliver information about the volatility in the portfolio
which is otherwise not visible on a disaggregated single obligor level. This information is

1The first author gratefully acknowledges the hospitality and support of Deutsche Bundesbank. He would
like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support. Further, the authors thank
Thilo Liebig, Nick Bingham, Rüdiger Kiesel, Friedrich Schmid, Klaus Düllmann, Dirk Tasche, Christoph
Memmel and the participants of the Second Bundesbank workshop on ’Research on financial stability’,
in particular Peter Raupach, for inspiring and fruitful discussions. We are also grateful to the referees
for valuable and helpful comments. Corresponding author: Rafael Schmidt, Universität zu Köln, Seminar
für Wirtschafts- und Sozialstatistik, Albertus-Magnus-Platz, D-50923 Köln, Germany, rafael.schmidt@uni-
koeln.de, Tel.: +49 221 470 2283, FAX: +49 221 470 5074.

2By cross-sectional we refer to the number of assets in the portfolio.
3For an overview see Alexander (2001) and references therein.
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then incorporated into the portfolio risk estimation. Furthermore, risk managers may use
the risk drivers as indicators of portfolio risk attributed to the volatility over time. An
advantage of the proposed model is its fast random number generation. The model can
be seen as a time-dynamic extension of the time-static model considered in Bingham et al.
(2003).

The dynamics of the portfolio risk drivers are modelled by so-called multiplicative error
models (MEM), as introduced by Engle (2002), and extended and applied by Chou (2005)
and Engle and Gallo (2006). These dynamics capture the amount of volatility clustering
inherent in the data via a GARCH-type structure. Alternative models such as nonlinear
regression or trend models are also considered. A limiting argument even justifies the usage
of traditional ARMA models for large portfolios.

Concerning the estimation of the multivariate dependence structure of the model, we sug-
gest a simple correlation estimator which is based on ranks and is therefore robust. The
estimator is called Blomqvist’s beta and is a measure of non-linear dependence that is
solely determined by the copula of the multivariate distribution. A functional relationship
between Blomqvist’s beta and the dispersion matrix of the generalized elliptical process
shows that this measure of dependence is (asymptotically) consistent. In order to reduce
the number of (correlation) parameters, we utilize the correlation structure of a one-factor
model which is also the building block of the IRB portfolio model of Basel II, see Basel
Committee on Banking Supervision (2006).

The set of competing multivariate volatility models can be divided into three categories.
The first category consists of multivariate GARCH models and related types. Most promi-
nent members are the DVEC(p,q) models (Bollerslev et al. 1988), the matrix-diagonal
models (Ding 1994, Bollerslev et al. 1994), the BEKK models (Engle and Kroner 1995),
the CCC model (Bollerslev 1990) or the PGARCH model (Alexander 1998). Without
further restrictions, all these models estimate the volatility dynamics on the level of the
univariate margins, however, for the (short horizon) risk data considered in this paper, no
significant volatility structures can be found on this level. A common drawback of the
unrestricted models is that the number of parameters to be estimated increases fast with
increasing dimension and, thus, increases the forecast uncertainty - see also Gouriéroux
(1997) for an overview. We also mention EWMA models which are applied in practice,
e.g., in the RiskMetrics proposal; see also Foster and Nelson (1996). In the univariate con-
text, EWMA models correspond to IGARCH models. The second category are stochastic
volatility models which model the volatility as a latent (unobserved) random source, see e.g.
Tsay (2002) and references therein. They differ from our approach as we actually retrieve
the risk drivers from the data. The third category of volatility models refers to the direct
modelling of (univariate) portfolio returns as in McNeil and Frey (2000). This approach
is useful in terms of dimensionality reduction and it certainly captures relevant volatility
characteristics of the underlying assets. However, it ignores multivariate aspects which are,
for example, necessary for portfolio allocation or the risk analysis of sub-portfolios.

In the empirical study, the model is calibrated to Moody’s KMV Credit Monitor asset
returns (also known as firm-value returns) for 756 listed European companies observed at
115 monthly time points from 1996 to 2005. A main finding is that the temporal structure of
the volatility is statistically significant on the risk driver level only, whereas it is insignificant
on the level of the single assets due to the limited data history. Furthermore, we observe
temporal structures of the risk drivers which are similar across all industry sectors both in
a seasonal and a cyclical context, with each sector’s risk driver also exhibiting idiosyncratic
developments. We also find empirical correlations with selected macroeconomic variables.
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These findings may be used to improve the quality of risk measurement via time-dynamic
VaR models.

The paper is organized as follows. Section 2 introduces elliptical processes and the corre-
sponding risk drivers. We start with a single risk driver in Section 2.1. Particular emphasis
is placed on the interpretation of the risk driver and related examples of multivariate dis-
tributions. Section 2.2 models the dynamics of the risk driver using a multiplicative error
model (MEM) and provides possible extensions. Thereafter, Section 2.3 generalizes the
models to multiple risk drivers and the subsequent sections elaborate its estimation and
the corresponding random number generation. In Section 3 the model is applied to credit
risk analysis. In particular, we calibrate the model to MKMV asset return data - described
in Section 3.1 - and extract and model the risk drivers in Section 3.2. The following sections
examine the empirical correlation of the risk drivers with selected macroeconomic variable
and indicate their usage for portfolio VaR estimation. Section 4 concludes.

2 Elliptical processes

2.1 Elliptical processes with single risk driver

Let T be some countable index set representing time, i.e. set T = {. . . ,−1, 0, 1, . . . }. A d-
dimensional stochastic process X = (Xt)t∈T is called elliptically contoured process (in short:
elliptical process) if its margins Xt, for fixed t ∈ T, have the stochastic representation:

Xt
d= m + RtA

′Ut, (1)

where m is a d-dimensional location vector and A′A = Σ is a symmetric positive-definite
d × d dispersion matrix. The d-dimensional random vector Ut is uniformly distributed
on the (d − 1)-dimensional unit sphere S

d−1 := {x ∈ R
d : ||x|| = 1}, where || · || denotes

the Euclidean norm, and Rt ≥ 0 is a one-dimensional random variable. The collection of
random variables {Rt | t ∈ T} is stochastically independent of {Ut | t ∈ T}. Thus Xt, for
fixed t ∈ T, possesses an elliptically contoured distribution, which is typically defined via a
density function having a quadratic form as argument; for a review see Fang et al. (1990).

The random variable Rt, for fixed t, describes the radial part of Xt if Σ equals the identity
matrix I and if the location vector m = 0. In that case, Ut denotes the angle vector,
since a realization of Ut corresponds to the angle of Xt (measured on the unit sphere). In
particular, the following relationship holds

Rt
d= ||(A′)−1(Xt − m)|| and Ut

d=
(A′)−1(Xt − m)

||(A′)−1(Xt − m)|| . (2)

If E(R2
t ) < ∞, then the matrix ctΣ corresponds to the variance-covariance matrix of Xt

with scaling factor ct = E(R2
t )/d > 0. Thus, the variance-covariance matrix depends on

the distribution of Rt which may be non-stationary.

Interpretation of Rt. Consider a portfolio comprising d assets, and let X describe the
randomness of the d-dimensional asset returns. The process R = (Rt)t∈T is called the
risk driver of X since it determines the degree of the overall volatility of X over time.
More precisely, R is the random source which equally contributes to the volatility of each
single-asset return and thus represents a driver of the overall volatility structure in the
portfolio. Using R, one may model different temporal structures of the volatility, for

3



example, volatility clustering - observed in many financial data - or seasonal volatility
structures - found e.g. in high-frequency assets returns. In Section 3, we demonstrate that
volatility clustering and seasonal volatilities are present in the KMV asset-return series.
The main motivation of considering the risk driver R comes from formula (2), which implies
that - except for the estimation error of A and m - the distribution of R can directly be
retrieved from the observations of X.

The collection of {Ut | t ∈ T} is assumed to be mutually independent. This assumption
appears to be reasonable in the present setting of few temporal observations but broad
availability of cross-sectional data (thus, Ut is high dimensional). Besides, multivariate
statistical tests for temporal correlation of the Ut will have low power in this setting.
Alternatively, Ut could be modelled as a random walk on the unit-sphere, cf. Bingham
(1972).

Examples. Elliptical processes are constructed by choosing different risk drivers R. In
portfolio risk modelling, the tail behavior of the distribution of X is usually a key factor
during the model-selection process. Heavy tails assign a higher probability to the (joint)
occurrence of extreme events - such as extremely negative asset returns. In the following,
we specify three distributions of Rt which yield either light tails, semi-heavy tails or heavy
tails of X. The temporal specification of R is left to the next section.
i) Heavy tails. Let R2

t /ν1 be F -distributed with ν1 and ν2 degrees of freedom, thus, Rt

has density

fR(x) =
ν

ν2/2
2

B(ν1/2, ν2/2)
2xν1−1

(ν2 + x2)(ν1+ν2)/2
, x > 0, ν1, ν2 > 0

with beta-function B. The tail decay of fR (at infinity) is that of a power law, i.e. fR(x) ∼
ax−b, b > 0, as x → ∞. The tail decay of the univariate margins of Xt possesses the same
size, see Prop. 3.4 in Schmidt (2002). If Xt is a d-dimensional random vector, the particular
choice ν1 = d yields a d-dimensional Student’s t-distribution with ν2 degrees of freedom for
Xt.
ii) Semi-heavy tails. Let Rt possess the Bessel-type density

fR(x) = c
xν−1

(1 + x2)ν/4−λ/2
Kλ−ν/2(α

√
1 + x2),

with c =
αν/221−d/2

Γ(ν/2)Kλ(α)
, x > 0, λ ∈ R, ν, α > 0,

where Kλ denotes the modified Bessel-function of the third kind with index λ (see Magnus
et al. (1966), pp. 65). The tail decay of fR (at infinity) is exponential of order one, i.e.
fR(x) ∼ axb exp(−cx), c > 0, as x → ∞, see Abramowitz and Stegun (1964), p.364, for the
asymptotic expansion of Kλ for large arguments. The tail decay of the univariate margins
of Xt is of the same size. If Xt is a d-dimensional random vector, the choice ν = d yields a
d-dimensional generalized hyperbolic distribution for Xt. We also refer to Barndorff-Nielsen
and Blæsild (1981) who discuss semi-heavy tails of the univariate generalized hyperbolic
distribution.
iii) Light tails. Let Rt be χ-distributed with ν degrees of freedom, having density

fR(x) =
1

2(ν/2−1)Γ(ν/2)
e−x2/2xν−1, x > 0, ν > 0.
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Note that R2
t is χ2-distributed with ν degrees of freedom. The tail decay of fR (at infinity)

is exponential of order two, i.e. fR(x) ∼ axb exp(−cx2), c > 0, as x → ∞. The tail decay
of the univariate margins of Xt possesses the same size. If Xt is a d-dimensional random
vector, then the particular choice ν = d yields a multivariate normal distribution for Xt.

2.2 Risk-driver dynamics

The risk driver R is a nonnegative valued stochastic process. Once the location m and
the dispersion Σ are estimated (cf. Section 2.4), R can be extracted using formula (2).
The temporal structure of R can be of any type, e.g., it may include deterministic trends,
seasonal components, autoregressive components as well as volatility clustering. The fol-
lowing model is useful if X exhibits volatility clustering; it takes the nonnegativity of R
into account.

MEM dynamics. The risk driver R is decomposed into a conditionally deterministic
scale factor - evolving according to a GARCH-type equation - and a positive innovation
term. This type of model is known as multiplicative error model (MEM) and has been
introduced in Engle (2002), see also Engle and Gallo (2006).

Let Ft = σ{Rs, s ≤ t} denote the information of the process R up to time t. Then Rt

takes the form

Rt = μtεt with μt ∈ Ft−1, εt ⊥ Ft−1, and εt ≥ 0. (3)

The {εt} are independent and identically distributed (iid) with unit mean and variance σ2,
and the evolution of μt depends on an unknown parameter vector θ, i.e. μt = μt(θ). These
conditions imply that E(Rt | Ft−1) = μt and V ar(Rt | Ft−1) = σ2μ2

t . The evolution of μt

is modelled by some GARCH-type structure, which may also include asymmetric effects.
For example, consider the GARCH(p, q)-type structure

μt = ω +
p∑

i=1

αiRt−i +
q∑

j=1

βjμt−j , p, q ∈ N, ω > 0, αi, βj ≥ 0 ∀i, j. (4)

The unconditional mean of Rt is then given by E(Rt) = ω/(1−∑
αi −

∑
βj) for all t ∈ T.

The choice of the distribution of εt essentially determines the (un)conditional distribution
of Xt. The example distributions stated in Section 2.1 yield a variety of possible distri-
butions for εt. Initially, one should concentrate on Rt being conditionally χ-distributed or
R2

t /d being conditionally F -distributed, which yield a d-dimensional normal or Student’s
t-distribution for Xt|Ft−1, respectively.

Boosting the dimension. Let Xt be d-dimensional and R
(d)
t be the related risk driver,

indexed by dimension d. Suppose that - conditional on Ft−1 - the risk driver R
(d)
t is χ-

distributed with d degrees of freedom. In case the dimension d is very large, which means
that the number of assets in the portfolio is very large, the following Fisher approximation
eases the statistical estimation. Note that the MEM model is not yet implemented in
statistical packages. The Fisher approximation yields

R
(d)
t −

√
d − 1/2 d−→ R

(∞)
t ∼ N(0, 1/2) as d → ∞.

Thus for large portfolios, the risk driver can be approximated by a non-centered normal
distribution, whose negative values occur with negligible likelihood. A rule of thumb for a

5



sufficiently good approximation is d ≥ 40, see e.g. Severo and Zelen (1960) for empirical
results and alternative approximations. An advantage of the approximation is that the
innovations {εt} - in the MEM model centered by

√
d − 1/2 - need not to be nonnegative

anymore. Hence, traditional ARMA models represent a possible alternative for the risk
driver dynamics. Our empirical study shows that for large portfolios the MEM model and
the ARMA model yield similar results.

If - conditional on Ft−1 - the risk driver (R(d)
t )2/d is F -distributed with ν1 = d and ν2

degrees of freedom, then the following approximation holds

R
(d)
t√
2

d� R̃
(d)
t for large d,

where R̃
(d)
t has a noncentral Student’s t-distribution with ν2 degrees of freedom and cen-

trality parameter
√

d − 1/2.

2.3 Generalized elliptical processes with multiple risk drivers

The elliptical process defined so far is driven by a single risk driver. This process is
applicable if the d asset returns are equally distributed - except for a different dispersion or
location. However, if we consider a portfolio consisting of assets which belong to different
industries or geographical regions, the assumption of equally distributed returns may be
violated. We therefore define generalized elliptical processes, which allow for different risk
drivers in different sub-portfolios and which include elliptical processes as a special case.

A d-dimensional stochastic process X = (Xt)t∈T is called generalized elliptical process (with
k sectors) if its margins Xt, for fixed t ∈ T, have the following stochastic representation:

Xt
d= m + (R∗

t,1Vt,1, R
∗
t,2Vt,2, . . . , R

∗
t,kVt,k)′ (5)

with random vectors Vt,1 = (Vt,1, . . . , Vt,j1), Vt,2 = (Vt,j1+1, . . . , Vt,j2), . . . , Vt,k = (Vt,jk−1+1,
. . . , Vt,d) such that Vt = (Vt,1, . . . ,Vt,k)′ = A′Ut and Ut is uniformly distributed on
the (d − 1)-dimensional unit sphere S

d−1. In formula (5), the vector of vectors is under-
stood as a d-dimensional vector, which is a slight abuse of notation. The collection of
{Vt | t ∈ T} is assumed to be mutually independent. Moreover, the random variables
{R∗

t,i | t ∈ T, i = 1, . . . , k} are stochastically independent of {Vt | t ∈ T}. The temporal
and contemporaneous (across the sectors i) dependence structure between the risk drivers
R∗

t,i can be of any type. For example, the contemporeneous dependence structure may take
the form

R∗
t,i = fi(Rt), i = 1, . . . , k, (6)

for some nonnegative increasing functions fi and random variable Rt; similar to the model
by Daul et al. (2003). The interpretation of this model is that the risk drivers R∗

t,i are com-
pletely correlated across the sectors, but there impact per sector is of different magnitude.
This approach allows, e.g., to model a different tail distribution per sectors.

Given the sector i ∈ {1, . . . , k}, the following holds:

||(B′
i)
−1(Xt,i − mi)|| d= ||R∗

t,iVt,i|| d= Rt,i, i = 1, . . . , k, (7)

where B′
iBi = Σ(ii), Σ(ii) is the i-th partition-matrix of Σ, Xt,i = (Xt,ji−1+1, . . . , Xt,ji)

′,
and mi is the i-th partition-vector of m, corresponding to sector i. Further, Rt,i denotes
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the radial variable or risk driver of the elliptical process Xt,i = (Xt,ji−1+1, . . . , Xt,ji). The
relationship between Rt,i and R∗

t,i is

Rt,i
d= Bt,i · R∗

t,i, (8)

where (B2
t,1, . . . , B

2
t,k) ∼ Dk(j1/2, (j2 − j1)/2, . . . , (jk − jk−1)/2) is Dirichlet distributed.

Moreover, the collection {Bt,i} is stochastically independent of {R∗
t,i}. The proof of formula

(8) is analogue to the proof of Theorem 2.6 in Fang et al. (1990), p. 33; see also Chapter
1.4 in this reference.

2.4 Model Estimation

A two-stage estimation is utilized in order to estimate the distribution of X. First, we
estimate the (time invariant) parameters m and Σ, and, second, we identify the distribution
of the risk drivers Rt,i, i = 1, . . . , k.

2.4.1 Dispersion and location

In the situation of only few temporal observations but a broad availability of cross-sectional
data, the large number of parameters in the dispersion matrix Σ would yield an over-
specification of the model. One way to reduce the number of parameters is the consideration
of factor models, which is frequently done in portfolio risk modelling, see e.g. the internal
model proposed by the Basel Committee on Banking Supervision (2006). Let us first
assume that X is an elliptical process with single risk driver R, representing the asset
returns of a portfolio with k sectors (or sub-portfolios). A simple one-factor model is

(Xt,j − mj)/
√

Σjj
d= ωjZt +

√
1 − ω2

j εt,j for j = 1, . . . , d, t ∈ T, (9)

where the ωj are equal if Xj belongs to the same sector. Here, we assume that the (d + 1)-
dimensional vector (Zt, εt,1, . . . , εt,d)′ has unit dispersion I, zero location, and belongs to the
same family of elliptical distributions as Xt. The correlation entries of the corresponding
dispersion matrix Σ take the form ρij = Σij/

√
ΣiiΣjj = ωiωj if i �= j. Note that this

parameter reduction implies that the ρij coincide if i and j, respectively, belong to the
same sector. Estimators of ρij - within this factor model - have been discussed in the
literature, see e.g. Gordy (2000) and references therein. They are either based on ML-
procedures or Pearson’s sample covariance. However, if X is a generalized elliptical process
with multiple risk drivers, these estimators may not be suitable as they are not necessarily
(asymptotically) consistent. An example is given in table 1, where we estimate ρij of a
generalized elliptical process by Pearson’s sample correlation.

Because of these findings, we provide an alternative estimator for the correlation param-
eters, which is (asymptotically) consistent. First, we make the following observation: Let
Xt,i and Xt,j be the i-th and j-th margin of Xt belonging to a generalized elliptical process
X. If P (Xt,j = x̃t,j) = 0 for all j = 1, . . . , d, then

P (Xt,i < x̃t,i, Xt,j < x̃t,j) = P
(
R∗

t,ki
Vt,i < 0, R∗

t,kj
Vt,j < 0

)
(10)

= P (Vt,i < 0, Vt,j < 0)
= P (Zt,i < 0, Zt,j < 0) ,
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where x̃t,i = mi is the median of Xt,i and Zt ∼ Nd(0, Σ). For the last equality, we utilized
the observations of example iii) in Section 2.1. Thus, the orthant probabilities of (Xt,i, Xt,j)′

are invariant with respect to the risk driver R. However, there exists a well-known rela-
tionship between the orthant probabilities of a d-dimensional normal distribution and the
correlation parameters ρij = Σij/

√
ΣiiΣjj :

4P (Xt,i < x̃t,i, Xt,j < x̃t,j) − 1 = 4P (Zt,i < 0, Zt,j < 0) − 1 = 2 arcsin(ρij)/π. (11)

The left-hand side of equation (11) corresponds to the population version of Blomqvist’s
beta - denoted by βij - which is a rank-based dependence measure introduced in Blomqvist
(1950). The sample version of Blomqvist’s βij between the i-th and j-th margin of X is
defined by

β̂ij =
2
n

n∑
t=1

(
1{Û(n)

t,i ≤1/2, Û
(n)
t,j ≤1/2} + 1{Û(n)

t,i >1/2, Û
(n)
t,j >1/2}

)
− 1,

where Û
(n)
t,i = 1

n(rank of Xt,i in X1,i, . . . , Xn,i); for related results on asymptotic normality
and efficiency we refer to Schmid and Schmidt (2006). Thus for a generalized elliptical
process, an asymptotically consistent and robust estimator of ρij is given by

ρ̂ij = sin(πβ̂ij/2). (12)

The correlation parameters of X within one sector and between two sectors are then derived
as the average of the ρ̂ij which belong to the one sector and the two sectors, respectively.
The positive definiteness of the resulting dispersion matrix - if it is not already given - can
be obtained by using techniques proposed e.g. in Rousseeuw and Molenberghs (1993).

Table 1 illustrates the magnitude of the bias if ρij is estimated using Pearson’s sample cor-
relation. Though the bias is usually small it may become large if one marginal distribution
is light tailed while another marginal distribution is heavy tailed.

The location vector m and the dispersion parameters Σjj , respectively, are e.g. estimated
by the sample median and the (trimmed) sample variance; these estimators are consistent
if the risk drivers are ergodic. Further parameter restrictions could be imposed on the

(volatility) parameters Σjj . We set Σ̂ij := ρ̂ij

√
Σ̂iiΣ̂jj if i �= j.

Approximate realizations of the risk drivers Rt,i are now obtained using formula (7). In
particular,

R̂t,i := ||(B̂′
i)
−1

(
Xt,i − m̂i

)||, i = 1, . . . , k (13)

where B̂′
iB̂i = Σ̂(ii). Suitable stochastic processes may now be identified for the time series

R̂i = (R̂t,i)t∈T . The estimation of an MEM model - given in Section 2.2 - is discussed next.

2.4.2 The risk driver

Let (Rt)t=1,...,n denote the (approximate) observations of the risk driver R. In order to ease
the presentation, we assume that R is the (single) risk driver of a d-dimensional elliptical
process. Let R evolve according to the MEM model given in formula (3). Suppose that
Rt|Ft−1 is χ-distributed with ν > 0 degrees of freedom yielding a d-dimensional normal
distribution for Xt|Ft−1 if ν = d. This choice is closely related to the error distribution
considered in Engle and Gallo (2006). These authors adopt a Gamma-distribution for
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Table 1: Estimated correlation parameter ρ using Blomqvist’s β̂ as in formula (12) - this
estimator is denoted by ρ̂B - or using Pearson’s sample correlation ρ̂P . The underlying data
have been generated from a bivariate generalized elliptical process - as given in formula (5)
- with Xt,1 (and Xt,2) being t-distributed random variables with α1 = 7 (and α2) degrees
of freedom - which are independently drawn across time. The sample length is one million.

original α2 2.1 3 4 5 6 7
parameter

ρ = 0.8 ρ̂B 0.801 0.800 0.798 0.799 0.800 0.800
ρ̂P 0.577 0.742 0.787 0.797 0.800 0.800

ρ = 0.5 ρ̂B 0.500 0.501 0.501 0.499 0.500 0.500
ρ̂P 0.320 0.460 0.492 0.496 0.500 0.500

ρ = 0.2 ρ̂B 0.199 0.199 0.200 0.198 0.199 0.202
ρ̂P 0.106 0.184 0.196 0.200 0.201 0.199

Note that Pearson’s correlation ρ is not well defined for α2 ≤ 2.

the error term, i.e. εt|Ft−1 ∼ Gamma(φ, φ), φ > 0. Note that the χ2-distribution - not
the χ-distribution - is a special case of the Gamma-distribution. Since our primary focus
is rather on multivariate modelling, we adopt the χ-distribution for R which yields the
multivariate normal distribution as a special case for X. More precisely, we assume that

c · εt | Ft−1 ∼ χ(ν) =⇒ Rt | Ft−1 ∼ (μt/c) · χ(ν), ν > 0, (14)

with c =
√

2Γ{(ν + 1)/2}/Γ(ν/2). The scaling of εt by c ensures the identifiability of the
model, i.e. E(εt|Ft−1) = 1. Note that for ν = d, Xt|Ft−1 possesses a multivariate normal
distributions.

Under assumption (14), the contribution of a generic observation rt to the log-likelihood
function �t is

�t = lnLt =
(
1 − ν

2

)
ln 2 − ln Γ

(ν

2

)
+ ν ln c − ν lnμt + (ν − 1) ln rt −

( c

μt

)2 r2
t

2
.

Using this formula, one can calculate the contribution of rt to the score, the Hessian, and
the first order conditions for the ML estimation of the MEM model.

In case the densities of Rt|Ft−1, t ∈ T, belong to the same exponential family

f(rt|Ft−1) = exp[ν{rtϑt − b(ϑt)} + d(rt, ν)],

the MEM model is a member of the family of Generalized Linear Autoregressive Moving
Average (GLARMA) models as pointed by Cipollini et al. (2006); for more background on
this family we refer to Benjamin et al. (2003) and references therein.

2.5 Random number generation

An advantage of generalized elliptical processes is their feasible simulation even in very
high dimensions. This is because the simulation reduces more or less to the simulation of
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the risk drivers and, thus, eases the curse of dimensionality. A simulation algorithm for
generating paths of generalized elliptical processes is given next. Assume that the location
vector m and the dispersion matrix Σ are known (or estimated, respectively). Note that
the generation of sample paths from a single risk driver is a univariate problem. In this
case, the distribution of the risk drivers R and R∗ in formula (8) coincides. The case of
multiple risk drivers is more involved. For the time being assume that the dynamics of
the risk drivers Ri and R∗

i - as specified in (8) - are given as well as the related generation
algorithms.

Algorithm of generating pseudo-random paths of generalized elliptical pro-
cesses:
Step 1 Calculate Σ = A′A, e.g., using Cholesky decomposition.

Step 2 Sample a path of length n from (R∗
t,1, . . . , R

∗
t,k).

Step 3 Sample d times n independent random numbers Zt,1, . . . , Zt,d, t =
1, . . . , n, from a univariate standard-normal distribution N(0, 1).

Step 4 Set Zt = (Zt,1, . . . , Zt,d) for t = 1, . . . , n.

Step 5 Set U t = ||Zt||−1 · Zt for t = 1, . . . , n.

Step 6 Set
Vt = (Vt,1, . . . ,Vt,k)′ = A′Ut

with Vt,1 = (Vt,1, . . . , Vt,j1), Vt,2 = (Vt,j1+1, . . . , Vt,j2), . . . , Vt,k =
(Vt,jk−1+1, . . . , Vt,d). The partition corresponds to the sector partition.

Step 7 Return Xt = m + (R∗
t,1Vt,1, R

∗
t,2Vt,2, . . . , R

∗
t,kVt,k)′.

In the case of multiple risk drivers Rt,i, one needs to derive the (conditional) distribution
of R∗

t,i. First, the distribution of (Rt,1, . . . , Rt,k) is identified using the estimation procedure
elaborated in Section 2.4.1. Thus, given the information Ft−1, the distributions of Rt,i and
Bt,i in formula (8) are known. Taking the logarithm on both sides of formula (8) shows
that the extraction of the distribution of R∗

t,i is a deconvolution problem which is typically
considered in signal and image processing. The distribution of R∗

t,i may either be retrieved
by explicit or numerical deconvolution, see Haykin (2000) for more background and related
references.

3 Analyzing and modelling portfolio credit risk

In the present section, the above theoretical framework of generalized elliptical processes
is applied to the risk analysis and risk modelling of a credit portfolio.

3.1 Data description

The empirical analysis is based on data from Moody’s KMV Credit Monitor (in short:
MKMV) and covers the period from February 1996 to August 2005. MKMV utilizes a
structural Merton-type credit risk model (Merton 1974) that has been refined using em-
pirical evidence and is commonly used among practitioners in order to assess a firm’s
creditworthiness. MKMV provides, for example, so-called expected default frequencies (in
short: EDFs) which refer to the firms’ probability of default and, thus, to its creditwor-
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thiness.4 The EDF is calculated as the likelihood that the firm’s asset value falls below a
given default threshold. The original Merton model (Merton 1974) treats the firm’s equity
as a call option on the firms asset value. These asset values form the basis of the forthcom-
ing analysis. We start with an analysis of the time dynamics of the related risk drivers.
Afterwards, these risk-driver dynamics are used for credit Value at Risk (VaR) estimation.

The data set comprises of credit risk data of 756 European non-financial firms with publicly
traded equity, amongst others, it comprises asset values, asset returns, EDFs and exposures
(the firms’ total liabilities).5 From February 1996 to August 2005, there are 115 monthly
observations available. We have particularly chosen this time horizon since the MKMV
methodology was adjusted by the end of 1995. Thus, a consideration of asset values before
and after this structural break may cause inconsistencies. The chosen time period covers up-
and downturns in the financial markets e.g. induced by the Asian crises (around 1997/98)
and the September 11, 2001 event. The firms are assigned individually to six industry
sectors as defined by MKMV. These industry sectors are Basic and Construction Industry
(BasCon), Consumer Cyclical (ConCy), Consumer Non-Cyclical (ConNC), Capital goods
(Cap), Energy and Utilities (EnU) and Telecommunication and Media (Tel). Descriptive
statistics of the database are shown in table 2.6

Table 2: Descriptive statistics of the data set

Asset values are measured in million euros and corresponding log returns are

calculated on a monthly basis. The total sample values are averaged over all

firms in the sample. BasCon refers to Basic and Construction Industry, ConCy

to Consumer Cyclical, ConNC to Consumer Non-Cyclical, Cap to Capital

goods, EnU to Energy and Utilities and Tel to Telecommunication and Media.

Industry 1 2 3 4 5 6
BasCon ConCy ConNC Cap EnU Tel Total sample

February 1996 to August 2005
Number of firms 200 236 135 90 40 55 756
Annual EDF (mean) 0.98% 1.27% 0.59% 0.81% 0.33% 1.06% 0.95%
Asset value (mean) 2,414 3,477 5,187 1,932 6,761 11,350 4,064
Log asset return (mean) 0.62% 0.61% 0.6% 0.63% 0.72% 0.57% 0.61%

The largest industry sectors are ConCy and BasCon comprising 31% and 26% of the total
number of firms in the portfolio. The second largest sectors are ConNC and Cap with 18%
and 12% of the total portfolio. The third group consists of Tel and EnU with a portfolio
size of 7% and 4%. It is shown below that the sector size has an impact on the level of the
risk driver. The mean EDFs of the sectors range from 0.33% in the EnU sector to 1.27%
in the ConCy sector. The largest firms in the sample are contained in Tel, which exhibit
on average a five times higher asset value than Cap firms (11.4bn Euros vis-a-vis 1.9bn
Euros). The average asset returns - over the time horizon February 1996 to August 2005 -

4For further information about the MKMV methodology see, for example, Crouhy et al. (2000) and
references therein.

5We assume that the distribution of the firms’ total liabilities represents the exposure distribution of a
hypothetic credit portfolio.

6The raw MKMV database has been modified in two aspects. First, all asset returns have been trans-
formed into Euro currency; Before 1998, Deutsche Mark (DEM) has been used as a reference currency.
Second, only time series without missing or erroneous asset values, EDFs and exposures are considered.
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are around 0.62% in all industry sectors.

3.2 Dynamics of the risk drivers

We start with analyzing the time dynamics of the risk drivers.

3.2.1 Comparison between different industry sectors

Figure 1 compares the time evolution of the risk drivers Rt,i - by utilizing formula (13) -
for various pairs of industry sectors, namely the risk driver for the Basic and Construction
sector (BasCon) together with the risk driver from a sector with

i) large sector size (industry sector 2: ConCy),
ii) middle sector size (industry sector 4: Cap), and
iii) small sector size (industry sector 6: Tel).

1996 1998 2000 2002 2004

5
15

Risk driver R of industry 1 (BasCon)
Risk driver R of industry 2 (ConCy)

1996 1998 2000 2002 2004

5
15

Risk driver R of industry 1 (BasCon)
Risk driver R of industry 4 (Cap)

1996 1998 2000 2002 2004

5
15

Risk driver R of industry 1 (BasCon)
Risk driver R of industry 6 (Tel)

Figure 1: Risk-driver dynamics of MKMV asset returns for industries 1, 2, 4, and 6.

We observe a positive correlation between the sector size and the level of the risk driver, for
example, the risk driver exhibits a higher nominal level for the BasCon sector compared to
the Tel sector. This outcome is expected, as it implies that the total risk in a sub-portfolio
increases with the number of firms. Second, we find that the risk drivers tend to exhibit
peaks at 12-month time intervals, particularly for the BasCon and for the Cap sector.
This can be explained as follows. The MKMV asset values are based on the market value
of the firms’ equity and the book-value of the firms’ liabilities. In most cases, MKMV
updates the balance sheet data of European firms once every 12 months. For example,
for the BasCon this usually happens in April, May or June. Thus, the volatility of the
asset values tends to increase around this time and is causally related to the development
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of the sector-specific risk drivers in these months. The update of the firms’ liabilities is
particularly important for asset-rich firms, such as firms in the BasCon sector, and for
firms which exhibit substantial balance sheet reorganization.

Moreover, all risk drivers show a characteristic long-term pattern or cyclical trend, which
becomes apparent in figure 2, where we use a different scaling. The level of the risk drivers
increases until 2000, followed by a decrease of the same magnitude until the end of the
observation period. This pattern is particularly pronounced for the Tel sector; by contrast,
there is a less characteristic 12-month seasonality. The reason is that most firms in the Tel
sector have undergone a dynamic development and a substantial increase of their equity
basis during the observation period, and the volatility of their equity value has already
been on a high level. This implies that the balance sheet updates had a lower impact
on the risk driver in the Tel sector. By contrast, the EnU sector shows a modest overall
cyclical behavior in the risk driver.

In summary: The risk drivers of all industries show temporal dependencies which are
also confirmed by the autocorrelation functions given in figure 3. We point out that a
main motivation of considering risk drivers was the finding of those autocorrelations on
the aggregate risk-driver level. By contrast, no significant autocorrelations of the asset
returns and the squared asset return were found on the single (disaggregated) firm level,
cf. figure 4.

3.2.2 MEM versus ARMA model

Following our exposition in Section 2.2, we estimate an MEM and an ARMA model for the
risk driver in each industry sector and compare both. The ARMA model is motivated by the
large number of firms in each sector and the findings of Section 2.2. We identify the simplest
MEM model by considering a GARCH(1,0)-type structure in equation (4), and compare
it to the corresponding ARMA model, namely the AR(1) model. The innovation terms
are assumed to be normally distributed, which is justified below. The respective models
are denoted by MEM(lag1) and AR(lag1). Additionally we fit two more autoregressive
structures: in the first case we regress on lag 12 (in short: AR(lag12)) and in the second
case we regress on lags 1 and 12 (in short: AR(lag1; lag12)). The motivation for the
latter two models is the observed 12-month seasonality of the risk drivers, described in the
previous section. The estimated parameters (except the intercept) are provided in table 3.
The residuals of the estimated MEM(lag1) and AR(lag1) model are shown in figures 5 and
6.

From table 3 and figures 5 and 6 we conclude:
i) The estimated parameters (or loadings) of the MEM(lag1) and the AR(lag1) model are

close to each other. Moreover, the QQ-plots of the corresponding residuals possess a very
similar structure. In particular they show that the normal innovations are a reasonable
choice for the MEM and the AR model in this setting. The forecast quality of the AR(lag1)
model is illustrated in figure 7. We remark that the QQ-plots of the (original) risk-driver
realizations are highly skewed, which again justifies the usage of MEM or AR models.

ii) One reason that the results of the MEM and the AR model are close to each other
is the large number of firms in each industry sector and the limiting argument given in
Section 2.2.

iii) The industry sectors 1 and 4 show a large AR-parameter (or loading) at lag 12 which
is in line with the findings in figure 3. See also the related discussion in Section 3.2.1.
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Table 3: Parameter estimates (except the intercept) of the risk driver following an MEM
or ARMA model per industry sector.

MEM(lag1) AR(lag1) AR(lag1; lag12)AR(lag12)

Industry 1 (BasCon) .448 .455 .424 ; .255 .375
Industry 2 (ConCy) .390 .383 .422 ; .058 .130
Industry 3 (ConNC) .347 .348 .378 ; .102 .157
Industry 4 (Cap) .358 .347 .323 ; .346 .386
Industry 5 (EnU) .260 .251 .229 ; .104 .127
Industry 6 (Tel) .510 .530 .491 ; .158 .328
All parameters are statistically significantly different from zero at a confidence level of 1%.

3.3 Risk drivers vis-à-vis macroeconomic influences

We analyze possible correlations between the sector-specific risk drivers and selected macroe-
conomic variables.7 German macroeconomic variables are utilized as the majority of firms
in the data sample are based in Germany. We consider the following six macroeconomic
variables: The seasonally adjusted unemployment rate,8 the gross domestic product (GDP),
an index for the industry production (Ind Product), the money-market rates for three-
month funds (InterestRate), the development of order bookings in the industry (Order-
Bookings) and the inflation rate (CPI).9 The (sample) correlations between the macroe-
conomic variables and the risk drivers are presented in table 4. The three macroeconomic
variables which exhibit the highest correlation with the risk drivers are the interest rate,
the unemployment rate and the GDP. For those variables, the highest correlation is found
for the Tel sector, the ConNC sector and the Cap sector. The results for the Tel sector
(industry 6) confirm the fact that the business of Tel firms is affected by the cyclical be-
havior of the economy. This effect is particularly revealed by the strong correlation with
the interest rate and the unemployment rate. The ConNC sector (industry 3) is known to
be sensitive towards changes of consumer price levels, which is reflected in the correlation
with both the CPI and the interest rate. Also the correlation with the unemployment rate
- which has an impact on the consumption behavior - is in line with our expectations.

The fact that the interest rate exhibits the highest correlation with all risk drivers demon-
strates the importance of this economic variable for monetary policy. For the unemploy-
ment rate, the correlations are negative, which implies that a higher unemployment rate
comes along with a lower level of the risk driver. The GDP shows a moderate correlation
with the risk drivers ranging from 7% to 10%. Figures 8 and 9 illustrate the co-movement
between the risk drivers and the interest rate and unemployment rate, respectively. In
sum, the previous results show that the cyclical behavior of the economy has an impact on
the (temporal) development of the risk drivers in most industries.

7Statistical influences of macroeconomic variables on credit risk have been investigated by some authors,
see e.g. Allen and Saunders (2003) and references therein.

8The unemployment rate and the GDP are used with a lag of six months in order to incorporate the
time lag where the cyclical effects become evident.

9Robustness studies show that the corresponding macroeconomic variables of France and the UK produce
similar results.
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Table 4: Sample correlation of selected macroeconomic variables with the industry-specific
risk drivers. ’Unemploy’ refers to the unemployment rate, ’GDP’ to the gross domes-
tic product, ’Ind Product’ to the industry production, ’InterestRate’ to the three-month
money market rate, ’OrderBookings’ to the index of order bookings in the industry, and
’CPI’ to the development of the price level.

Risk driver Unemploy GDP Ind Product InterestRate OrderBookings CPI

Industry1 (BasCon) -16.7% 8.8% 1.0% 21.9% 1.3% -4.5%
Industry2 (ConCy) -22.3% 7.6% 15.5% 17.7% -9.6% 0.6%
Industry3 (ConNC) -23.9% 10.4% 0.6% 34.7% -12.7% 12.3%
Industry4 (Cap) -14.5% 9.7% 7.4% 24.0% -12.0% 0.8%
Industry5 (EnU) -13.3% 7.4% 8.3% 17.2% -12.8% 5.0%
Industry6 (Tel) -47.1% 7.0% -0.4% 51.7% 1.5% 4.1%
The correlations for Unemploy, GDP, and InterestRate are all significantly different from zero at 1% level.

3.4 Dynamic VaR estimation in portfolios

The Value at Risk (VaR) of a portfolio - comprising d assets - is the current standard
risk measure in practice and in the regulatory framework (Basel Committee on Banking
Supervision 2006). In this framework, the dynamic VaR of a credit portfolio is calculated
from the portfolio loss distribution L given by

Lt =
d∑

j=1

wt,jψt,j1{Xt,j≤Kj}, t ∈ T, (15)

where wt,j denotes the relative exposure of obligor j at time t ∈ T which is defined as
the ratio of the book value of liabilities of obligor j with respect to the aggregated book
value of liabilities in the portfolio; obtained from the MKMV database. A justification for
the latter definition is given in Duellmann et al. (2006), p.15. Further, ψt,j refers to the
loss severity at default, which we assume to be constant at 45%, Kj is the obligor-specific
default threshold, and X = (Xt)t∈T denotes the process of asset returns. The loss severity of
45% corresponds to the value defined in the IRB approach (Basel Committee on Banking
Supervision 2006) for corporate exposures. Assume that the asset-return vector evolves
according to a generalized elliptical process where the innovations of the MEM model are
χ-distributed. The seasonal components of the risk drivers are modelled by splines having
3 degrees of freedom. The VaR at some confidence level is then obtained by sampling from
L - as stated in formula (15) - and using the algorithm given in Section 2.5. The results are
presented in figure 10 for each industry sector. As expected, the dynamic VaR is largely
determined by the temporal structure of the risk drivers. The characteristic shape of the
portfolio VaR across all industries in figure 10 is mainly caused by the higher stock market
and asset volatilities around the year 2000, induced by the European stock market rally
during this time. This shape is particularly pronounced for the Telecommunication and
Media industry (Tel), cf. also Section 3.2.1 where we analyze the related risk driver.

Analytical formulas for the VaR may also be obtained in special cases. For example, assume
that the time dynamics of the return vector of d stock prices follows an elliptical process
X = (Xt)t∈T . Then the VaR of the corresponding portfolio can be expressed in closed form
since the margins of the process are elliptically contoured. The corresponding formulas are
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e.g. developed in Bingham et al. (2003). More precisely,

VaRα
t = w′

tm − ht(α)
√

w′
tΣwt, (16)

where wt denotes the d-dimensional vector of portfolio weights and α > 0 is the confidence
level. Further, ht(α) corresponds to the 1 − 2α quantile of the positive random variable
RtBt, where B2

t is Beta(1/2, (d − 1)/2) distributed and the collection {Bt | t ∈ T} is
independent of the risk driver R = (Rt)t∈T . For more details regarding the derivation, we
refer to the last mentioned reference. Under the assumption of mutual independence of
{Ut | t ∈ T} - as given in (1) - the set {Bt | t ∈ T} is also mutually independent. This
implies that the temporal dependence structure is determined by the risk driver R. Thus,
utilizing the temporal structure of the risk drivers may improve the forecast and estimation
quality of the portfolio VaR. A related empirical study for MKMV Credit Monitor data is
currently in progress and will be presented in a forthcoming paper.

4 Conclusion

Multivariate generalized elliptical processes are proposed for modelling the time dynamics
of asset returns in the situation of few temporal observations but a broad availability
of cross-sectional data. Risk drivers - which describe the overall volatility structure -
are introduced and their relationships to some multivariate distributions are established.
The time dynamics of the risk drivers is either modelled using multiplicative error models
(MEM) or non-linear regression or smoothing techniques. A limiting argument also justifies
the usage of ARMA processes in certain situations. The model is applied to the risk analysis
of a credit portfolio which consists of firms included in the MKMV Credit Monitor database.
It is shown that the portfolio’s Value at Risk is largely determined by the time dynamics
of the risk drivers. The proposed methods are general and can be applied to any series of
multivariate asset or equity returns in finance and insurance.

Our main empirical findings are significant temporal structures of the volatility of MKMV
asset-return data on the (aggregated) risk-driver level. These temporal structures - on
the risk-driver level - show similar patterns across all considered industries both in a sea-
sonal and a cyclical context, with each industry’s risk driver also exhibiting idiosyncratic
developments. Further, correlations between the risk drivers and various macroeconomic
variables are identified, which are particularly high for the Telecom sector.
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Figure 2: Risk-driver dynamics - for each industry sector given in table 2 over the time hori-
zon from February 1996 to August 2005 - along with the Friedman’s super span-smoother
(solid line) and a spline having 3 degrees of freedom (dashed line).
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Figure 3: Autocorrelation function of the risk driver - for each industry sector given in table
2 over the time horizon from February 1996 to August 2005. The dotted line corresponds
to the 5% confidence level.

19



Lag

A
C

F

0 10 20 30 40 50 60

-0
.2

0.
2

0.
6

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

-0
.2

0.
2

0.
6

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

-0
.2

0.
2

0.
6

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

-0
.2

0.
2

0.
6

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

-0
.2

0.
2

0.
6

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

-0
.2

0.
2

0.
6

1.
0

Figure 4: Autocorrelation function of the squared asset-return series of six randomly chosen
firms in the MKMV Credit Monitor database over the time horizon from February 1996
to August 2005. The dotted line corresponds to the 5% confidence level.
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Figure 5: QQ-plot of the estimated MEM(lag1) residuals of the risk driver - for each
industry sector given in table 2 over the time horizon from February 1996 to August 2005.
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Figure 6: QQ-plot of the estimated AR(lag1) residuals of the risk driver - for each industry
sector given in table 2 over the time horizon from February 1996 to August 2005.
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Figure 7: One-step forecast (solid line) of the fitted AR(lag1) model together with the risk
driver (broken line) - for each industry sector given in table 2 over the time horizon from
February 1996 to August 2005.
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Figure 8: Risk-driver dynamics versus interest rate (three-month money market rate) over
the time horizon from February 1996 to August 2005 for industry 1 (BasCon), industry 2
(ConCy), industry 3 (ConNC), industry 4 (Cap), industry 5 (EnU), and industry 6 (Tel)
given in table 2.
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Figure 9: Risk-driver dynamics versus unemployment rate (6-month lag) over the time
horizon from February 1996 to August 2005 for industry 1 (BasCon), industry 2 (ConCy),
industry 3 (ConNC), industry 4 (Cap), industry 5 (EnU), and industry 6 (Tel) given in
table 2.
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Figure 10: Dynamic Value at Risk estimates (at 5% confidence level) for industry-specific
credit portfolios comprising MKMV listed firms - as given in table 2 - over the time horizon
from February 1996 to August 2005. The estimation is based on 50,000 random numbers
generated from the portfolio loss distribution - see formula (15) - as described in Section 3.4
(solid line), cf. also figure 2. The dashed line shows the VaR estimation under the assump-
tion of independent and identically distributed risk drivers, i.e. if no temporal dependence
structure is assumed.
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