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Abstract

The paper develops an explicit formula for the calculation of optimal carbon taxes in a

dynamic integrated assessment framework. We attempt to generalize the Gosolov et al. (2014)

theory by relaxing the restrictions with logarithmic preferences, Cobb-Douglas production and

the full periodwise capital depreciation. By taking advantage of the cumulative climate response

(CCR) function, we show that all that matters for the tax formula from the economic module

pins down to a single economic parameter i.e. a weighted harmonic mean of the growth-adjusted

consumption rate of discount. We demonstrate the theory with a stylized climate-economy

model with depletable fossil resources, test the formula with the new DICE2016 model, and

provide an application to the real world economy beyond any integrated modeling framework.
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1 Introduction

To aid policy discussions on global warming, economists have developed various computer-based

quantitative integrated assessment models coupled with climate and economic modules (cf. Nord-

haus, 2007; Stern, 2010; Nordhaus, 2014; 2017). As marked by the seminal work of Golosov et al.

(2014), the recent literature has seen increased interest in analytical integrated assessment under

simplifying assumptions. The striking finding in Golosov et al. (2014) is an explicit formula for

optimal carbon tax (i.e. the social cost of carbon) which is proportional to GDP up to a constant

factor which depends only on a few science and economic parameters. Along the same research line,

Li et al. (2012), Anderson et al. (2014), Traeger (2015), and Engstrom and Gars (2016), among

others, have extended the formula with more climate-related parameters such as climate sensitivity

uncertainty and the risk of catastrophic damages.

These contributions, however, rely on rather similar economic assumptions with a logarithmic

preference, a Cobb-Douglas production technology and a full capital depreciation of capital in a

discrete time period (say 10 years). With these settings, the marginal propensity to consume i.e.

the consumption-output ratio remains constant over time (cf. Sargent, 1987). For this specific

case, as we will show in the present paper, the pure rate of time preference and the real interest

rate would be identical and the real GDP deflated by the Weitzman (2001) ideal price index would

be constant over time, which underlies the Golosov et al. constant factor result. Apparently,

the analytical formula does not hold under alternative economic assumptions although computer

simulations by the authors indicate that the optimal taxes based on the formula roughly agree with

those calculated from numerical optimization.

This paper attempts to generalize the Golosov et al. (2014) formula by relaxing all of the

restrictive economic assumptions. For the utility and production functions, we allow any regu-

lar functional forms satisfying the Inada conditions i.e. they are strictly increasing, concave and

continuously differentiable and satisfy certain boundary conditions. With a continuous time op-

timal control model, we also relax their assumption of full capital depreciation. To focus on the

economic module, however, we adopt the cumulative climate response (CCR) function developed

by Matthews et al. (2009) and Matthews et al. (2012) to represent the atmospheric tempera-

ture dynamics. The CCR function describes the direct relationship between anthropogenic carbon

emissions and increases in global mean temperature that can be readily estimated from historical
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data. In contrast, the approach based on equilibrium climate sensitivity involves more uncertainty

which is unlikely to be resolved in the near future despite the much research by scientists (cf. Roe

and Baker, 2007; Weitzman, 2009b). An obvious advantage with the CCR approach lies in its

simplest form that enables us to develop the closed-form solution for the tax formula (cf. Anderson

et al., 2014; Engstrom and Gars, 2016). In addition to the CCR function, we also rely on the

one-parameter exponential damage function introduced by Golosov et al. (2014) to approximate

the quadratic damage function underlying the DICE model (Nordhaus, 2017).

With the simplified treatment on the temperature dynamics and damage functions, we derive

the optimal tax formula under more general economic settings with essentially no restrictions on

the utility and production functional forms. It turns out that what matters for the tax-GDP ratio

from the economic module is a weighted harmonic mean of the growth-adjusted consumption rate

of discount i.e. the difference between the real interest rate and GDP growth rate. This mean

measure is the reciprocal of the weighted mean of the reciprocals of the growth-adjusted discount

rates. For more on such harmonic mean measures, the readers are referred to de Carvalho (2016),

Samuelson (2004), Andor and Dulk (2013) and d’Aspremont (2017), among others.

We demonstrate the use of the explicit formula first with a stylized climate-economy model with

a depletable resource, and then move to the well-known DICE model (Nordhaus, 2017) both with

and without the possibility of negative emissions. Finally, we go beyond the integrated modeling

framework to apply the formula to the real world problem based on growth data from the Word

Bank and the suggested time-varying discount rate schemes by the UK and France governments

(cf. Li and Lofgren, 2000; HM Treasury, 2003; Lebègue, 2005; Karp, 2005; Arrow et al., 2014). The

results indicate that the formula involving only a few key parameters provides rather consistent

optimal taxes as compared to the DICE model, and the optimal tax for the year 2015 in the real

world ranges from about $20 to $64 (in 2011 international dollars) depending on the discount

schemes and the damage coeffi cient assumed.

It is worth mentioning that our explicit formula attempts to provide insights and facilitate the

interpretation of numerical results rather than to replace the fully-fledged numerical integrated

models with more climate details. The remaining part of the paper is structured as follows: Section

2 formalizes the theoretical model and derives the explicit formula with a simplified climate module

but more general economic module. In section 3, we solve our stylized growth model using the

CCR function and demonstrate the use of the formula for calculating the optimal carbon taxes
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with special reference to the role of the harmonic mean discount rate. Section 4 applies the formula

first to the DICE 2016 model both with and without negative emissions, and then attempts to study

the real world problem beyond any integrated assessment framework. In section 5, we summarize

the study.

2 The theoretical model and analytical results

We consider a closed-economy world model with continuous time in infinite time horizon. Without

loss of generality, we assume a constant population normalized to be unity and define the social

objective as to maximize the Ramsey-Koopman intertemporal welfare∫ ∞
0

U (C (t)) e−ρtdt (1)

where U (·) is a standard concave utility function with C (t) representing the aggregated final-good

consumption at time t and ρ > 0 the pure rate of time preference. The final goods sector uses

capital (K), labor (N) and energy (E) to produce output. The labor is supplied inelastically and

the gross output before interacting with the climate module takes the general form F (K,N,E)

satisfying the usual Inada conditions. With climate changes taken into account, we have the net

output function at time t as

Y (t) = D (T (t))F (K (t) , N (t) , E (t)) (2)

where D (T (t)) ∈ (0, 1) denotes the damage function with T (t) as the increase in the atmospheric

temperature time t from the pre-industrial level. For notational ease, we will often abbreviate from

the time indices, and describe the capital stock by the following differential equation

K̇ = D (T )F (K,N,E)− δK − C, with K(0) = K0 (3)

where δ ∈ (0, 1) is the rate of capital depreciation.

To be general on the economic settings, we do not assume any explicit functional form on

the preference, gross production technology and the full capital depreciation as in Golosov et al.

(2014) and Anderson et al (2014). However, we abstract from the detailed modeling on the climate

module. Similar to Anderson et al. (2014), we adopt the cumulative (carbon) climate response

(CCR) measure of Matthews et al. (2009) and Matthews, Solomon and Pierrehumbert (2012)
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rather than the commonly-used equilibrium climate sensitivity parameter. One advantage of the

CCR approach is that the response parameter can be conveniently estimated using empirical data

as compared to the equilibrium climate sensitivity whole value is far less known (Roe and Baker,

2007), and the other one is that it enables us to predict temperature changes without tracing the

flows of carbon between the atmosphere, surface oceans and deeper oceans. With the CCR function,

the atmospheric temperature dynamics is simply described by a single differential equation

Ṫ (t) = σE,with T (0) = T0 (4)

where σ > 0 is the CCR parameter and E is the carbon inflow into the atmosphere at any time t.

This implies that

T (t)− T0 = σ
∫ t
0
E (s) ds (5)

i.e. the rise in temperature is proportional to the cumulative carbon emissions. Note that the

validity of this relationship is supported by empirical data rather than any structural model relying

on the equilibrium climate sensitivity. Part of the emission may be absorbed into the oceans and

even to the deeper layers while some portion may return back to the atmosphere. As long as the

unit stays around the Earth system rather than the outer space, it has a temperature effect as given

in (5).

As for energy, we assume a single composite energy of oil and coal with a finite initial reserve

R (0). The resource stock follows the differential equation

Ṙ = −E, with R0 > 0 given (6)

Concerning climate damage, we assume the same convenient exponential form as Golosov et al.

(2014) in that

D (T ) = e−γT satisfying D′ (T ) = −γD (T ) (7)

where γ is a damage coeffi cient. The dynamic optimization problem is to maximize (1) with respect

to consumption C and energy use E subject to the constraints (2), (3), (4) and (6). The current

value Hamiltonian is

H (t) = U (C) + λK (D (T )F (K,N,E)− δK − C) + λTE − λRE (8)
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The first-order conditions are

U ′ (C)− λK = 0 (9)

λKD (T )FE(K,N,E) + λT − λR = 0

both with the usual economic interpretations. The first condition implies that, along the optimal

path, the marginal utility of consumption should be equal to the shadow price of capital at each

point in time, and the second condition can be interpreted as that the marginal contribution per

unit carbon energy use should be equal to the Hotelling rent plus the climate damage (Note that

λT < 0).

The equations of motion for the co-state variables are given as

λ̇K − ρλK = −λK (D (T )FK(K,N,E)− δ) (10)

λ̇T − ρλT = λKD
′ (T )F (K,N,E) (11)

λ̇R − ρλR = 0 (12)

From (7) and (11), we can solve for the shadow price of temperature at any time t as

λT (t) = γ

∫ ∞
t

λk (s)Y (s) e−ρ(s−t)ds (13)

i.e. the welfare loss in present value at time t due to a marginal unit increase in temperature T .

Normalizing the measure in monetary terms, we have

λ̄T (t) = γ

∫ ∞
t

λk (s)

λk (t)
Y (s) e−ρ(s−t)ds (14)

As the temperature T (t) follows (5) and ∂T (t)∂E(t) = σ, we have now the social cost of carbon i.e. the

optimal carbon tax as

τ (t) = λ̄T (t)
∂T (t)

∂E (t)
= σγ

∫ ∞
t

λk (s)

λk (t)
Y (s) e−ρ(s−t)ds (15)

Except the reduced-form climate and damage effects, this is essentially the same formula as widely

conceptualized in the literature i.e. the present discounted value, in monetary terms, of all future

losses caused by a marginal unit of carbon stock at an "initial" date t (cf. Weitzman, 2009a; Arrow

et al, 2012; Golosov el at., 2014; Nordhaus, 2017). Using a discrete time model, with a log utility

function, Cobb-Douglas production function and full capital depreciation (over a basic period of 10
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years), Golosov et al. (2014) show that the optimal saving rate is constant and the integrand term
λk(s)
λk(t)

Y (s) collapses to C−1
s

C−1
t

Ys
Yt
Yt =

C−1
s

C−1
t

Cs
Ct
Yt = Yt. The optimal carbon tax can then be simplified

to correspond to the elegant expression

τ (t) =
σγ

ρ
Y (t) (16)

which is proportional to income in each time period. The proportionality factor remains constant

over time involving no forward-looking component and its size depends on a few key parameters in

their coupled climate-economy model. Although this formula is not valid in general, the authors

show by numerical simulations that it provides rather robust carbon taxes when compared to the

numerically calculated numbers under alternative preference and technology assumptions.

This paper attempts to extend the theory with a practically more useful formula for more general

economic settings. We show that what matters most for the formula with regard to the economic

module pins down to a single parameter i.e. the harmonic mean of the growth-corrected discount

rates. First, we solve the adjoint equation for capital in (10) to obtain

λk (t) = λk (0) exp
(∫ t

0
(ρ− r (v)) dv

)
(17)

where r (v) = D (T (v))FK(K (v) , N (v)E (v))− δ is the real interest rate at time v. Then, for any

time point s ≥ t, we have
λk (s)

λk (t)
e−ρ(s−t) = e−

∫ s
t
r(v)dv (18)

which is a variant of the Keynes-Ramsey rule that links the utility rate of discount to the consump-

tion rate of discount via the relative marginal utilities (cf. Blanchard and Fisher, 1989; Weitzman,

2009a; and Lofgren and Li, 2011).

Second, we express the future GDP at any time s ≥ t as

Y (s) = Y (t) e

∫ s
t
g(v)dv (19)

where g (v) is the instant GDP growth rate at time ν ∈ (t, s), with which we can rewrite the optimal

tax formula in (15) as

τ (t) = σγY (t)

∫ ∞
t

e−
∫ s
t
θ̂(v)dvds (20)

where θ̂ (v) = r (v)− g (v) is a growth-adjusted consumption rate of discount [Note that the growth

rate in Nordhaus (2017) is concerned with growth in consumption rather than GDP as in this
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paper] at time ν. To explore the implications of such a growth-adjusted discount rate, Nordhaus

(2017) linearizes his DICE dynamic system for all the state variables to derive the equilibrium rate

θ = r − g and then he shows that the optimal carbon tax at the equilibrium is proportional to

the factor (r − g)−1. For Golosov et al. (2014), the adjusted discount rate is always equal to the

utility rate of discount due to the Ramsey rule ρ = r − g such that the formula (16) holds even

along the transitional path but only under the log-utility, Cobb-Douglas production and full capital

depreciation assumptions.

Now, in the third step, we take advantage of the harmonic mean of the growth-adjusted discount

rates to derive our explicit optimal tax formula for more general economic settings for all regular

utility and production functions and capital depreciation rate and along the whole time path not

limited only to the equilibrium. Let x (t) = f (t) =
∫ t
0
θ̂ (v) dv be the integrated discount rate,

then dx = θ̂ (t) dt. Obviously, x (t) is a monotonically increasing function of time t for all positive

discount rate. This implies that the inverse function t (x) = f−1 (x) exists and we can always

express θ̂ (t) as θ̂ (t) = θ̂ (t (x)) = θ (x). By the change of variables, we can rewrite the integral in

the tax formula (20) as
1

θ̄t
=

∫ ∞
0

1

θ (x̃)
e−xdx, with x̃ = x (t) + x (21)

where θ̄t corresponds to the harmonic mean of the growth adjusted discount rate weighted by

the exponential weight function. By definition, this is the reciprocal of the weighted mean of the

reciprocals of the growth-adjusted discount rate corresponding to

θ̄t =

∫ ∞
0

e−xdx∫ ∞
0

1
θ(x̃)e

−xdx

(22)

in which the numerator is always equal to one. In general, it is this type of the harmonic mean that

correctly measures the average rate of change in physics and other fields. Consider, for example, a

journey by car with the first 60 km at a speed of 20 km per hour and the second 30 km at a speed

of 30 km per hour. What is the average speed? The arithmetic mean is simply (20 + 30) /2 = 25

km per hour but this does not makes much sense. The true average speed should be equal to the

total distance traveled divided by the total time spent i.e.

60 + 30
60
20 + 30

30

==
2
3 + 1

3
2
3
1
20 + 1

3
1
30

= 22.5
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which is the weighted harmonic mean speed. The first part of journey takes 60/20 = 3 hours while

the second part takes 30/30 = 1 hour, so the true average speed is 90/4 = 22.5 km per hour. With

the arithmetic mean of 25 km per hour, the distance travelled over the 4 hours would be 100 km

rather than 90!

Using equations (20) and (21), we arrive at the general carbon tax formula given by

τ (t) =
σγ

θ̄t
Y (t) (23)

with the Golosov et al. (2014) and Nordhaus (2014) results as special cases. The whole economic

module now pins down to the weighted harmonic mean discount rate irrespective of the form of the

utility and production functions, any capital depreciation rate, or whether or not the economy is

at equilibrium. The crucial assumption for this general formula is the exponential damage function

with a constant damage exponent.

Based on the weighted harmonic mean discount rate formula (21), we may make certain theo-

retical predictions. First, the reciprocal of this mean measure is due to the Jensen inequality not

symmetric with respect to interest rate and/or growth rate variations. A boost in GDP growth

rate would lead to a larger optimal carbon tax increase than the tax decrease caused by a decline in

the growth rate by the same amount. Second, the near term discount rate due to the exponential

weighting plays a much large role on the optimal tax than the long-run ones.

An alternative way to conceptualize the formula (20) is to invoke the Weitzman (2001) ideal price

index P (s) = p(s)C0
p(0)C0

= λk(0)
λk(s)

where (p (0) , p (s)) denote the prices (the dollar value of consumption)

at time 0 and s, respectively. The reason for the second equality to hold is that with a time-invariant

utility function we have U(Cs) = U(C0) and U ′(Cs) = U ′(C0) for Cs = C0, and p (s)λk (s) =

p (0)λk (0). Suppose that the marginal utility as time s is a half of that at time 0, then the amount

of money needs be doubled at time s to achieve the same utility level as at time 0 with an ideal

price index P (s) = p(s)C0
p(0)C0

= λk(0)
λk(s)

= 2.With such an ideal price index, the optimal tax formula can

now be written as

τ (t) = σγ

∫ ∞
t

Y (s)

P (s |t )e
−ρ(s−t)ds (24)

where P (s |t ) = P (s)/P (t) denotes the ideal price index with time t as the base year. Let g (s) =

Y ′ (s) /Y (s) be the income growth rate and π (s |t ) = P ′ (s |t ) /P (s |t ) as the inflation rate, we can

express the optimal tax as

τ (t) = σγYt

∫ ∞
t

e−
∫ s
t
(ρ+π−g)duds =

σγ

θ̄t
Yt (25)
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where the denominator in the last expression corresponds to the weighted harmonic mean of ρ+π−g

with ρ+ π = r as the real interest rate! As a special case, Golosov et al. (2014) imposes a certain

model structure such that π = g which imposes θ̄t = ρ being a constant!

In the coming sections, we will demonstrate the use of this optimal tax formula in three different

cases, a styled climate-economy model of our own, the DICE-2016R model and real world economy

outside the integrated modeling framework.

3 A numerical illustration with a stylized growth model

To demonstrate how the formula works, we specify explicit functional forms for the couple climate-

economy model above. The utility function takes the CRRA form

U(C) =
C1−α

1− α (26)

with α > 0 measures the degree of relative risk aversion, and the gross production function takes

the Cobb-Douglas form

F (K,N,E) = AKaN1−a−b (E + Ē
)b

(27)

with a ∈ (0, 1), b ∈ (0, 1) and a+b ∈ (0, 1) as parameters. We assume that population N is constant

and normalize it to unity and Ē an exogenous supply of green energy with no carbon emissions. To

be more realistic, we would be able to introduce some cost for gaining the green energy in terms

of either capital or labor (or both) diverted from the final goods production. It is also possible to

specify imperfect substitution between the green energy Ē and the fossil energy E as a nested CES

function (cf. Golosov et al., 2014). However, we abstract from these complications as they do not

add insights into our optimal tax formula.

Under the constraints (3), (4) and (6), we maximize the intertemporal welfare function (1)

with the utility and production functional forms in (26) and (27). We imagine the starting year

for the optimization problem to be 2015 and thus use the same initial values as DICE-2016R

(Nordhaus, 2017). The initial world capital is K0 = 223 and GDP Y0 = 105.5, both in trillions

2010 international dollars, and the temperature rise from the industrial revolution is T0 = 0.85oC.

As there is no energy input in the DICE model, we refer to the numbers in Rogner (1997) and

used in Golosov et al (2014). The total oil reserve is about 300 Gt corresponding to some 254 GtC

carbon content. Adding the effective (economically profitable) reserve of coal, we take the total
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fossil energy reserve as R0 = 500 GtC in this study. The exogenous green energy input is taken to

be 5 GtC per year.

For the utility and production functions, we assume that α = 1.45 for the degree of relative risk

aversion, a = 0.3 for capital share and b = 0.03 for energy share. For the climate damage function

in (7), we calibrate the coeffi cient by using the lower-cost scenario (Nordhaus and Boyer, 2000;

Engstrom and Gars, 2016) where a temperature rise by 2.5 degrees Celsius implies a 1.67% loss in

GDP such that

γ = − ln (0.9833)

2.5
≈ 0.006736 (28)

For the total factor productivity A in (27), we calibrate it by Y0 = exp (−γT0)AKa
0

(
E0 + Ē

)b
such

that A = 19.13. Concerning the other economic parameters, we assume the capital depreciation

rate as δ = 10% per year, and the pure rate of time preference is ρ = 1.5% as in DICE-2016R.

With regard to the CCR function, Matthews et al. (2009) find that the CCR coeffi cient is

on average about σ =0.0050. For carbon flows, Golosov et al (2014) consider that some 20% of

the carbon emitted would forever remain in the atmosphere, about 50% of the other 80% would

"disappear" in the outer space almost instantly, and the rest would depreciate at some exponential

rate. In this study, in the spirit of the CCR model, we consider the total accumulated carbon

in the climate system without tracing its exchanges among the different mediums (atmosphere,

surface and deeper oceans). With a share of about (1− 0.2) ∗ 0.5 = 40% disappeared in the outer

space, we have 60% of the emitted carbon in the climate system so the net CCR coeffi cient becomes

σ = 0.005 ∗ (1 − 0.4) = 0.003. For convenience, we summarize the initial state and the relevant

parameter values in Table 1.

We solve the dynamic optimization problem by using an IPOPT solver in the CasADi framework

with Matlab R2014b. From the optimal solution depicted in Figure 1, we can see that capital,

production and consumption all follow some inverted U-shaped form, which is consistent with

Dasgupta and Heal (1976) on growth with depletable resources. A minor difference is that our

solution converges to some positive rather than zero long-run steady state as we assume some

perpetual exogenous inflow of green energy in the model. The optimal fossil stock and extraction

are shown in Figure 2 which indicates that all the fossil energy would be effectively depleted in

about hundred years, and after which the atmospheric temperature would stop rising (Figure 3)

and converge to a state level due to the depletion of the fossil resource.
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Table 1: The initial states and the model parameter values

Initial capital K0 223 Trillions 2010 dollars

Initial output Y0 105.5 Trillions 2010 dollars

Initial fossil reserve R0 500 Gigatons carbon (GtC)

Initial temperature rise T0 0.85 Celsius degrees

Total factor productivity A 19.13 -

Degree of risk aversion α 1.45 -

Pure rate of time preference ρ 1.5% -

Capital depreciation rate δ 10% -

Capital share in production a 0.3 -

Energy share in production b 0.03 -

The CCR coeffi cient σ 0.003 -

Exponential damage coeffi cient γ 0.006736 -

Figure 1: Optimal capital, production and

consumption Figure 2. Otimal fossil stock and extraction (GtC)
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Figure 3. Optimal temperature rise

Figure 4 shows the trend of real interest rate, GDP growth rate and the growth-adjusted con-

sumption rate of discount. Due to the higher initial capital productivity, the interest rate starts

very high but then decreases rapidly and so is the GDP growth rate which is much lower due the

nature of the depletable resource and we do not assume any technical progress in the model. The

difference between these two rates corresponds to the growth-adjusted discount rate (cf. Nordhaus,

2017) that almost completely overlaps with the real interest rate due the lower GDP growth rate.

Using the formula (21), we calculate the weighted harmonic mean of the growth-adjusted dis-

count rate using the Matlab trapezoidal numerical integration procedure. As of time 0, for example,

we have

θ̄0 =

(∫ ∞
0

1

θ (x)
e−xdx

)−1
= 0.0163 (29)

As the harmonic mean is a forward-looking measure, it has a much flatter form as compared to

the raw growth-adjusted rate of discount (Figure 5). It has a somewhat weak U-shaped form first

and after about 100 years seems to converge to a steady state overlapping with the constant raw

growth-adjusted rate. With such harmonic mean discount rates, we calculate the tax-GDP ratio

σγ/θ̄t in (23). For the starting year, with θ̄0 = 0.0163 for example, the tax-GDP ratio becomes

0.003 · 0.0067364/0.0163 = 1.239 8× 10−3. Multiplying it with the GDP value 105.5 trillion dollars,

we obtain the optimal carbon tax at this initial year as 1.239 8 × 10−3 · 105 × 103 ≈ $130 per ton

carbon i.e. about 130 ÷ 3.667 = $35.5 per ton carbon dioxide. The optimal taxes over time are
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depicted in Figure 6, which displays an inverted U-shape in the first phase, similar to the optimal

path of capital, GDP and consumption, and then converges to a steady state level about $34 (2010

dollars).

Figure 4. Real interest, GDP growth and

growth-adjusted discount rate

Figure 5. Raw and weighted harmonic mean

growth-adjusted discount rate

Figure 6. Optimal tax per ton carbon dioxide
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4 Application in the DICE model and the real world

The new version of DICE 2016 has modified the climate module based on the updated scientific

knowledge from the most recent IPCC report (IPCC Fifth Assessment Report, Science, 2013) and

incorporated the possibility of negative emissions (Nordhaus, 2016). As touched upon above, the

starting year of the model is 2015 with capital and GDP etc. all measured in 2010 international

dollars. The time horizon is 100 five-year periods i.e. 500 years beyond which the present discounted

value of future consumption flows is virtually zero. In this section, we first test our theory with the

DICE-2016R model and then attempt to apply it to the real world beyond the integrated assessment

modeling framework.

By running the DICE-2016R model without allowing for negative emissions, we use the Matlab

version of DICE (Kellett et al., 2016) to obtain the optimal solution for all the state and control

variables such as capital, carbon stocks in the atmosphere, surface ocean and deeper ocean, the sur-

face and water temperature, and consumption and the emission control rates. The CCR coeffi cient

is calibrated by a ratio estimator between the optimized temperature rises and the accumulated

carbon emissions from industry and land which gives a net CCR coeffi cient σ = 0.0031. We can then

approximate the temperature dynamics using just one difference equation T (t) = T0 + σ
∑t
i=0Ei

for each future year t instead of the multiple difference equations for carbon and temperature.

From Figure 7, it can be seen that our simple difference equation approximates the DICE opti-

mal temperature changes fairly well. A subtle difference is that our calibrated one-equation CCR

model involves an instant temperature rise to any addition of carbon emission while the multiple

equations model in DICE implies certain hysteresis effect. To start with, temperature rises more

rapidly according to the CCR model and after about 120 years where the net emission turns to zero

the atmospheric temperature rise would stay constant at about 4.15 degrees Celsius. In contrast,

the DICE temperature path reacts a bit slowly on carbon emissions in the first phase but keep

rising even after carbon emissions have completely ceased. For climate damages, we fit the DICE

quadratic damage function Dt with a single-parameter exponential function (cf. Golosov et al.,

2014) with γ = − ln (1−Dt) /Tt, as shown in Figure 8.
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Figure 7. Temperature dynamics predicted by

DICE and the CCR function

Figure 8. Exponential vs the DICE damage

functions

Note that the DICE model assumes certain exogenous population growth, productivity growth

and emission effi ciency improvement. In our theoretical model, we have abstracted from these

changes as they provide no insights for our formula but when needed they can be readily incor-

porated by introducing extra state variables. What is essential is the resulting stream of growth-

adjusted discount rate. Also, the DICE model assumes a total utilitarian welfare function in which

the social utility is the sum of all individuals’ utilities. To calculate the real interest, we take

advantage of Keynes-Ramsey rule

rt = ρ+ α
ċt
ct

= ρ+ α

(
Ċt
Ct
− Ṅt
Nt

)
(30)

where c is the per-capita consumption, N the population (labor) size, and the dot denotes their

annual change. With gt = Ẏt/Yt as the annual growth rate of GDP (from year t to t + 1), we

calculate the growth-adjusted growth rate θ̂t = rt − gt and the harmonic mean values as shown in

Figure 9.

At the starting year 2015, our approximation of the optimal tax based on the simple formula (23)

is about $44.02 per ton CO2, which is comparable to the DICE value being about $30.75. As time

goes, our simple formula seems to approximate the DICE result rather well over the whole future.

The somewhat over-estimation at the beginning may depend on our calibrated CCR coeffi cient

16



that generates a higher temperature rise in the "near" future and the "near" term, according to our

weighted harmonic mean formula, has a larger effect on the optimal carbon tax than the long-run

temperature change.

Figure 9. Raw and weighted harmonic mean

growth-adjusted discount rate

Figure 10. Optimal taxes from DICE 2016 and

our tax formula

Using the DICE-2016R version in Matlab (Kellett, 2017), we also test our formula under the

possibility of negative emissions (with backstop technology) after year 2150. The calibrated CCR

and damage functions are depicted in Figures 11 and 12. Concerning temperature change, it is seen

that after the year 2150 when negative emissions are allowed for, our CCR predicts an immediate

temperature drop while the DICE model predicts some delayed effects in temperature fall. For

this version of the DICE model, our formula provides an optimal carbon tax at the starting year

2015 as $34.50 per ton CO2 which is rather close to the DICE result $30.75. The time path of

optimal taxes based on our formula follows closely to the DICE value until year 2075 or so but

then starts to under-estimate the taxes. This may be due to the interaction of the temperature

hysteresis effect and the acceleration effect in the DICE damage function based on the square term

of temperature rise which were not taken into account in our model. While the effect is small with

smaller temperature rise, the effect will loom larger with larger temperature rises with increased

risk of catastrophic effects.
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Figure 11. Temperature dynamics with negative

emissions

Figure 12. Damage functions with negative

emissions

Figure 13. Growth-adjusted discount rate with

negative emissions Figure 14. Optimal taxes with negative emissions

In the rest of this section, we attempt to apply our formula to the real world economy beyond

any integrated modeling framework. First, we take the time-varying consumption rate of discount

as suggested by the UK government (HM Treasury, 2003) for social cost-benefit analysis of public

projects (corresponding to the rt values in our model) as shown in Figure 15. For the world
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economy, the World Bank Group (2018) shows that the annual growth rate of global GDP (in

2011 international dollars) to be about 4.3% and the inflation rate about 2% for 2015. We assume

that this trend would continue with a growth-adjusted rate of discount about 2.3% for some 125

years at the first stage, and then drop to some 1.25% up to year 300, and then to 0.5%. With

these numbers, we calculate the weighted harmonic mean discount rate by the Matlab trapezoidal

numerical integration procedure to be about 0.02897 for the starting year 2015. With a lower-bound

damage coeffi cient γ = 0.006736 (section 3) and the net CCR coeffi cient σ = 0.003, we calculate

the optimal tax using our formula (23) as

0.003× 0.006736

0.02897
× 105× 103 = $73.24/tC = $19.98/tCO2 (31)

Using the damage coeffi cient corresponding to DICE with γ = 0.009383, the number becomes

0.003× 0.009383

0.02897
× 105× 103 = $102.02/tC = $27.822/tCO2 (32)

Another country that endorsed the hyperbolic discounting scheme for social cost-benefit analysis

is France (Lebègue, 2005) as shown in Figure 16. Over the short term with 25 years, the real

consumption rate of discount is suggested to be 4%, which is higher than the UK rate. However,

after this period, the country adopts a much lower discount rate with 2%. By calculating world

GDP growth rate as 2.3% over the first period of 25 years and 1.45% from year 26 up to year 350,

we calculate the harmonic mean of the growth-adjusted rate of discount as 0.01274, which is less

than a half of the UK number. The resulting carbon taxes are thus

0.003× 0.006736

0.01274
× 105× 103 = $166.55/tC = $45.42/tCO2 (33)

0.003× 0.009383

0.01274
× 105× 103 = $232.00/tC = $63.26/tCO2 (34)

for the lower-bound damage coeffi cient with γ = 0.006736 and the DICE-2016R equivalent one with

γ = 0.009383, respectively.

The applications here indicate that the exact tax value is sensitive to the key economic parameter

i.e. the weighted harmonic mean of the growth-adjusted discount rate. The larger the real interest

rate or the lower the GDP growth rate implies a lower carbon tax, and the combination with a

lower real interest rate and a higher growth rate implies a large carbon tax. In addition to the

economic parameter, the temperature-economy effect namely the damage coeffi cient as well as the

CCR coeffi cient also play a vital role for the carbon tax. To determine their exact tax values,
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with both large scientific and economic uncertainties in the future, is a very challenging task (cf.

Nordhaus, 2013).

Figure 15. Social rate of discount in the UK Figure 16. Social rate of discount in France

5 Concluding remarks

In this paper, we have attempted to contribute to the literature of analytical integrated assessment

by developing an implicit formula for optimal carbon taxes under general economic settings. The

formula involves, in addition to GDP, three key parameters i.e. the CCR coeffi cient, the exponential

damage coeffi cient, and the weighted harmonic mean of the growth-adjusted consumption rate

of discount. As compared to Golosov et al. (2014), this formula imposes no particular utility

and production functional forms and does not assume any full capital depreciation. Related to

Nordhaus (2017), we consider the whole time path of the growth-adjusted consumption rate of

discount rather than only the steady state. Except our simple treatment of the climate module,

therefore, our formula generalizes the earlier literature from an economic standpoint.

We show that all that matters for the tax-output ratio from the economic module is the weighted

harmonic mean of the growth-adjusted consumption rate of discount. Our formula provides a useful

experimental tool for examining the role of specific model parameters such as the pure rate of time

preference, risk aversion parameter, and the rate of capital depreciation. If different parameter

combinations would generate the same harmonic mean discount rate, then the optimal carbon

tax would be the same, conditional on the same climate parameters and GDP. The formula is
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transparent in other aspects as well. For example, it is the product of the CCR and the exponential

damage coeffi cients that counts for the optimal tax value. If one parameter increases in value by

the same percent as the decrease of the other, the optimal tax rate would not change.

Based on a stylized growth model involving a (composite) depletable fossil resource and climate

changes, we demonstrate how the formula works with special focus on the role of the harmonic

mean discount rate. Typical for such growth models, the optimal path of capital, production and

consumption has shown some inverted U-shaped form over time. As the resulting harmonic mean

and thereby the tax-GDP ratio do not fluctuate very much, the optimal carbon tax also exhibits

an inverted U-form initially and then converge to its steady state value.

After the demonstration with the stylized growth model, we have moved to the full-fledged nu-

merical integrated assessment model DICE 2016 (Nordhaus, 2016; 2017; Kellet, 2017) to test our

formula. For the climate module, we find that the CCR function roughly traces the optimal tem-

perature dynamics though without the hysteresis effect. The calibrated CCR coeffi cient predicts a

slightly larger temperature increase for the first 125 years and a somewhat smaller increase after-

wards as compared to DICE model. Concerning the damage effect, our one-parameter exponential

damage function generates a higher damage first and a lower one later on. The harmonic mean,

as expected, is smoother than the raw growth-adjusted discount rate. The overall optimal tax

values over time, however, show a consistent trends with the DICE 2016. With negative emissions

incorporated, we find a similar pattern, though the resulting carbon tax values become a bit closer

to the DICE results initially but divert more after some 75 years from today.

We have also attempted to go beyond any integrated modeling framework by looking at the

real world economy with data from the World Bank and the discount schemes from the UK and

French governments for social-cost benefit analysis of public projects. We calculate the harmonic

mean values of the growth-adjusted discount rates, and then calculate the optimal carbon taxes

under different discounting schemes and using different damage parameters. The results show that

the carbon tax values are sensitive to the parameter values ranging from about $20 to $64 per ton

carbon dioxide for 2015, or equivalently $73 to $232 per ton carbon.

Note that the formula developed in this paper deals with gradual climate changes without

explicitly taking into account any tipping points and catastrophic effects in the model. To develop

analytical integrated assessment models with these elements and under general economics settings

should be interesting for future research.
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