
Measuring the Discriminative Power
of Rating Systems

Bernd Engelmann
(Deutsche Bundesbank)

Evelyn Hayden
(University of Vienna)

Dirk Tasche
(Deutsche Bundesbank)

Discussion paper
Series 2: Banking and Financial Supervision
No 01/2003

The discussion papers published in this series represent the authors’ personal opinions and do not necessarily
reflect the views of the Deutsche Bundesbank or its staff.



Editorial Board: Heinz Herrmann
Thilo Liebig
Karl-Heinz Tödter

Deutsche Bundesbank, Wilhelm-Epstein-Strasse 14, 60431 Frankfurt am Main,
P.O.B.  10 06 02, 60006 Frankfurt am Main

Tel +49  69 9566-1
Telex within Germany  41227, telex from abroad  414431, fax  +49 69 5601071

Please address all orders in writing to: Deutsche Bundesbank,
Press and Public Relations Division, at the above address or via fax No. +49 69 9566-3077

Reproduction permitted only if source is stated.

ISBN  3–935821–67–0



Measuring the Discriminative Power
of Rating Systems

Abstract: Assessing the discriminative power of rating systems is an important question to banks
and to regulators. In this article we analyze the Cumulative Accuracy Profile (CAP) and the
Receiver Operating Characteristic (ROC) which are both commonly used in practice. We give
a test-theoretic interpretation for the concavity of the CAP and the ROC curve and demonstrate
how this observation can be used for more efficiently exploiting the informational contents of
accounting ratios. Furthermore, we show that two popular summary statistics of these concepts,
namely the Accuracy Ratio and the area under the ROC curve, contain the same information
and we analyse the statistical properties of these measures. We show in detail how to identify
accounting ratios with high discriminative power, how to calculate confidence intervals for the
area below the ROC curve, and how to test if two rating models validated on the same data set are
different. All concepts are illustrated by applications to real data.

Keywords: Validation, Rating Models, Credit Analysis
JEL Classification: C 52, G 10



Messung der Trennscḧarfe
von Ratingverfahren

Zusammenfassung:Die Beurteilung der Trennschärfe von Ratingverfahren ist sowohl für Banken
als auch f̈ur die Bankenaufsicht von großer Bedeutung. In dieser Arbeit untersuchen wir das Cu-
mulative Accuracy Profile (CAP) und die Receiver Operating Characteristic (ROC), welche beide
in der Praxis ḧaufig verwendet werden. Wir interpretieren die Konkavität dieser beiden Kurven
anhand testtheoretischerÜberlegungen und zeigen, wie diese Beobachtung zu einer effizienteren
Ausnutzung des Informationsgehaltes von Bilanzkennzahlen verwendet werden kann. Darüber
hinaus beweisen wir diëAquivalenz des Accuracy Ratio und der Fläche unter der ROC-Kurve und
analysieren deren statistische Eigenschaften. Wir erläutern im Detail, wie Bilanzkennzahlen mit
hoher Trennscḧarfe identifiziert, wie auf einfache Weise Konfidenzintervalle für die Fl̈ache unter
der ROC-Kurve berechnet und wie zwei Ratingverfahren, die auf demselben Datensample vali-
diert werden, auf gleiche Trennschärfe getestet werden können. S̈amtliche Konzepte werden auf
reale Daten angewendet.

Schlagẅorter: Validierung, Ratingverfahren, Kreditrisikoanalyse
JEL Klassifizierung: C 52, G 10
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I. Introduction

A variety of rating methodologies and credit risk modelling approaches has been developed in the

last three decades. Therefore, the question arises which of these methods are preferable to oth-

ers. The need to judge the quality of rating systems has become increasingly important in recent

years after theBasel Committee on Banking Supervision(2001) has published the second consul-

tative document of the new capital adequacy framework where it has announced that an internal

ratings-based approach could form the basis for setting capital charges with respect to credit risk

in the nearest future. This is forcing banks and supervisors to develop statistical tools to evaluate

the quality of internal rating systems. The importance of sound validation techniques for rating

systems stems from the fact that rating models of poor quality could lead to sub-optimal capi-

tal allocation. Therefore, theBasel Committee on Banking Supervision(2000) has emphasized

that the field of model validation will be one of the major challenges for financial institutions and

supervisors in the foreseeable future.

In this article we focus on the evaluation of the discriminative power of rating systems. The most

popular validation technique currently used in practice is the Cumulative Accuracy Profile (CAP)

and its summary statistic, the Accuracy Ratio. A detailed explanation of this method can be found

in Sobehart, Keenan, and Stein(2000). A concept similar to the CAP is the Receiver Operating

Characteristic (ROC) and its summary statistic, the area below the ROC curve. This method has

its origin in signal detection theory, psychology and especially in medicine (e.g.Hanley and

McNeil (1982)).1 ROC curves are used to evaluate the quality of medical diagnosis for many

years. There exists a large body of literature that analyses the properties of ROC curves.Sobehart

and Keenan(2001) explain how to use this concept for validating internal rating models. In their

article, they concentrate on the fundamental features of ROC curves like their calculation and their

interpretation. However, both the articles bySobehart, Keenan, and Stein(2000) andSobehart and

Keenan(2001) do not analyse the measures presented in these articles from a statistical point of

view.

In this article our focus will be on the statistical properties of the CAP and the ROC. In our analysis

we will concentrate on the ROC curve for two reasons. First, concentrating on the ROC allows

us to use the results given in the medical literature and second, the properties of ROC curves are

much more intuitive than the results for the CAP. We will show how the area below the ROC curve

can be interpreted in terms of a probability, how confidence intervals for the area below the ROC

curve can be calculated, and how the areas below the ROC curves of two different rating methods

can be compared statistically. We will demonstrate how these techniques have to be modified that

they are applicable also for the CAP.

1An interesting overview of the variety of possible applications of ROC curves is given inSwets(1988).
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The rest of the article is organised as follows. In part II, to keep this article self-contained, we

briefly review the concepts of the CAP and the ROC. For both concepts it is possible to sum-

marize the information about the quality of a rating system with a single number, namely with

the Accuracy Ratio and the area below the ROC curve. In part III we will analyse the statistical

properties of both the ROC and the CAP. We will start with a detailed description of the properties

of the ROC and show how these properties have to be modified to be applicable to the CAP. In

part IV, we will apply the techniques presented in the second part to real data and discuss their

reliability. The final section concludes.

Throughout this article we will assume rating systems that produce a finite number of rating scores.

This is the situation that is mainly found in practice. However, it is straightforward to apply all

methods presented in this article to rating systems that deliver continuous scores.
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II. The Cumulative Accuracy Profile and the Receiver Operating Char-

acteristic

Consider a rating model which assigns to each debtor a scores out ofk possible values{s1, . . . , sk}
with s1 < . . . < sk. A high rating score indicates a low default probability. It is our aim to eval-

uate the quality of this rating model. We can do this by assigning scores to debtors from a data

sample that is used for the validation, and checking if the debtors will default over the next period

or remain solvent. In this context, we introduce three random variables,ST , SD, andSND. The

random variableST describes the score distribution of all debtors,SD andSND model the score

distributions of the defaulters and the non-defaulters, respectively. The probability that a defaulter

has a score valuesi is denoted bypi
D, pi

D ≥ 0,
∑k

i=1 pi
D = 1. The probability that a non-defaulter

has a score valuesi is calledpi
ND. Given the a-priori default probabilityπ of all debtors, we find

for the probabilitypi
T that an arbitrary debtor has a score valuesi

pi
T = πpi

D + (1− π)pi
ND.

We define the cumulative probabilities

CDi
D =

i∑
j=1

pj
D, i = 1, . . . , k, (1a)

CDi
ND =

i∑
j=1

pj
ND, i = 1, . . . , k, (1b)

CDi
T =

i∑
j=1

pj
T , i = 1, . . . , k, (1c)

whereCDD, CDND, andCDT denote the distribution function of the score values of the de-

faulters, the non-defaulters, and the total sample of debtors, respectively. For instance,CDi
D

denotes the probability that a defaulter’s score is not greater thani. Additionally, we define

CD0
D = CD0

ND = CD0
T = 0.

II.1. Cumulative Accuracy Profile

The Cumulative Accuracy Profile is defined as the graph of all points(CDi
T , CDi

D)i=0,...,k where

the points are connected by straight lines (linear interpolation). This is illustrated in Figure1.

A perfect rating model would assign the lowest scores to the defaulters. In this case the CAP is

increasing linearly and then staying at one. For a random model without any discriminative power

the fractionx of all debtors with the lowest rating scores will containx percent of all defaulters,
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Figure 1. Cumulative Accuracy Profile

This figure illustrates the concept of a CAP. The polygon shows the performance of the model being evaluated in

depicting the percentage of defaults captured by the model at different percentages of the data set, while the straight

line below represents the naive case of zero information or random assignment of rating scores. The third line represents

the case of perfect information where all defaults are assigned to the lowest rating scores. The Accuracy Ratio is the

ratio of the performance improvement of the model being evaluated over the naive model(aR) to the performance

improvement of the perfect model over the naive model(aP ).
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i.e. in this case we will haveCDi
D = CDi

T , i = 0, . . . , k. Real rating systems will be somewhere

in between these two extremes. The quality of a rating system can be summarized by a single

number, the Accuracy RatioAR. It is defined as the ratio of the areaaR between the CAP of the

rating model being validated and the CAP of the random model, and the areaaP between the CAP

of the perfect rating model and the CAP of the random model, i.e.

AR =
aR

aP
. (2)
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Thus, the rating method is the better the closerAR is to one.

II.2. Receiver Operating Characteristic

In this part, we explain the ROC and its associated summary statistic, the area under the ROC

curve. The construction of a ROC curve is illustrated in Figure2 which sketches possible distri-

butions of rating scores for defaulting and non-defaulting debtors. For a perfect rating model the

left distribution and the right distribution in Figure2 would be separate. For real rating systems

perfect discrimination in general is not possible. Both distributions will overlap as illustrated in

Figure2.

Figure 2. Distribution of rating scores for defaulting and non-defaulting debtors

This figure depicts possible distributions of rating scores for defaulting and non-defaulting obligors. For a perfect rating

model the distributions would be separate. For real rating systems, however, perfect discrimination in general is not

possible and the two distributions overlap.

rating score

freq
uen

cy C
defaulters

non-defaulters

Assume someone has to use the rating scores to decide which debtors will survive during the

next period and which debtors will default. One possibility for the decision-maker would be to
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introduce a cut-off valueC as in Figure2, and to classify each debtor with a rating score lower

thanC as a potential defaulter and each debtor with a rating score higher thanC as a non-defaulter.

Then four decision results would be possible. They are summarized in Table1.

Table 1
Decisions results given the cut-off valueC

This table summarizes the possible consequences for a decision-maker using the cut-off valueC.

default no default
below correct prediction wrong prediction

rating C (hit) (false alarm)
score above wrong prediction correct prediction

C (miss) (correct rejection)

If the rating score is below the cut-off value C and the debtor defaults subsequently, the decision

was correct. Otherwise the decision-maker wrongly classified a non-defaulter as a defaulter (type

I error). If the rating score is above the cut-off value and the debtor does not default, the classifica-

tion was correct. Otherwise a defaulter was incorrectly assigned to the non-defaulters group (type

II error). Using the notation ofSobehart and Keenan(2001), we define the hit rateHR(C) (equal

to the grey area on the left hand side of the cut-off valueC in Figure2) as

HR(C) = P (SD ≤ C). (3)

The false alarm rateFAR(C) (equal to the white area on the left hand side of the cut-off valueC

in Figure2) is defined as

FAR(C) = P (SND ≤ C). (4)

The ROC curve is constructed as follows. For all cut-off valuesC that are contained in the range

of the rating scores the quantitiesHR(C) andFAR(C) are computed. The ROC curve is a plot

of HR(C) versusFAR(C) for all values ofC. In our setting, the ROC curve consists of all

points (CDi
ND, CDi

D)i=0,...,k. As in the case of the CAP these points are connected by linear

interpolation. This is illustrated in Figure3.

A rating model’s performance is the better the steeper the ROC curve is at the left end and the

closer the ROC curve’s position is to the point (0,1). Similarly, the model is the better the larger

the area under the ROC curve is. We denote this area byAUC (area under curve). It can be

interpreted as the average power of the tests on default / non-default corresponding to all possible

cut-off valuesC. The areaAUC is 0.5 for a random model without discriminative power and is

1.0 for a perfect model. It is between 0.5 and 1.0 for any reasonable rating model in practice.
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Figure 3. Receiver Operating Characteristic Curves

This figure shows a ROC curve. For all possible cut-off values C the fraction of defaulters predicted correctly (HR(C))

and the fraction of false alarms (FAR(C)) are computed. The ROC curve is a plot ofHR(C) versusFAR(C).

false alarm rate

hit r
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A

perfect model

random model

rating model

1
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III. Properties of the ROC and the CAP

In this section we analyse some statistical properties of both the CAP and the ROC. We will start

with the ROC because it offers more intuitive results than the CAP. For this reason, there exists a

large body of literature on the ROC curve in medicine and psychology. We will mainly refer to the

results provided in this literature in the first part of this section. In the second part of this section,

we will show how the results for the ROC can be transferred to the CAP.

III.1. Properties of the ROC

Most of the results we present here are well known in the medical literature. The probabilis-

tic interpretation of the ROC curve and an efficient way to calculate confidence intervals using

asymptotic normality are based on an article ofBamber(1975). The test to compare the areas

under the ROC curves of two different rating systems that are validated on the same data is based

onDeLong, DeLong, and Clarke-Pearson(1988).

III.1.1. Shape of the ROC curve

From its definition, it is obvious that the ROC curve is non-decreasing. It is also well known

(Bamber1975) that the ROC curve is concave if and only if the Likelihood Ratio

LRi =
pi

D

pi
ND

, i = 1, . . . , k, (5)

is non-increasing ini. This property is quite intuitive since the probability of receiving a high

score should be large for a non-defaulting debtor but small for a defaulting debtor. It is also easy

to see that concavity of the CAP is equivalent to the monotonicity of the likelihood ratio.

Actually, concavity of the ROC curve has also a decision-theoretic interpretation. Besides the

cut-off decision rules as described in SectionII.2 above, a lot of other rules are conceivable. For

instance, there might be rating systems such that very high or very low scores indicate default.

However, it can be shown (Tasche2002) that monotonicity of the Likelihood Ratio is equivalent

to the optimality of the cut-off rules in the following sense: For any fixed cut-off value, there is no

decision rule with both lower type I and type II errors. In the case of rating systems with finitely

many categories the monotonicity can always be reached by reordering. This is current practice in

the medical sciences (Lee1999).
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III.1.2. Probabilistic Interpretation

We continue by providing a probabilistic interpretation ofAUC. Consider the following experi-

ment. Two debtors are drawn at random, the first one from the distribution of defaulters, the second

one from the distribution of non-defaulters. The scores of the defaulter and the non-defaulter de-

termined this way can be interpreted as realizations of the two independent random variablesSD

andSND we have introduced at the beginning of SectionII . Assume someone has to decide which

of the debtors is the defaulter. A rational decision-maker might suppose that the defaulter is the

debtor with the lower rating score. If both debtors had the same score she would toss a coin. There-

fore, the probability that her decision is correct is equal toP (SD < SND) + 1
2 P (SD = SND).

A simple calculation shows that this probability is exactly equal to the areaAUC below the ROC

curve.

AUC =
k∑

i=1

1
2

(CDi
D + CDi−1

D ) (CDi
ND − CDi−1

ND)

=
k∑

i=1

1
2

(
P (SD ≤ si) + P (SD ≤ si−1)

)
P (SND = si)

=
k∑

i=1

(
P (SD ≤ si−1) +

1
2

P (SD = si)
)
P (SND = si)

=
k∑

i=1

P (SD ≤ si−1) P (SND = si) +
1
2

k∑
i=1

P (SD = si) P (SND = si)

= P (SD < SND) +
1
2

P (SD = SND) (6)

III.1.3. Calculation of Confidence Intervals for AUC

In this part of the article we discuss a simple method of calculating confidence intervals forAUC,

the area below the ROC curve. The interpretation ofAUC as a probability relates to the test

statistic of the U-test ofMann and Whitney(1947). If we draw a defaulter with scoresD from SD

and a non-defaulter with scoresND from SND and defineuD,ND as

uD,ND =


1, if sD < sND

1
2 , if sD = sND

0, if sD > sND

, (7)
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then the test statistiĉU according to Mann-Whitney is defined as

Û =
1

ND NND

∑
(D,ND)

uD,ND, (8)

where the sum is over all pairs of defaulters and non-defaulters(D,ND) in the sample. The

numbers of defaulters and non-defaulters in the validation sample are denoted byND andNND

respectively. Observe that̂U is an unbiased estimator ofP (SD < SND) + 1
2 P (SD = SND), i.e.

AUC = E(Û) = P (SD < SND) +
1
2

P (SD = SND). (9)

Furthermore, we find that the areâAUC below the ROC curve calculated from the empirical data

is equal toÛ . For the varianceσ2
Û

of Û we find the unbiased estimatorσ̂2
Û

as

σ̂2
Û

=
1

4 (ND − 1) (NND − 1)
[P̂D 6=ND + (ND − 1) P̂D,D,ND

+ (NND − 1) P̂ND,ND,D − 4 (ND + NND − 1) (Û − 1
2
)2]

(10)

whereP̂D 6=ND is an estimator forP (SD 6= SND) andP̂D,D,ND andP̂ND,ND,D are estimators

for the expressionsPD,D,ND andPND,ND,D which are defined as

PD,D,ND = P (SD,1, SD,2 < SND) + P (SND < SD,1, SD,2)

− P (SD,1 < SND < SD,2)− P (SD,2 < SND < SD,1),
(11a)

PND,ND,D = P (SND,1, SND,2 < SD) + P (SD < SND,1, SND,2)

− P (SND,1 < SD < SND,2)− P (SND,2 < SD < SND,1).
(11b)

In (11a) and (11b), the quantitiesSD,1, SD,2 are independent observations randomly sampled from

SD andSND,1, SND,2 are independent observations randomly sampled fromSND. This unbiased

estimator̂σ2
Û

is implemented in many standard statistical software packages.

For ND, NND → ∞ it is known that(AUC − Û)/σ̂Û is asymptotically normally distributed

with mean zero and standard deviation one. This allows the calculation of approximate confidence

intervals at levelα for AUC by[
Û − σ̂ÛΦ−1

(1 + α

2
)
, Û + σ̂ÛΦ−1

(1 + α

2
)]

, (12)

whereΦ denotes the cumulative distribution function of the standard normal distribution. Our

numerical explorations in SectionIV indicate that the number of defaults should be at least 50 in

order to guarantee that (12) is a good approximation. We note that there is no clear rule for which
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values ofÛ the asymptotic normality of̂U is a valid approximation, becausêU can solely take

values in the interval [0,1]. If̂U is only a few standard deviations away from one it is clear that the

normal approximation might be inaccurate2. However, as illustrated in our examples below, even

in this situation the normal approximation can lead to reasonable results.

III.1.4. Testing for Discriminative Power

The confidence intervals forAUC can be used to test if a rating system has any discriminative

power at all. In this case, the null hypothesis would beAUC = 0.5 or, equivalently,SD = SND

in distribution. Under the null hypothesis (10) simplifies considerably. One obtains

σ2
Û

=
ND + NND + 1

12 ND NND
. (13)

Given a confidence levelα asymptotic normality can be applied to test if the rating system has

enough discriminative power to reject the null hypothesis of no discriminative power.

III.1.5. Comparing two Areas under the ROC Curve

One major application of both the CAP and the ROC is the comparison of different methods on

the same data. We consider the case of comparing two rating systems 1 and 2 with areas below the

ROC curveAUC1 andAUC2. Just comparing the single numbers only is insufficient since they

are not very meaningful from a statistical point of view. Comparing confidence intervals could

also be misleading because a potential correlation of both rating methods is neglected in this case.

To construct a rigorous test on the difference ofAUC1 andAUC2 it is necessary to calculate the

varianceŝσ2
Ûi

for the estimatorŝUi of AUCi, i = 1, 2. In addition, we need the covarianceσ̂Û1,Û2

between the estimatorŝU1 andÛ2 of AUC1 andAUC2. We find for the covariance

σ̂Û1,Û2
=

1
4 (ND − 1) (NND − 1)

[P̃ 12
D,D,ND,ND + (ND − 1) P̃ 12

D,D,ND

+ (NND − 1) P̃ 12
ND,ND,D − 4 (ND + NND − 1) (Û1 −

1
2
) (Û2 −

1
2
)],

(14)

2Several methods for the computation of confidence intervals without relying on the assumption of asymptotic
normality are known which lead in general to very conservative confidence intervals. An overview of these methods is
given inBamber(1975). One could rely on these methods if the normal approximation is questionable as in the case of
very few defaults in the validation sample.
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where P̃ 12
D,D,ND,ND, P̃ 12

D,D,ND and P̃ 12
ND,ND,D are estimators forP 12

D,D,ND,ND, P 12
D,D,ND and

P 12
ND,ND,D which are defined as3

P 12
D,D,ND,ND = P (S1

D > S1
ND, S2

D > S2
ND) + P (S1

D < S1
ND, S2

D < S2
ND)

− P (S1
D > S1

ND, S2
D < S2

ND)− P (S1
D < S1

ND, S2
D > S2

ND),
(15a)

P 12
D,D,ND = P (S1

D,1 > S1
ND, S2

D,2 > S2
ND) + P (S1

D,1 < S1
ND, S2

D,2 < S2
ND)

− P (S1
D,1 > S1

ND, S2
D,2 < S2

ND)− P (S1
D,1 < S1

ND, S2
D,2 > S2

ND),
(15b)

P 12
ND,ND,D = P (S1

D > S1
ND,1, S

2
D > S2

ND,2) + P (S1
D < S1

ND,1, S
2
D < S2

ND,2)

− P (S1
D > S1

ND,1, S
2
D < S2

ND,2)− P (S1
D < S1

ND,1, S
2
D > S2

ND,2).
(15c)

The quantitiesSi
D, Si

D,1, andSi
D,2 are independent draws from the sample of defaulters. The

upper indexi indicates whether a score of the rating model 1 or a score of the rating model 2 has

to be taken. The meaning ofSi
ND, Si

ND,1, andSi
ND,2 is analogous.

To carry out the test on the difference between the two rating methods (where the null hypothesis

is equality of both areas below the ROC curve), we have to evaluate the test statistic T which is

defined as

T = (Û1 − Û2)2

σ2
Û1

+ σ2
Û2
− 2σÛ1,Û2

. (16)

This test statistic is asymptoticallyχ2-distributed with one degree of freedom. Given a confidence

levelα, we can calculate critical values from theχ2(1)-distribution for the test statisticT .

III.2. Properties of the CAP

All concepts we have presented in SectionIII.1 are also applicable to the CAP and its summary

statisticAR. The key to transfer the statistical results for the ROC andAUC to the CAP andAR

is the relation

AR = 2AUC − 1. (17)

A proof of (17) is given in AppendixA. Using (17), we get an estimator for the Accuracy Ratio

by the Mann-Whitney test statistic

V̂ =
1

ND NND

∑
(D,ND)

vD,ND, (18)

3The expressions given inDeLong, DeLong, and Clarke-Pearson(1988) look different from the expressions here.
However, it can be shown that both are equivalent. We used this notation to be consistent with the notation of Section
III.1.3.

12



with vD,ND defined as

vD,ND =


1, if sD < sND

0, if sD = sND

−1, if sD > sND

, (19)

wheresD andsND are the scores of a randomly chosen defaulter and a randomly chosen non-

defaulter, respectively4.

For the variancêσ2
V̂

of V̂ we find

σ̂2
V̂

=
1

(ND − 1) (NND − 1)
[P̂D 6=ND + (ND − 1) P̂D,D,ND

+ (NND − 1) P̂ND,ND,D − (ND + NND − 1) V̂ 2],
(20)

whereP̂D 6=ND, P̂D,D,ND, andP̂ND,ND,D are defined exactly as in SectionIII.1.3. For the covari-

anceσ̂V̂1,V̂2
between two Accuracy RatiosV1 andV2 we find

σ̂V̂1,V̂2
=

1
(ND − 1) (NND − 1)

[P̃ 12
D,D,ND,ND + (ND − 1) P̃ 12

D,D,ND

+ (NND − 1) P̃ 12
ND,ND,D − (ND + NND − 1)V̂1 V̂2],

(21)

whereP̃ 12
D,D,ND,ND, P̃ 12

D,D,ND andP̃ 12
ND,ND,D are defined as in SectionIII.1.5.

Taking all this together allows the calculation of confidence intervals forAR and the comparison

of different rating systems by their Accuracy Ratios.

4This implies a probabilistic interpretation ofAR, namely thatAR = P (SND > SD)− P (SD > SND).
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IV. Applications

In this section, we apply the concepts presented in SectionIII to real data. We use a database of the

Deutsche Bundesbank which contains balance sheets of small and medium companies that are not

listed on exchanges for the years 1987 – 1999. It contains about 300,000 balance sheets and about

3,000 defaults where default was defined as insolvency. In the first part of this section, we will

show how to use the concept presented in SectionIII.1.1 to identify accounting ratios with high

discriminative power that could be included into rating systems. In the second part, we will calcu-

late confidence intervals forAUC using the normal approximation of SectionIII.1.3 and compare

the results to bootstrapping in order to get a feeling for the reliability of this approximation. In the

final part of this section, we illustrate the test on the difference of two rating models presented in

SectionIII.1.5 by real examples. We carry out all applications usingAUC as a quality measure.

All this could also be done usingAR as outlined in SectionIII.2.

In all the examples of this section we assume a rating system with 20 rating categories. The

obligors are distributed to the rating categories in such a way that the categories are approximately

of equal size. To be more precise, after we estimated a rating model, the debtors are ordered from

the lowest score to the highest score. In the next step the debtors are distributed to the rating

categories. All debtors in one rating category get the numberi, 1 ≤ i ≤ 20, of the category as

their rating score.

IV.1. Identification of Accounting Ratios with Discriminative Power

In this section we apply the technique presented in SectionIII.1.1. When designing a rating system

it is crucial to identify accounting ratios with high discriminative power. The calculation ofAUC

for the accounting ratios could be misleading in some situations. This is illustrated in Figure4

where we see a score distribution of the defaulters which is partly on the left and partly on the

right of the distribution of the non-defaulters. Such a score distribution clearly has discriminative

power. A straightforward calculation ofAUC, however, results in a value close to 0.5, the same

value a score function without discriminative power would result in.

Instead of calculating theAUC for rating scores of the defaulters and the non-defaulters, it is more

reasonable to calculateAUC using likelihood ratios as a score. This ensures that accounting ratios

or models with high discriminative power can be identified byAUC. We illustrate this in Figures

5, 6, and7.

Figure5 shows the analysis for the accounting ratio “Ordinary Business Income/Total Assets”.

We see that in this case the rating score is almost perfectly correlated to the likelihood ratio.

14



Figure 4. Score function whereAUC would be misleading

In this figure, the score distribution of the defaulters is partly on the left and partly on the right of the distribution of

the non-defaulters. A straightforward calculation ofAUC would result in a value close to 0.5 which could lead to the

wrong conclusion that the score function has no discriminative power.

rating score

freq
uen

cy

defaulters
non-defaulters

Figure 5. Ordinary Business Income / Total Assets

The figure on the left shows the ROC (and the correspondingAUC) when the debtors are sorted by the accounting ratio

“Ordinary Business Income/Total Assets”. The figure on the right shows the resulting ROC when debtors are sorted by

their corresponding likelihood ratios.
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The situation is different for the accounting ratio “Change in (Net Sales/Total Assets)” as illus-

trated in Figure6 below. The ROC curve is not concave in this situation. Therefore, using the like-

lihood ratio is necessary to gain the full information on the discriminative power of this accounting

ratio. The same is true for “Current Assets/Total Assets” in Figure7 although this accounting ratio

does not contain much discriminative power.

Figure 6. Change in (Net Sales/Total Assets)

The figure on the left shows the ROC (and the correspondingAUC) when the debtors are sorted by the accounting

ratio “Change in (Net Sales / Total Assets)”. The figure on the right shows the resulting ROC when debtors are sorted

by their corresponding likelihood ratios.
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Figure 7. Current Assets/Total Assets

The figure on the left shows the ROC (and the correspondingAUC) when the debtors are sorted by the accounting

ratio “Current Assets / Total Assets”. The figure on the right shows the resulting ROC when debtors are sorted by their

corresponding likelihood ratios.
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We see that likelihood ratios are valuable in detecting accounting ratios with high discrimina-

tive power. Their use is optimal from a theoretical point of view as explained in SectionIII.1.1.

Therefore, they should be used as inputs for the estimation of a rating model instead of the pure

accounting ratios or any other transformation.

IV.2. Calculation of Confidence Intervals for AUC

In this part of the article we analyze the calculation of confidence intervals forAUC based on

formula (12). Since this formula is based on an asymptotic result it is not clear for which values

of ND andNND it is a reasonable approximation. As a benchmark we compute confidence inter-

vals based on bootstrapping. A good overview on bootstrapping is given inEfron and Tibshirani

(1998).

We construct three logit-models using four accounting ratios for each model to carry out the vali-

dation exercises. We estimate the models using the balance sheets of the years 1987 – 1993 from

the database we described above. The logit-scores of the three models are given in (22a), (22b),

and (22c).
Model 1= −7.74 + 2.85 · Liabilities/Total Assets

−0.40 · Net Sales/Total Assets

−12.18 ·Ordinary Business Income/Total Assets

+1.93 · Current Liabilities/Total Assets

(22a)

Model 2= −4.01− 1.53 · Equity/Total Assets

−5.43 · EBIT/Interest Expenses

−5.04 ·Ordinary Business Income/Total Assets

+0.97 · Bank Debt/Liabilities

(22b)

Model 3= −5.25− 1.10 · Equity/Total Assets

−0.40 · Net Sales/Total Assets

−12.08 ·Ordinary Business Income/Total Assets

+2.18 · Current Liabilities/Total Assets

(22c)

In our first exercise, we validate Model 1, Model 2, and Model 3 on the the whole data set of

the years 1994 – 1999 from the database described above. This sample of the database contained

about 200,000 balance sheets and about 825 defaults. We calculateÛ andσ̂Û as in (8) and (10)

for all three models. Furthermore, we compute 95% confidence intervals and 99% confidence

intervals for Û with (12) which is based on asymptotic normality. To evaluate the quality of
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the normal approximation, we additionally calculate confidence intervals by bootstrapping5. Not

surprisingly, for this large data sample we find almost perfect agreement between the confidence

intervals based on asymptotic normality and the confidence intervals computed by bootstrapping.

The results are summarized in Table2.

In a second validation experiment we want to evaluate the accuracy of (12) for small values ofND.

We randomly draw four portfolios of 500 obligors. The first portfolio contains 100 defaulters,

the second portfolio 50 defaulters, the third portfolio 20 defaulters, and the fourth portfolio 10

defaulters. For each portfolio we computêU , σ̂Û , 95% confidence intervals for̂U , and 99%

confidence intervals for̂U for the three rating models (22a), (22b), and (22c). The results are

given in Table3. We see that for the portfolio with 100 defaults and the portfolio with 50 defaults

the confidence intervals based on asymptotic normality agree almost perfectly with the confidence

intervals calculated by bootstrapping. For the portfolio with 20 defaults and especially for the

portfolio with 10 defaults we would expect that the normal approximation is rather inaccurate. In

fact, the confidence intervals based on bootstrapping are no longer symmetric. However, the results

using the normal approximation are still close to the bootstrapping results. Therefore, we conclude

that the normal approximation is applicable to practically all rating systems we could observe in

practice. The main advantage of using the normal approximation for the calculation of confidence

intervals is the considerably lower computational time for obtaining them. Bootstrapping can take

several hours especially if the portfolio is large.

Table 2
Confidence intervals for Model 1, Model 2, and Model 3 for the total portfolio

This table shows the results for̂U , σÛ , 95%, and 99% confidence intervals (derived by asymptotic normality and

bootstrapping) for Model 1, Model 2, and Model 3 on the total portfolio.

Û σ̂Û 95% conf. int. (analytical) 95% conf. int. (bootstrap)
Model 1 0.8119 0.0063 [0.7996,0.8242] [0.7999,0.8248]
Model 2 0.7791 0.0070 [0.7654,0.7928] [0.7662,0.7933]
Model 3 0.8081 0.0063 [0.7958,0.8205] [0.7958,0.8208]

Û σ̂Û 99% conf. int. (analytical) 99% conf. int. (bootstrap)
Model 1 0.8119 0.0063 [0.7959,0.8281] [0.7962,0.8280]
Model 2 0.7791 0.0070 [0.7611,0.7969] [0.7614,0.7974]
Model 3 0.8081 0.0063 [0.7919,0.8241] [0.7917,0.8244]

5All bootstrapping results in this article were obtained by carrying out 5,000 simulation runs.

18



Table 3
Confidence intervals for Model 1, Model 2, and Model 3 for four subportfolios

This table shows the results for̂U , σÛ , 95%, and 99% confidence intervals (derived by asymptotic normality and boot-

strapping) for Model 1, Model 2, and Model 3 on the four subportfolios with 100 defaulters and 400 non-defaulters, with

50 defaulters and 450 non-defaulters, 20 defaulters and 480 non-defaulters, and 10 defaulters and 490 non-defaulters.

a) 400-100 Û σ̂Û 95% conf. int. (analytical) 95% conf. int. (bootstrap)
Model 1 0.8375 0.0204 [0.7976,0.8774] [0.7977,0.8754]
Model 2 0.8206 0.0214 [0.7787,0.8626] [0.7772,0.8620]
Model 3 0.8381 0.0203 [0.7984,0.8778] [0.7963,0.8763]

Û σ̂Û 99% conf. int. (analytical) 99% conf. int. (bootstrap)
Model 1 0.8375 0.0204 [0.7850,0.8900] [0.7826,0.8865]
Model 2 0.8206 0.0214 [0.7655,0.8757] [0.7620,0.8737]
Model 3 0.8381 0.0203 [0.7859,0.8903] [0.7800,0.8880]

b) 450-50 Û σ̂Û 95% conf. int. (analytical) 95% conf. int. (bootstrap)
Model 1 0.8133 0.0227 [0.7689,0.8578] [0.7660,0.8562]
Model 2 0.7800 0.0282 [0.7247,0.8353] [0.7231,0.8325]
Model 3 0.8133 0.0227 [0.7689,0.8578] [0.7681,0.8557]

Û σ̂Û 99% conf. int. (analytical) 99% conf. int. (bootstrap)
Model 1 0.8133 0.0227 [0.7549,0.8718] [0.7522,0.8698]
Model 2 0.7800 0.0282 [0.7073,0.8527] [0.7062,0.8503]
Model 3 0.8133 0.0227 [0.7550,0.8717] [0.7516,0.8703]

c) 480-20 Û σ̂Û 95% conf. int. (analytical) 95% conf. int. (bootstrap)
Model 1 0.8594 0.0377 [0.7855,0.9333] [0.7804,0.9229]
Model 2 0.8281 0.0456 [0.7388,0.9175] [0.7334,0.9066]
Model 3 0.8516 0.0382 [0.7766,0.9265] [0.7742,0.9155]

Û σ̂Û 99% conf. int. (analytical) 99% conf. int. (bootstrap)
Model 1 0.8594 0.0377 [0.7623,0.9565] [0.7455,0.9340]
Model 2 0.8281 0.0456 [0.7107,0.9456] [0.7049,0.9285]
Model 3 0.8516 0.0382 [0.7531,0.9501] [0.7389,0.9313]

d) 490-10 Û σ̂Û 95% conf. int. (analytical) 95% conf. int. (bootstrap)
Model 1 0.8724 0.0620 [0.7510,0.9939] [0.7377,0.9666]
Model 2 0.8673 0.0534 [0.7626,0.9721] [0.7550,0.9500]
Model 3 0.8677 0.0616 [0.7466,0.9881] [0.7395,0.9616]

Û σ̂Û 99% conf. int. (analytical) 99% conf. int. (bootstrap)
Model 1 0.8724 0.0620 [0.7128,1.0000] [0.6944,0.9749]
Model 2 0.8673 0.0534 [0.7297,1.0000] [0.7112,0.9652]
Model 3 0.8677 0.0616 [0.7086,1.0000] [0.6863,0.9738]
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IV.3. Comparison of AUC for two Different Rating Systems

In this part of the article we apply the test from SectionIII.1.5 on the difference of the area below

the ROC curve to two rating models. We carry out pairwise comparisons of our three rating models

(22a), (22b), and (22c) on the total validation sample from 1994 – 1999. The rating models (22a)

and (22c) differ only by one accounting ratio. From Table2 we see that theirAUC has almost

the same value and that the confidence intervals forAUC are overlapping on a very large range.

On a first glance one might conclude that both rating models are of similar quality. In Table4 we

report the value of the test statistic (16), the corresponding p-value, and the correlation coefficient

between the areas below the ROC curve for all pairwise comparisons of the three rating models.

Table 4
Results of the test of the difference of the areas below the ROC curve for pairwise

comparison of Model 1, Model 2, and Model 3, validated on the total portfolio

In this table, we report the results of the test of SectionIII.1.5 for the total portfolio. We report the value of the test

statisticT , the p-value, and the correlationρ of the Mann-Whitney test statistics of the two rating models that are

compared. We find that the differences between all rating methods are highly significant.

Models T p-value ρ

1 & 2 55.93 <0.0001 0.79
1 & 3 11.58 0.0007 0.98
2 & 3 39.98 <0.0001 0.39

We find that Model 1 and Model 2 are different with high significance. The same is true for Model

2 and Model 3. Surprisingly the p-value of the test on the difference of Model 1 and Model 3

is only 0.0007. Therefore, both models are also different with high significance. The reason is

the high correlation of 0.98. We give an intuitive explanation of this result. If we carried out

bootstrapping both models would yield similar values forAUC in all simulations. However, due

to the high correlation, the value of Model 1 would be in almost all cases higher than the value of

Model 3. Therefore, Model 1 is superior to Model 3 with high significance.

If we carry out the same analysis for the sample portfolio with 500 obligors that contains 100

defaulters the picture is different. None of the pairwise comparisons of the three rating models

leads to a significant difference. The detailed results are given in Table5.
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Table 5

Results of the test for the difference of the areas below the ROC curve for pairwise

comparison of Model 1, Model 2, and Model 3 validated on the 100-400 portfolio

In this table, we report the results of the test of SectionIII.1.5 for the portfolio with 500 obligors that contains 100

defaults. We report the value of the test statisticT , the p-value, and the correlationρ of the Mann-Whitney test statistics

of the two rating models that are compared. We find on these small validation samples that no difference of any pair of

rating models is statistically significant.

Models T p-value ρ

1 & 2 1.40 0.2367 0.77

1 & 3 0.03 0.8648 0.98

2 & 3 1.44 0.2296 0.76
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V. Conclusion

We have introduced a method to improve the discriminative power of accounting ratios by replac-

ing them with their corresponding likelihood ratios. Furthermore, we have analysed statistical

properties of the CAP and the ROC. By demonstrating the correspondence of the areaAUC be-

low the ROC curve and the Accuracy Ratio, we have shown that these summary statistics of the

CAP and the ROC are equivalent. Furthermore this result enables us to use a simple analytical

method, based onBamber(1975), to obtain confidence intervals for these statistics. Additionally,

by means of a methodology introduced byDeLong, DeLong, and Clarke-Pearson(1988), we are

able to compare these summary statistics for two different rating methods being validated on the

same data set. Examples with real data demonstrated that these methods are reliable even for small

portfolios.
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A. Proof of AR = 2AUC− 1

Using our notation, we find for the area below the ROC curveAUC and the area below the CAP

aR + 0.5

AUC =
k∑

i=1

1
2

(CDi
D + CDi−1

D ) (CDi
ND − CDi−1

ND), (23)

aR + 0.5 =
k∑

i=1

1
2

(CDi
D + CDi−1

D ) (CDi
T − CDi−1

T ). (24)

ForaP a simple calculation yields

aP =
1
2

(1− π), (25)

whereπ is the a-priori default probability of all debtors. To proof the desired relation, we start

with (24).

aR + 0.5 =
k∑

i=1

1
2

(CDi
D + CDi−1

D ) (CDi
T − CDi−1

T )

=
k∑

i=1

1
2

(CDi
D + CDi−1

D )
(
π (CDi

D − CDi−1
D ) + (1− π) (CDi

ND − CDi−1
ND)

)
= (1− π)

k∑
i=1

1
2

(CDi
D + CDi−1

D ) (CDi
ND − CDi−1

ND)

+ π

k∑
i=1

1
2

(CDi
D + CDi−1

D ) (CDi
D − CDi−1

D )

= (1− π) AUC +
1
2

π
k∑

i=1

((
CDi

D

)2 −
(
CDi−1

ND

)2
)

= (1− π) AUC +
1
2

π (26)

Taking (2), (25), and (26) together, we obtain

AR =
aR

aP
=

(1− π) (AUC − 1
2)

1
2 (1− π)

= 2AUC − 1. (27)
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