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Bounding equilibrium payoffs in repeated games
with private monitoring

Takuo Sugaya
Graduate School of Business, Stanford University

Alexander Wolitzky
Department of Economics, MIT

We provide a simple sufficient condition for the existence of a recursive upper
bound on (the Pareto frontier of) the sequential equilibrium payoff set at a fixed
discount factor in two-player repeated games with imperfect private monitoring.
The bounding set is the sequential equilibrium payoff set with perfect monitor-
ing and a mediator. We show that this bounding set admits a simple recursive
characterization, which nonetheless necessarily involves the use of private strate-
gies. Under our condition, this set describes precisely those payoff vectors that
arise in equilibrium for some private monitoring structure if either nonstationary
monitoring or communication is allowed.

Keywords. Repeated games, private monitoring.

JEL classification. C72, C73.

1. Introduction

Like many dynamic economic models, repeated games are typically studied using re-
cursive methods. In an incisive paper, Abreu et al. (1990; henceforth APS) recursively
characterized the perfect public equilibrium payoff set at a fixed discount factor in re-
peated games with imperfect public monitoring. Their results (along with related con-
tributions by Fudenberg et al. (1994) and others) led to fresh perspectives on problems
like collusion (Green and Porter 1984, Athey and Bagwell 2001), relational contracting
(Levin 2003), and government credibility (Phelan and Stacchetti 2001). However, other
important environments—like collusion with secret price cuts (Stigler 1964) or relational
contracting with subjective performance evaluations (Levin 2003, MacLeod 2003, Fuchs
2007)—involve imperfect private monitoring, and it is well known that the methods of
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APS do not easily extend to such settings (Kandori 2002). Whether the equilibrium pay-
off set in repeated games with private monitoring exhibits any tractable recursive struc-
ture at all is thus a major question.

In this paper, we do not make any progress toward giving a recursive characteriza-
tion of the sequential equilibrium payoff set in a repeated game with a given private
monitoring structure. Instead, working in the context of two-player games, we provide
a simple condition for the existence of a recursive upper bound on the Pareto frontier
of this set.1 The key feature of our bound is that it is tight from the perspective of an
observer who does not know the monitoring structure under which the game is being
played: that is, our bound characterizes the set of payoffs that can arise in equilibrium
for some monitoring structure. In other words, from the perspective of an observer who
knows the monitoring structure, our results give an upper bound on how well the play-
ers can do; while from the perspective of an observer who does not know the monitoring
structure, our results exactly characterize how well they can do. Which of these two per-
spectives on our results is more relevant for a particular application thus depends on the
observability of the monitoring structure to an outsider, which can be expected to vary
from application to application.

The set we use to upper-bound the equilibrium payoff set with private monitoring
is the equilibrium payoff set with perfect monitoring and a mediator (mediated per-
fect monitoring ). We do not take a position on the realism of allowing a mediator, and
instead view the model with a mediator as a purely technical device that is useful for
bounding equilibrium payoffs with private monitoring. We thus show that the equilib-
rium payoff set with private monitoring admits a recursive upper bound by establishing
two main results:

(i) Under a simple condition, the equilibrium payoff set with mediated perfect mon-
itoring is an upper bound on the equilibrium payoff set with any private monitor-
ing structure.

(ii) The equilibrium payoff set with mediated perfect monitoring has a recursive
structure.

It might seem surprising that any conditions at all are needed for the first of these
results, as one might think that improving the precision of the monitoring structure and
adding a mediator can only expand the equilibrium set. But this is not the case: giv-
ing a player more information about her opponents’ past actions splits her information
sets and thus gives her new ways to cheat, and indeed we show by example that (un-
mediated) imperfect private monitoring can sometimes outperform (mediated) perfect
monitoring. In other words, perfect monitoring is not necessarily the optimal monitor-
ing structure in a repeated game, even if it is advantaged by giving the players access to
a mediator.

Our sufficient condition for mediated perfect monitoring to outperform any private
monitoring structure is that there is a feasible payoff vector v such that no player i is

1For conciseness, henceforth we will say that a set of payoff vectors X upper-bounds set Y if every payoff
vector y ∈ Y is Pareto dominated by some payoff vector x ∈X . This is obviously not the same as X ⊇ Y .
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tempted to deviate if she gets continuation payoff vi when she conforms and is min-
maxed when she deviates. This is a joint restriction on the stage game and the discount
factor, and it is essentially always satisfied when players are at least moderately patient.
(However, they need not be patient enough for the folk theorem to apply.) Under this
condition, we show that the Pareto frontier of the equilibrium payoff set under medi-
ated perfect monitoring coincides with that under the universal monitoring structure
that arises when the mediator perfectly observes all actions but each player observes
only her own actions. Our first main result follows because, as its name suggests, the
universal monitoring structure embeds any private monitoring structure.

To understand our second main result, recall that, in repeated games with perfect
monitoring without a mediator, all strategies are public, so the sequential (equiva-
lently, subgame perfect) equilibrium set coincides with the perfect public equilibrium
set, which was recursively characterized by APS. However, with a mediator—who makes
private action recommendations to the players—private strategies play a crucial role,
and APS’s characterization does not apply. Nonetheless, under the sufficient condition
for our first result, a recursive characterization is obtained by replacing APS’s generating
operator B with what we call the minmax-threat generating operator B̃: for any set of
continuation payoffs W , the set B̃(W ) is the set of payoffs that can be attained when on-
path continuation payoffs are drawn from W and deviators are minmaxed. To see why
deviators can always be minmaxed in the presence of a mediator—and also why private
strategies cannot be ignored—suppose that the mediator recommends a target action
profile a ∈A with probability 1 −ε, while recommending every other action profile with
probability ε/(|A| − 1). Suppose further that if some player i deviates from her recom-
mendation, the mediator then recommends that her opponents minmax her in every
future period. In such a construction, player i’s opponents never learn that a deviation
has occurred, and they are therefore always willing to follow the recommendation of
minmaxing player i.2 (This construction clearly relies on private strategies: if the medi-
ator’s recommendations were public, players would always see when a deviation occurs,
and they then might not be willing to minmax the deviator.)

We consider several extensions of our results. Perhaps most importantly, we estab-
lish two senses in which the equilibrium payoff set with mediated perfect monitoring
is a tight upper bound on the equilibrium payoff set, from the perspective of an ob-
server who does not know the monitoring structure. First, mediated perfect monitoring
with a given strategy of the mediator’s itself induces a nonstationary monitoring struc-
ture, meaning that the distribution of signals can depend on everything that has hap-
pened in the past, rather than only on current actions. Thus, our upper bound is trivially
tight from the perspective of an observer who finds nonstationary monitoring structures
possible. Second, restricting attention to standard, stationary monitoring structures—
where the signal distribution depends only on the current actions—we show that the
mediator can be dispensed with if the players have access to an ex ante correlating de-
vice and cheap talk communication. Hence, our upper bound is also tight from the

2In this construction, the mediator virtually implements the target action profile. For other applications
of virtual implementation in games with a mediator, see Lehrer (1992), Mertens et al. (2015, IV.4.b), Renault
and Tomala (2004), Rahman and Obara (2010), and Rahman (2012).



694 Sugaya and Wolitzky Theoretical Economics 12 (2017)

perspective of an observer who finds only stationary monitoring structures possible, if
she also accepts the possibility of ex ante correlation and cheap talk.

This paper is not the first to develop recursive methods for repeated games with im-
perfect private monitoring. Kandori and Matsushima (1998) augment private monitor-
ing repeated games with opportunities for public communication among the players
and provide a recursive characterization of a subset of equilibrium payoffs that is large
enough to yield a folk theorem. Tomala (2009) gives related results when the repeated
game is augmented with a mediator rather than only public communication. Neither
paper provides a recursive upper bound on the entire sequential equilibrium payoff set
for a fixed discount factor.3  Amarante (2003) does give a recursive characterization of
the equilibrium payoff set in private monitoring repeated games, but the state space
in his characterization is the set of repeated game histories, which grows over time.
Phelan and Skrzypacz (2012) and Kandori and Obara (2010) develop recursive methods
for checking whether a given finite-state strategy profile is an equilibrium in a private
monitoring repeated game.

Awaya and Krishna (2015) and Pai et al. (2014) derive bounds on payoffs in private
monitoring repeated games as a function of the monitoring structure. The bounds in
these papers come from the observation that if an individual’s actions can have only a
small impact on the distribution of signals, then the shadow of the future can have only
a small effect on her incentives. In contrast, our payoff bounds apply for all monitoring
structures, including those in which individual actions have a large impact on the signal
distribution.

Finally, we have emphasized that our results can be interpreted either as giving an
upper bound on the equilibrium payoff set in a repeated game for a particular private
monitoring structure or as characterizing the set of payoffs that can arise in equilibrium
for some private monitoring structure. With the latter interpretation, our paper shares a
motivation with Bergemann and Morris (2013), who characterize the set of payoffs that
can arise in equilibrium in a static incomplete information game for some information
structure. Yet another interpretation of our results is that they establish that informa-
tion is valuable in mediated repeated games, in that—under our sufficient condition—
players cannot benefit from imperfections in the monitoring technology. This interpre-
tation connects our paper to the literature on the value of information in static incom-
plete information games (e.g., Gossner 2000, Lehrer et al. 2010, Bergemann and Morris
2013).

The rest of the paper is organized as follows. Section 2 describes our models of re-
peated games with private and mediated perfect monitoring, which are standard. Sec-
tion 3 gives an example showing that private monitoring can sometimes outperform
mediated perfect monitoring. Section 4 develops preliminary results about repeated

3Ben-Porath and Kahneman (1996) and Compte (1998) also prove folk theorems for private monitoring
repeated games with communication, but they do not emphasize recursive methods away from the δ → 1
limit. Lehrer (1992), Mertens et al. (2015, IV.4.b), and Renault and Tomala (2004) characterize the com-
munication equilibrium payoff set in undiscounted repeated games. These papers study how imperfect
monitoring can limit the equilibrium payoff set without discounting, while our focus is on how discounting
can limit the equilibrium payoff set independently of the monitoring structure.
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games with mediated perfect monitoring. Section 5 presents our first main result: a suf-
ficient condition for mediated perfect monitoring to outperform private monitoring.
The proof of this result is deferred to Section 8. Section 6 presents our second main
result: a recursive characterization of the equilibrium payoff set with mediated perfect
monitoring. Section 7 illustrates the calculation of the upper bound with an example.
Section 9 discusses the tightness of our upper bound, as well as partial versions of our
results that apply when our sufficient conditions do not hold, as in the case of more than
two players. Section 10 concludes. Additional material is available in a supplementary
file on the journal website, http://econtheory.org/supp/2270/supplement.pdf.

2. Repeated games with private and mediated perfect monitoring

A finite stage game G = (I� (Ai�ui)i∈I) is repeated in periods t = 1�2� � � � , where I =
{1� � � � � |I|} is the set of players, Ai is the finite set of player i’s actions, and ui : A → R is
player i’s payoff function. Players maximize expected discounted payoffs with common
discount factor δ.

2.1 Private monitoring

In each period t, the game proceeds as follows: Each player i takes an action ai�t ∈ Ai.
A signal zt = (zi�t)i∈I ∈∏i∈I Zi = Z is drawn from distribution p(zt |at), where Zi is the
finite set of player i’s signals and p(·|a) is the monitoring structure. Player i observes zi�t .

A period t history for player i is an element of Ht
i = (Ai × Zi)

t−1, with typical el-
ement ht

i = (ai�τ� zi�τ)
t−1
τ=1, where H1

i consists of the null history ∅. A (behavior) strat-
egy for player i is a map σi : ⋃∞

t=1 H
t
i → �(Ai). A belief system for player i is a map

βi : ⋃∞
t=1 H

t
i → ⋃∞

t=1 �(H
t) satisfying suppβi(h

t
i) ⊆ {ht

i} × Ht
−i for all t; we also write

βi(h
t |ht

i) for the probability of ht under βi(h
t
i). Let Ht =∏i∈I Ht

i .
The solution concept is sequential equilibrium.

Definition 1. An assessment (σ�β) constitutes a sequential equilibrium if the follow-
ing two conditions are satisfied:

(i) Sequential rationality. For each player i and history ht
i , σi maximizes player i’s

expected continuation payoff at history ht
i under belief βi(h

t
i).

(ii) Consistency. There exists a sequence of completely mixed strategy profiles (σn)

such that the following two conditions hold:

(a) The sequence (σn) converges to σ (pointwise in t). For all ε > 0 and t, there
exists N such that, for all n >N , |σn

i (h
t
i)− σi(h

t
i)| < ε for all i ∈ I, ht

i ∈Ht
i .

(b) Conditional probabilities converge to β (pointwise in t). For all ε > 0 and t,
there exists N such that, for all n >N ,∣∣∣∣ Prσ

n(
ht
i�h

t
−i

)∑
h̃t−i

Prσ
n(
ht
i� h̃

t
−i

) −βi

(
ht
i�h

t
−i | ht

i

)∣∣∣∣< ε for all i ∈ I�ht
i ∈Ht

i �h
t
−i ∈Ht

−i�

http://econtheory.org/supp/2270/supplement.pdf
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This relatively permissive definition of consistency (requiring that strategies and be-
liefs converge only pointwise in t) gives a weakly larger set of equilibrium payoffs to be
bounded but also allows more freedom in constructing the bounding equilibria. How-
ever, by replacing infinite punishments with long finite punishments, our equilibrium
constructions can be modified to satisfy consistency under uniform convergence.

2.2 Mediated perfect monitoring

In each period t, the game proceeds as follows: A mediator sends a private message
mi�t ∈ Mi to each player i, where Mi is a finite message set for player i. Each player i

takes an action ai�t ∈Ai. All players and the mediator observe the action profile at ∈ A.
A period t history for the mediator is an element of Ht

m = (M × A)t−1, with typical
element ht

m = (mτ�aτ)
t−1
τ=1, where H1

m consists of the null history. A strategy for the me-
diator is a map μ : ⋃∞

t=1 H
t
m → �(M). A period t history for player i is an element of

Ht
i = (Mi × A)t−1 × Mi, with typical element ht

i = ((mi�τ� aτ)
t−1
τ=1�mi�t), where H1

i = Mi.4

A strategy for player i is a map σi : ⋃∞
t=1 H

t
i → �(Ai).

The definition of sequential equilibrium is the same as with private monitoring, ex-
cept that sequential rationality is imposed (and beliefs are defined) only at histories
consistent with the mediator’s strategy. The interpretation is that the mediator is not
a player in the game but rather a “machine” that cannot tremble.5 Note that with this
definition, an assessment (including the mediator’s strategy) (μ�σ�β) is a sequential
equilibrium with mediated perfect monitoring if and only if (σ�β) is a sequential equi-
librium with the “nonstationary” private monitoring structure where Zi = Mi × A and
pt(·|ht+1

m ) coincides with perfect monitoring of actions with messages given by μ(ht+1
m )

(see Section 9.1).
As in Forges (1986) and Myerson (1986), any equilibrium distribution over action

paths arises in an equilibrium of the following form:

(i) Messages are action recommendations: M = A.

(ii) Obedience/incentive compatibility. At history ht
i = ((mi�τ� aτ)

t−1
τ=1�mi�t), player i

plays ai�t = mi�t .

Without loss of generality, we restrict attention to such obedient equilibria through-
out.6 We denote the mediator’s action recommendation by r ∈A.

Finally, we say that a sequential equilibrium with mediated perfect monitoring is on-
path strict if following the mediator’s recommendation is strictly optimal for each player
i at every on-path history ht

i . Let Emed(δ) denote the set of on-path strict sequential
equilibrium payoffs. For the rest of the paper, we slightly abuse terminology by omitting
the qualifier “on-path” when discussing such equilibria.

4We also occasionally write ht
i for (mi�τ� aτ)

t−1
τ=1, omitting the period t message mi�t .

5The assumption that the mediator cannot tremble does not matter for our results.
6Dhillon and Mertens (1996) show that the revelation principle fails for trembling-hand perfect equi-

libria. Nonetheless, with our machine interpretation of the mediator, the revelation principle applies for
sequential equilibrium by precisely the argument of Forges (1986).
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3. An illustrative (counter)example

The goal of this paper is to provide sufficient conditions for the equilibrium payoff set
with mediated perfect monitoring to upper-bound the equilibrium payoff set with pri-
vate monitoring. We first provide an illustrative example showing why, in the absence
of our sufficient conditions, private monitoring (without a mediator) can outperform
mediated perfect monitoring. Readers eager to get to the results can skip this section
without loss of continuity.

Consider the repetition of the following stage game, with δ = 1
6 :

L M R

U 2�2 −1�0 −1�0
D 3�0 0�0 0�0
T 0�3 6�−3 −6�−3
B 0�−3 0�3 0�3

Example 1

Proposition 1. In Example 1, there is no sequential equilibrium where the players’ per-
period payoffs sum to more than 3 with mediated perfect monitoring, while there is such
a sequential equilibrium with some private monitoring structure.

Let us sketch the proof of Proposition 1. Note that (U�L) is the only action pro-
file where payoffs sum to more than 3. Because δ is low, player 1 (row player, “she”)
can be induced to play U in response to L only if action profile (U�L) is immedi-
ately followed by (T�M) with high enough probability: specifically, this probability
must exceed 3

5 . With perfect monitoring, player 2 (column player, “he”) must then “see
(T�M) coming” with probability at least 3

5 following (U�L), and this probability is so
high that player 2 will deviate from M to L (regardless of the specification of continu-
ation play). This shows that payoffs cannot sum to more than 3 with perfect monitor-
ing.

In contrast, with private monitoring, player 2 may not know whether (U�L) has just
occurred, and therefore may be unsure of whether the next action profile will be (T�M)

or (B�M), which can give him the necessary incentive to play M rather than L. In par-
ticular, suppose that player 1 mixes 1

3U + 2
3D in period 1, and the monitoring structure is

such that player 2 gets signal m (“play M”) with probability 1 following (U�L), and gets
signals m and r (“play R”) with probability 1

2 each following (D�L). Suppose further that
player 1 plays T in period 2 if she played U in period 1, and plays B in period 2 if she
played D in period 1. Then, when player 2 sees signal m in period 1, his posterior belief
that player 1 played U in period 1 is

1
3
(1)

1
3
(1)+ 2

3

(
1
2

) = 1
2
�
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Player 2 therefore expects to face T and B in period 2 with probability 1
2 each, so he is

willing to play M rather than L. Meanwhile, player 1 is always rewarded with (T�M)

in period 2 when she plays U in period 1, so she is willing to play U (as well as D) in
period 1.

To summarize, the advantage of private monitoring is that pooling players’ infor-
mation sets (in this case, player 2’s information sets after (U�L) and (D�L)) can make
providing incentives easier.7 A companion paper (Sugaya and Wolitzky 2017) develops
this point in the context of some canonical models in industrial organization.

Below, we show that private monitoring cannot outperform mediated perfect mon-
itoring when there exists a feasible payoff vector v such that no player i is tempted to
deviate if she gets continuation payoff vi when she conforms and is minmaxed when
she deviates. This condition is violated in the current example because, when δ = 1

6 ,
no feasible continuation payoff for player 2 is high enough to induce him to respond to
T with M rather than L. Specifically, in the example the condition holds if and only if
δ ≥ 19

25 .

4. Preliminary results about Emed(δ)

We begin with two preliminary results about the equilibrium payoff set with medi-
ated perfect monitoring. These results are important for both our result on when pri-
vate monitoring cannot outperform mediated perfect monitoring (Theorem 1) and our
characterization of the equilibrium payoff set with mediated perfect monitoring (Theo-
rem 2).

Let ui be player i’s correlated minmax payoff, given by

ui = min
α−i∈�(A−i)

max
ai∈Ai

ui(ai�α−i)�

Let α∗
−i ∈ �(A−i) be a solution to this minmax problem. Let di be player i’s greatest

possible gain from a deviation at any recommendation profile, given by

di = max
r∈A�ai∈Ai

ui(ai� r−i)− ui(r)�

Let wi be the lowest continuation payoff such that player i does not want to deviate at
any recommendation profile when she is minmaxed forever if she deviates, given by

wi = ui +
1 − δ

δ
di�

Let

Wi =
{
w ∈R

|I| : wi ≥wi

}
�

7As far as we know, the observation that players in a repeated game can benefit from imperfections in
monitoring even in the presence of a mediator is original. Examples by Kandori (1991), Sekiguchi (2002),
Mailath et al. (2002), and Miyahara and Sekiguchi (2013) show that players can benefit from imperfect
monitoring in finitely repeated games (Kandori’s example is described in Mailath and Samuelson (2006,
Section 12.1.3)). However, in their examples this conclusion relies on the absence of a mediator, and is
thus due to the possibilities for correlation opened up by private monitoring. The broader point that giving
players more information can be bad for incentives is of course familiar.
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Figure 1. The intersection of F , W1, and W2, denoted by W ∗, satisfies W̊ ∗ ⊆Emed(δ).

Finally, let F be the convex hull of the set of feasible payoffs, let

W ∗ =
⋂
i∈I

Wi ∩F�

and denote the interior of W ∗ as a subspace of F by W̊ ∗.
Our first preliminary result is that all payoffs in W̊ ∗ are attainable in equilibrium

with mediated perfect monitoring. See Figure 1. The intuition is that the mediator can
virtually implement any payoff vector in W ∗ by minmaxing deviators.

We will actually prove the slightly stronger result that all payoffs in W̊ ∗ are attainable
in a strict “full-support” equilibrium with mediated perfect monitoring. Formally, we
say that an equilibrium has full support if for each player i and history ht

i = (ri�τ� aτ)
t−1
τ=1

such that there exist recommendations (r−i�τ)
t−1
τ=1 with Prμ(rτ|(rτ′� aτ′)τ−1

τ′=1) > 0 for each

τ = 1� � � � � t − 1, there exist alternative recommendations (r̄−i�τ)
t−1
τ=1 such that for each

τ = 1� � � � � t − 1, we have

Prμ
(
ri�τ� r̄−i�τ|(ri�τ′� r̄−i�τ′� aτ′)τ−1

τ′=1

)
> 0 and r̄−i�τ = a−i�τ�

That is, any history ht
i consistent with the mediator’s strategy is also consistent with i’s

opponents’ equilibrium strategies (even if player i herself has deviated, noting that we
allow ri�τ �= ai�τ in ht

i). This is weaker than requiring that the mediator’s recommendation
has full support at all histories (on and off path), but stronger than requiring that the rec-
ommendation has full support at all on-path histories only. Note that if the equilibrium
has full support, player i never believes that any of the other players has deviated.

Lemma 1. For all v ∈ W̊ ∗, there exists a strict full-support equilibrium with mediated
perfect monitoring with payoff v. In particular, W̊ ∗ ⊆Emed(δ).

Proof. For each v ∈ W̊ ∗, there exists μ ∈ �(A) such that u(μ) = v and μ(r) > 0 for all
r ∈ A. For each i ∈ I and ε ∈ (0�1), approximate the minmax strategy α∗

−i by the full-
support strategy αε

−i ≡ (1 − ε)α∗
−i + ε

∑
a−i∈A−i

a−i
|A−i| . Since v ∈ int(

⋂
i∈I Wi), there exists
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ε ∈ (0�1) such that, for each i ∈ I, we have

vi > max
ai∈Ai

ui
(
ai�α

ε
−i

)+ 1 − δ

δ
di� (1)

Consider the following recommendation schedule: The mediator follows an au-
tomaton strategy whose state is identical to a subset of players J ⊆ I. Hence, the me-
diator has 2|I| states. In the following construction of the mediator’s strategy, J will rep-
resent the set of players who have ever deviated from the mediator’s recommendation.

If the state J is equal to ∅ (no player has deviated), then the mediator recom-
mends μ. If there exists i with J = {i} (only player i has deviated), then the mediator
recommends r−i to players −i according to αε

−i, and recommends some best response
to αε

−i to player i. Finally, if |J| ≥ 2 (several players have deviated), then for each i ∈ J,
the mediator recommends the best response to αε

−i, while she recommends each profile

a−J ∈ A−J to the other players −J with probability 1
|A−J | . The state transitions as follows:

if the current state is J and players J′ deviate, then the state transitions to J ∪ J′.
Player i’s strategy is to follow her recommendation ri�t in period t. She believes that

the mediator’s state is ∅ if she herself has never deviated, and believes that the state is
{i} if she has deviated.

Since the mediator’s recommendation has full support, player i’s belief is consistent.
(In particular, no matter how many times player i has been instructed to minmax some
player j, it is always infinitely more likely that these instructions resulted from random-
ization by the mediator rather than a deviation by player j.) If player i has deviated, then
(given her belief) it is optimal for her to always play a static best response to αε

−i, since
the mediator always recommends αε

−i in state {i}. Given that a unilateral deviation by
player i is punished in this way, (1) implies that on-path player i has a strict incentive to
follow her recommendation ri�t at any recommendation profile rt ∈ A. Hence, she has a
strict incentive to follow her recommendation when she believes that r−i�t is distributed
according to Prμ(r−i�t |ht

i). �

The condition that W̊ ∗ �= ∅ can be more transparently stated as a lower bound on
the discount factor. In particular, W̊ ∗ �= ∅ if and only if there exists v ∈ F such that

vi > ui +
1 − δ

δ
di for all i ∈ I

or, equivalently,

δ > δ∗ ≡ min
v∈F

max
i∈I

di
di + vi − ui

� (2)

For instance, it can be checked that δ∗ = 19
25 in Example 1 of Section 3. Note that δ∗ is

strictly less than 1 if and only if the stage game admits a feasible and strictly individually
rational payoff vector (relative to correlated minmax payoffs).8 For most games of inter-
est, δ∗ will be some intermediate discount factor that is not especially close to either 0
or 1.

8Recall that a payoff vector v is strictly individually rational if vi > ui for all i ∈ I.
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Our second preliminary result is that if a strict full-support equilibrium exists, then
any payoff vector that can be attained by a mediator’s strategy that is incentive compat-
ible on path is (virtually) attainable in strict equilibrium.

Lemma 2. With mediated perfect monitoring, fix a payoff vector v, and suppose there
exists a mediator’s strategy μ that (1) attains v when players obey the mediator, and (2) has
the property that obeying the mediator is optimal for each player at each on-path history,
when she is minmaxed forever if she deviates: that is, for each player i and on-path history
ht+1
m ,

(1 − δ)E
[
ui(rt) | ht

m� ri�t
]+ δE

[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui
(
μ
(
hτ
m

)) ∣∣∣∣ ht
m� ri�t

]
(3)

≥ max
ai∈Ai

(1 − δ)E
[
ui(ai� r−i�t) | ht

m� ri�t
]+ δui�

Suppose also that there exists a strict full-support equilibrium. (For example, such an
equilibrium exists if W̊ ∗ �= ∅, by Lemma 1.) Then v ∈ Emed(δ).9

Proof. Fix such a strategy μ and any strict full-support equilibrium μstrict. We con-
struct a strict equilibrium that attains a payoff close to v.

In period 1, the mediator draws one of two states, Rv and Rperturb, with probabilities
1 − ε and ε, respectively. In state Rv, the mediator’s recommendation is determined as
follows: If no player has deviated up to period t, the mediator recommends rt accord-
ing to μ(ht

m). If only player i has deviated, the mediator recommends r−i�t to players
−i according to α∗

−i, and recommends some best response to α∗
−i to player i. Multiple

deviations are treated as in the proof of Lemma 1. Alternatively, in state Rperturb, the
mediator follows the equilibrium μstrict. Player i follows the recommendation ri�t in pe-
riod t. Since the constructed recommendation schedule has full support, player i never
believes that another player has deviated. Moreover, since μstrict has full support, player
i believes that the mediator’s state is Rperturb with positive probability after any history.
Therefore, by (3) and the fact that μstrict is a strict equilibrium, it is always strictly optimal
for each player i to follow her recommendation on path. Taking ε → 0 yields a sequence
of strict equilibria with payoffs converging to v. �

5. A sufficient condition for Emed(δ) to give an upper bound

Our sufficient condition for mediated perfect monitoring to outperform private moni-
toring in two-player games is that δ > δ∗. In Section 9, we discuss what happens when
there are more than two players or the condition that δ > δ∗ is relaxed.

Let E(δ�p) be the set of (possibly weak) sequential equilibrium payoffs with private
monitoring structure p. Note that E(δ�p) is closed, as we use the product topology on
assessments (Fudenberg and Levine 1983).

9Throughout, X̄ denotes the closure of X .
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Theorem 1. If |I| = 2 and δ > δ∗, then for every private monitoring structure p and every
nonnegative Pareto weight λ ∈ �+ ≡ {λ ∈R

2+ : ‖λ‖ = 1}, we have

max
v∈E(δ�p)

λ · v ≤ max
v∈Emed(δ)

λ · v�

Theorem 1 says that in games involving two players of at least moderate patience, the
Pareto frontier of the (closure of the strict) equilibrium payoff set with mediated perfect
monitoring extends farther in any nonnegative direction than does the Pareto frontier
of the equilibrium payoff set with any private monitoring structure.10 We emphasize
that Theorem 1 does not require that players are patient enough for the folk theorem to
apply.

We describe the idea of the proof of Theorem 1, deferring the proof itself to Section 8.
Let E(δ) be the equilibrium payoff set in the mediated repeated game with the fol-

lowing universal monitoring structure: the mediator directly observes the recommen-
dation profile rt and the action profile at in each period t, while each player i observes
nothing beyond her own recommendation ri�t and her own action ai�t .11 This monitor-
ing structure is so called because it embeds any private monitoring structure p by set-
ting μ(ht

m) equal to p(·|at−1) for every history ht
m = (rτ� aτ)

t−1
τ=1.12 It particular, we have

E(δ�p)⊆ E(δ) for every p, so to prove Theorem 1 it suffices to show that

sup
v∈E(δ)

λ · v ≤ max
v∈Emed(δ)

λ · v� (4)

To show this, the idea is to start with an equilibrium in E(δ)—where players only
observe their own recommendations—and then show that the players’ recommenda-
tions can be “publicized” without violating anyone’s obedience constraints.13 To see
why this is possible (when |I| = 2 and δ > δ∗ or, equivalently, W̊ ∗ �= ∅), first note that
we can restrict attention to equilibria with Pareto-efficient on-path continuation pay-
offs, as improving both players’ on-path continuation payoffs improves their incentives
(assuming that deviators are minmaxed, which is possible when W̊ ∗ �= ∅, by Lemma 2).
Next, if |I| = 2 and W̊ ∗ �= ∅, then if a Pareto-efficient payoff vector v lies outside Wi for
one player (say player 2), it must then lie inside Wj for the other player (player 1). Hence,
at each history ht , there can be only one player—here player 2—whose obedience con-
straint could be violated if we publicized both players’ past recommendations.

Now suppose that at history ht we do publicize the entire vector of players’ past rec-
ommendations rt = (rτ)

t−1
τ=1, but the mediator then issues period t recommendations

according to the original equilibrium distribution of recommendations conditional on
player 2’s past recommendations rt2 = (r2�τ)

t−1
τ=1 only. We claim that doing this violates nei-

ther player’s obedience constraint: Player 1’s obedience constraint is easy to satisfy, as

10We do not know if the same result holds for negative Pareto weights.
11This information structure may not result from mediated communication among the players, as ac-

tions are not publicly observed. Again, we simply view E(δ) as a technical device for bounding E(δ�p).
12Incidentally, this embedding does not yield an obedient equilibrium.
13More precisely, the construction in the proof both publicizes the players’ recommendations and mod-

ifies the equilibrium in ways that only improve the players’ λ-weighted payoffs.
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we can always ensure that continuation payoffs lie in W1, and since player 2 already knew
rt2 in the original equilibrium, publicizing ht while issuing recommendations based only
on rt2 does not affect his incentives.

An important missing step in this proof sketch is that in the original equilibrium in
E(δ), at some histories it may be player 1 who is tempted to deviate when we publi-
cize past recommendations, while it is player 2 who is tempted at other histories. For
instance, it is not obvious how to publicize past recommendations when ex ante equi-
librium payoffs are very good for player 1 (so player 2 is tempted to deviate in period 1),
but continuation payoffs at some later history are very good for player 2 (so then player 1
is tempted to deviate). The proof of Theorem 1 shows that we can ignore this possibility,
because—somewhat unexpectedly—equilibrium paths like this one are never needed
to sustain Pareto-efficient payoffs. In particular, to sustain an ex ante payoff that is very
good for player 1 (i.e., outside W2), we never need to promise continuation payoffs that
are very good for player 2 (i.e., outside W1). The intuition is that, rather than promising
player 2 a very good continuation payoff outside W1, we can instead promise him a fairly
good continuation inside W1, while compensating him for this change by also occasion-
ally transitioning to this fairly good continuation payoff at histories where the original
promised continuation payoff is less good for him. Finally, since the feasible payoff set
is convex, the resulting “compromise” continuation payoff vector is also acceptable to
player 1.

A remark: The reader may wonder why we are not satisfied with simply bounding
E(δ�p) by E(δ). The answer is that the only way we know to recursively characterize
the Pareto frontier of E(δ) is by first establishing (4) and then characterizing the Pareto
frontier of Emed(δ). So this approach would not avoid the need to establish (4).

6. Recursively characterizing Emed(δ)

We have seen that Emed(δ) is an upper bound on E(δ�p) for two-player games satisfying
δ > δ∗. As our goal is to give a recursive upper bound on E(δ�p), it remains to recursively
characterize Emed(δ). Our characterization assumes that δ > δ∗, but it applies for any
number of players.14

Recall that APS characterize the perfect public equilibrium set with imperfect public
monitoring as the iterative limit of a generating operator B, where B(W ) is defined as
the set of payoffs that can be sustained when on- and off-path continuation payoffs are
drawn from W . We show that the sequential equilibrium payoff set with mediated per-
fect monitoring is the iterative limit of a generating operator B̃, where B̃(W ) is the set
of payoffs that can be sustained when on-path continuation payoffs are drawn from W

and deviators are minmaxed off path. There are two things to prove: (i) we can indeed
minmax deviators off path, and (ii) on-path continuation payoffs must themselves be
sequential equilibrium payoffs. The first of these facts is Lemma 2. For the second, note
that in an obedient equilibrium with perfect monitoring, players can perfectly infer each

14The set Emed(δ) admits a recursive characterization even if δ < δ∗, but in this case the characterization
is somewhat more complicated. The details are available from the authors.
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other’s private history on path. Continuation play at on-path histories (but not off-path
histories) is therefore common knowledge, which gives the desired recursive structure.

In what follows, we assume familiarity with APS and focus on the new features that
emerge when mediation is available. Our terminology parallels that in Section 7.3 of
Mailath and Samuelson (2006).

Definition 2. For any set V ⊆ R
|I|, a correlated action profile α ∈ �(A) is minmax-

threat enforceable on V by a mapping γ : A → V if, for each player i and action ai ∈
suppαi,

E
α
[
(1 − δ)ui(ai� a−i)+ δγ(ai� a−i)|ai

]≥ max
a′
i∈Ai

E
α
[
(1 − δ)ui

(
a′
i� a−i

)|ai]+ δui�

Definition 3. A payoff vector v ∈ R
|I| is minmax-threat decomposable on V if there

exists a correlated action profile α ∈ �(A) that is minmax-threat enforced on V by a
mapping γ such that

v = E
α
[
(1 − δ)u(a)+ δγ(a)

]
�

Let B̃(V ) = {v ∈ R
|I| : v is minmax-threat decomposable on V }.

We show that the following algorithm recursively computes Emed(δ): let W 1 = F ,
W n = B̃(W n−1) for n > 1, and W ∞ = limn→∞ W n.

Theorem 2. If δ > δ∗, then Emed(δ) =W ∞.

With the exception of the following two lemmas, the proof of Theorem 2 is entirely
standard and is omitted. The lemmas correspond to facts (i) and (ii) above. In particular,
Lemma 3 follows directly from APS and Lemma 2, while Lemma 4 establishes on-path
recursivity. For both lemmas, assume δ > δ∗.

Lemma 3. If a set V ⊆R
|I| is bounded and satisfies V ⊆ B̃(V ), then B̃(V ) ⊆Emed(δ).

Lemma 4. We have Emed(δ) = B̃(Emed(δ)).

Proof. By Lemma 3 and boundedness, we need only show that Emed(δ) ⊆ B̃(Emed(δ)).
Let Eweak

med (δ) be the set of (possibly weak) sequential equilibrium payoffs with medi-
ated perfect monitoring. Note that in any sequential equilibrium, player i’s continuation
payoff at any history ht

i must be at least ui. Therefore, if μ is an on-path recommenda-
tion strategy in a (possibly weak) sequential equilibrium, then it must satisfy (3). Hence,
under the assumption that W̊ ∗ �=∅, we have Eweak

med (δ) ⊆Emed(δ).
Now, for any v ∈ Emed(δ), let μ be a corresponding equilibrium mediator’s strategy.

In the corresponding equilibrium, if some player i deviates in period 1 while her oppo-
nents are obedient, player i’s continuation payoff must be at least ui. Hence, we have

E
μ
[
(1 − δ)ui(ai� a−i)+ δwi(ai� a−i)|ai

]≥ max
a′
i∈Ai

Eμ
[
(1 − δ)ui

(
a′
i� a−i

)|ai]+ δui�
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where wi(ai� a−i) is player i’s equilibrium continuation payoff when action profile
(ai� a−i) is recommended and obeyed in period 1. Finally, since action profile (ai� a−i)

is in the support of the mediator’s recommendation in period 1, each player assigns
probability 1 to the true mediator’s history when (ai� a−i) is recommended and played
in period 1. Therefore, continuation play from this history is itself at least a weak se-
quential equilibrium. In particular, we have wi(ai� a−i) ∈ Eweak

med (δ) ⊆ Emed(δ) for all
(ai� a−i) ∈ suppμ(ht). Hence, v is minmax-threat decomposable on Emed(δ) by action
profile μ(∅) and continuation payoff function w, so in particular v ∈ B̃(Emed(δ)).

We have shown that Emed(δ) ⊆ B̃(Emed(δ)). As Emed(δ) is compact and B̃ preserves

compactness, taking closures yields Emed(δ) ⊆ B̃(Emed(δ)) = B̃(Emed(δ)). �

Combining Theorems 1 and 2 yields our main conclusion: In two-player games with
δ > δ∗, the equilibrium payoff set with mediated perfect monitoring is a recursive upper
bound on the equilibrium payoff set with any imperfect private monitoring structure.

7. The upper bound in an example

We illustrate our results with an application to a repeated Bertrand game. We com-
pute the greatest equilibrium payoff that each firm can attain for any private monitoring
structure.

Consider the following Bertrand game: There are two firms i ∈ {1�2}, and each firm
i’s possible price level is pi ∈ {W�L�M�H} (price war, low price, medium price, high
price). Given p1 and p2, firm i’s profit is determined by the following payoff matrix:

W L M H

W 15�15 30�25 50�15 80�0
L 25�30 40�40 60�35 90�15
M 15�50 35�60 55�55 85�35
H 0�80 15�90 35�85 65�65

Example 2

Note that L (low price) is a dominant strategy in the stage game, W (price war) is a costly
action that hurts the other firm, and (H�H) maximizes the sum of the firms’ profits. The
feasible payoff set is given by

F = co
{
(0�80)� (15�15)� (15�90)� (35�85)� (65�65)� (80�0)� (85�35)� (90�15)

}
�

where we include only the extreme points in specifying the convex hull. In addition,
each firm’s minmax payoff ui is 25, so the feasible and individually rational payoff set is
given by

co
{
(25�25)� (25�87�5)� (35�85)� (65�65)� (85�35)� (87�5�25)

}
�

In particular, the greatest feasible and individually rational payoff for each firm is 87�5.
See Figure 2 for an illustration.
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Figure 2. Region A is included in Emed(δ) by Lemma 1. Region B is not included in Emed(δ).
Note that Region B includes payoffs which are feasible and individually rational.

In this game, each firm’s maximum deviation gain di is 25. Since the game is sym-
metric, the critical discount factor δ∗ above which we can apply Theorems 1 and 2 is
given by plugging the best symmetric payoff of 65 into (2), which gives

δ∗ = 25
25 + 65 − 25

= 5
13

�

To illustrate our results, we find the greatest equilibrium payoff that each firm can
attain for any private monitoring structure when δ= 1

2 > 5
13 .

When δ = 1
2 , we have

wi = 25 + 1 − δ

δ
25 = 50�

Hence, Lemma 1 implies that

{v ∈ F̊ : vi > 50 for each i} = int co
{
(50�50)� (75�50)� (50�75)� (65�65)

}⊆ Emed(δ)�

We now compute the best payoff vector for firm 1 in B̃(F). By Theorems 1 and 2, any
Pareto-efficient payoff profile not included B̃(F) is not included in E(δ�p) for any p.

In computing the best payoff vector for firm 1, it is natural to conjecture that firm 1’s
incentive compatibility constraint is not binding. We thus consider a relaxed problem
with only firm 2’s incentive constraint, and then verify that firm 1’s incentive constraint
is satisfied. Note that playing L is always the best deviation for firm 2. Furthermore, the
corresponding deviation gain decreases as firm 1 increases its price from W to L, and
(weakly) increases as it increases its price from L to M or H. In addition, firm 1’s payoff
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increases as firm 1 increases its price from W to L and decreases as it increases its price
from L to M or H. Hence, so as to maximize firm 1’s payoff, firm 1 should play L.

Suppose that firm 2 plays H. Then firm 2’s incentive compatibility constraint is

(1 − δ) 25︸︷︷︸
maximum deviation gain

≤ δ(w2 − 25︸︷︷︸)
minmax payoff

�

where w2 is firm 2’s continuation payoff; that is, w2 ≥ 50.
By feasibility, w2 ≥ 50 implies that w1 ≤ 75. Hence, if r2 = H, the best minmax-threat

decomposable payoff for firm 1 is

(1 − δ)

(
90
15

)
+ δ

(
75
50

)
=
(

82�5
32�5

)
�

Since 82�5 is larger than any payoff that firm 1 can get when firm 2 plays W , M , or L, firm
2 should indeed play H to maximize firm 1’s payoff. Moreover, since 75 ≥ w1, firm 1’s
incentive constraint is not binding. Thus, we have shown that 82�5 is the best payoff for
firm 1 in B̃(F).

In contrast, with mediated perfect monitoring it is in fact possible to (virtually) im-
plement an action path in which firm 1’s payoff is 82�5: play (L�H) in period 1 (with
payoffs (90�15)) and then play 1

2(M�H) + 1
2(H�H) forever (with payoffs 1

2(85�35) +
1
2(65�65) = (75�50)), while minmaxing deviators.

Thus, when δ = 1
2 , each firm’s greatest feasible and individually rational payoff is

87�5, but the greatest payoff it can attain with any imperfect private monitoring structure
is only 82�5. In this simple game, we can therefore say exactly how much of a constraint
is imposed on each firm’s greatest equilibrium payoff by the firms’ impatience alone,
independently of the monitoring structure.

8. Proof of Theorem 1

8.1 Preliminaries and plan of proof

We wish to establish (4) for every Pareto weight λ ∈ �+. As E(δ) is convex, it suffices to
establish

max
v∈E0(δ)

λ · v ≤ max
v∈Emed(δ)

λ · v

for every compact set E0(δ) ⊆ E(δ).
Fix a compact set E0(δ) ⊆ E(δ). Note that Lemma 1 implies that

W ∗ ⊆ Emed(δ)�

Therefore, for every Pareto weight λ ∈ �+, if there exists v ∈ arg maxv′∈E0(δ) λ · v′ such that
v ∈W ∗, then there exists v∗ ∈Emed(δ) such that λ · v ≤ λ · v∗, as desired.

Hence, we are left to consider λ ∈ �+ with

arg max
v′∈E0(δ)

λ · v′ ∩W ∗ =∅� (5)



708 Sugaya and Wolitzky Theoretical Economics 12 (2017)

Figure 3. Setup for the construction. The green region (intersection of u(A), W1, and W2) is
included in Emed(δ) and E(δ) by Lemma 1. Bold dotted line represents E(δ).

Since we consider two-player games, we can order λ ∈�+ as λ ≤ λ′ if and only if λ1
λ2

≤ λ′
1

λ′
2

,

that is, the vector λ is steeper than λ′. For each player i, let w̄i be the Pareto-efficient
point in Wi satisfying

w̄i ∈ arg max
v∈Wi∩F

v−i�

Note that the assumption that W̊ ∗ �= ∅ implies that w̄i ∈ W ∗. Let αi ∈ �(A) be a recom-
mendation that attains w̄i: u(αi) = w̄i. Let �i be the (nonempty) set of Pareto weight λi

such that w̄i ∈ arg maxv∈F λi · v:

�i =
{
λi ∈R

2+ : ∥∥λi∥∥= 1� w̄i ∈ arg max
v∈F

λi · v
}
�

As F is convex, if λ satisfies (5), then either λ < λ1 for each λ1 ∈ �1 or λ > λ2 for each
λ2 ∈ �2. See Figure 3. We focus on the case where λ > λ2. (The proof for the λ < λ1 case
is symmetric and thus is omitted.)

Fix v ∈ arg maxv′∈E0(δ) λ · v′. Let (μ� (σi)i∈I) be an equilibrium that attains v with the
universal monitoring structure (where players do not observe each other’s actions). By
Lemma 2, it suffices to construct a mediator’s strategy μ∗ yielding payoffs v∗ such that
(3) (perfect monitoring incentive compatibility) holds and λ · v ≤ λ · v∗. The rest of the
proof constructs such a strategy.

The plan for constructing the strategy μ∗ is as follows: First, from μ we construct
a mediator’s strategy μ̄ that yields payoffs v and satisfies perfect monitoring incentive
compatibility for player 2, but possibly not for player 1. The idea is to set the distribu-
tion of recommendations under μ̄ equal to the distribution of recommendations under
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μ conditional on player 2’s information only. Second, from μ̄, we construct a media-
tor’s strategy μ∗ that yields payoffs v∗ with λ · v ≤ λ · v∗ and satisfies perfect monitoring
incentive compatibility for both players.

8.2 Construction and properties of μ̄

For each on-path history of player 2’s recommendations, denoted by rt2 = (r2�τ)
t−1
τ=1 (with

r1
2 = {∅}), let Prμ(·|rt2) be the conditional distribution of recommendations in period t,

and let wμ(rt2) be the continuation payoff vector from period t onward conditional on rt2:

wμ
(
rt2
)= E

μ

[ ∞∑
τ=0

δτu(rt+τ)

∣∣∣∣ rt2
]
�

Define μ̄ so that, for every on-path history rt = (rτ)
t−1
τ=1 (with r1 = {∅}), the mediator

draws rt according to Prμ(rt |rt2):

Prμ̄
(
rt |rt

)≡ Prμ
(
rt |rt2

)
�

We claim that μ̄ yields payoffs v and satisfies (3) for player 2. To see this, let wμ̄(rt) be
the continuation payoff vector from period t onward conditional on rt under μ̄, and note
that wμ̄(rt) = wμ(rt2). In particular, wμ̄(r1) = wμ(r1

2) = v since r1 = r1
2 = {∅}. In addition,

the fact that μ is an equilibrium with the universal monitoring structure implies that, for
every on-path history rt+1,

(1 − δ)Eμ
[
u2(rt)|rt+1

2

]+ δwμ
(
rt+1
2

)≥ max
a2∈A2

(1 − δ)Eμ
[
u2(r1�t � a2)|rt+1

2

]+ δu2�

As w
μ
2 (r

t+1
2 ) = w

μ̄
2 (r

t+1) and Prμ(rt |rt+1
2 ) = Prμ̄(rt |rt� r2�t), this implies that (3) holds for

player 2.

8.3 Construction of μ∗

The mediator’s strategy μ∗ will involve mixing over continuation payoffs at certain
histories rt+1, and we will denote the mixing probability at history rt+1 by ρ(rt+1).
Our approach is to first construct the mediator’s strategy μ∗ for an arbitrary function
ρ : ⋃∞

t=1 A
t−1 → [0�1] specifying these mixing probabilities, and to then specify the

function ρ.
Given a function ρ : ⋃∞

t=1 A
t−1 → [0�1], the mediator’s strategy μ∗ is defined as fol-

lows: In each period t = 0�1�2� � � � , the mediator is in one of two states, ωt ∈ {S1� S2}
(where period 0 is a purely notational, and as usual the game begins in period 1). Given
the state, recommendations in period t ≥ 1 are as follows:

(i) In state S1, at history rt = (rτ)
t−1
τ=1, the mediator recommends rt according to

Prμ̄(rt |rt).

(ii) In state S2, the mediator recommends rt according to some α1 ∈ �(A) such that
u(α1)= w̄1.
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The initial state is ω0 = S1. State S2 is absorbing: if ωt = S2, then ωt+1 = S2. Finally,
the transition rule in state S1 is as follows:

(i) If wμ̄(rt+1) /∈W1, then ωt+1 = S2 with probability 1.

(ii) If wμ̄(rt+1) ∈W1, then ωt+1 = S2 with probability 1 − ρ(rt+1).

Thus, strategy μ∗ agrees with μ̄, with the exception that μ∗ occasionally transitions
to an absorbing state where actions yielding payoffs w̄1 are recommended forever. In
particular, such a transition always occurs when continuation payoffs under μ̄ lie out-
side W1, and otherwise this transition occurs with probability 1 − ρ(rt+1).

To complete the construction of μ∗, it remains only to specify the function ρ. To this
end, it is useful to define an operator F , which maps functions w : ⋃∞

t=1 A
t−1 → R

2 to
functions F(w2) :⋃∞

t=1 A
t−1 →R

2. The operator F will be defined so that its unique fixed
point is precisely the continuation value function in state S1 under μ∗ for a particular
function ρ, and this function will be the one we use to complete the construction of μ∗.

Given w : ⋃∞
t=1 A

t−1 → R
2, define w∗(w) : ⋃∞

t=1 A
t−1 → R so that, for every rt ∈

At−1, we have

w∗(w)
(
rt
)= (1 − δ)u

(
μ̄
(
rt
))+ δE

[
w
(
rt+1)|rt]� (6)

Next, given w∗(w) : ⋃∞
t=1 A

t−1 → R, define F(w) : ⋃∞
t=1 A

t−1 → R so that, for every
rt ∈At−1, we have

F(w)
(
rt
)= 1{wμ̄(rt )∈W1}

{
ρ(w)

(
rt
)×w∗(w)

(
rt
)

+ (1 − ρ(w)
(
rt
))× w̄1

}
+ 1{wμ̄(rt )/∈W1}w̄

1� (7)

where, when wμ̄(rt) ∈W1, ρ(w)(rt) is the largest number in [0�1] such that

ρ(w)
(
rt
)×w∗

2(w)
(
rt
)+ (1 − ρ(w)

(
rt
))× w̄1

2 ≥w
μ̄
2

(
rt
)
� (8)

That is, if w∗
2(w)(rt) ≥ w

μ̄
2 (r

t), then ρ(w)(rt) = 1, and otherwise, since wμ̄(rt) ∈ W1 im-

plies that wμ̄
2 (r

t)≤ w̄1
2, ρ(w)(rt) ∈ [0�1] solves

ρ(w)
(
rt
)×w∗

2(w)
(
rt
)+ (1 − ρ(w)

(
rt
))× w̄1

2 =w
μ̄
2

(
rt
)
�

(Intuitively, the term 1{wμ̄(rt )/∈W1}w̄
1 in (7) reflects the fact that we have replaced

continuation payoffs outside of W1 with player 2’s most favorable continuation payoff
within W1, namely w̄1. This replacement may reduce player 2’s value below his original
value of wμ̄

2 (r
t). However, (8) ensures that by also replacing continuation payoffs within

W1 with w̄1 with high enough probability, player 2’s value does not fall below w
μ̄
2 (r

t).)
To show that F has a unique fixed point, it suffices to show that F is a contraction.

Lemma 5. For all w and w̃, we have ‖F(w) − F(w̃)‖ ≤ δ‖w − w̃‖, where ‖w − w̃‖ ≡
suprt ‖w(rt)− w̃(rt)‖.
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Proof. By (6), ‖w∗(w)−w∗(w̃)‖ ≤ δ‖w − w̃‖. By (7),

∣∣F(w)
(
rt
)− F(w̃)

(
rt
)∣∣ = 1{wμ̄(rt )∈W1}

∣∣∣∣∣
{
ρ(w)

(
rt
)
w∗(w)

(
rt
)+ (1 − ρ(w)

(
rt
))
w̄1}

− {ρ(w̃)
(
rt
)
w∗(w̃)

(
rt
)+ (1 − ρ(w̃)

(
rt
))
w̄1}

∣∣∣∣∣
≤ ∥∥w∗(w)−w∗(w̃)

∥∥�
Combining these inequalities yields ‖F(w)− F(w̃)‖ ≤ δ‖w − w̃‖. �

Let w be the unique fixed point of F . Given this function w, let w∗ = w∗(w) (given
by (6)) and let ρ = ρ(w) (given by (8)). This completes the construction of the mediator’s
strategy μ∗.

8.4 Properties of μ∗

Observe that

w∗(rt)= (1 − δ)u
(
μ̄
(
rt
))+ δE

[
w
(
rt+1)|rt] (9)

and

w
(
rt
)= 1{wμ̄(rt )∈W1}

{
ρ
(
rt
)
w∗(rt)+ (1 − ρ

(
rt
))
w̄1}+ 1{wμ̄(rt )/∈W1}w̄

1� (10)

Thus, for i = 1�2, w∗
i (r

t) is player i’s expected continuation payoff from period t given rt

and ωt = S1 (before she observes ri�t ), and wi(r
t) is player i’s expected continuation pay-

off from period t given rt and ωt−1 = S1 (before she observes ri�t ). In particular, recalling
that ω1 = S1 and v =wμ(∅) ∈W1, (8) implies that the ex ante payoff vector v∗ is given by

v∗ = w(∅) = ρ(∅)w∗(∅)+ (1 − ρ(∅)
)
w̄1�

We prove the following key lemma in Appendix B.

Lemma 6. For all t ≥ 1, if wμ̄(rt) ∈W1, then ρ(rt)w∗(rt)+ (1 −ρ(rt2))w̄
1 Pareto dominates

wμ̄(rt).

Here is a graphical explanation of Lemma 6: By (9), w∗(rt) − wμ̄(rt) is parallel to
w(rt+1) − wμ̄(rt+1). To evaluate this difference, consider (10) for period t + 1. The term
1{wμ̄(rt+1)/∈W1}w̄

1 indicates that we construct w(rt+1) by replacing some continuation pay-
off not included in W1 with w̄1. Hence, w(rt+1) − wμ̄(rt+1) (and thus w∗(rt) − wμ̄(rt)) is
parallel to w̄1 − ŵ(rt+1) for some ŵ(rt+1) ∈ F \W1. See Figure 4 for an illustration.

Recall that ρ(rt) is determined by (8). Since the vector w∗(rt) − wμ̄(rt) is parallel to
w̄1 − ŵ(rt+1) for some ŵ(rt+1) ∈ F \W1 and F is convex, we have w∗

1(r
t) ≥w

μ̄
1 (r

t). Hence,

if we take ρ(rt) so that the convex combination of w∗
2(r

t) and w̄1
2 is equal to w

μ̄
2 (r

t), then

player 1 is better off compared to w
μ̄
1 (r

t). See Figure 5.
Given Lemma 6, we show that μ∗ satisfies perfect monitoring incentive compatibility

(3) for both players, and λ · v ≤ λ · v∗.
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Figure 4. The vector from wμ̄(rt) to w∗(rt) is parallel to the one from ŵ(rt+1) to w̄1.

Figure 5. ρ(rt)w∗(rt)+ (1 − ρ(rt))w̄1 and wμ̄(rt) have the same value for player 2.

(i) Incentive compatibility for player 1. It suffices to show that, conditional on any
on-path history rt and period t recommendation r1�t , the expected continuation
payoff from period t + 1 onward lies in W1. If ωt = S2, then this continuation
payoff is w̄1 ∈W1. If ωt = S1, then it suffices to show that w(rt+1) ∈ W1 for all rt+1.
If wμ̄(rt+1) ∈ W1, then, by Lemma 6, w(rt+1) = ρ(rt+1)w∗(rt+1) + (1 − ρ(rt+1))w̄1

Pareto dominates wμ̄(rt+1) ∈W1, so w(rt+1) ∈W1. If wμ̄(rt+1) /∈W1, then w(rt+1) =
w̄1 ∈W1. Hence, w(rt+1) ∈ W1 for all rt+1.
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(ii) Incentive compatibility for player 2. Fix an on-path history rt and a period t

recommendation r2�t . If ωt = S2 or if both ωt = S1 and wμ̄(rt+1) /∈ W1, then the
expected continuation payoff from period t + 1 onward conditional on (rt� r2�t)

is w̄1 ∈ W1, so (3) holds. If instead ωt = S1 and wμ̄(rt+1) ∈ W1, then w(rt+1) =
ρ(rt+1)w∗(rt+1) + (1 − ρ(rt+1))w̄1 = wμ̄(rt+1) by (8). As μ is an equilibrium with
the universal monitoring structure and Prμ

∗
(rt |rt+1

2 ) = Prμ̄(rt |rt� r2�t), this implies
that (3) holds for player 2, by the same argument as in Section 8.2.

(iii) That λ · v ≤ λ · v∗ is immediate from Lemma 6 with t = 1.

9. Extensions

This section discusses the extent to which the payoff bound is tight, as well as what
happens when the conditions for Theorem 1 are violated.

9.1 Tightness of the bound

There are at least two senses in which Emed(δ) is a tight bound on the equilibrium payoff
set from the perspective of an observer who does not know the monitoring structure.

First, thus far our model of repeated games with private monitoring has maintained
the standard assumption that the distribution of period t signals depends only on pe-
riod t actions: that is, that this distribution can be written as p(·|at). In many settings,
it would be desirable to relax this assumption and let the distribution of period t signals
depend on the entire history of actions and signals up to period t, leading to a condi-
tional distribution of the form pt(·|at� zt), as well as letting players receive signals before
the first round of play. (Recall that at = (aτ)

t−1
τ=1 and zt = (zτ)

t−1
τ=1.) For example, colluding

firms do not only observe their sales in every period, but also occasionally get more in-
formation about their competitors’ past behavior from trade associations, auditors, tax
data, and the like.15 From the perspective of an observer who finds such nonstationary
private monitoring structures possible, the bound Emed(δ) is clearly tight: Emed(δ) is an
upper bound on E(δ�p) for any nonstationary private monitoring structure p, because
the equilibrium payoff set with the universal monitoring structure, E(δ), remains an up-
per bound on E(δ�p), and the bound is tight because perfect monitoring with a given
strategy of the mediator’s itself induces a particular nonstationary private monitoring
structure.

Second, from the perspective of an observer who finds only stationary monitoring
structures possible, the bound Emed(δ) is tight if the players can communicate through
cheap talk, as they can then “replicate” the mediator among themselves. For this result,
we also need to slightly generalize our definition of a private monitoring structure by
letting the players receive signals before the first round of play, so that these signals can
be used as a correlating device. This seems innocuous, especially if we take the perspec-
tive of an an outside observer who does not know the game’s start date. The monitoring

15Rahman (2014, p. 1) quotes from the European Commission decision on the amino acid cartel: a typ-
ical cartel member “reported its citric acid sales every month to a trade association, and every year, Swiss
accountants audited those figures.”
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structure is required to be stationary thereafter.16 We call such a monitoring structure
a private monitoring structure with ex ante correlation. Let Etalk(δ�p) be the sequential
equilibrium payoff set in the repeated game with private monitoring structure with ex
ante correlation p and finitely many rounds of public cheap talk before each round of
play.

Proposition 2. If |I| = 2 and δ > δ∗, then there exists a private monitoring structure
with ex ante correlation p such that Etalk(δ�p) = Emed(δ).

The proof is long and is deferred to the Supplement. The main idea is as in the lit-
erature on implementing correlated equilibria without a mediator (see Forges (2009) for
a survey). More specifically, Proposition 2 is similar to Theorem 9 of Heller et al. (2012),
which shows that communication equilibria in repeated games with perfect monitoring
can always be implemented by ex ante correlation and cheap talk. Since we also assume
players observe actions perfectly, the main difference between the results is that theirs is
for Nash rather than sequential equilibrium, so they are concerned only with detecting
deviations rather than providing incentives to punish deviations once detected. In our
model, when δ > δ∗, incentives to minmax the deviator can be provided (as in Lemma 1)
if her opponent does not realize that the punishment phase has begun. The additional
challenge in the proof of Proposition 2 is thus that we sometimes need a player to switch
to the punishment phase for her opponent without realizing that this switch has oc-
curred.

If one insists on stationary monitoring and does not allow communication, we be-
lieve that there are some games in which our bound is not tight, in that there are points
in Emed(δ) that are not attainable in equilibrium for any stationary private monitoring
structure. We leave this as a conjecture.17

9.2 What if W̊ ∗ =∅?

The assumption that W̊ ∗ �= ∅ guarantees that all action profiles are supportable in equi-
librium, which plays a key role in our results. However, this assumption is restrictive,
in that it is violated when players are too impatient. Furthermore, it implies that the
Pareto frontier of Emed(δ) coincides with the Pareto frontier of the feasible payoff set
for some Pareto weights λ (but of course not for others), so this assumption must also
be relaxed for our approach to be able to give nontrivial payoff bounds for all Pareto
weights.

To address these concerns, this subsection shows that even if W̊ ∗ = ∅, Emed(δ) may
still be an upper bound on E(δ�p) for any private monitoring structure p, and Emed(δ)

16In particular, the distribution of signals can be the same every period. All we require is that the first of
these signals arrives before the first round of play.

17Strictly speaking, since our maintained definition of a private monitoring structure does not allow ex
ante correlation, if δ = 0, then there are points in Emed(δ) that are not attainable with any private monitor-
ing structure whenever the stage game’s correlated equilibrium payoff set strictly contains its Nash equi-
librium payoff set. The nontrivial conjecture is that the bound is still not tight when ex ante correlation is
allowed, but communication is not.
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can still be characterized recursively. The idea is that even if not all action profiles are
supportable, our approach still applies if a condition analogous to W̊ ∗ �= ∅ holds with
respect to the subset of action profiles that are supportable.

Let supp(δ) be the set of supportable actions with the universal monitoring struc-
ture:

supp(δ) =

⎧⎪⎨
⎪⎩a ∈A :

with the universal monitoring structure,
there exist an equilibrium strategy μ

and history ht
m with a ∈ supp

(
μ
(
ht
m

))
⎫⎪⎬
⎪⎭ �

Note that in this definition ht
m can be an off-path history.

Next, given a product set of action profiles Ā =∏i∈I Āi ⊆ A, let Si(Ā) be the set of
actions ai ∈ Āi such that there exists a correlated action α−i ∈ �(Ā−i) with

(1 − δ)ui(ai�α−i)+ δmax
ā∈Ā

ui(ā)

≥ (1 − δ) max
âi∈Ai

ui(âi�α−i)+ δ min
α̂−i∈�(Ā−i)

max
ai∈Ai

ui(ai� α̂−i)�

That is, ai ∈ Si(Ā) if there exists α−i ∈ �(Ā−i) such that if her opponents play α−i,
player i’s reward for playing ai is the best payoff possible among those with support
in Ā, and player i’s punishment for deviating from ai is the worst possible among those
with support in Ā−i, then player i plays ai. Let S(Ā) =∏i∈I Si(Ai) ⊆ Ā. Let A1 = A,
let An = S(An−1) for n > 1, and let A∞ = limn→∞ An. Note that the problem of com-
puting A∞ is tractable, as the set S(Ā) is defined by a finite number of linear inequali-
ties.

Finally, in analogy with the definition of wi from Section 4, note that

min
α−i∈�(A∞

−i)
max
ai∈Ai

ui(ai�α−i)+ 1 − δ

δ
max

r∈A∞�ai∈Ai

{
ui(ai� r−i)− ui(r)

}
is the lowest continuation payoff such that player i does not want to deviate to any
ai ∈ Ai at any recommendation profile r ∈ A∞, when she is minmaxed forever if she
deviates, subject to the constraint that punishments are drawn from A∞. In analogy with
the definition of Wi from Section 4, let

W̄i =
{
w ∈ R

|I| : wi ≥ min
α−i∈�(A∞

−i)
max
ai∈Ai

ui(ai�α−i)

+ 1 − δ

δ
max

r∈A∞�ai∈Ai

{
ui(ai� r−i)− ui(r)

}}
�

Proposition 3. Assume that |I| = 2. If

int
(⋂
i∈I

W̄i ∩ cou
(
A∞)) �=∅ (11)
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in the topology induced from cou(A∞), then for every private monitoring structure p and
every nonnegative Pareto weight λ ∈�+, we have

max
v∈E(δ�p)

λ · v ≤ max
v∈Emed(δ)

λ · v�

In addition, supp(δ) = A∞.

Proof. We show that supp(δ) = A∞ whenever int(
⋂

i∈I W̄i ∩ cou(A∞)) �= ∅. Given this,
the proof is analogous to the proof of Theorem 1, everywhere replacing F = cou(A) with
cou(A∞) and replacing “full support” with “full support within A∞.”

We first show that supp(δ) ⊆ A∞. For each i and n, we show that any action ai /∈ An
i

can never be played on or off the equilibrium path. The proof is by induction on n.
The n = 1 case is trivial. Suppose the result holds for some n. Then at any his-
tory player i’s continuation payoff must lie between minα̂−i∈�(An

−i)
maxai∈Ai

ui(ai� α̂−i)

and maxa∈An ui(a). Hence, player i will never play an action ai for which there is no
α−i ∈ �(An) with

(1 − δ)ui(ai�α−i)+ δ max
a∈An

ui(a)

≥ (1 − δ) max
âi∈Ai

ui(âi�α−i)+ δ min
α̂−i∈�(An

−i)
max
ai∈Ai

ui(ai� α̂−i)�

This says that player i will never play an action ai /∈ An+1
i .

We now show that if int(
⋂

i∈I W̄i ∩ cou(A∞)) �=∅, then A∞ ⊆ supp(δ). The argument
is similar to the proof of Lemma 1.

Fix v ∈ int(
⋂

i∈I W̄i ∩ cou(A∞)) �= ∅, and let μ ∈ �(A∞) be such that u(μ) = v

and μ(r) > 0 for all r ∈ A∞. Let α∗
−i be a solution to the problem

minα̂−i∈�(A∞) maxai∈Ai
ui(âi�α−i). Let αε

−i be the following full-support (within A∞) ap-
proximation of α∗

−i: αε
−i = (1 − ε)α∗

−i + ε
∑

a−i∈A∞
−i

a−i
|A∞

−i| . Since v ∈ int(
⋂

i∈I W̄i), there

exists ε > 0 such that, for each i ∈ I, we have

vi > max
ai∈Ai

ui
(
ai�α

ε
−i

)+ 1 − δ

δ
max

r∈A∞�ai∈Ai

{
ui(ai� r−i)− ui(r)

}
� (12)

Fix ε > 0 small enough such that, for each player i, some best response to αε
−i is included

in A∞
i : this is always possible, as every best response to α∗

−i is included in A∞
i .

We can now construct an equilibrium strategy μ∗ with supp(μ∗(∅)) = A∞. The con-
struction is similar to that in the proof of Lemma 1, with the following differences. First,
μ is recommended on path, and player i’s deviations are punished by recommending
αε

−i to her opponents. Second, if a player deviates to an action outside A∞, play reverts
to an arbitrary static Nash equilibrium αNE forever.

Incentive compatibility with respect to deviations within A∞ follows from (12), just
as it follows from (1) in the proof of Lemma 1. For incentive compatibility with respect
to deviations outside A∞, fix âi /∈ A∞

i and α−i ∈ �(A∞
−i). Note that all static Nash equi-

libria are contained in �(A∞) and all static best responses to α−i are contained in A∞
i .
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Therefore,

(1 − δ)ui(âi�α−i)+ δui
(
αNE) ≤ (1 − δ)ui(âi�α−i)+ δ max

a∈A∞ ui(a)

< (1 − δ) max
ãi∈Ai

ui(ãi�α−i)+ δ min
α̂−i∈�(A∞

−i)
max
ai∈Ai

ui(ai� α̂−i)

(
since âi /∈ A∞

i

)
= (1 − δ) max

ãi∈A∞
i

ui(ãi�α−i)+ δ min
α̂−i∈�(A∞

−i)
max
ai∈Ai

ui(ai� α̂−i)�

The last line corresponds to the deviation gain to some action ãi ∈ A∞
i , which is not

profitable. Hence, deviating to âi /∈ A∞
i is not profitable either. �

Note that Proposition 3 only improves on Theorem 1 at low discount factors: for
high discount factors, A = S(A) = A∞, so (11) reduces to W̊ ∗ �= ∅. However, as W̊ ∗ can
be empty only for low discount factors, this is precisely the case where an improvement
is needed.18

To be able to use Proposition 3 to give a recursive upper bound on E(δ�p) when
W̊ ∗ �= ∅, we must characterize Emed(δ) under (11). Our earlier characterization general-
izes easily. In particular, the following definitions are analogous to Definitions 2 and 3.

Definition 4. For any set V ⊆ R
|I|, a correlated action profile α ∈ �(supp(δ)) is supp(δ)

enforceable on V by a mapping γ : supp(δ) → V such that, for each player i and action
ai ∈ suppαi,

E
α
[
(1 − δ)ui(ai� a−i)+ δγ(ai� a−i)

]
≥ max

a′
i∈Ai

E
α
[
(1 − δ)ui

(
a′
i� a−i

)]+ δ min
α−i∈�(supp(δ))

max
âi∈Ai

ui(âi�α−i)�

Definition 5. A payoff vector v ∈ R
|I| is supp(δ) decomposable on V if there exists a

correlated action profile α ∈ �(supp(δ)) that is supp(δ) enforced on V by some mapping
γ such that

v = E
α
[
(1 − δ)u(a)+ δγ(a)

]
�

Let B̃supp(δ)(V )= {v ∈R
|I| : v is supp(δ) decomposable on V }.

Let W supp(δ)�1 = u(supp(δ)), let W supp(δ)�n = B̃supp(δ)(W supp(δ)�n−1) for n > 1, and let
W supp(δ)�∞ = limn→∞ W supp(δ)�n. We have the following proposition.

Proposition 4. If int(
⋂

i∈I W̄i ∩ u(A∞) �=∅, then Emed(δ) =W A∞�∞.

Given that supp(δ) = A∞ by Proposition 3, the proof is analogous to the proof of
Theorem 2.

18To be clear, it is possible for W ∗ to be empty while A∞ = A. Theorem 1 and Proposition 3 only give
sufficient conditions: we are not claiming that they cover every possible case.
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As an example of how Propositions 3 and 4 can be applied, one can check that apply-
ing the operator S in the Bertrand example in Section 7 for any δ ∈ ( 1

4 �
5
18) yields A∞ =

{W�L�M}× {W �L�M}—ruling out the efficient action profile (H�H)—and int(
⋂

i∈I W̄i ∩
u(A∞) �=∅. We can then compute Emed(δ) by applying the operator B̃A∞

.

9.3 What if there are more than two players?

The condition that W̊ ∗ �=∅ no longer guarantees that mediated perfect monitoring out-
performs private monitoring when there are more than two players. We record this as a
proposition.

Proposition 5. There are games with |I| > 2 where W̊ ∗ �= ∅ but supv∈E(δ) λ · v >

maxv∈Emed(δ)
λ · v for some nonnegative Pareto weight λ ∈�+.

Proof. Consider the following example. There are five players and Ai = {ai� bi} for i ∈
{1�2�3�4}. Player 5 is a dummy player who takes no action and receives payoff 1 if the
action profile is (a1� b2� a3� a4) or (b1� a2� a3� a4), and receives payoff 0 otherwise. The
other players’ payoffs are

a2 b2

a1 0�0�0�0 0�1�−1�1
b1 1�0�1�−1 1�1�0�0

a2 b2

a1 0�0�0�0 0�0�0�−1
b1 0�0�0�1 0�0�0�0

(a3� a4) (a3� b4)

a2 b2

a1 0�0�0�0 0�0�1�0
b1 0�0�−1�0 0�0�0�0

a2 b2

a1 10�10�10�10 10�10�10�10
b1 10�10�10�10 10�10�10�10

(b3� a4) (b3� b4)

Note that players 1 and 3 have an incentive to deviate at profile (a1� b2� a3� a4) and play-
ers 2 and 4 have an incentive to deviate at profile (b1� a2� a3� a4).

Let δ =
√

5−1
2 . Note that ui = 0 for all i; d1 = d2 = 1, d3 = d4 = 10, and d5 = 0; hence,

w1 = w2 =
√

5−1
2 , w3 = w4 =

√
5−1
2 (10), and w5 = 0. Therefore, for example, the feasible

payoff vector (9�05�9�05�9�9�0�1) is an element of W̊ ∗.
Let λ = (0�0�0�0�1): that is, we maximize player 5’s payoff. We show that player 5

cannot receive payoff 1 in every period in any equilibrium with mediated perfect moni-
toring, while this can occur for some private monitoring structure.

We first derive the impossibility result for mediated perfect monitoring.

Claim 1. If player 5 receives payoff 1 in every period, then the on-path continuation pay-
off for each player i ∈ {1�2}starting from any period is at most δ.

Proof. If player 5 receives payoff 1 in every period, all on-path actions are either
(a1� b2� a3� a4) or (b1� a2� a3� a4). Omitting player 3 and 4’s actions and payoffs, let
(wa

1�w
a
2) denote continuation payoffs following (a1� b2), and let (wb

1�w
b
2) denote con-

tinuation payoffs following (b1� a2). Then player 1’s incentive compatibility constraint
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is wa
1 ≥ 1−δ

δ , and player 2’s incentive compatibility constraint is wb
2 ≥ 1−δ

δ . Note also that
wa

1 +wa
2 =wb

1 +wb
2 = 1 and wa

1�w
a
2�w

b
1�w

b
2 ≥ 0.

Letting p denote the probability of (b1� a2� a3� a4), suppose we try to maximize player
1’s payoff (the argument for player 2 is symmetric),

max
p�wa

1 �w
b
1

(1 − δ)p+ δ
(
(1 −p)wa

1 +pwb
1
)
�

subject to wa
1 ≥ 1−δ

δ and 1 − wb
1 ≥ 1−δ

δ . At a solution, wa
1 = 1 and wb

1 = 2δ−1
δ . Hence, the

objective equals

(1 − δ)p+ δ(1 −p)+ δp
2δ− 1

δ
= δ� �

Claim 2. If player 5 receives payoff 1 in every period, then after (a1� b2� a3� a4) is played
in period t, (b1� a2� a3� a4) is played with probability greater than 1

2 in period t + 1; and
after (b1� a2� a3� a4) is played in period t, (a1� b2� a3� a4) is played with probability greater
than 1

2 in period t + 1.

Proof. By Claim 1, the best continuation payoff for player 1 from period t + 2 is δ.
Hence, for player 1 to play a1 in period t, the probability p of (b1� a2� a3� a4) in period
t + 1 (conditional on (a1� b2� a3� a4) in period t), must satisfy

(1 − δ) ≤ δ(1 − δ)p+ δ2 × δ�

or p ≥ 1−δ−δ3

δ(1−δ) . Noting that δ =
√

5−1
2 satisfies 1 − δ = δ2, this is equivalent to

p ≥
√

5−1
2 . �

Claim 3. If player 5 receives payoff 1 in every period, then the continuation payoff for
each player i ∈ {3�4} starting from any period equals 0.

Proof. As all on-path actions are either (b1� a2� a3� a4) or (a1� b2� a3� a4), player 3 and
4’s continuation payoffs from any period sum to 0, and each must weakly exceed the
minmax payoff of 0. Hence, both continuation payoffs must equal 0. �

Claim 4. There is no equilibrium in which player 5 receives payoff 1 in every period.

Proof. Suppose such an equilibrium exists. Then all on-path actions are either
(a1� b2� a3� a4) or (b1� a2� a3� a4). Suppose (a1� b2� a3� a4) is played in period 1. Then,
by Claim 2, (b1� a2� a3� a4) is played in period 2 with probability greater than 1

2 . Hence,
player 4 receives a negative instantaneous payoff in period 2, and by Claim 3 her con-
tinuation payoff from period 3 is nonpositive, which leaves her with a negative total
continuation payoff from period 2, a contradiction. If instead (a1� b2� a3� a4) is played in
period 1, then player 3 is left with a negative continuation payoff from period 2. �
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Turning to private monitoring, suppose that under the universal monitoring struc-
ture the mediator randomizes with equal probability between the two sequences

(a1� b2� a3� a4) → (b1� a2� a3� a4)→ (a1� b2� a3� a4) → (b1� a2� a3� a4) → ·· ·
(b1� a2� a3� a4) → (a1� b2� a3� a4)→ (b1� a2� a3� a4) → (a1� b2� a3� a4) → ·· · �

Players 3 and 4 then always believe that players 1 and 2 play (a1� b2) and (b1� a1) with

equal probability, so they are playing static best responses. Finally, with δ =
√

5−1
2 , the

deviation gain of 1 for player i ∈ {1�2} is equal to the continuation payoff of δ+δ3 +· · · =
δ

1−δ2 . �

We note that, in the proof of Proposition 5, the universal information structure can
be replaced by a stationary private monitoring structure with ex ante correlation as fol-
lows: (i) let each player have an additional action ci, with the property that all players re-
ceive payoff 0 if anyone plays ci; (ii) specify that all players observe signal z if the action
profile equals (a1� b2� a3� a4) or (b1� a2� a3� a4) and observe signal z′ otherwise; (iii) con-
struct a correlated equilibrium by having only players 1 and 2 observe the outcome of a
randomizing device at the beginning of the game, and having the players play as in the
proof of Proposition 5 as long as signal z realizes, switching to action profile (c1� c2� c3� c4)

if signal z′ realizes.
To see where the proof of Theorem 1 breaks down when |I| > 2, recall that the proof

is based on the fact that, for any Pareto-efficient payoff v, if v /∈ Wi for one player i, then
it must be the case that v ∈ Wj for the other player j. This implies that incentive com-
patibility is a problem only for one player at a time, which lets us construct an equi-
librium with perfect monitoring by basing continuation play only on that player’s past
recommendations (which she necessarily knows in any private monitoring structure).
Alternatively, if there are more than two players, several players’ incentive compatibility
constraints might bind at once when we publicize past recommendations. The proof of
Theorem 1 then cannot get off the ground.

We can however say some things about what happens with more than two players.
First, the argument in the proof of Proposition 3 that supp(δ) = A∞ whenever

int(
⋂

i∈I W̄i ∩ cou(A∞)) �= ∅ does not rely on |I| = 2. Thus, when int(
⋂

i∈I W̄i ∩
cou(A∞)) �= ∅, we can characterize the set of supportable actions for any number of
players. This is sometimes already enough to imply a nontrivial upper bound on pay-
offs.

Second, Lemma 1 implies that if a payoff vector v ∈ F̊ satisfies vi > ui + 1−δ
δ di for

all i ∈ I, then v ∈ Emed(δ). This shows that private monitoring cannot do “much” bet-
ter than mediated perfect monitoring when the players are at least moderately pa-
tient (e.g., it cannot do more than order 1 − δ better). It also shows that the usual
full-dimensionality conditions for the perfect monitoring folk theorem (Fudenberg and
Maskin 1986; Abreu et al. 1994) are not needed under mediated perfect monitoring.

Third, suppose there is a player i whose opponents −i all have identical payoff func-
tions: ∃i : ∀j� j′ ∈ I \ {i}, uj(a) = uj′(a) for all a ∈ A. Then the proof of Theorem 1 can be
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adapted to show that private monitoring cannot outperform mediated perfect monitor-
ing in a direction where the extremal payoff vector v lies in

⋂
j∈−i Wj (but not necessarily

in Wi). For example, if the game involves one firm and many identical consumers, then
the consumers’ best equilibrium payoff under mediated perfect monitoring is at least as
good as under private monitoring. We can also show that the same result holds if the
preferences of players −i are sufficiently close to each other.

Finally, in a companion paper Sugaya and Wolitzky (2017) we investigate repeated
n-player oligopoly games and show that private monitoring cannot outperform medi-
ated perfect monitoring for any number of players and any discount factor in a class
of “concave” games that includes linear Cournot and differentiated-product Bertrand
competition.

10. Conclusion

This paper gives a simple sufficient condition (δ > δ∗) under which the equilibrium pay-
off set in a two-player repeated game with mediated perfect monitoring is a tight, re-
cursive upper bound on the equilibrium payoff set in the same game with any imper-
fect private monitoring structure. There are at least three perspectives from which this
result may be of interest. First, it shows that simple, recursive methods can be used to
upper-bound the equilibrium payoff set in a repeated game with imperfect private mon-
itoring at a fixed discount factor, even though the problem of recursively characterizing
this set seems intractable. Second, it characterizes the set of payoffs that can arise in a
repeated game for some monitoring structure. Third, it shows that information is valu-
able in mediated repeated games, in that players cannot benefit from imperfections in
the monitoring technology when δ > δ∗.

These different perspectives on our results suggest different questions for future re-
search. Do moderately patient players always benefit from any improvement in the
monitoring technology, or only from going all the way to perfect monitoring? Is it pos-
sible to characterize the set of payoffs that can arise for some monitoring structure even
if δ < δ∗? If we do know the monitoring structure under which the game is being played,
is there a general way to use this information to tighten our upper bound? Answering
these questions may improve our understanding of repeated games with private moni-
toring at fixed discount factors, even if a full characterization of the equilibrium payoff
set in such games remains out of reach.

Appendix A: Proof of Proposition 1

Mediated perfect monitoring

As the players’ stage game payoffs from any profile other than (U�L) sum to at most 3,
it follows that the players’ per-period payoffs may sum to more than 3 only if (U�L)

is played in some period t with positive probability. For this to occur in equilibrium,
player 1’s expected continuation payoff from playing U must exceed her expected con-
tinuation payoff from playing D by more than (1 − δ)1 = 5

6 , her instantaneous gain from
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playing D rather than U . In addition, player 1 can guarantee herself a continuation pay-
off of 0 by always playing D, so her expected continuation payoff from playing U must
exceed 1

δ(
5
6) = 5. This is possible only if the probability that (T�M) is played in period

t + 1 when U is played in period t exceeds the number p such that(
1 − 1

6

)[
p(6)+ (1 −p)(3)

]+ 1
6
(6) = 5�

or p = 3
5 . In particular, there must exist a period t + 1 history ht+1

2 for player 2 such that

(T�M) is played with probability at least 3
5 in period t + 1 conditional on reaching ht+1

2 .
At such a history, player 2’s payoff from playing M is at most(

1 − 1
6

)[
3
5
(−3)+ 2

5
(3)
]

+ 1
6
(3) = 0�

However, noting that player 2 can guarantee himself a continuation payoff of 0 by play-
ing 1

2L+ 1
2M , player 2’s payoff from playing L at this history is at least(

1 − 1
6

)[
3
5
(3)+ 2

5
(−3)

]
+ 1

6
(0) = 1

2
�

Therefore, player 2 has a profitable deviation, so no such equilibrium can exist.

Private monitoring

Consider the following imperfect private monitoring structure. Player 2’s action is per-
fectly observed. Player 1’s action is perfectly observed when it equals T or B. When
player 1 plays U or D, player 2 observes one of two possible private signals, m and r.
Whenever player 1 plays U , player 2 observes signal m with probability 1; whenever
player 1 plays D, player 2 observes signals m and r with probability 1

2 each.
We now describe a strategy profile under which the players’ payoffs sum to 23

7 ≈ 3�29.
Player 1’s strategy. In each odd period t = 2n + 1 with n = 0�1� � � � , player 1 plays

1
3U + 2

3D. Let a1(n) denote the realization of this mixture. In the even period t = 2n+ 2,
if the previous action a1(n) equals U , then player 1 plays T ; if the previous action a1(n)

equals D, then player 1 plays B. If in the previous period player 1 deviated to T or B,
then player 1 plays D.

Player 2’s strategy. In each odd period t = 2n + 1 with n = 0�1� � � � , player 2 plays L.
Let y2(n) denote the realization of player 2’s private signal. In the even period t = 2n+ 2,
if the previous private signal y2(n) equals m, then player 2 plays M ; if the previous signal
y2(n) equals r, then player 2 plays R. If in the previous period player 1 deviated to T or B,
then player 2 plays R.

We check that this strategy profile, together with any consistent belief system, is a
sequential equilibrium.

In an odd period, player 1’s payoff from U is the solution to v = 5
6(2) + 1

6
5
6(6) + 1

62 v,

while her payoff from D is 5
6(3) + 1

6
5
6(0)+ 1

62 v. Hence, player 1 is indifferent between U

and D (and clearly prefers either of these to T or B).
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In addition, playing L is a myopic best response for player 2, player 1’s continuation
play is independent of player 2’s action, and the distribution of player 2’s signal is also
independent of player 2’s action. Hence, playing L is optimal for player 2.

In an even period, it suffices to check that both players always play myopic best re-
sponses, as in even periods continuation play is independent of realized actions and
signals. If in the previous period player 1 deviated to T or B, then the players play the
static Nash equilibrium (D�R). If player 1’s last action was a1(n) = U , then she believes
that player 2’s signal is y2(n) =m with probability 1 and thus that he will play M . Hence,
playing T is optimal. If instead player 1’s last action was a1(n) = D, then she believes
that player 2’s signal is equal to m and r with probability 1

2 each, and thus that he will
play 1

2M + 1
2R. Hence, both T and B are optimal.

Next, if player 2 observes signal y2(n) = m, then his posterior belief that player 1’s
last action was a1(n) =U is

1
3
(1)

1
3
(1)+ 2

3

(
1
2

) = 1
2
�

Hence, player 2 is indifferent among all of his actions. If player 2 observes y2(n) = r, then
his posterior is that a1(n)= D with probability 1, so that M and R are optimal.

Finally, expected payoffs under this strategy profile in odd periods sum to 1
3(4) +

2
3(3) = 10

3 , and in even periods sum to 3. Therefore, per-period expected payoffs sum to

(
1 − 1

6

)(
10
3

+ 1
6
(3)
)(

1 + 1

62 + 1

64 + · · ·
)

= 23
7
�

Three remarks on the proof: First, the various indifferences in the above argument
result only because we have chosen payoffs to make the example as simple as possible.
One can modify the example to make all incentives strict.19 Second, players’ payoffs
are measurable with respect to their own actions and signals. In particular, the required
realized payoffs for player 2 are

(Action, Signal) Pair: (L�m) (L� r) (M�m) (M� r) (R�m) (R� r)

Realized Payoff: 2 −2 0 0 0 0

Third, a similar argument shows that imperfect public monitoring with private strategies
can also outperform mediated perfect monitoring.20

19The only nontrivial step in doing so is giving player 1 a strict incentive to mix in odd periods. This can
be achieved by introducing correlation between the players’ actions in odd periods.

20Here is a sketch: Modify the current example by adding a strategy L′ for player 2, which is an exact
duplicate of L as far as payoffs are concerned, but which switches the interpretation of signals m and r.
Assume that player 1 cannot distinguish between L and L′, and modify the equilibrium by having player 2
play 1

2L+ 1
2L

′ in odd periods. Then, even if the signals m and r are publicly observed, their interpretations
will be private to player 2, and essentially the same argument as with private monitoring applies.
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Appendix B: Proof of Lemma 6

It is useful to introduce a family of auxiliary value functions (wT )∞T=1 and (w∗�T )∞T=1,
which will converge to w and w∗ pointwise in rt as T → ∞. For periods t ≥ T , define

wT
(
rt
)= wμ̄

(
rt
)

and w∗�T (rt−1)=wμ̄
(
rt−1)� (13)

For periods t ≤ T − 1, define w∗�T (rt), ρT (rt), and wT (rt) given wT (rt+1) recursively, as
follows. First, define

w∗�T (rt)= (1 − δ)u
(
μ̄
(
rt
))+ δE

[
wT
(
rt+1)|rt]� (14)

Note that, for t = T − 1, this definition is compatible with (13). Second, given w∗�T (rt),
define

wT
(
rt
)= 1{wμ̄(rt )∈W1}

{
ρT
(
rt
)
w∗�T (rt)+ (1 − ρT

(
rt
))
w̄1}+ 1{wμ̄(rt )/∈W1}w̄

1� (15)

where, when wμ̄(rt) ∈W1, ρT (rt) is the largest number in [0�1] such that

ρT
(
rt
)
w∗�T

2

(
rt
)+ (1 − ρT

(
rt
))
w̄1

2 ≥w
μ̄
2

(
rt
)
� (16)

We show that w∗�T converges to w∗.

Lemma 7. limT→∞w∗�T (rt) =w∗(rt) for all rt ∈At .

Proof. By Lemma 5, it suffices to show that F(wT ) = wT+1. For t ≥ T + 1, (13) im-
plies that w∗�T+1(rt−1) = wμ̄(rt−1). Given wT , w∗(wT

2 ) is the value calculated accord-
ing to (6). Since wT (rt) = wμ̄(rt) by (13), we have w∗(wT

2 )(r
t−1) = wμ̄(rt−1) by (6).

Hence,

w∗(wT
2
)(
rt−1)=w∗�T+1(rt−1)� (17)

For t ≤ T , by (14), we have

w∗�T+1(rt)= (1 − δ)u
(
μ̄
(
rt
))+ δE

[
wT+1(rt+1)|rt]�

By (15),

wT+1(rt) = 1{wμ̄(rt )∈W1}
{
ρT+1(rt)w∗�T+1(rt)+ (1 − ρT+1(rt))w̄1}+ 1{wμ̄(rt )/∈W1}w̄

1

= 1{wμ̄(rt )∈W1}
{
ρT+1(rt)w∗(wT

)(
rt
)+ (1 − ρT+1(rt))w̄1}+ 1{wμ̄(rt )/∈W1}w̄

1�

where the second equality follows from (17) for t = T , and follows by induction for t < T .
Recall that ρT+1 is defined by (16), while ρ(wT )(rt) is defined in (8) using w∗ =

w∗(wT ). Since w∗�T+1(rt)= w∗(wT
2 )(r

t), we have ρT+1(rt) = ρ(wT )(rt). Hence,

wT+1(rt) = 1{wμ̄(rt )∈W1}
{
ρ
(
wT
)(
rt
)
w∗(wT

)(
rt
)+ (1 − ρ

(
wT
)(
rt
))
w̄1}+ 1{wμ̄(rt )/∈W1}w̄

1�

= F
(
wT
)(
rt
)
�

as desired. �
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As w∗�T (rt), wT (rt), and ρT (rt) converge to w∗(rt), w(rt), and ρ(rt) by Lemma 7, the
following lemma implies Lemma 6.

Lemma 8. For all t = 1� � � � �T − 1, if wμ̄(rt) ∈ W1, then ρT (rt)w∗�T (rt) + (1 − ρT (rt))w̄1

Pareto dominates wμ̄(rt).

Proof. For t = T − 1, the claim is immediate since w∗�T (rt) =wμ̄(rt) and so ρT (rt) = 1.
Suppose that the claim holds for each period τ ≥ t + 1. We show that it also holds for

period t. By construction, ρT (rt)w∗�T
2 (rt) + (1 − ρT (rt))w̄1

2 ≥ w
μ̄
2 (r

t). Thus, it suffices to

show that ρT (rt)w∗�T
1 (rt)+ (1 − ρT (rt))w̄1

1 ≥w
μ̄
1 (r

t).
Note that

w∗�T (rt)
= (1 − δ)u

(
μ̄
(
rt
))+ δE

[
wT
(
rt+1)|rt]

= (1 − δ)u
(
μ̄
(
rt
))

+ δ

{∑
rt+1:wμ̄(rt+1)∈W1

Prμ̄
(
rt+1|rt){ρT (rt+1)w∗�T (rt+1)+ (1 − ρT

(
rt+1))w̄1}

+∑rt+1 : wμ̄(rt+1)/∈W1
Prμ̄
(
rt+1|rt)w̄1

}
�

while

wμ̄
(
rt
)= (1 − δ)u

(
μ̄
(
rt
))+ δ

∑
rt+1

Prμ̄
(
rt+1|rt)wμ̄

(
rt
)
�

Hence,

w∗�T (rt)−wμ̄
(
rt
)

= δ

⎧⎪⎨
⎪⎩
∑

rt+1 : wμ̄(rt+1)∈W1
Prμ̄
(
rt+1|rt)

× {ρT (rt+1)w∗�T (rt+1)+ (1 − ρT
(
rt+1))w̄1 −wμ̄

(
rt+1)}

+∑rt+1 : wμ̄(rt+1)/∈W1
Prμ̄
(
rt+1|rt){w̄1 −wμ̄

(
rt+1)}

⎫⎪⎬
⎪⎭ �

When wμ̄(rt+1) ∈W1, the inductive hypothesis implies that

ρT
(
rt+1)w∗�T (rt+1)+ (1 − ρT

(
rt+1))w̄1 −wμ̄

(
rt+1)≥ 0�

In addition, note that∑
rt+1 : wμ̄(rt+1)/∈W1

Prμ̄
(
rt+1|rt){w̄1 −wμ̄

(
rt+1)}= l

(
rt
)(
w̄1 − w̃

(
rt
))

for some number l(rt) ≥ 0 and vector w̃(rt) /∈W1. In total, we have

w∗�T (rt)= wμ̄
(
rt
)+ l

(
rt
)(
w̄1 − ŵ

(
rt
))

(18)

for some number l(rt) ≥ 0 and vector ŵ(rt) ≤ w̃(rt) /∈ W1. Since w̄1
1 ≥ ŵ1(r

t), if w̄1
1 ≥

w
μ̄
1 (r

t), then (18) implies that min{w∗�T
1 (rt)� w̄1

1} ≥ w
μ̄
1 (r

t) and, therefore, ρT (rt)w∗�T
1 (rt)+
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(1 − ρT (rt))w̄1
1 ≥w

μ̄
1 (r

t). In addition, if wμ̄(rt+1) ∈W1 with probability 1, then the induc-

tive hypothesis implies that w∗�T
2 (rt) ≥w

μ̄
2 (r

t), and therefore ρT (rt)= 1 and

ρT
(
rt
)
w∗�T

1

(
rt
)+ (1 − ρT

(
rt
))
w̄1

1 = w∗�T
1

(
rt
)

= w
μ̄
1

(
rt
)+ l

(
rt
)(
w̄1

1 − ŵ1
(
rt
))

≥ w
μ̄
1

(
rt
)
�

Hence, it remains only to consider the case where w̄1
1 <w

μ̄
1 (r

t) and l(rt) > 0.
In this case, take a normal vector λ1 of the supporting hyperplane of F at w̄1. We

have λ1
1 ≥ 0 and λ1

2 > 0, and in addition (as ŵ(rt) ≤ w̃(rt) ∈ F and wμ̄(rt) ∈ F ),

λ1 · (w̄1 − ŵ
(
rt
)) ≥ 0�

λ1 · (w̄1 −wμ̄
(
rt
)) ≥ 0�

As w̄1
1 − ŵ1(r

t) > 0 and w̄1
1 −w

μ̄
1 (r

t) < 0, we have

ŵ2
(
rt
)− w̄1

2

w̄1
1 − ŵ1

(
rt
) ≤ λ1

1

λ1
2

≤ w̄1
2 −w

μ̄
2

(
rt
)

w
μ̄
1

(
rt
)− w̄1

1

�

Next, by (18), the slope of the line from wμ̄(rt) to w∗�T (rt) equals the slope of the line
from ŵ(rt) to w̄1. Hence,

w
μ̄
2

(
rt
)−w

∗�T
2

(
rt
)

w∗�T
1

(
rt
)−w

μ̄
1

(
rt
) ≤ w̄1

2 −w
μ̄
2

(
rt
)

w
μ̄
1

(
rt
)− w̄1

1

�

In this inequality, the denominator of the left-hand side and the numerator of the right-
hand side are both positive, w∗�T

1 (rt) > w
μ̄
1 (r

t) by (18) and l(rt) > 0, while w̄1
2 > w

μ̄
2 (r

t)

because wμ̄(rt) ∈W1 and wμ̄(rt) �= w̄1
2. Therefore, the inequality is equivalent to

w
μ̄
2

(
rt
)−w∗�T

2

(
rt
)

w̄1
2 −w

μ̄
2

(
rt
) ≤ w∗�T

1

(
rt
)−w

μ̄
1

(
rt
)

w
μ̄
1

(
rt
)− w̄1

1

�

Now, let q ∈ [0�1] be the number such that

qw
∗�T
1

(
rt
)+ (1 − q)w̄1

1 =w
μ̄
1

(
rt
)
�

Note that

1 − ρT
(
rt
)= w

μ̄
2

(
rt
)−w∗�T

2

(
rt
)

w̄1
2 −w

μ̄
2

(
rt
) �

while

1 − q = w∗�T
1

(
rt
)−w

μ̄
1

(
rt
)

w
μ̄
1

(
rt
)− w̄1

1

�
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Hence, ρT (rt) > q. Finally, we have seen that w̄1
1 ≤w

μ̄
1 (r

t) ≤w∗�T
1 (rt), so we have

ρT
(
rt
)
w∗�T

1

(
rt
)+ (1 − ρT

(
rt
))
w̄1

1 ≥ qw∗�T
1

(
rt
)+ (1 − q)w̄1

1 =w
μ̄
1

(
rt
)
� �
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