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A unifying approach to incentive compatibility in moral
hazard problems

René Kirkegaard
Department of Economics and Finance, University of Guelph

A new approach to moral hazard is presented. Once local incentive compatibil-
ity is satisfied, the problem of verifying global incentive compatibility is shown to
be isomorphic to the problem of comparing two classes of distribution functions.
Thus, tools from choice under uncertainty can be brought to bear on the problem.
The approach allows classic justifications of the first-order approach (FOA) to be
proven using the same unifying methodology. However, the approach is especially
useful for analyzing higher-dimensional moral hazard problems. New and more
tractable multi-signal justifications of the FOA are derived and implications for
optimal monitoring are examined. The approach yields justifications of the FOA
in certain settings where the action is multidimensional, as in the case when the
agent is multitasking. Finally, a tractable multitasking model with richer predic-
tions than the popular but simple linear-exponential-normal model is presented.

Keywords. First-order approach, moral hazard, multi-tasking, orthant orders,
principal–agent models, stochastic orders.

JEL classification. D82, D86.

1. Introduction

The principal–agent model of moral hazard is among the core models of microeconomic
theory and central to the economics of information. The problem is conceptually sim-
ple: a principal must design a contract to induce the agent to take the desired action.
The intended action must be the agent’s preferred action. Thus, a multitude of incentive
compatibility constraints must be satisfied. Unfortunately, it is generally difficult to de-
termine which constraints bind and to make robust predictions about the structure of
optimal contracts. Moreover, these technical complications limit the scope of economic
analysis. For instance, most of the literature assumes that the agent is responsible for
one task only.

I propose an accessible approach to the moral hazard problem. Specifically, re-
formulating the problem makes it possible to utilize results from choice under un-
certainty to shed light on the moral hazard problem. Many principal–agent results
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assume that the principal has access to a one-dimensional signal about the agent’s one-
dimensional action. In contrast, the new approach is particularly well suited to study
higher-dimensional moral hazard problems. Thus, multiple signals can be more easily
handled and it is also possible to tackle certain types of multitasking.

Most of the literature has focused on environments where the only binding con-
straint is the “local” incentive compatibility constraint (L-IC). In such cases, ensuring
the agent has no incentive to deviate marginally from the intended action guarantees
global incentive compatibility (G-IC), i.e., larger deviations are also unprofitable. In-
deed, the classic first-order approach (FOA) uses the agent’s first-order condition to
summarize G-IC. The optimal contract is then easily derived. The FOA has a long his-
tory, dating back to Holmström (1979) and Mirrlees (1976, 1999). Rogerson (1985) and
Jewitt (1988) have provided sufficient conditions under which the FOA is valid. However,
although there are similarities in the structure of their proofs, the techniques they use
are quite different. Similarly, Conlon (2009a) uses two different approaches to general-
ize Rogerson’s and Jewitt’s conditions to multi-signal environments.1 All three papers
assume there is a single task.

The starting point for the method proposed here is also L-IC. First, L-IC on its own
imposes some structure on the contract. That structure is utilized to show that check-
ing G-IC (once L-IC is satisfied) is isomorphic to the problem of comparing two risky
prospects or two distribution functions. This is useful not only because choice under
uncertainty is familiar, but also because it allows me to draw on a large literature in eco-
nomics and statistics. Thus, once the isomorphisms have been established, most of the
formal results in the paper follow by invoking well known results from the literature on
stochastic orders. In this manner the method provides a unified methodology to under-
stand Rogerson’s, Jewitt’s, and Conlon’s classic results.

The link to choice under uncertainty can be understood by reexamining the differ-
ences between Rogerson’s and Jewitt’s contributions. In a one-signal–one-task setting,
let F(x|a) denote the distribution over the verifiable outcome (x) given the agent’s action
(a). Rogerson imposes the so-called convexity of the distribution function condition
(CDFC), requiring that F(x|a) is convex in a. In a first step, Rogerson establishes that
as long as wages are monotonic in the outcome, the CDFC ensures that L-IC implies G-
IC. The second step consists of identifying conditions that guarantee that the FOA wage
schedule is in fact monotonic. Jewitt’s proof consists of two similar steps, except he re-
lies on contracts that give rise to utility that is increasing and concave in the outcome.
This restriction allows him to weaken the CDFC; he assumes only that the antiderivative
of F(x|a) is convex in a. The top row in Table 1 contrasts these conditions. Note that
the trade-off between the competing justifications is similar to the trade-off one faces
when moving from first-order stochastic dominance (FOSD) to second-order stochas-
tic dominance (SOSD) in the comparison of two risky prospects. See the second row
of Table 1. There, a stronger assumption on the curvature of the utility function is also

1An earlier paper by Sinclair-Desgagné (1994) also extended Rogerson’s conditions to the multi-signal
model. Subsequently, Conlon (2009a) relaxed Sinclair-Desgagné’s assumptions. Jewitt (1988) also offered
two different multisignal justifications of the FOA. His results assume that there are exactly two signals and
that they are independent. Conlon further generalized one of Jewitt’s results.
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Rogerson Jewitt

Faa(x|a) ≥ 0, ∀x�a ∫ x
x Faa(y|a)dy ≥ 0, ∀x�a

⇓ ⇓
Any nondecreasing and Any nondecreasing, concave,

L-IC contract is G-IC and L-IC contract is G-IC

FOSD SOSD

G(x) ≤H(x), ∀x ∫ x
x G(y)dy ≤ ∫ x

x H(y)dy, ∀x
� �

EG[u(x)] ≥EH [u(x)] EG[u(x)] ≥EH [u(x)]
for any nondecreasing u(x) for any nondecreasing and

concave u(x)

Table 1. Rogerson, Jewitt, and stochastic dominance. Note: The term F(·|a) is the distribution

over outcomes given action a; the terms G(x) and H(x) are distribution functions.

exchanged for a weaker assumption on the antiderivative of the distribution functions.
The method proposed in the current paper cements the analogy and thereby makes the
point that stochastic orders are useful for the incentive compatibility problem.

The remainder of this introduction emphasizes the added economic insights that
can be obtained by pursuing further justifications of the FOA.2 Although it is possible
to derive new justifications in the one-signal case (see Kirkegaard 2013), in this paper I
concentrate on the more significant and economically meaningful extensions that are
possible in multi-signal environments, with one or more tasks.

Even in the single-task case, Conlon’s conditions become more restrictive as the
number of signals increases. As explained below, this is due to the direction in which ex-
tensions into higher dimensions are pursued. However, there are several ways in which
FOSD and SOSD can be extended from one dimension to many dimensions. Thus,
new justifications can be obtained by exploiting other higher-dimensional extensions
of FOSD and SOSD. Central to the new results are the so-called orthant orders. There
are a number of advantages to these new justifications. Technically, they are in some
ways more tractable. In economics terms, it is significant that they possess a certain
additive property.3

To explain the additive property, assume the FOA is valid if the principal has access to
one of two disjoint vectors of signals. I provide conditions under which the FOA remains
valid when he gains access to both. The FOA can now be justified in the benchmark
model where all signals are independent. Given independence, the conditions justifying

2The method has broader applicability. In Kirkegaard (2014), I utilize it to characterize the optimal con-
tract in a specialized environment where the FOA is generally invalid.

3The new multivariate justifications are complements to Conlon’s justifications since they are all derived
from different generalizations of FOSD or SOSD. The new justifications impose weaker conditions on the
distribution function. However, different assumptions on the likelihood ratio and the utility function must
be made in each case.
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the FOA do not become more restrictive as more signals are acquired. In contrast, Con-
lon notes that his so-called concave increasing-set probability (CISP) condition must
fail if there are sufficiently many independent and identically distributed (i.i.d.) signals.
Thus, this environment represents a concrete example in which the approach is useful
beyond existing results.

Along with the other multi-signal results, the additive property provides a partial
answer to a question left open since Holmström (1979). Holmström (1979) studies when
additional signals are valuable and how they alter the optimal contract. However, he
simply assumes that the FOA is and remains valid; the additive property illustrates when
this assumption is legitimate. Thus, the additive property is relevant for the principal’s
incentive to invest in more sources of information. The new justifications of the FOA
invite a reexamination of such endogenous monitoring. While Holmström (1979) does
not analyze how the induced (second-best) action changes, I show that it may be non-
monotonic in the number of signals. Thus, the optimal action may move further away
from the first best as another signal is acquired. The reason is that although additional
signals make it cheaper to induce any given action, these cost savings are not constant
across actions. If the additional savings are sufficiently asymmetric across actions, a
new signal may then further distort the second best away from the first best.

The final contribution of the paper is to relax the assumption that the agent performs
a single task. I concentrate on a specialized model in which different tasks produce
independent vectors of signals. In this case, the tasks are interdependent only through
the agent’s cost function. A counterpart to the additive property holds: the FOA remains
valid under familiar conditions as more and more tasks are added. Thus, the FOA can be
used to analyze, e.g., how many tasks the agent should be assigned or how to distribute
a given number of tasks across a set of agents. To the best of my knowledge, these are
the first multi-task justifications of the FOA.

The commonly applied multi-task model is a static model often referred to as the
linear-exponential-normal (LEN) model. Holmström and Milgrom (1987) provide a dy-
namic foundation for such a model, but at the same time they warn against “indis-
criminate application” of it. An important implicit assumption is that the informational
quality of the signals is completely independent of the agent’s action. Here, I character-
ize another simple multi-task model, the square root, independent tasks (SQIT) model.
The LEN and SQIT models are both highly tractable. The SQIT model, however, allows
the quality of the information system to depend on the action. As a result, it can be
demonstrated that several of the equilibrium properties of the LEN model are not ro-
bust. Due to space restrictions, the multi-task results are outlined in Section 7; details
are provided in the Appendix, available in a supplementary file on the journal website,
http://econtheory.org/supp/2008/supplement.pdf.

2. Model and preliminaries

A risk averse agent takes a costly action that is not verifiable to others. In the general
setting, the action may be m-dimensional, m ≥ 1. Let a = (a1� � � � � am) denote the ac-
tion, and assume that aj belongs to a closed and bounded interval, [aj�aj], j = 1� � � � �m.

http://econtheory.org/supp/2008/supplement.pdf
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Define A = ×m
j=1[aj�aj] and let int(A) denote the interior of this set. The agent’s action

determines the joint distribution of n ≥ 1 verifiable signals, denoted x = (x1� � � � � xn).
If the action is a, the cumulative distribution function is F(x|a), where it is assumed
that the domain, X = ×n

i=1[xi�xi], is convex, compact, and independent of a. Define
x = (x1� � � � � xn) and x = (x1� � � � � xn). To rule out degenerate cases, assume that if a �= a′,
then F(x|a) �= F(x|a′) on a subset of X of strictly positive measure. It is assumed that
F(x|a) has no mass points and is continuously differentiable in x and a to the requisite
degree (see below), with f (x|a) denoting the density for fixed a. Assume that f (x|a) is
strictly positive. Let F(x|a) denote the survival function, i.e., the probability that the
vector of signals is greater than x. Generally, F(x|a) �= 1 − F(x|a) when n > 1. Reference
to i (or j) will be suppressed when n = 1 (or m = 1). Partial derivatives of functions of
many variables will be denoted by subscripts. Derivatives of single-variable functions
are denoted with primes, double primes, etc.

The agent faces a contract that, to him, is fixed. He receives a deterministic wage
w(x) if the outcome is x, in which case utility is v(w(x))− c(a).4 The utility function v(w)

is strictly increasing and differentiable 2n + 1 times. The agent is strictly risk averse, or
v′′(·) < 0. The domain of the utility function is some interval that may or may not be the
entire real line. Finally, assume c(a) is differentiable, strictly increasing, and (weakly)
convex. The agent’s expected utility (assuming it exists) given action a is

EU(a) =
∫

v(w(x))f (x|a)dx − c(a)�

If the principal wishes to induce action a∗ ∈ A, this action must provide the agent
with higher expected utility than any other action, or

EU(a∗) ≥ EU(a) for all a ∈ A� (G-ICa∗)

in which case the contract w(x) is said to be globally incentive compatible. If a∗ ∈ int(A),
a minimum requirement is that EU(a) attains a stationary point at a∗, or∫

v(w(x))faj (x|a∗)dx − cj(a∗) = 0 for all j = 1� � � � �m� (L-ICa∗)

The stationary point may in principle be a local minimum or a saddle point. Neverthe-
less, I refer to the above condition as the local incentive compatibility condition. Thus,
any contract that satisfies (L-ICa∗ ) will be termed L-ICa∗ and any contract that satisfies
(G-ICa∗ ) is G-ICa∗ . For expositional purposes, in this paper I follow the literature and
focus on actions in the interior of A. The implementation of actions on the boundary is
discussed briefly in Kirkegaard (2013).

4Additive separability is important. While it is a standard assumption in the literature, there are excep-
tions. For instance, Alvi (1997) and Fagart and Fluet (2013) provide conditions that justify the FOA without
additive separability.
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2.1 The FOA contract

As much of the paper revolves around the FOA, it is worthwhile to set the stage by char-
acterizing the FOA contract. Following Jewitt (1988), assume the principal is risk neu-
tral. Let B(a) denote the expected gross benefit to the principal if the agent’s action is a.
In many one-signal–one-task applications, B(a) is the expected value of x. Apart from
incentive compatibility, the only other constraint is a participation constraint. Let u de-
note the agent’s reservation utility. It will be assumed that the constraint set is nonempty.
That is, there exists a contract that satisfies both the participation constraint and L-IC
for some a.

The FOA relies on L-IC being sufficient for G-IC. If this is the case, the principal’s
problem can be written as

max
w�a

B(a)−
∫

w(x)f (x|a)dx

st.
∫

v(w(x))f (x|a)dx − c(a) ≥ u∫
v(w(x))faj (x|a)dx − cj(a) = 0 for all j = 1� � � � �m�

To proceed, let l(x|a) ≡ ln f (x|a) and assume that

laj (x|a) = ∂ ln f (x|a)
∂aj

= faj (x|a)
f (x|a)

is bounded below, j = 1� � � � �m. Assume also that

∂k1+···+knlaj (x|a)
∂x

k1
1 · · · ∂xknn

exists for all ki ∈ {0�1�2}, i = 1� � � � � n, with k1 + · · · + kn ≥ 1. Finally, assume in the re-
mainder of the paper that the optimal wage, w(x), is in the interior of the domain of v(·).
This assumption is typically satisfied if the agent’s reservation utility is high enough.5 In
this case, w(x) is characterized by a first-order condition that can be written

1
v′(w(x))

= λ+
m∑
j=1

μjlaj (x|a∗)� (1)

where λ is the multiplier of the participation constraint and μj are the multipliers of
the m-dimensional local incentive compatibility constraint. Note that λ > 0, or the right
hand side of (1) would be nonpositive for some realizations of x.

While (1) provides an implicit characterization of the contract w(x), the agent is ulti-
mately concerned with the payoff v(w(x)) he receives when the vector of signals is x. To

5See, e.g., Jewitt et al. (2008), and in particular Gutiérrez (2012) for a detailed discussion. As can be seen
from (1), below, this also explains why the likelihood ratio must be bounded below.
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aid the analysis, Jewitt defines the function

ω(z) = v((v′)−1(1/z))� z > 0� 6

so that, from (1), the agent’s utility can be more compactly written as

v(w(x)) =ω

(
λ+

m∑
j=1

μjlaj (x|a∗)
)
� (2)

One advantage of Jewitt’s formulation is that it makes it evident that it is the properties
of the function ω(·)—along with the properties of μjlaj (x|a)—that determine for exam-
ple the slope and curvature of the (composite) function of interest, v(w(x)). Note that
ω′(z) > 0 since v′′(w) < 0. When a is one-dimensional, Jewitt proves that μ> 0 in any L-
IC contract that takes the form in (1). Jewitt’s argument does not rely on the FOA being
valid. However, knowing that μ> 0 in any contract that is derived using the FOA makes
it possible to infer important qualitative properties of the FOA candidate contract.

In particular, when a is one-dimensional and μ > 0, v(w(x)) is increasing in its ar-
guments if la(x|a) is increasing in each signal. The latter property is referred to as the
monotone likelihood ratio property (MLRP). Jewitt imposes the added assumptions that
ω is concave and that la(x|a) is concave in x. Then v(w(x)) is increasing and concave.
Example 1 illustrates Jewitt’s assumption on ω.

Example 1. Consider the utility functions

vα(w) = 1 − e−αw� vβ(w) = 1
β
wβ� v0(w) = lnw�

where α> 0 and β< 1, with β �= 0. The domain of the first function is (−∞�∞) while the
domain of the latter two is (0�∞) (or convex subsets thereof). The first utility function
exhibits constant absolute risk aversion, while the other two exhibit constant relative
risk aversion. For these functions,

ωα(z) = 1 − 1
αz

� ωβ(z)= 1
β
(z)β/(1−β)� ω0(z) = lnz�

respectively. Thus, the first and third functions satisfy Jewitt’s assumption that ω is con-
cave. The second function satisfies the assumption if and only if β≤ 0�5. ♦

3. From local to global incentive compatibility

This section develops an alternative approach to moral hazard. To outline the main idea,
assume first that the action is one-dimensional. Imagine the principal wants to induce
action a∗. G-ICa∗ requires that EU(a∗)≥ EU(a) for all a, thus necessitating a continuum
of comparisons of utility across different actions. In contrast, L-ICa∗ just imposes the
necessary condition that EU(a) has a stationary point at a∗, or EU ′(a∗) = 0. Note that

6To clarify, (v′)−1 refers to the inverse of v′(·), not the reciprocal.
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Figure 1. A new approach to moral hazard. Part I. Note: There are two equivalent ways to check
that the agent will not deviate from a∗ to a′: (i) moving horizontally, EU(a∗) must exceed EU(a′),
and (ii) moving vertically, EUL(a′|a∗) must exceed EU(a′).

L-ICa∗ implies that the tangent line to EU(a) at a∗ is horizontal. Stated differently, the
tangent line, EUL(a|a∗) = EU(a∗)+ (a− a∗)EU ′(a∗), takes a constant value. Thus, G-IC
is obtained if and only if EU(a) is always below this tangent line, or EU(a) ≤ EUL(a|a∗)
for all a. Figure 1 illustrates.

Based on this observation, I construct an auxiliary problem in which the agent’s ac-
tion a manipulates imaginary distribution and cost functions, but which (given any L-
ICa∗ contract) yields constant expected utility that coincides with EU(a∗) = EUL(a|a∗).
Checking G-ICa∗ is then equivalent to checking that regardless of his action, the agent
is better off in the auxiliary problem than in the real problem. Thus, rather than com-
paring expected utility across different actions, I compare expected utility for a given
action across two different problems. By construction, costs will be lower in the auxil-
iary problem than in the real problem. Hence, the comparison between the two prob-
lems essentially reduces to comparing two risky prospects, described by the real and
imaginary distribution functions, respectively. Thus, the incentive compatibility prob-
lem is turned into a mere exercise in choice under uncertainty. Finally, note that there
are no conceptual difficulties in introducing multidimensional actions; the tangent line
is simply replaced by the tangent plane.

3.1 The auxiliary problem

The function EUL(a|a∗) (see Figure 1) is obtained by linearizing EU(a) around a∗. To
develop a fitting auxiliary problem, it is therefore natural to start by linearizing the prim-
itives of the problem, F(x|a) and c(a).

Fix a∗ ∈ int(A). Think of a∗ as the action the principal seeks to implement.
Next, fix x as well and think of a = (a1� � � � � am) as the variables. Let

fL(x|a�a∗) = f (x|a∗)+
m∑
j=1

(aj − a∗
j )faj (x|a∗)
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and

FL(x|a�a∗)= F(x|a∗)+
m∑
j=1

(aj − a∗
j )Faj (x|a∗)

be the tangent planes to f (x|a) and F(x|a), respectively, at a = a∗. Similarly, let

cL(a|a∗)= c(a∗)+
m∑
j=1

(aj − a∗
j )cj(a∗)�

Now switch the roles of x and a. Holding a and a∗ fixed, note that FL(x|a�a∗) need
not be monotonic in x, nor need it be bounded between 0 and 1. Nevertheless, the fol-
lowing thought experiment is proposed. Think of fL(x|a�a∗) and FL(x|a�a∗) as (admit-
tedly odd) density and distribution functions, respectively. It is easy to see that FL can
be obtained by integrating fL over x. Likewise, fL integrates to 1, with FL(x|a�a∗) = 0
and FL(x|a�a∗) = 1. To see this, recall that F(x|a) = 0 and F(x|a) = 1 for all a. Hence,
Faj (x|a) = Faj (x|a) = 0. Now consider the imaginary problem where the agent faces dis-
tribution function FL(x|a�a∗) rather than F(x|a) and cost function cL(a|a∗) rather than
c(a).

Note that regardless of the contract, the imaginary problem exhibits constant re-
turns to scale in the sense that expected utility is linear in aj . Thus, any returns to scale
in the original problem are filtered out. By contrasting the two problems, it may be pos-
sible to determine whether the original problem exhibits a form of decreasing returns
to scale. Intuitively at least, such decreasing returns would suggest that the stationary
point at a∗ identifies the agent’s optimal action. In fact, Rogerson remarks that “the
CDFC is a form of stochastic diminishing returns to scale.”

“Expected utility” in the auxiliary problem is

EUL(a|a∗)=
∫

v(w(x))fL(x|a�a∗)dx − cL(a|a∗)

or

EUL(a|a∗) = EU(a∗)+
m∑
j=1

(aj − a∗
j )

[∫
v(w(x))faj (x|a∗)dx − cj(a∗)

]
� (3)

Evidently, the last term disappears if L-ICa∗ is satisfied, in which case EUL(a|a∗) =
EU(a∗) for all a. Stated differently, L-ICa∗ on its own places a lot of structure on the
contract, and thus on EUL(a|a∗). In particular, it follows from (3) that once L-ICa∗ is
satisfied, G-ICa∗ can equivalently be expressed as the requirement that

EUL(a|a∗)≥ EU(a) for all a ∈ A� (4)

Hence, (4) captures the logic in Figure 1, as described at the beginning of this section.
Note that (4) can be written as∫

v(w(x))fL(x|a�a∗)dx − cL(a|a∗) ≥
∫

v(w(x))f (x|a)dx − c(a) for all a ∈ A�
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The tangent plane to any convex function is below the function itself. Thus, since c(a)
is convex, it follows that cL(a|a∗) ≤ c(a) for all a ∈ A. Hence, to obtain (4), it is sufficient
that ∫

v(w(x))fL(x|a�a∗)dx ≥
∫

v(w(x))f (x|a)dx for all a ∈ A� (5)

In essence, the continuum of incentive compatibility constraints in the original problem
has been replaced with a continuum of comparisons of risky prospects. For instance, if
v(w(x)) is monotonic, it is fruitful to ask whether FL first-order stochastically domi-
nates F . Since such comparisons are commonplace in economics, a large literature may
now be accessed to inform the analysis. This reformulation of the problem constitutes
the main methodological contribution of this paper. Proposition 1 formally records the
conclusion.

Proposition 1. Fix a∗ ∈ int(A). Any L-ICa∗ contract is G-ICa∗ if (5) holds.7

Note that (5) is satisfied if and only if∫
v(w(x))[κ+ εfL(x|a�a∗)]dx ≥

∫
v(w(x))[κ+ εf (x|a)]dx for all a ∈ A (6)

for all ε > 0 and all κ. It is trivial to select κ and ε > 0 in such a manner that both brack-
eted terms are proper densities, i.e., they are strictly positive and integrate to 1. The
equivalence of (5) and (6) implies that even though fL is not a proper density, stochastic
dominance results can still be invoked. Thus, I frequently abuse terminology and say
that fL dominates f in some stochastic order.

3.2 Justifying the FOA with one signal and one task

Consider the one-signal case with a one-dimensional action, or n = m = 1. If F(x|a) is
convex in a for all x, then its tangent line, FL(x|a�a∗), lies everywhere below the func-
tion itself. Thus, FL(·|a�a∗) first-order stochastically dominates F(·|a) for all a. Conse-
quently, any L-ICa∗ contract that is monotonic must be G-ICa∗ . Moreover, the argument
holds regardless of a∗. Thus, if it can be established that the FOA candidate contract is
monotonic, then the FOA is itself valid. Figure 2 illustrates.

The following lemma notes necessary and sufficient conditions for FL to first- or
second-order stochastically dominate F regardless of (a�a∗).

Lemma 1 (Ordering the real and auxiliary distributions). Assume n = m = 1. Then
FL(·|a�a∗) first-order stochastically dominates F(·|a) for all a ∈ [a�a] and all a∗ ∈ [a�a]
if and only if

Faa(x|a) ≥ 0 for all x ∈ [x�x] and all a ∈ [a�a]�
7If c(a) is a linear function, then cL(a|a∗) = c(a) and so any L-ICa∗ contract is G-ICa∗ if and only if

(5) holds. When the action is one-dimensional, or m = 1, it is common to normalize c(a) = a. See, e.g.,
Rogerson (1985) or Conlon (2009a). However, when the action is multidimensional, the cost function must
generally be rich enough to capture interdependencies between the various dimensions.
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Figure 2. A new approach to moral hazard. Part II. Note: Step 1. Fix a∗. For each x, construct
the tangent line to F(x|a) at a∗ (moving horizontally). Step 2. For each a �= a∗, like a′, move ver-
tically to trace out the cumulative distribution function (cdf) in the auxiliary and real problems.
Here, FL FOSD F (FL lies always below F). Thus, any monotonic and L-ICa∗ contract yields
EU(a∗) = EUL(a∗|a∗) = EUL(a′|a∗) ≥ EU(a′). Step 3. To validate the FOA, the conclusion in
Step 2 must hold regardless of a∗.

Second, FL(·|a�a∗) second-order stochastically dominates F(·|a) for all a ∈ [a�a] and all
a∗ ∈ [a�a] if and only if∫ x

x
Faa(y|a)dy ≥ 0 for all x ∈ [x�x] and all a ∈ [a�a]�

Proof. The first part follows from the fact that a function is convex if and only if it
lies everywhere above all of its tangent line. For the second part,

∫ x
x F(y|a)dy is like-

wise everywhere above its tangent line (as a function of a) if and only if it is convex, or∫ x
x Faa(y|a)dy ≥ 0. Now, the tangent line to

∫ x
x F(y|a)dy at a= a∗ is∫ x

x
F(y|a∗)dy + (a− a∗)

∫ x

x
Fa(y|a∗)dy =

∫ x

x
FL(y|a�a∗)dy�

It follows that
∫ x
x Faa(y|a)dy ≥ 0 for all x ∈ [x�x], and all a ∈ [a�a] is necessary and suffi-

cient for
∫ x
x FL(y|a�a∗)dy ≤ ∫ x

x F(y|a)dy for all x�a, and a∗. Of course, for fixed (a�a∗),

the latter condition coincides with the definition that FL(·|a�a∗) second-order stochas-
tically dominates F(·|a). �

Many results of the type presented in Lemma 1 are utilized in the analysis. Since the
proofs are trivial and in any event analogous to the proof of Lemma 1, the formal proofs
are omitted. Recall that Rogerson’s (1985) CDFC assumption is that Faa(x|a) ≥ 0. The
condition

∫ x
x Faa(y|a)dy ≥ 0 is Jewitt’s (1988) assumption (2.10a).

To make use of FOSD it is necessary that the candidate contract is monotonic. To
utilize SOSD, the contract must be monotonic and concave. The discussion preceding
Example 1 identifies conditions under which these properties are obtained. The validity
of the FOA follows by imposing both sets of assumptions. Recall that ω′(z) > 0 follows
automatically from risk aversion.
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Proposition 2. Assume n = m = 1 and that the second-best action is in (a�a). Then the
FOA is valid if either of the following statements holds:

(i) We have Faa(x|a) ≥ 0 for all x and a, ω′(·) > 0, and lax(x|a) ≥ 0 for all x and a.

(ii) We have
∫ x
x Faa(y|a)dy ≥ 0 for all x and a, ω′(·) > 0 ≥ ω′′(·), and lax(x|a) ≥ 0 ≥

laxx(x|a) for all x and a.

The conditions in Proposition 2 coincide with Rogerson’s and Jewitt’s conditions.
However, it is not hard to generalize the proposition to utilize stochastic dominance
of higher order (e.g., third-order stochastic dominance). See Kirkegaard (2013) for de-
tails. As with Jewitt’s justification, these extensions necessitate that ω(λ + μla(x|a)) is
increasing and concave. Kirkegaard (2013) also derives justifications for the FOA in en-
vironments where ω is convex (note that ω may be convex even if v is concave).

4. Multi-signal justifications of the FOA

The remainder of the paper extends Proposition 2 to higher dimensions. Section 4.1
offers some observations on how univariate stochastic orders may be generalized to ob-
tain relevant multivariate stochastic orders. Pertinent properties of the FOA contract are
identified and sufficient conditions for those properties to hold are derived. Sections 4.2
and 4.3 derive new justifications for the FOA when there are multiple signals but the
action is one-dimensional, or n > 1 =m.

4.1 Integral stochastic orders

The stochastic orders invoked in this paper are integral stochastic orders. The distribu-
tion function G dominates the distribution function H if G is weakly preferred to H for
all utility functions in some class U , where U is referred to as a “generator” of the integral
stochastic order. For an introduction to integral stochastic orders, see Müller and Stoyan
(2002). In this section I introduce two classes of utility functions that are relevant for the
moral hazard problem.

Definition 1 (Multivariate �-antitone function). A multivariate function with n vari-
ables, u(x), is �-antitone if

∂k1+···+kn[−u(−x)]
∂x

k1
1 · · · ∂xknn

≥ 0 (7)

for all ki ∈ {0�1}, i = 1� � � � � n, with k1 + · · · + kn ≥ 1.8

Definition 2 (Multivariate �2-antitone function). A multivariate function with n vari-
ables, u(x), is �2-antitone if

∂k1+···+kn[−u(−x)]
∂x

k1
1 · · · ∂xknn

≥ 0

8This is with some abuse of terminology, as a function is more commonly said to be �-antitone if the
derivatives of u(−x) (rather than −u(−x)) have the property in (7). Difference operators can be used to
extend this and the following definition to nondifferentiable functions; see Müller and Stoyan (2002).
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for all ki ∈ {0�1�2}, i = 1� � � � � n, with k1 + · · · + kn ≥ 1.

Thus, a multivariate function is �-antitone if the cross-partial derivatives alternate
in sign as more cross-partials are added. In the bivariate case, for example, the marginal
utility of x1 is smaller the higher x2 is. The term i-antitone is used to refer to a uni-
variate function for which the first i derivatives of −u(−x) are nonnegative. Note that
this implies that the derivatives of u(x) alternate in sign, i.e., (−1)k−1u(k) ≥ 0 for all
k= 1�2� � � � � i, where u(k) denotes the sth derivative.

The composite utility function in (2) is of primary interest. Note that when a is one-
dimensional, Jewitt’s proof that μ > 0 is still valid. At this point, it is unclear whether
μj ≥ 0 when m> 1. The following result follows from repeated differentiation.

Lemma 2. Assume that μj ≥ 0 for all j = 1� � � � �m. Then the following statements hold:

(i) We have that ω(λ+ ∑m
j=1 μjlaj (x|a)) is �-antitone in x if laj (x|a) is �-antitone in x

for all j = 1� � � � �m, and ω is n-antitone.

(ii) We have that ω(λ+ ∑m
j=1 μjlaj (x|a)) is �2-antitone in x if laj (x|a) is �2-antitone in

x for all j = 1� � � � �m, and ω is 2n-antitone.

Example 1 (Continued). Note that whenever β ≤ 1
2 , all three utility functions in Exam-

ple 1 leads to ω functions that are i-antitone for any i ≥ 1. Incidentally, all Jewitt’s (1988,
p. 1183) examples of distribution functions also have the feature that la(x|a) is i-antitone
for any i ≥ 1. ♦

In the univariate case, a function is nondecreasing if and only if it is �-antitone.
However, these concepts—nondecreasing and �-antitone—are distinct in the multivari-
ate case. Similarly, any univariate function is increasing and concave if and only if it
is �2-antitone, but this equivalence also fails in the multivariate case. These observa-
tions yield the first indication that there may be several ways to extend one-signal results
based on FOSD or SOSD into higher dimensions. As emphasized in Section 5, if m = 1
and MLRP holds, then the likelihood ratio is automatically �-antitone in the important
case where all signals are independently distributed.

4.2 Multivariate FOSD and related stochastic orders

As in the existing FOA literature, assume in the remainder of this section and the next
two that a is one-dimensional, or m = 1. The focus is thus on multiple signals, or n ≥ 2.
To begin, Müller and Stoyan (2002) make the following observation about extending
the common stochastic orders from a univariate setting to a multivariate environment.
Specifically, comparing two distribution functions, G and H, there are three equivalent
definitions of FOSD in the univariate setting, namely, (i) G is preferred to H for all non-
decreasing utility function, (ii) G(x) ≤ H(x) for all x, and (iii) G(x) ≥ H(x) for all x. The
point is that none of these definitions are equivalent when there are multiple signals.
Consequently, there are three plausible ways to extend FOSD, which leads to the follow-
ing definitions:
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1. The function G first-order stochastically dominates H if G is preferred to H for all
nondecreasing utility functions.

2. The function G dominates H in the lower orthant order if G(x) ≤H(x) for all x.

3. The function G dominates H in the upper orthant order if G(x) ≥ H(x) for all x.

Using Conlon’s (2009a) notation and terminology, let E be an increasing set. A set
is increasing if x ∈ E and y ≥ x implies y ∈ E. It is well known that an equivalent defini-
tion of FOSD is that G has more probability mass in all increasing sets than H does; see
Müller and Stoyan (2002, Theorem 3.3.4). Thus, since the upper orthants and the com-
plements of the lower orthants are increasing sets, FOSD is stronger than the orthant or-
ders. However, all three orders can be used to derive separate multi-signal justifications
of the FOA.

Returning to the principal–agent model at hand, let

P(x ∈ E|a)=
∫

x∈E
f (y|a)dy

denote the probability that the vector of signals is in the set E, given a. Let

PL(x ∈ E|a�a∗) = P(x ∈ E|a∗)+ (a− a∗)Pa(x ∈ E|a∗)

denote the counterpart in the auxiliary problem. Conlon (2009a) proposes a concave
increasing-set probability (CISP) condition, specifically that Paa(x ∈ E|a) ≤ 0 for all in-
creasing sets and all a ∈ [a�a]. The CISP condition implies that PL(x ∈ E|a�a∗) ≥
P(x ∈ E|a) for all a ∈ [a�a]. In other words, FL(x|a�a∗) first-order stochastically domi-
nates F(x|a). Hence, the expected payoff in the auxiliary problem is greater than in the
original problem as long as the FOA contract is monotonic, as continues to be the case
as long as the (multivariate) MLRP holds. This explains Conlon’s (2009a, Proposition 4)
extension of Rogerson’s conditions.

In practice, it may be hard to verify CISP. However, CISP can be weakened. Recall
that the lower orthant order is weaker than FOSD. Moreover, it can also be expressed
as an integral stochastic order. Specifically, it can be shown that G dominates H in the
lower orthant order if and only if G is preferred to H for all �-antitone utility functions
(Müller and Stoyan 2002, Theorem 3.3.15). Although I do not pursue it here, the upper
orthant order can also be used to form the basis of a new justification of the FOA; see
Kirkegaard (2013). Those justifications necessitate that ω is convex.

Lemma 2 provides conditions under which the FOA contract gives rise to a �-
antitone utility function. Moreover, if Faa(x|a) ≥ 0, then FL(x|a�a∗) dominates F(x|a)
in the lower orthant order. The condition that Faa(x|a) ≥ 0 is henceforth referred to as
the lower orthant convexity condition (LOCC).9

Definition 3 (LOCC). The term F(x|a) satisfies the lower orthant convexity condition
(LOCC) if Faa(x|a) ≥ 0 for all x and all a.

9Conlon (2009a, 2009b) considers a special case with two variables (see below). In this case, the orthant
is a quadrant, and he thus defines the lower quadrant convexity condition (LQCC).
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LOCC and CISP coincide in the one-signal case, where they collapse to the CDFC. In
the multivariate case, however, CISP implies LOCC.

Proposition 3. Assume the second-best action is in (a�a). Then the FOA is valid if
Faa(x|a) ≥ 0 for all x and all a (LOCC), la(x|a) is �-antitone in x for all a, and ω is n-
antitone.

Proof. The inequality Faa(x|a) ≥ 0 implies that FL(x|a�a∗) dominates F(x|a) in the
lower orthant order. Hence, expected payoff in the auxiliary problem is higher than in
the original problem as long as utility is �-antitone. The remaining conditions ensure
this is the case, since they allow Lemma 2 to be invoked. �

Jewitt (1988, Theorem 2) reports a special case with n = 2 independent signals.
Conlon (2009a, 2009b) supplies the following generalization that allows correlated
signals.

Assume there are two signals, and that the likelihood ratio is increasing and sub-
modular in the two signals. Then Conlon (2009b) proves the FOA is valid if Faa(x|a) ≥ 0.
Submodularity means that the cross-partial derivative is nonpositive. Thus, with n = 2,
la(x|a) is �-antitone. In other words, this result is a special case of Proposition 3. How-
ever, Conlon (2009a) concludes that “it is not clear how to extend this beyond the two-
signal case.” The resolution comes from the observation that the submodular order and
the lower orthant order coincide in the bivariate case.

Recall that Rogerson views the univariate CDFC as representing a type of “stochas-
tic diminishing returns to scale”; the probability that the outcome exceeds any given
threshold is concave in a. CISP has a similar interpretation in the multivariate case.
It turns out that LOCC can be given a like interpretation, once it is taken into account
that more structure is imposed on the payoffs in this case. To compare CISP and LOCC,
consider first the following somewhat extreme increasing function. Fix some increasing
set E. The utility function uE gives utility 1 if x ∈ E and 0 otherwise. Consistent with
decreasing returns to scale, CISP says that the probability of a good outcome is concave
in a. An extreme form of a �-antitone utility function is the following. Fix some vector x̂,
and let O denote the set O = {x|x ≤x̂}, i.e., O is the orthant that lies below x̂. The utility
function uO gives 0 utility if x ∈ O and utility 1 otherwise. LOCC amounts to saying that
the probability of a good outcome is concave in a. Thus, given the structure of the con-
tract, both CISP and LOCC capture a kind of “stochastic diminishing returns to scale.” In
the latter case, the assumption that la(x|a) is �-antitone is key to establishing the correct
structure. An interpretation of this assumption is provided in the Appendix.

4.3 Multivariate SOSD and related stochastic orders

Among the ingredients in Jewitt’s (1988, Theorem 3) second set of conditions and
Conlon’s (2009a, Proposition 2) extension thereof are the assumptions that la(x|a) is in-
creasing and concave in x and that ω is increasing and concave. These assumptions im-
ply that v(w(x)) is increasing and concave in x, thus pointing in the direction of SOSD.
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As in the univariate case, the distribution function G second-order stochastically domi-
nates H if the former is preferred to the latter for any increasing and concave multivari-
ate utility function.

However, to close the proof, Jewitt and Conlon depart from the Mirrlees formulation
(where F(x|a) summarizes the technology). Instead, they utilize the state-space formu-
lation of the principal–agent model. This change in modelling approach can be under-
stood by the fact that it is impossible to express SOSD with a set of conditions directly on
F(x|a) in the multivariate case; see Müller and Stoyan (2002, p. 98).

Other stochastic orders are better suited for the Mirrlees formulation. In particular,
G dominates H in the lower orthant-concave order if∫ x1

x1

· · ·
∫ xn

xn

G(y1� � � � � yn)dyn · · · dy1 ≤
∫ x1

x1

· · ·
∫ xn

xn

H(y1� � � � � yn)dyn · · · dy1 for all x�

as defined in Shaked and Shanthikumar (2007). Denuit and Mesfioui (2010) examine
this and related stochastic orders. It can be shown that if G dominates H in the lower
orthant-concave order, then G is preferred to H for any �2-antitone utility function. The
following proposition then follows from the usual logic. Unsurprisingly, the condition
that

∫
y≤x Faa(y|a)dy ≥ 0 for all x and all a plays a key role. I refer to this condition as the

cumulative lower orthant convexity condition (CLOCC).

Definition 4 (CLOCC). The function F(x|a) satisfies the cumulative lower orthant con-
vexity condition (CLOCC) if

∫
y≤x Faa(y|a)dy ≥ 0 for all x and all a.

CLOCC implies that FL dominates F in the lower orthant-concave order. The inter-
ested reader is directed to Kirkegaard (2013) for an additional justification of the FOA
based on the so-called upper orthant-convex order.

Proposition 4. Assume the second-best action is in (a�a). Then the FOA is valid if∫
y≤x Faa(y|a)dy ≥ 0 for all x and all a (CLOCC), la(x|a) is �2-antitone in x for all a, and ω

is 2n-antitone.

Jewitt’s one-signal conditions imply that the univariate function v(w(x)) is concave.
In the univariate case, this is equivalent to saying that v(w(x)) has a negative second
derivative. This equivalence does not hold in higher dimensions, however. Thus, to gen-
eralize into higher dimensions one could either pursue concavity of v(w(x)) or pursue
conditions on the sign of the second derivatives (as in Section 4.1). The former leads to
SOSD and Conlon’s CISP condition. The latter leads to the lower orthant-concave order
and the CLOCC.

The justifications that I pursue require conditions only on the sign of higher-order
derivatives. In comparison, multivariate concavity requires conditions on the rela-
tive magnitude of various second derivatives. In this sense multivariate concavity is a
messier concept. This contrast explains the difference in tractability between Conlon’s
result and Proposition 4.
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5. The additive property

Compared to Conlon’s justifications, Propositions 3 and 4 have the advantage that the
conditions on F are weaker and easier to check. It is a drawback that stronger assump-
tions on ω are required, but Example 1 illustrates that this may be a small price to pay.
However, the new justifications also impose possibly less transparent conditions on the
cross-partial derivatives of la(x|a). The Appendix contains an interpretation of these
conditions. Nevertheless, there are cases where these conditions are less restrictive
(their dimensionality is reduced), and particularly appealing environments where they
are not at all restrictive. For concreteness, I begin with the latter environments before
deriving the more general result.

5.1 Independent signals

Assume that all signals are independent. Thus, f (x|a) = ∏n
i=1 f

i(xi|a), where f i(xi|a)
denotes the marginal density of the ith signal. It follows that la(x|a) is separable, or

la(x|a) =
n∑

i=1

f ia(xi|a)
f i(xi|a) =

n∑
i=1

lia(xi|a)�

where lia(xi|a) is the likelihood ratio of the ith signal. Thus, all cross-partial derivatives
are zero. Consequently, the restriction that la(x|a) is �-antitone has no bite beyond
MLRP. Moreover, it is known that Fi

a(xi|a) ≤ 0 when lia(xi|a) is monotonic in xi. Assume
now that each independent signal satisfies the CDFC. Since Fi is then decreasing and
convex in a, it follows that F(x|a) = ∏

Fi(xi|a) is also convex in a. Hence, if each signal
distribution satisfies Rogerson’s assumptions (MLRP and CDFC), then the joint distribu-
tion satisfies LOCC. Proposition 3 can now be invoked.

Corollary 1. Assume there are n ≥ 2 independent signals, with distribution functions
Fi(xi|a) and likelihood ratio lia(xi|a), i = 1�2� � � � � n. Assume the second-best action is in
(a�a). Then the FOA is valid if the following statements hold:

(i) Each signal satisfies Rogerson’s conditions; Fi
aa(xi|a) ≥ 0 and liax(xi|a) ≥ 0 for all

i = 1�2� � � � � n.

(ii) The function ω is n-antitone.

As alluded to earlier, Corollary 1 generalizes Jewitt’s (1988) Theorem 2, which as-
sumes two independent signals. Similarly, Proposition 4 can be used to justify the FOA
when each independent signal satisfies Jewitt’s univariate assumptions.

Corollary 2. Assume there are n ≥ 2 independent signals, with distribution functions
Fi(xi|a) and likelihood ratio lia(xi|a), i = 1�2� � � � � n. Assume the second-best action is in
(a�a). Then the FOA is valid if the following statements hold:

(i) Each signal satisfies Jewitt’s one-signal conditions;
∫ xi
xi

Fi
aa(y|a)dy ≥ 0, lix(xi|a) ≥ 0,

and liaxx(xi|a) ≤ 0 for all i = 1�2� � � � � n.
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(ii) The function ω is 2n-antitone.

Together, Corollary 1 and Corollary 2 offer an argument in favor of multi-signal con-
ditions based on the orthant orders over conditions based on the more demanding mul-
tivariate notions of FOSD and SOSD, like Jewitt’s Theorem 3 or Conlon’s (2009a) propo-
sitions. In fact, Conlon (2009a) makes the point that if the n signals are independent and
each satisfies CDFC, then the joint distribution function may nevertheless fail the CISP
condition. Conlon explains this failure by noting that “with many signals, the principal
tends to become very well informed about the agent’s action and, even in the one-signal
case, [Rogerson’s condition] must fail when the signal becomes very accurate.”10 While
the logic is compelling, the above corollaries establish that the FOA can be justified as
long as each signal satisfies standard assumptions. Thus, the FOA may be valid with a
multitude of inaccurate independent signals even if they provide very precise informa-
tion when combined.

There are two ways to think about integral stochastic orders: in terms of the relation-
ship between the random variables or in terms of the generator of the stochastic order.
Thus, there are also two ways to think about the difference between Conlon’s results and
the results in the present paper. First, LOCC requires only that 1−F(x|a) = 1−∏

Fi(xi|a)
is concave in a. This follows automatically from the properties that Fi(xi|a) is decreasing
and convex in a for all i. Note that 1−∏

Fi(xi|a) describes the probability of a realization
in one particular type of increasing set, namely the complement to the lower orthant.
In contrast, CISP imposes a condition on all increasing sets. Consider, for instance, the
probability that the realization is in the upper orthant,

∏
(1−Fi(xi|a)). Conlon’s (2009a)

observation is that this need not be concave in a even if (1 −Fi(xi|a)) is concave in a for
all i.

The second way to contrast the results starts by noting that Conlon relies only on
the weak property that v(w(x)) is monotonic. In contrast, the new justifications rely on
finer properties of how v(w(x)) is structured. Specifically, v(w(x)) is �-antitone, which
requires not only that v(w(x)) is monotonic but also that the cross-partial derivatives
of v(w(x)) obey a sign restriction. As explained at the beginning of this section, inde-
pendence implies that the latter is satisfied once the relatively weak assumption that ω
is n-antitone is added. Exploiting the extra structure on v(w(x)) then means that the
conditions on F(x|a) can be relaxed.

In summary, the structure of v(w(x)) determines which types of increasing sets need
to be considered. Future research may attempt to make more inferences regarding the
structure of v(w(x)). This will make it clearer which types of increasing sets are poten-
tially problematic and thus help determine which kinds of concavity assumptions are
required.

5.2 A general additive property

To generalize Corollaries 1 and 2, consider two non-overlapping vectors of signals, z and
y, with x = (z�y). As in Holmström (1979), one could for example think of z as being

10In fact, it is easy to find examples where CISP fails with as little as n = 2 i.i.d. signals. Thus, Corollaries
1 and 2 are of value even when n is small.
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signals or results that are directly payoff relevant to the principal, and of y as signals
whose only function is to reduce the agency costs.

There are nz signals in z and ny signals in y, with nz + ny = n. The two vectors have
distribution functions G(z|a) and H(y|a), respectively. Assume that the two vectors of
signals are independent of each other, with joint distribution F(x|a) = G(z|a)H(y|a). As
another example, z and y could represent the answers to identical consumer surveys
administered to two different consumers. Conditional on the fixed action—such as the
effort the salesman has devoted to rehearsing the sales pitch both consumers are sub-
jected to quite independently—it does not seem unreasonable to assume that z and y are
themselves independent. The next section considers how to determine, e.g., the optimal
number of consumers to survey.

Letting g and h denote the densities, independence implies that

la(x|a) = l
g
a(z|a)+ lha(y|a)�

where l
g
a(z|a) = ga(z|a)/g(z|a) and lha(y|a) = ha(y|a)/h(y|a). Note that if l

g
a(z|a) and

lha(y|a) are �-antitone, then so is la(x|a). To employ Proposition 3, however, it is also
required that Faa ≥ 0. Unfortunately, this is not implied by assuming that G and H sat-
isfy MLRP and LOCC. The reason is that in the multivariate case, MLRP does not seem
to imply, e.g., Ga ≤ 0. Thus, another assumption is required.

Definition 5 (NLOP). A distribution function F(x|a) has the nonincreasing lower or-
thant probability (NLOP) property if Fa(x|a) ≤ 0 for all x and all a.

The NLOP property is inspired by Conlon’s nondecreasing increasing-set probability
(NISP) property that Pa(x ∈ E|a) ≥ 0 for all increasing sets E.11 Note that NISP implies
NLOP. Conlon notes that NISP is satisfied whenever MLRP holds and the signals are affil-
iated (see the Appendix). Given that NLOP and LOCC for G and H guarantee that these
are decreasing and convex in a, it follows that F(x|a) is convex as well (it satisfies LOCC).

Proposition 5. Assume G(z|a) and H(y|a) are independent and each satisfies NLOP
and LOCC. Assume l

g
a(z|a) and lha(y|a) are �-antitone and that ω is n-antitone. Finally,

assume the second-best action is in (a�a). Then the FOA is valid not only if the principal
has access to either z or y, but also if he has access to both.12

Proposition 5 can clearly be extended to any arbitrary number of non-overlapping
vectors of signals. Technically, the proposition also implies Corollary 1. The reason is
that independent signals are affiliated, and so MLRP implies NLOP. For completeness,
the next result records the obvious generalization of Corollary 2.

11As Conlon (2009a) remarks, NISP is in turn inspired by Sinclair-Desgagné’s (1994) generalized stochas-
tic dominance condition. Conlon (2009a) imposes NISP to handle a risk averse principal.

12The caveat to Propositions 5 and 6 as well as Corollaries 1 and 2 is that it is implicitly assumed that the
FOA yields wages in the interior for all n under consideration. As mentioned earlier, this is typically satisfied
if u is large enough.
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Proposition 6. Assume G(z|a) and H(y|a) are independent and each satisfies NLOP
and CLOCC. Assume l

g
a(z|a) and lha(y|a) are �2-antitone and that ω is 2n-antitone. Fi-

nally, assume the second-best action is in (a�a). Then the FOA is valid not only if the
principal has access to either z or y, but also if he has access to both.

6. Multi-signal monitoring

A common approach to monitoring is to hold fixed the number of signals. For instance,
Kim (1995) and Demougin and Fluet (2001) develop ways to rank the informativeness
of different information systems. Allgulin and Ellingsen (2002) and Holmström and Mil-
grom (1994) provide somewhat different models in which the principal can invest in the
accuracy of the information system. Both models predict that the agent is induced to
work harder when it becomes cheaper to improve the information system.

Alternatively, Holmström (1979) examines when the agency costs diminish as more
signals are added, and how the optimal contract changes for a given action.13 Conceptu-
ally, the number of signals is thus endogenous, and determined by their costs and their
ability to reduce agency costs.

It should also be clear that the principal is likely to induce a different action when
the information system changes. However, Holmström (1979) does not analyze how
the second-best action changes as more signals are acquired. I focus on that question
here. For concreteness, I pursue the question in the context of a particularly tractable
setup, which I refer to as the square root, independent tasks (SQIT) model. The SQIT
model is sufficient to demonstrate a few interesting negative results. For instance, more
monitoring may lead to an action further removed from the first best. First, however, the
structure of the LEN and SQIT models are contrasted. They are compared more fully in
the Appendix.

Example 2 (Linear-exponential-normal model). The static linear-exponential-normal
(LEN) model assumes that the agent’s action costs are monetary, and that utility of in-
come is exponential (exhibiting constant absolute risk aversion). Bernoulli utility is thus
−e−r(w−c(a)), r > 0. The agent’s action, a, determines the means of n jointly normally dis-
tributed signals. The covariance matrix is independent of a. The contract is restricted to
be linear in the signals. See Holmström and Milgrom (1988, 1991, 1994) for applications.
Holmström and Milgrom (1987) provide a dynamic foundation of the LEN model. ♦

Example 3 (Square root, independent tasks model). As before, assume Bernoulli utility
is v(w) − c(a). The SQIT model makes two additional assumptions. First, utility of in-
come is v(w) = 2

√
w. Second, each dimension of the agent’s action is an independent

task, in the sense that it produces a vector of signals that is independent of the vectors of
signals that are produced by other tasks. The second assumption is discussed and for-
malized in the next section. In this section it suffices to examine the single-task version
of the model.

13Likewise, in the literature on contingent monitoring the principal can purchase another signal after
having observed a first signal; see, e.g., Jewitt (1988, Section 5) who justifies the FOA in such a two-signal
environment (Holmström also mentions contingent monitoring in passing).
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A closed-form solution for the optimal contract can be derived (see the Appendix).
In the single-task case, the expected cost to the principal of inducing a is

K(a) =
(
u+ c(a)

2

)2
+ c′(a)2

4V (a)
�

where

V (a) =
∫

la(x|a)2f (x|a)dx

is the Fisher information. Fisher information is a well known measure of how informa-
tive x is about a. Thus, the SQIT model allows a more flexible information structure than
the LEN model. In particular, the informativeness of the signals may depend on a. This
is not the case in the LEN model where the covariance matrix is independent of a. ♦

Assume that signals can be grouped into independent “blocks,” with each block sat-
isfying the assumptions in Propositions 5 or 6. Since ω is i-antitone for any i in the SQIT
model, the FOA is valid regardless of the number of blocks. Each block could represent,
e.g., a unique consumer survey or referee report or the multidimensional results of a test
of a product sample. The number of blocks is endogenous.

To fix ideas, assume the principal cares directly only about the first block of signals,
which is observed for free (it may represent, e.g., revenue). The Fisher information of
the ith signal block is V i(a) > 0. By independence, the Fisher information of the entire
information system when the principal has acquired the first n blocks is then V (a�n) =∑n

i=1 V
i(a). Recall that the higher is V (a�n) , the more informative is the information

system. This explains why V (a�n) is increasing in n.
From Example 3, the principal’s expected profit from implementing action a with a

total of n signal blocks is

�(a�n|t)=
[
B(a)−

(
u+ c(a)

2

)2]
−

[
c′(a)2

4V (a�n)
+ (n− 1)t

]
� (8)

where t > 0 is the cost of acquiring another block of signals beyond the first. The first
square bracket coincides with the principal’s payoff under full information. Let π(a) de-
note this term. Assuming B(a) is concave, π(a) is then concave. The last terms capture
the agency and signal costs. For simplicity, assume that for any n, the principal’s overall
payoff function �(a�n|t) is single-peaked in a, with an interior maximum that is more
profitable than inducing a with a fixed wage. Note that (8) is concave in V , reflecting
decreasing returns to scale in information. As is intuitive, it can be shown that the op-
timal number of signals (n) weakly increases when information becomes cheaper (t de-
creases). Thus, the comparative statics are the same in the hypothetical situation where
t decreases as in the situation where the principal is initially endowed with n signals and
then exogenously receives more.

Next, observe that if the agency and signal costs are independent of a for all n, then
the second-best action, a∗, in fact coincides with the first best, aFB . This occurs for in-
stance if c′(a) and V i(a) are constant, for all i. Likewise, the second-best action falls
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below the first-best action if the last term in (8) is globally increasing in a. Since c′(a)
is (weakly) increasing, this must happen if V (a�n) is decreasing in a, which in turn is
guaranteed if V i(a) is a decreasing function for all i. If c′(a) is strictly increasing, the
same conclusion obtains even if V (a�n) is constant in a. The Appendix provides suffi-
cient conditions for V i(a) to be decreasing in a, but also presents examples where this
is not the case.

The following examples explore comparative statics. Example 4 builds intuition for
how a∗ changes with n in the simplest setting. Example 5 establishes that the second-
best action may be non-monotonic in the number of signals. Thus, the second best may
move further away from the first best when an additional signal is acquired.14

Example 4. Assume that all signal blocks are identically distributed. Thus, V (a�n) =
nV 1(a). It is easy to see that �(a�n) is supermodular, i.e., �an(a�n) ≥ 0, if (V 1)′(a) ≤ 0.
Thus, a∗ is increasing in n. It follows that as t decreases, a∗ increases. In summary,
a∗ < aFB but cheaper monitoring leads the principal to induce a higher action, such
that a∗ approaches aFB , from below. If (V 1)′(a) > 0 and c′′(a) = 0, then �an(a�n) < 0.
Hence, a∗ declines with t but once again approaches aFB , this time from above. In either
case, when n is small, a∗ is chosen in large part to control agency costs by ensuring that
signals are very informative (V (a∗� n) is large compared to V (aFB� n)). As n increases, the
quality of the information system increases and agency costs are lower, for any a. More
importantly, the value of marginally improving the information system by manipulating
a is lowered as well.15 Thus, distorting the second best away from the first best is less
attractive. Stated differently, it is cheaper for the principal to move the action closer to
the first best as n increases. Note that contrary to Holmström and Milgrom (1994), who
use a version of the LEN model, the second best may increase or decrease as monitoring
becomes cheaper. ♦

Example 5. Assume now that all signal blocks after the first are identically distributed.
Thus, V (a�n) = V 1(a) + (n − 1)V 2(a). Moreover, assume that c′(a) = c and V 1(a) = V 1

are constant but allow V 2(a) to differ from V 1 and to depend on a. Then, without any
additional monitoring (n = 1), the principal induces the first-best action, aFB . When
n > 1, however,

�a(a�n) = π ′(a)+ c2 (V
2)′(a)
4

(n− 1)
V (a�n)2 �

14The second best need not converge to the first best as the number of signals approaches infinity. Imag-

ine that the informativeness of successive signals is rapidly declining. For instance, if Fi(xi|a) = 1−e−xia
−1/i

,
xi ≥ 0, a > 0, then V i(a) = 1/a2i2 and V (a�n) → 1

6π
2/a2 < ∞ as n → ∞. Full information is never ap-

proached, and the second best is bounded away from the first best. An implication is that justifications of
the FOA are relevant even when n is arbitrarily large; it is not the case that the agency problem necessarily
disappears as n→ ∞.

15The agency costs, 1
4 c

′(a)2/(nV 1(a)), are decreasing in V , but at a slower rate the higher n is.
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and it follows that as long as (V 2)′(a) �= 0, it is optimal for the principal to induce an
action different from the first best. Nevertheless, note that the last term in �a(a�n) van-
ishes as n → ∞. That is, in the limit, a∗ converges once again to aFB . Hence, a∗ is non-
monotonic in n. A corollary is that there must be a range of n over which a∗ moves away
from aFB as n increases.16 ♦

7. Extension: Pure multitasking

This section outlines how the new approach can be used to derive the first justifications
of the FOA when the action is multidimensional. Details are given in the Appendix.

A major challenge to extending the FOA to many-dimensional actions is to sign the
multipliers. Thus, I further specialize the model by assuming a certain independence
between the different dimensions of the agent’s action. Conceptually, the different di-
mensions of a can be interpreted as representing distinct tasks. Thus, define a pure
multitasking environment to be any environment where n ≥ m, in which F(x|a) can be
written as

F(x|a) = G1(x1|a1)G
2(x2|a2) · · ·Gm(xm|am)�

where each Gj is a distribution function, and where there is no overlap between the xjs,
such that x = (x1� � � � � xn) = (x1� � � � �xm). Let nj denote the number of signals in xj , with∑

nj = n. Tasks are isolated from one another in the sense that task j is associated with
a particular set of signals, xj , the distribution of which is independent of effort on other
tasks. From the agent’s point of view, the tasks are dependent only through c(a). Let gj

denote the density of Gj .
The pure multitasking environment implies a useful separability between tasks, with

laj (x|a) = ∂ ln f (x|a)
∂aj

= g
j
aj (xj|aj)
gj(xj|aj) �

Thus, in the following discussion laj (x|a) is denoted l
j
aj (xj|aj). The simple structure of

the model along with the additional assumption that Gj(xj|aj) satisfies NISP make it
possible to prove that μj > 0 and establish conditions under which the FOA is valid.
Recall that Gj(xj|aj) automatically satisfies NISP if nj = 1 and MLRP is satisfied. Thus,

in the Appendix I show that the FOA is valid if, for all j, Gj(xj|aj) satisfies NISP, ljaj (xj|aj)
is �-antitone in xj , F(x|a) satisfies the multidimensional version of LOCC (i.e., F(x|a) is
convex in a), and ω is n-antitone. Justifications relying on multidimensional versions of
CISP and CLOCC are also straightforward. A counterpart to the additive property is also
possible under which the FOA remains valid as more and more independent tasks are
added. The SQIT model is reviewed next.

16A referee pointed out that it is easy to construct such examples even in simple models with three action
levels and two outcomes. Assume that with just one signal, the highest action is both first best and second
best. If an additional signal is uninformative at the highest action but very informative at the intermediate
action, the second best may move away from the first best. It is the same logic that is at play in Example 5.
However, the example illustrate the richness of the SQIT model and its tractability even with a continuum
of actions and outcomes.
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Example 6 (Square-root, independent tasks model, continued). Consider a pure mul-
titasking environment with v(w) = 2

√
w. Assuming the FOA is valid, the multipliers can

be derived in closed form, with λ = 1
2(u+ c(a∗)) and μj = 1

2cj(a∗)/Vj(a∗
j ) > 0, where

Vj(a
∗
j ) =

∫
(l
j
aj (xj|a∗

j ))
2gj(xj|a∗

j ) dx

is the Fisher information, measuring how informative xj is about aj . Note that μj > 0
even without assuming NISP. Thus, in the Appendix I prove that the FOA is valid in this
model even in cases where NISP is violated.

The contract can be characterized in closed form. The agent’s utility of income is

v(w(x)) = u+ c(a∗)+
m∑
j=1

(
cj(a∗)
Vj(a

∗
j )
l
j
aj (xj|a∗

j )

)
�

which is separable in the different xjs. Special cases has been considered in the existing
literature. In particular, Jewitt et al. (2008) characterize the solution when n = m = 1.
Holmström (1979) also considers an example with n = m = 1 but he imposes the addi-
tional assumption that x is exponentially distributed.

The cost of implementing a∗ can be computed in the SQIT model. It depends only
on u, c(a∗), and Vj(a

∗
j ) (see the Appendix). Thus, it is feasible to do various comparative

statics exercises in this model. ♦

The Appendix demonstrates that the SQIT model can be used to obtain new eco-
nomic insights and to challenge conclusions based on the LEN model normally used
to examine multitasking. To stage the comparison, note that the reciprocal of a signal’s
variance is a natural measure of its informativeness in the LEN model. The SQIT model
has a similarly clean measure of informativeness, namely Fisher information. However,
a key difference between the two models is that the LEN model assumes that the co-
variance matrix is independent of a, whereas the SQIT model allows Fisher information
to depend on a. As in the examples in Section 6, this property produces an incentive—
which is absent in the LEN model—for the principal to push the agent toward more
informative actions or tasks.

Holmström and Milgrom (1988) remark that if the agent’s cost function is symmetric
in the LEN model, then the agent will be induced to work harder on the more informa-
tive task. This result now seems to be commonly accepted, as evidenced by the expla-
nation in, e.g., Dixit (1997), who states, “[c]onsidering each task in isolation, one with a
more accurately observed outcome would have a higher-powered incentive because the
outcome is a better indicator of the effort one wants to motivate.”

The logic in the above quote implicitly relies on the accuracy of the signals being
independent of the action. However, the principal’s incentive to induce effort on various
tasks changes if and when the quality of the information depends on task levels. To
be clear, a similar effect is also present in the standard single-task model. However, its
significance is amplified in a multi-task setting through the additional decision of how to
distribute total effort among the set of tasks. In fact, this effect alone is sufficient to alter
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some of the equilibrium properties. For instance, the agent may be induced to work
harder on a less informative task. This may occur if the informativeness of the latter
task is very responsive to changes in effort. Likewise, the agent may be induced to work
on two different tasks even if they are perfect substitutes. Such conclusions cannot be
obtained in the LEN model.

8. Conclusion

A new approach to the moral hazard problem has been suggested. The approach is
based on a reformulation of the problem that allows standard results from choice under
uncertainty to be invoked so as to prove new and old results on the FOA.

First, the new approach unifies the proofs of the existing one-task justifications of
the FOA. Second, the approach is utilized to derive new justifications of the FOA in eco-
nomic environments involving multiple signals or multiple tasks. The new multi-signal
justifications are in some ways more tractable than the existing ones. One distinct ad-
vantage is that they are robust to the inclusion of more independent signals. More gen-
erally, the paper’s new additive property establishes conditions under which the prob-
lem is in a sense scale-free. A counterpart to the additive property holds in models with
pure multitasking. Specifically, the FOA remains valid under familiar conditions as more
tasks are added, provided all tasks are stochastically independent. These appear to be
the first multi-task justifications of the FOA.

To illustrate the usefulness of the new justifications of the FOA I examine two ques-
tions that would be hard to answer without these new justifications. The first considers
how many costly signals the principal should acquire and how the second-best action
depends on that number. The second question addresses how to optimally induce the
agent to distribute his effort among a distinct set of tasks. To answer these questions I
present and analyze the SQIT model. The SQIT model remains tractable even as an arbi-
trary numbers of signals or tasks are added. Using this model it is shown that the change
in the second-best action is not unambiguous when more signals are added. In the case
of multitasking, the equilibrium properties are different than those of the popular LEN
model. For example, it may be optimal to induce the agent to work hardest on the least
informative task (see the Appendix). The SQIT model thus cautions that the LEN model
is not robust. The root cause is easily identified: informational quality in the LEN model
is independent of how total effort is distributed among tasks. The SQIT model is richer
because it allows the quality of the information system to depend on effort. Thus, it is
hoped that the SQIT model may in the future function as an alternative laboratory in
which the consequences of moral hazard can be explored. It is especially well suited to
applications in which the quality of the information system is manipulable.

Space considerations precludes more applications of the methodology in this paper.
Kirkegaard (2015) uses the new multi-task justifications of the FOA as a stepping stone
to analyze an extension of the canonical moral hazard model. Specifically, it is assumed
that the agent faces some noncontractible uncertainty. For instance, the agent may earn
income outside of the principal–agent relationship or face uncertainty regarding, e.g.,
his health status. The agent performs two “tasks.” The first task is the job he performs
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on behalf of the principal, while the second represents his pursuit of private rewards.
The FOA can be justified in this setting as well.

This paper has emphasized the ability of the new approach to justify the FOA and
explored some of the implications of these new justifications. However, the methodol-
ogy has uses beyond the FOA. For instance, Kirkegaard (2014) provides the first com-
plete solution to the moral hazard problem under the so-called spanning condition.
Conveniently, it is possible to identify exactly which “nonlocal” incentive compatibility
constraints are binding. Thus, the model is well suited to exploring comparative stat-
ics when the FOA is not valid. In short, the new approach may be a useful tool more
generally.
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