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Efficient cooperation by exchanging favors

Wojciech Olszewski
Department of Economics, Northwestern University

Mikhail Safronov
Department of Economics, University of Cambridge

We study chip-strategy equilibria in two-player repeated games. Intuitively, in
these equilibria, players exchange favors by taking individually suboptimal ac-
tions if these actions create a “gain” for the opponent larger than the player’s “loss”
from taking them. In exchange, the player who provides a favor implicitly obtains
from the opponent a chip that entitles the player to receiving a favor at some fu-
ture date. Players are initially endowed with a number of chips, and a player who
runs out of chips is no longer entitled to receive any favors until she provides a
favor to the opponent, in which case she receives one chip back.

We show that such simple chip strategies approximate efficient outcomes in a
class of repeated symmetric games with incomplete information, in which each
player has two possible types, when discounting vanishes. This class includes
many important applications, studied in numerous previous papers, such as the
favor-exchange model of Möbius (2001), repeated auctions, and the repeated ver-
sion of Spulber duopolies of Athey and Bagwell (2001), among others. We also
show the limitation of chip strategies. For example, if players have more than two
types, then such simple chip strategies may not approximate efficient outcomes
even in symmetric games.

Keywords. Repeated games, efficiency, chip strategies.

JEL classification. C73, D43, D44, D61.

1. Introduction

Favor exchange is a simple principle that is seen in everyday cooperation. Examples
abound in various spheres of human relations, such as employees replacing fellow em-
ployees in performing some duty or neighbors tolerating each other being occasionally
in a bad mood and exhibiting minor offense. This kind of behavior arises in repeated
interactions, where favor providers expect reciprocity when the roles happen to be re-
versed. Usually, it is unlikely to observe long sequences of favors performed in one di-
rection, as favor providers would break cooperation at some point.
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The literature on repeated games or, more generally, dynamic games is very success-
ful in explaining cooperation. Yet this literature emphasizes equilibrium payoffs more
than equilibrium behavior. Cooperation is quite often (i) supported by trigger strate-
gies, which penalize any misbehavior by breaking cooperation, or (ii) attained in strate-
gies constructed by self-generation techniques, which are powerful for characterizing
payoffs, but typically less useful for characterizing behavior.

In this paper, we formally study cooperation in a simple form of favor exchange,
which is often called chip strategies. Some version of chip strategies was introduced
in the context of a (two-player) favor-exchange model by Möbius (2001). Intuitively,
according to these strategies, a player takes an individually suboptimal action if that
action creates a “gain” for the opponent that is larger than the player’s “loss” from taking
it. In exchange, the player implicitly obtains from the opponent a chip that entitles the
player to receiving this kind of favor at some future date. Players are initially endowed
with a number of chips, and a player who runs out of chips is no longer entitled to receive
any favors until she provides a favor to her opponent, in which case the player receives
one chip back.

We show that simple chip strategies, in which one favor is exchanged for one chip,
are capable of approximating efficient outcomes (as the discount factor tends to 1) in a
class of games in which players have private information, and this information evolves
over time according to a Markov process. We view this contribution as providing a pos-
itive model of playing some repeated games with incomplete information.1 This class
of games includes several models studied extensively in the existing literature and has
a large array of applications, including (i) the favor-exchange model studied by Möbius
(2001) (more precisely, a discrete version of this model studied by Abdulkadiroğlu and
Bagwell, Abdulkadiroğlu and Bagwell (2012, 2013), (ii) the repeated version of Spulber
(1995) duopolies studied by Athey and Bagwell (2001) and several other authors, and
(iii) repeated auctions studied by Skrzypacz and Hopenhayn (2004) and others. We show
that in these models, the efficient outcome can be approximated in simple chip strate-
gies, when the discount factor converges to 1; moreover, the proofs of these results are
engagingly simple and potentially applicable to other settings, even those not directly
covered by our analysis.

Perhaps unsurprisingly, we require strong assumptions on the stage game for the
simple chip strategies to be approximately efficient. The stage game must be symmetric,
it must be played by two players, and each player’s private information must be captured
by two possible types. These are essential limitations on the possibility of approximat-
ing efficient outcomes in simple chip strategies. We show in Section 6 that if a stage
game is asymmetric, one must augment chip strategies with a public randomization de-
vice, which allows players to exchange one favor for receiving some chips with some
probability, in other words, to introduce divisible chips. This is what we call random

1In addition, we generalize the existing results obtained in some applications by allowing players’ private
types to evolve over time according to a Markov process.
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chip strategies.2 Furthermore, in Section 7, we show that if players have more than two
types, even these random chip strategies may not approximate efficient outcomes, even
in symmetric stage games.

The trade-off between efficiency and simplicity is not surprising. More complicated
settings clearly require more elaborate incentive schemes. This suggests another ap-
proach to studying chip strategies, parallel to a large volume of recent research in com-
puter science. Namely, simple or random chip strategies may not be efficient in richer
settings, but may still capture a sizable fraction of the maximum total surplus. For exam-
ple, simple chip strategies capture a nontrivial fraction of the maximum total surplus in
the setting studied in Section 6, and so do random chip strategies in the setting studied
in Section 7. But simple chip strategies cannot attain more surplus than repetitions of
stage-game equilibria in the latter case.

In the case of more than two players, an additional difficulty arises if a favor is pro-
vided by more than one player and more than one player benefits from this favor. It
must be decided then who should issue a chip (or what fraction of it) and who should
obtain the chip. This implies that more involved strategies are required to approximate
the efficient outcome. In a companion paper, Olszewski and Safronov (forthcoming),
we provide a more complicated version of chip strategies, constructed by imitating the
Arrow (1979) and d’Aspremont and Gérard-Varet (1979) mechanism. These chip strate-
gies approximate the efficient outcomes for a very large class of two-player games with
any number of types, and, under somewhat more restrictive conditions, for a class of
games with more than two players.

The rest of the paper is organized as follows. The rest of this section contains a litera-
ture review. In Section 2, we present the applications of chip strategies to favor-exchange
model of Möbius (2001) and to repeated auctions. The analysis of these applications
contains the key arguments behind our efficiency results, putting aside some more in-
volved, but rather technical issues. Section 3 contains the general result for symmet-
ric games in which players have two types, and Section 4 contains a discussion of chip
strategies and a discussion of possible extensions of the result. Section 5 provides some
additional applications, including to the repeated duopoly model of Athey and Bagwell
(2001). Sections 6 and 7 study asymmetric games and games in which players have more
than two types. Technically demanding proofs are relegated to Appendices A and B.

1.1 Related literature

To date, chip strategies have appeared in the existing literature only in the context of
specific applications (which we discuss shortly).

Möbius (2001) analyzed a model of voluntary favor exchange between two players.
In his model, favor opportunities arrive according to a Poisson process, and the ben-
efit of receiving a favor exceeds the cost of providing it. In the chip strategies stud-
ied by Möbius (which are somewhat different and less efficient than those studied in
our paper), cooperation breaks down when a player issues a certain number of chips.

2We still require though that the exchange rate between chips and favors does not change with the num-
ber of chips.
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Hauser and Hopenhayn (2008) suggest two improvements to chip strategies that en-
hance the efficiency of equilibria: exchanging favors and chips at different rates (i.e.,
not one to one), and appreciation and depreciation of chips. Solving the model numer-
ically, they demonstrate that for a set of parameter values, the efficiency gains are quite
large. As already mentioned earlier, Abdulkadiroğlu and Bagwell, Abdulkadiroğlu and
Bagwell (2012, 2013) studied a discrete-time version of Möbius’ model. Their 2012 paper
is closely related to our paper, because they analyze chip strategies in the same form as
we do here. They consider a fixed discount factor, identify the optimal number of chips,
and compare this optimal chip mechanism with a more sophisticated favor-exchange
relationship in which the size of a favor owed may decline over time. For any given dis-
count factor, the equilibria in chip strategies obviously cannot be fully efficient, because
incentive compatibility imposes a limit on the number of chips that can be used. None
of these papers shows (explicitly or implicitly) that any kind of chip strategies attain ef-
ficient outcomes when the discount factor converges to 1. With no restriction on strate-
gies, the possibility of attaining efficient cooperation when types are independent and
identically distributed (i.i.d.) follows from the folk theorem for games with adverse se-
lection established in Fudenberg et al. (1994), and when types are Markov, follows from
the folk theorem established in Escobar and Toikka (2013).

The repeated version of Spulber (1995) duopolies (more generally, oligopolies) is an
important application of the present results. These models with i.i.d. types were stud-
ied in Athey and Bagwell (2001), Athey et al. (2004), Hörner and Jamison (2007), and—
with more general Markov types—by Athey and Bagwell (2008) and Escobar and Toikka
(2013). Even though some strategies used by Athey and Bagwell resemble our one-chip-
strategy profiles,3 and some elements of chip strategies appear in Hörner and Jamison
(2007), it remains the case that the primary focus of these papers is not on chip strate-
gies per se. Compared to the strategies used by these authors (even for i.i.d. types), the
chip strategies used in the present paper seem simpler.

Repeated auctions are another important application of our methods. Some papers
on repeated auctions (e.g., Aoyagi 2003, 2007 and Rachmilevitch 2013) explore strate-
gies that share some common features with the chip strategies used in this paper and
in Olszewski and Safronov (forthcoming). Compared to the strategies used by these au-
thors, the chip strategies used in this paper also seem simpler. In addition, our result on
repeated auctions does not follow from the existing results.

In addition, the idea of chip strategies is related, although less directly, to the idea
that money can provide “memory” of past trade (see, e.g., Kocherlakota 1998), to the
idea that a finite amount of continuous money can be used to support incentive com-
patibility in a trading relationship (see, e.g., Athey and Miller 2007), and to the idea that
tokens can facilitate transmission of information on networks (see Wolitzky 2015).

2. Applications

We begin our exposition with two applications. The analysis of these two application
contains the key arguments behind our efficiency results, putting aside some technical
issues that appear in the more general results.

3See also the strategies used in the discussion of their paper in Mailath and Samuelson (2006).
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2.1 Discrete model of favor exchange

We first study a two-player repeated game introduced in Abdulkadiroğlu and Bagwell
(2012), which in turn is a discrete version of the model of favor exchange in Möbius
(2001). In the stage game, either player 1 is given an income of $1 or player 2 is given an
income of $1, or neither player is given any income. The former two events occur with
probability p ∈ (0�1/2) each, and the latter event occurs with probability 1 − 2p. Each
player is privately informed as to whether or not she receives income. Thus, if a player
does not receive income, then she does not observe whether the opponent received any
income. If a player receives income, then the player may transfer the income to the other
player. The transferred income is worth γ > 1 to the receiver, making it value-enhancing.

This game is played repeatedly, states are i.i.d., and the players have a common dis-
count factor δ. The payoffs are normalized by the factor of 1 − δ. The players cannot
store income, that is, income must be either transferred or consumed in the period it
is received. The efficient (total, ex ante) payoff, that is, the maximum of the sum of the
players’ payoffs, is achieved if the income received by any player is transferred to the
other player. This payoff is equal to

v = 2pγ�

2.1.1 Description of efficient chip strategies Consider the following strategies. At the
beginning of each period, each player i holds ki ∈ {0� � � � �2n} chips, where k1 + k2 = 2n.
If player i obtains an income of $1 and ki < 2n, then player i gives the income to player
j and j gives i (implicitly) one chip in return. If ki = 2n, i.e., when i already holds all the
chips, then i consumes the $1 herself. No chip is given in this case. At the beginning of
period 1, each player has n chips.

We obtain the following result, proved in the next two sections.

Proposition 1. For every λ > 0, there exist δ < 1 and n such that if the players’ discount
factor is δ > δ, then the chip-strategy profile with n chips is an equilibrium of the repeated
game and the ex ante payoff of each player in this equilibrium exceeds v/2 − λ.

2.1.2 Continuation payoffs In this section, we analyze the first-order approximation of
players’ payoffs.4 Assuming that both players play the prescribed chip strategies, denote
the continuation payoff of player 1 with k chips by Vk. By the symmetry of our model,
the continuation payoff of player 2 can be examined analogously. These continuation
payoffs are computed before the players learn about their income in the current period.
For k ∈ {1� � � � �2n− 1}, we have

Vk = p
{
(1 − δ)γ + δVk−1

} +pδVk+1 + (1 − 2p)δVk. (1)

The first component of the right-hand side corresponds to the payoff contingent on
player 2 receiving an income of $1 in the current period; the remaining two components

4As noticed by a referee, we do so by solving explicitly (in approximation) what is called, in the literature
on Markov decision processes, the average cost optimality equation. (This equation also plays the key role
in some related papers, e.g., Hörner et al. 2015 and Escobar and Llanes 2016.)
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correspond to player 1 receiving an income of $1 and no player receiving any income,
respectively.

For k= 0 and 2n, we have

V0 = pδV0 +pδV1 + (1 − 2p)δV0, (2)

V2n = p
{
(1 − δ)γ + δV2n−1

} +p
{
(1 − δ)+ δV2n

} + (1 − 2p)δV2n. (3)

2.1.3 Payoff efficiency and incentive constraints We can now demonstrate the effi-
ciency of the prescribed strategies.

Lemma 1. For any given n and λ > 0, there is a δ1 > 0 such that for every δ > δ1, we have

Vk >
2n− 1
2n+ 1

pγ − λ

for all k= 0� � � � �2n.

Proof. The strategies induce a stochastic Markov chain over states k = 0� � � � �2n. By the
ergodic theorem (see, for example, Chapter 1, Section 12, Theorem 1 in Shiryaev 1996)
there exists a probability distribution over states {πk : k = 0� � � � �2n} such that the prob-
ability of being in state k after a sufficiently large number of periods is arbitrarily close
to πk, independent of the initial state.5 This probability distribution is an eigenvector
corresponding to eigenvalue 1 of the transition matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −p p 0 · · · 0
p 1 − 2p p · ·
0 · · · · ·
· · · · · · ·
· · · · · 0
· · p 1 − 2p p

0 · · · 0 p 1 −p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in which the entry in row i and column j is equal to the probability of transiting from
state j to state i. It is easy to verify that the eigenvector corresponding to eigenvalue 1
must have all its coordinates equal to 1/(2n+ 1).

The expected flow payoff of each player is pγ in any state other than 0 and 2n. When
δ is sufficiently close to 1, each player’s continuation payoff is bounded below by any
number lower than pγ(2n− 1)/(2n+ 1), where (2n− 1)/(2n+ 1) is the limit occupation
probability of states other than 0 and 2n. �

It remains to show the incentive compatibility of the prescribed strategies. In this
application, and throughout the rest of the paper, the issue concerns only deterring “on
equilibrium path deviations.” A player can only deviate when she has income, by con-
suming the income herself rather than transferring it to the opponent. The gain of this

5One can easily verify that the assumptions of the ergodic theorem are satisfied; indeed, each state is
reached from any other state in 2n periods with a positive probability.
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deviation, compared to playing as prescribed, is 1 − δ. In turn, the gain from playing the
prescribed strategy, compared to deviating, is that the player will have one more chip in
the next period. We now prove that this gain is larger than 1 − δ.

Lemma 2. For every n, there is a δ2 < 1 and κ > 1 such that for every δ > δ2, we have that
	k := Vk − Vk−1 > κ(1 − δ) for all k= 1� � � � �2n.

Proof. From (1)–(3), by subtracting the equation for Vk−1 from the equation for Vk, we
obtain

	k = pδ	k−1 +pδ	k+1 + (1 − 2p)δ	k

for k= 2� � � � �2n− 1,

	1 = p(1 − δ)γ +pδ	2 + (1 − 2p)δ	1

and

	2n = p(1 − δ)+pδ	2n−1 + (1 − 2p)δ	2n.

For δ = 1, this system of linear equations is satisfied when all 	s are equal to 0. For
δ < 1, the system is harder to solve, so we evaluate 	s in approximation. By the implicit
function theorem, 	s are differentiable functions of δ. By taking the derivatives of the
equations for 	s with respect to δ, and plugging in δ = 1 and 	k = 0 for all k, we obtain
a system of equations for the derivatives of 	s at δ = 1. In the matrix notation and after
we divide by p, this new system of linear equations can be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 · ·
0 · · · · ·
· · · · · · ·
· · · · · 0
· · −1 2 −1
0 · · · 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂	2n/∂δ

·

·

·
∂	1/∂δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
·
·
·
0

−γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This system of linear equations can be solved easily by the Gauss–Jordan elimination
method; the unique solution is given by

∂	k

∂δ
= −(2n− k+ 1)γ + k

2n+ 1
< −1

for all k. Let κ ∈ (1� [2n+γ]/(2n+1)). Then 	k > κ(1−δ) for all k= 1� � � � �2n and δ close
to 1. �

Notice that this system of linear equations is nonsingular, which is equivalent to the
uniqueness of our solution. This validates the use of the implicit function theorem. We
could not use the implicit function theorem to approximate V s directly, because the
matrix of the system of equations (1)–(3) linearized at δ= 1 would be singular.
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2.2 Repeated auctions

In this section, we study the model of repeated auctions, in which the exchange of
cheap-talk messages is allowed. In every period, two players participate in a first-price
auction;6 ties are resolved by a fifty–fifty lottery. At the end of each period, the identity
of the winner, but not the bids, is revealed. Each player receives a private signal about
the object. These signals can take one of two values, H or L; they are i.i.d. over time but
may be correlated across the players. We restrict attention to symmetric signal struc-
tures, that is, to those in which the probability distribution over the signals is exhibited
in the table

player 2’s signal

⎡
⎢⎣
H q 2p

L 1 − 2p− 2q q

L H

⎤
⎥⎦ ,

player 1’s signal

where p�q ≥ 0 and p+ q < 1/2.
A player’s valuation of the object is a function of both signals: that of the player her-

self and that of her opponent. We restrict attention to a symmetric case in which the
players have the same valuation function v. The valuations are strictly positive and in-
creasing in each signal, and each player’s valuation increases in her own signal by more
than in the signal of her opponent. That is, v(H�H) > v(H�L) > v(L�H) > v(L�L) > 0.

The efficient winner of the object is depicted in the table

player 2’s signal

⎡
⎢⎣
H player 2 any player

L any player player 1

L H

⎤
⎥⎦ .

player 1’s signal

Collusion in repeated auctions has been studied by Skrzypacz and Hopenhayn
(2004), Blume and Heidhues (2008), Rachmilevitch (2013), and Aoyagi (2003). The most
advanced result in terms of generated payoffs was obtained by Aoyagi (2007). Allowing
for mediated communication, he showed by modifying self-generation techniques that
efficiency can be attained in a large class of repeated-auction settings.

In our example, types (i.e., signals) can be correlated and values (i.e., payoffs) are
not necessarily private. Thus, the existence of efficient equilibria does not follow from
Escobar and Toikka, because they assume private values and independent types. It does
not follow from Aoyagi (2007) either, because his Assumption 4 is violated. In addition,
if the correlation between players’ types is negative, even Aoyagi’s construction does
not deliver an efficient equilibrium, since players no longer have incentives to report
their types truthfully. Additionally, the result does not follow from Hörner et al. (2015),

6We assume this particular auction format only for concreteness. It is easy to check that all our argu-
ments apply to any auction in which (a) the player who makes a higher bid wins the object, (b) the payment
of a player who bids 0 is 0, and (c) the payment is continuous at 0, that is, the payment of a player who bids
close to 0 must also be close to 0.
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7 because the monitoring structure (only the identity of the winner is revealed) violates
the standard identifiability assumptions. (Furthermore, Hörner, Takahashi, and Vieille
study only equilibria in which players truthfully reveal their types, both on and off the
equilibrium path.)

2.2.1 Description of efficient chip strategies At the beginning of each period, each
player i holds ki ∈ {0� � � � �2n} chips, where k1 + k2 = 2n, and the repeated game begins
with k1 = k2 = n. If ki �= 0�2n, the players report their signals truthfully in the cheap-talk
communication. If the two players report the same signal, they determine by a fifty–fifty
lottery who the winner in the current period will be.8 At the bidding stage, (a) a player
bids ρ if her report is H and the opponent’s report is L, (b) she also bids ρ when the
players reported equal signals, and she was determined to be the winner in the lottery,
(c) she bids 0 if her report is L and the opponent’s report is H, and (d) she also bids 0
when the players reported equal signals and her opponent was determined to be the
winner of the lottery. These actions closely approximate the desired efficient outcome
if ρ is sufficiently small. A player with all 2n chips bids ρ, and a player with 0 chips bids
0, regardless of the signals. After each period, the number of chips held by the winner
decreases by one and number of chips held by the loser increases by one.

If a player wins the auction when she was not supposed to (which cannot happen if
the players play the prescribed strategies), the players switch to playing a bad symmetric
stage-game Bayesian Nash equilibrium described at the end of this section in which
each player’s payoff is strictly less than half of the efficient payoff.

We offer the following result, which is proved in the next two subsections.

Proposition 2. For every λ > 0, there exist δ < 1 and n such that if the players’ discount
factor is δ > δ, then the chip-strategy profile with n chips is an equilibrium of the repeated
auction, and the total payoff in this equilibrium does not fall short of the efficient total
payoff by more than λ.

2.2.2 Continuation payoffs Assuming that both players play the prescribed strategies,
denote by Vk the continuation payoff of player 1, where k ∈ {0� � � � �2n} is the number of
chips she holds. We focus on player 1. The analysis of player 2’s continuation payoffs
is analogous by symmetry. These continuation payoffs are computed before the players
learn their current signals. For k ∈ {1� � � � �2n− 1}, we have

Vk = (1 − δ)C + δVk−1/2 + δVk+1/2,

where

C = pv(H�H)+ qv(H�L)+ (1/2 −p− q)v(L�L)

is the per-period efficient payoff.

7As far as we know, the first version of Hörner et al. (2015) was composed subsequent to the first version
of our paper.

8This lottery can be performed by means of cheap-talk messages.
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For k= 0 and 2n, we have

V0 = δV1

and

V2n = (1 − δ)D+ δV2n−1,

where

D= 2pv(H�H)+ qv(H�L)+ (1 − 2p− 2q)v(L�L)+ qv(L�H).

2.2.3 Payoff efficiency and incentive constraints We can now demonstrate the approxi-
mate efficiency and incentive compatibility of the prescribed strategies.

Lemma 3. For any n and any λ > 0, there is a δ1 > 0 such that for every δ > δ1 and all
k = 0� � � � �2n, we have that Vk does not fall short of a (2n − 1)/4n share of half of the
efficient total payoff C by more than λ.

Proof. As in the case of favor exchange from Section 2.1, the lemma follows from the
ergodic theorem. Indeed, the ergodic probabilities πk, k = 0� � � � �2n, must satisfy the
system of linear equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1/2 0 · · · 0
−1 1 −1/2 · ·
0 · · · · ·
· · · · · · ·
· · · · · 0
· · −1/2 1 −1
0 · · · 0 −1/2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π0

·

·

·
π2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

·
·
·

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This yields π0 = π2n = 1/4n and π1 = · · · = π2n−1 = 1/2n. Thus, the players play ineffi-
cient actions only with a probability close to 1/2n. �

Lemma 4. For every n, there is a δ2 < 1 such that for every δ > δ2, the prescribed chip-
strategy profile is an equilibrium of the repeated game.

Proof. We begin by showing that the players have incentives to report their types truth-
fully. Consider first what they gain or lose in terms of the payoff in the current period by
misreporting. Player 1 loses

(1 − δ)

{
p

2p+ q
v(H�H)+ q/2

2p+ q
v(H�L)

}

by reporting L instead of H, and gains

(1 − δ)

{
q/2

1 − 2p− q
v(L�H)+ 1/2 −p− q

1 − 2p− q
v(L�L)

}
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by reporting H instead of L. Indeed, consider the first formula. When the player’s signal
is H, she assigns probability 2p/(2p + q) to her opponent having signal H; in this case,
she loses v(H�H) with probability 1/2 by reporting L instead of H. Similarly, she assigns
probability q/(2p + q) to her opponent having signal L; in this case, she loses v(H�L)

with probability 1/2 by reporting L instead of H.
Player 1 increases her chance of having k+ 1 chips (instead of having k− 1 chips) by

p+ q/2
2p+ q

= 1
2

if she reports L instead of H, and she decreases her chance of having k+1 chips (instead
of having k− 1 chips) by

1/2 −p− q/2
1 − 2p− q

= 1
2

if she reports H instead of L. Thus, we need to show that

(1 − δ)

{
p

2p+ q
v(H�H)+ q/2

2p+ q
v(H�L)

}
> δ

1
2
(Vk+1 − Vk−1) (4)

and

(1 − δ)

{
q/2

1 − 2p− q
v(L�H)+ 1/2 −p− q

1 − 2p− q
v(L�L)

}
< δ

1
2
(Vk+1 − Vk−1) (5)

for k= 1� � � � �2n.
Let 	k = Vk − Vk−1 for k= 1� � � � �2n. Then for k= 2� � � � �2n− 1, we have

	k = δ	k−1/2 + δ	k+1/2.

At δ= 1, we have 	k = 0 and

∂	k

∂δ
= 1

2
∂	k−1

∂δ
+ 1

2
∂	k+1

∂δ
.

For k = 1�2n, we have

	1 = (1 − δ)C + δ	2/2 − δ	1/2

and so

∂	1

∂δ
= −2C

3
+ 1

3
∂	2

∂δ
;

	2n = (1 − δ)[D−C] + δ	2n−1/2 − δ	2n/2

and so

∂	2n

∂δ
= −2[D−C]

3
+ 1

3
∂	2n−1

∂δ
.

This implies that ∂	k/∂δ is a weighted average of C and D − C for k = 1� � � � �2n. By
the implicit function theorem, this is also true, in approximation, for the expressions on
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the right-hand side (RHS) of (4) and (5) multiplied by 2. Recalling the values of C and D,
by (4) and (5) it suffices to show that

[
q

1 − 2p− q
v(L�H)+ 1 − 2p− 2q

1 − 2p− q
v(L�L)

]

<
[
2pv(H�H)+ 2qv(H�L)+ (1 − 2p− 2q)v(L�L)

]
,[

2pv(H�H)+ 2qv(L�H)+ (1 − 2p− 2q)v(L�L)
]

and

<

[
2p

2p+ q
v(H�H)+ q

2p+ q
v(H�L)

]
.

To see this, notice that each of the four expressions is a weighted average of v(H�H),
v(H�L), v(L�H), and v(L�L), where v(H�H) > v(H�L) > v(L�H) > v(L�L). Notice
next that the weights of the first expression are first-order stochastically dominated by
both the weights of the second expression (the first one on the second line) and the
weights of the third expression (the second one on the second line). In turn, both the
weights of the second expression and the weights of the third expression are first-order
stochastically dominated by the weights of the fourth expression.

Thus, the players have incentives to report their types truthfully. The players have
no incentive to deviate at the bidding stage either, because if such a deviation changed
the auction outcome, it would be detected; the player who was supposed to be the loser
would be the winner (or the other way around).9 This would mean switching to a stage-
game Bayesian Nash equilibrium in which the payoff of each player is strictly less than
half of the efficient payoff. This outcome is worse than playing chip strategies where the
continuation payoff Vk converges to half of the efficient payoff for all k ∈ {0� � � � �2n} if
the discount factor converges to 1 and n is sufficiently large. �

2.2.4 Bad stage-game equilibrium Finally, we need to describe a symmetric stage-
game equilibrium in which the players obtain payoffs so low that they find it unprof-
itable to take any action not prescribed for their reported type profile.

The players are prescribed to play a babbling equilibrium in the stage of reporting
their types. A player who received a low signal bids v(L�L) with probability 1. In turn,
a player with a high signal chooses a bid according to a distribution G(b) with support
[v(L�L)�E(v | H)− q[v(H�L)− v(L�L)]/(q+ 2p)], where

E(v | H)= qv(H�L)/(q+ 2p)+ 2pv(H�H)/(q+ 2p)

is the expected value of the object, contingent on receiving a high signal. If a player who
received a high signal bids b, her payoff is

q

q+ 2p
[
v(H�L)− b

] + 2p
q+ 2p

G(b)
[
v(H�H)− b

]
,

9Here we disregard as profitable any deviations to bids that are greater than 0 but smaller than ρ.
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because she wins with probability 1 against the opponent who received a low signal and
wins with probability G(b) against the opponent who received a high signal. Differen-
tiating this expression with respect to b must yield 0 on the support of the equilibrium
bidding strategy, because the player must be indifferent between all such bids. That is,

2p
q+ 2p

G′(b)
[
v(H�H)− b

] = q

q+ 2p
+ 2p

q+ 2p
G(b),

which yields

G(b)= c

2p
1

v(H�H)− b
− q

2p

for a constant c. Since G(v(L�L)) = 0,

c = q
[
v(H�H)− v(L�L)

]
;

that is,

G(b)= q

2p
v(H�H)− v(L�L)

v(H�H)− b
− q

2p
,

and indeed G(E(v | H)− q[v(H�L)− v(L�L)]/(q+ 2p)) = 1.
The payoff of a player who received a low signal is zero in this equilibrium, and the

payoff of a player who received a high signal is q[v(H�L) − v(L�L)]/(q + 2p). The ex-
pected payoff is q[v(H�L)− v(L�L)], which is strictly less than half of the efficient pay-
off, pv(H�H)+ qv(H�L)+ (1/2 −p− q)v(L�L).

3. Result

We now introduce the general setting. Let G be a two-player game. Denote by Ai the set
of actions and denote by Ti the set of types of player i = 1�2; denote by ui : A1 × A2 ×
T1 × T2 → R the payoff function of player i. In this section, we consider only symmetric
games, i.e., we assume that A1 = A2, T1 = T2, and u1(a1� a2� t1� t2) = u2(a2� a1� t2� t1). The
players are expected-payoff maximizers and discount future payoffs by a common dis-
count factor δ < 1. The payoffs are normalized by the factor of 1−δ. We allow the players
to communicate, i.e., to send cheap-talk messages at the beginning of each period.10

We analyze only games in which each player’s type set has exactly two elements,
i.e., |Ti| = 2 for i = 1�2. We denote these two types by H and L. We assume that the
type profile t = (t1� t2) evolves according to a Markov process, i.e., the probability pt

t+1

of the type profile taking a certain value t+1 in the following period is determined by
its value t in the current period. We impose the following two conditions on transition
probabilities:

10In some games, including the applications to favor exchange or repeated oligopoly, communication is
not necessary. However, in the general case, the players would not be able to coordinate on efficient actions
without learning about the opponents’ types.
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• Full support: All the transition probabilities are positive.11

• Transition probabilities are symmetric across players, i.e.,

pL�L
L�H = pL�L

H�L, pH�H
L�H = pH�H

H�L , pL�H
L�H = pH�L

H�L,

pL�H
H�L = pH�L

L�H , pL�H
L�L = pH�L

L�L , pL�H
H�H = pH�L

H�H .

Denote the six probabilities by ζ, η, ϕ, χ, μ, and ν, respectively. Denote also (for

brevity) pL�L
L�L by pL

L, pL�L
H�H by pL

H , pH�H
L�L by pH

L , and p
H�H
H�H by pH

H . The transition probabil-
ities are exhibited in the following table:

t \ t+1 L, L L, H H, L H, H

L, L pL
L ζ ζ pL

H

L, H μ ϕ χ ν

H, L μ χ ϕ ν

H, H pH
L η η pH

H

In particular, our assumptions are satisfied when each player’s type evolves accord-
ing to a Markov process and types are independent across players.

By the ergodic theorem, there exists the limiting (also called stable or ergodic) distri-
bution over type profiles t.

Proposition 3. There exists a stable distribution over type profiles. If the probability of
profile L, L is denoted as qL, the probability of profile H, H is denoted as qH , and the
probability of each L, H and H, L (which are equal by symmetry) is denoted as q, then
the stable probabilities satisfy the properties

qL + 2q+ qH = 1,

qL = pL
L · qL + 2μ · q+pH

L · qH ,

q = ζ · qL + (ϕ+χ) · q+η · qH ,

qH = pL
H · qL + 2ν · q+pH

H · qH .

For convenience, we assume that the probability distribution over the type profiles
at the beginning of period 1 coincides with stable distribution.

We impose no conditions on the set of actions, except the existence of action profiles
with certain properties, which are introduced later. In particular, we assume that there
exist efficient action profiles, i.e., action profiles that maximize the sum of payoffs for
any given types. By the symmetry of our model, we can with no loss of generality assume
that if (aLH�aHL) is an efficient action profile for type profile (L�H), then (aHL�aLH)

11The main result of this section generalizes to some settings in which full support is violated such as that
from Section 2.1. The only role of full support is to guarantee that the assumptions of the ergodic theorem
are satisfied; more specifically, that there exist a number of periods T such that each state is reached from
any other state with positive probability in T periods.
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is an efficient action profile for type profile (H�L). We can also assume that for type
profiles (H�H) and (L�L), the same actions are specified for both players in an efficient
action profile. These actions are denoted by aHH and aLL, respectively.12 We denote by
v the ex ante efficient total payoff, that is,

v = 2qLu1(aLL�aLL�L�L)+ 2q
[
u1(aLH�aHL�L�H)+ u1(aHL�aLH�H�L)

]
+ 2qHu1(aHH�aHH�H�H).

The players would each achieve the payoff of v/2 if they both report their types truth-
fully and then take the efficient actions. We assume, however, that each player obtains
a higher flow payoff if she reports one of the types—let us say L—no matter what the
player’s actual type is. More precisely, we assume that for any player 1’s current type t1
and any type profile t−1 in the previous period,

Et2

[
u1(aLt2� at2L� t1� t2) | t1� t−1] −Et2

[
u1(aHt2� at2H� t1� t2) | t1� t−1] (6)

is strictly greater than 0. This inequality guarantees that player 1 always prefers reporting
L to reporting H. This assumption makes the setting appropriate for using chip strate-
gies. Indeed, each player would always prefer to play as if she was of type L. However,
this is not what the other player wants. Therefore, every time a player reports her more
preferred type L, but the opponent reports the other type, the opponent provides the
player a favor.

Finally, we assume that there exist action profiles (bL1 � b
L
2 ) and (bH1 � bH2 ) such that

player 1 prefers (b
t1
1 � b

t1
2 ) (out of the two profiles) to be played when her type is t1; these

action profiles “reward” player 1 at the expense of player 2, and are prescribed by chip
strategies when player 2 runs out of chips. These reward actions are required to satisfy
two assumptions. To formulate these assumptions, we now define the four quantities B,
A, B′, and A′, which are equal to the payoff differences between taking the efficient and
the reward actions. We begin with quantity B, defined as

B = ϕ
[
u1

(
bH1 � bH2 �H�L

) − u1(aHL�aLH�H�L)
]

+ ν
[
u1

(
bH1 � bH2 �H�H

) − u1(aHH�aHH�H�H)
]

+μ
[
u1

(
bL1 � b

L
2 �L�L

) − u1(aLL�aLL�L�L)
]

+χ
[
u1

(
bL1 � b

L
2 �L�H

) − u1(aLH�aHL�L�H)
]
.

This quantity is the difference in player 1’s expected flow payoff between playing the
action profiles that reward player 1 and playing the efficient action profiles, contingent

12This assumption is without any loss of generality. If the specified efficient action profile is
asymmetric—take (a1� a2) as an example—then (a2� a1) is also efficient by symmetry, and the specified effi-
cient action profile can be replaced with a fifty–fifty lottery over (a1� a2) and (a2� a1). Such a lottery does not
even require access to any public randomization device. Instead, players can generate the required public
randomization device in communication by randomizing simultaneously over two extraneous messages,
with the interpretation that (a1� a2) is going to be played if the messages “coincide”and (a2� a1) is going
to be played if the messages are different. (See Aumann et al. 1968 for more details on jointly controlled
lotteries.)
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on the type profile being (H�L) in the previous period. We define the second quantity
A as

A= ϕ
[
u1(aLH�aHL�L�H)− u1

(
bH2 � bH1 �L�H

)]
+ ν

[
u1(aHH�aHH�H�H)− u1

(
bH2 � bH1 �H�H

)]
+μ

[
u1(aLL�aLL�L�L)− u1

(
bL2 � b

L
1 �L�L

)]
+χ

[
u1(aHL�aLH�H�L)− u1

(
bL2 � b

L
1 �H�L

)]
.

This quantity is the difference in player 1’s expected flow payoff between playing the ef-
ficient action profiles and playing the action profiles that reward player 2, contingent on
the type profile being (L�H) in the previous period. Note that A ≥ B, since the total pay-
off when playing the reward actions is no higher than the total efficient payoff. Finally,
the quantities B′ and A′ are defined as

B′ = ζ
[
u1

(
bL1 � b

L
2 �L�H

) − u1(aLH�aHL�L�H)
]

+pL
L

[
u1

(
bL1 � b

L
2 �L�L

) − u1(aLL�aLL�L�L)
]

+pL
H

[
u1

(
bH1 � bH2 �H�H

) − u1(aHH�aHH�H�H)
]

+ ζ
[
u1

(
bH1 � bH2 �H�L

) − u1(aHL�aLH�H�L)
]
,

which is the difference in player 1’s expected flow payoff between playing the action
profiles that reward player 1 and playing the efficient action profiles, contingent on the
type profile being (L�L) in the previous period, and

A′ = η
[
u1(aLH�aHL�L�H)− u1

(
bH2 � bH1 �L�H

)]
+pH

L

[
u1(aLL�aLL�L�L)− u1

(
bL2 � b

L
1 �L�L

)]
+pH

H

[
u1(aHH�aHH�H�H)− u1

(
bH2 � bH1 �H�H

)]
+η

[
u1(aHL�aLH�H�L)− u1

(
bL2 � b

L
1 �H�L

)]
,

which is the difference in player 1’s expected flow payoff between playing the efficient
action profiles and playing the action profiles that reward player 2, contingent on the
type profile being (H�H) in the previous period.

We now make two assumptions.

Assumption I. Expressions (6) for t1 = L and any t−1 are greater than A/(1 + (ϕ − χ)),
and expressions (6) for t1 =H and any t−1 are smaller than B/(1 + (ϕ−χ)).

Assumption II. Expressions (6) for t1 = L and any t−1 are greater than B′, and expres-
sions (6) for t1 = H and any t−1 are smaller than A′.

Assumptions I and II look complicated, but are actually not difficult to understand
and interpret. It is easier to explain and comment on them after we introduce our last as-
sumption and define chip strategies. For now, notice that the existence of action profiles
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(bL1 � b
L
2 ) and (bH1 � bH2 ), which reward player 1 at the expense of player 2, is straightfor-

ward under our other assumption that expressions (6) are strictly positive. Indeed, one
can take (bL1 � b

L
2 ) = (bH1 � bH2 ) = (aLH�aHL). If, in addition, player types are i.i.d. (which

yields ϕ = χ) and players’ valuations are private, then these action profiles satisfy As-
sumptions I and II. When types are persistent (e.g., when ϕ is much larger than χ), it
is easy to construct examples in which action profiles (bL1 � b

L
2 ) = (bH1 � bH2 ) = (aLH�aHL)

(as well as any other action profiles (bL1 � b
L
2 ) and (bH1 � bH2 )) violate Assumptions I and II.

Finally, it seems that in simple settings, checking for the existence of action profiles
(bL1 � b

L
2 ) and (bH1 � bH2 ), which reward player 1 at the expense of player 2, and satisfy As-

sumptions I and II, should not be an involved process. (Section 5 provides some exam-
ples.)

We make another assumption.

Assumption III. There exists a “bad” dynamic-game equilibrium, that is, an equilib-
rium in which the payoff of each player is strictly lower than v/2.

The simple chip strategies are defined as follows:

• There are 2n chips, which initially are distributed evenly between the two players.

• If player 1 has k chips and k �= 0 or 2n, then the players take the efficient ac-
tion profile: (aLH�aHL), (aHL�aLH), (aHH�aHH), or (aLL�aLL). The truthfully
reported type profile determines which of the four action profiles is taken.

• If either (aHH�aHH) or (aLL�aLL) is played, then the distribution of chips remains
unaltered. If either (aLH�aHL) or (aHL�aLH) is played, then player 1 or player 2,
respectively, gives a chip to the opponent.

• In the limit state k = 2n, the action profile (bL1 � b
L
2 ) or (bH1 � bH2 ) is played, depend-

ing on the report of player 1, and player 1 gives player 2 a chip. In the limit state
k = 0, the action profile (bL2 � b

L
1 ) or (bH2 � bH1 ) is played, depending on the report of

player 2, and player 2 gives player 1 a chip.

• The bad equilibrium is played off the equilibrium path.

Some additional remarks on action profiles (bL1 � b
L
2 ) and (bH1 � bH2 ) and Assumptions I

and II seem helpful. Assumptions I and II capture incentive constraints in terms of
primitives of the model; more precisely, they guarantee that players are willing to re-
ceive a favor and give away a chip only when it is efficient to do so, which incentivizes
truthtelling. To understand that Assumptions I and II indeed guarantee the right incen-
tives, consider first the case when types evolve over time in the i.i.d. manner, with each
player having either type with probability 1/2. In this case, expressions A/(1 + (ϕ− χ))

and B/(1 + (ϕ−χ)) reduce to simply A and B.
In addition, suppose that there are only two chips in the economy, and each player

has exactly one chip. In this case, if player 1’s type is L, she loses (6) in which t1 = L by
reporting H, compared to reporting honestly. In turn, she gains A in the next period if
player 2 happens to report H in the current period, and gains B′ in the next period if
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player 2 happens to report L in the current period. So the next-period gain is a weighted
average of A and B′. By the first parts of Assumptions I and II, the loss exceeds the gain.
Similarly, if player 1’s type is H, she gains (6) in which t1 =H by reporting L, compared to
reporting honestly. In turn, she loses A′ in the next period if player 2 happens to report
H in the current period, and loses B in the next period if player 2 happens to report L
in the current period. So, the next-period loss is a weighted average of A′ and B. By the
second parts of Assumptions I and II, the loss again exceeds the gain. The argument in
the general case with n > 1 chips is more involved, because the future gain or loss is not
immediate. However, this gain or loss still turns out to be a weighted average of A and
B′ or A′ and B.

In the general Markov case, a factor of 1 + (ϕ − χ) appears in Assumption I as a de-
nominator for values A and B, but not for values A′ and B′. The reason is that values
A and B apply to the limit states with no chips or 2n chips, given that the previous type
profile was (L�H) or (H�L), respectively. Then, even when a player with no chips (for
example, player 1) obtains a chip back, the fact that the previous type profile was (L�H)

indicates some persistence in returning to the state in which player 1 has no chips (when
ϕ > χ) or indicates some persistence in moving away from the state in which player 1
has no chips (when ϕ < χ). This is so because the play returns (or moves away) from
this state only when the reported type profile is (L�H) (or (H�L), respectively). In com-
parison, this factor does not appear in Assumption II, because it only applies after player
1 has misreported her type: (i) when the type profile in the previous period was (L�L),
which moved the play to the state in which player 1 has 2n chips, and (ii) when the type
profile in the previous period was (H�H), which moved the play to the state in which
player 1 has no chips. Additionally, the fact that the previous type profile was (L�L) or
(H�H) indicates no persistence.

Finally, note that Assumptions I and II are motivated by a specific idea or form of
cooperation. Namely, players exchange favors for chips, and when a player runs out of
chips, she must provide a favor to the opponent. In addition, we assumed that (a) this
favor must be provided in the next period and (b) must depend only on the type of the
player with all the chips. Assumptions I and II were chosen to guarantee the existence
of such favors that provide the right incentives. Conditions (a) and (b) can be relaxed,
which is discussed in the following section. More generally, one can design the play in
the limit states by referring to a variety of other repeated-game strategies that reward
one player at the expense of the other player. This would increase the number of set-
tings in which such modified chip strategies attain an almost efficient outcome, but our
equilibria would lose some of their “chip-strategy flavor,” and we would depart from the
goal of attaining efficient outcomes in simple strategies.

We obtain the following result.

Proposition 4. For every λ > 0, there exist δ < 1 and n such that if the players’ discount
factor is δ > δ, then the chip-strategy profile with n chips is an equilibrium and the ex
ante payoff of each player in this equilibrium exceeds v/2 − λ.

The proof can be found in Appendix A.
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Remark 1. Assumption I is the weakest assumption that guarantees satisfying the in-
centive constraints and it cannot be relaxed. It follows from the proof that for any
given n, the expected value for player i of having an additional chip changes with the
current number of i’s chips k, and is always (in approximation) a weighted average of
A/(1 + (ϕ−χ)) and B/(1 + (ϕ−χ)) (given the play when k = 0 or 2n). When k/2n→ 0,
that weighted average converges to A/(1 + (ϕ−χ)), and when k/2n→ 1, that weighted
average converges to B/(1 + (ϕ − χ)). Thus, Assumption I would precisely require sat-
isfying the incentive constraints to report truthfully if the value of having an additional
chip was equal to one of these limit values.

At the same time, Assumption II could be somewhat weakened. This assumption
incentivizes player i to report truthfully whenever (i) i has 2n − 1 chips and ti = L, and
(ii) i has 1 chip and ti = H, and Assumption II does so regardless of i’s beliefs on j’s type.
One could alternatively assume that player i is incentivized only for i’s actual beliefs
about j’s type. However, those beliefs depend on i’s type ti as well as past type profile
t−1. So, the “new” Assumption II would be weaker but would consist in total of eight
different conditions.

4. The play in limit states

When a limit state of k = 0 or 2n chips is reached, simple chip strategies from Sec-
tion 3 prescribe the action profiles (bL1 � b

L
2 ) and (bH1 � bH2 ) (or (bL2 � b

L
1 ) and (bH2 � bH1 )) to be

played for one period, after which the play leaves the limit state. These action profiles
were assumed to reward the player with all chips at the expense of the player with no
chips (compared to playing the efficient actions), to depend only on the report of the
player with all chips, and to satisfy Assumptions I and II. This design of the play in limit
states was sufficient for approximating efficient outcomes, but not necessary. In some
games such action profiles may not exist, but by slightly modifying the play when the
limit state is reached, we may construct equilibrium strategies that still approximate the
efficient outcomes.

For example, in the favor-exchange model, we stay in a limit state until the player
who ran out of chips has an opportunity to provide a favor to the opponent. Such an op-
portunity may not come in a single period, in which case the play stays in the limit state
for longer. In other versions of the favor-exchange model, efficiency may be attained
only by requiring the player who ran out of chips to provide more than one favor to the
opponent before leaving the limit state (now, it is rather a limit phase), and this required
number of favors may even be random if players can use a public randomization device.

More specifically, one can design a limit phase as follows. Let τ be a stopping time,
which takes as input the type profiles reported by players in the limit phase, from its
first period to the current period, and delivers as output the decision whether the play
should leave the limit phase in the following period (i.e., the player who has no chip
should be given a chip back). Suppose that until τ delivers the decision of leaving the
limit phase, players are prescribed some actions, and these actions may depend on the
reported types.

For example, we assumed in Section 3 that τ was always delivering the decision of
leaving the limit phase in the following period, independently of the reported types, and
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the prescribed action profiles (bL1 � b
L
2 ), (bH1 � bH2 ), (bL2 � b

L
1 ), or (bH2 � bH1 ) depended only on

the type (L or H) reported by the player having all chips. In the favor-exchange model,
the decision to leave the limit phase in the following period is delivered only when the
player running out of chips makes a transfer or reports being given a dollar.13 The pre-
scribed actions were that no player makes any transfer until this happened, and that the
player running out of chips (and only this player) makes the transfer when she reports
being given a dollar. (Notice that the prescribed actions depend in this case only on the
type reported by the player having no chips.)

Of course, not all described designs of the play in the limit phases guarantee that
chip strategies are an equilibrium and approximate the efficient outcome. The general
idea behind the limit states (phases) is that the player with all the chips is rewarded at the
expense of the player with no chips, compared to playing the efficient actions. This gives
chips value. This value (which typically varies with the number of chips) can never be so
low that a player with type H prefers reporting H to reporting L, and the value of a chip
cannot be so high that a player with type L prefers reporting L to reporting H. Being in
this right range of values is guaranteed in Section 3 by Assumptions I and II. Analogous
conditions for some other strategies in limit phases can be derived by inspecting the
proof of Proposition 4. However, the conditions in the general case are rather involved.

In addition, if the actions prescribed in the limit phase depend on players’ types,
players must have incentives to report their types truthfully. In Section 3, this is guaran-
teed by requiring actions to depend only on the report of the player with all chips, who
can choose between two action profiles: (bL1 � b

L
2 ) and (bH1 � bH2 ) in the case of player 1 or

(bL2 � b
L
1 ) and (bH2 � bH1 ) in the case of player 2. Finally, the limit phase must in expectation

be sufficiently short, since it would otherwise create nonvanishing inefficiency.

5. Other applications

Our result has a number of applications. We now discuss several of them.

5.1 Spulber’s duopoly

Consider the repeated version of Spulber’s (1995) duopoly model, introduced to the lit-
erature by Athey and Bagwell (2001), in which two firms meet in periods t = 1�2� � � � .
Each firm’s cost of producing one unit of a good takes the value c = c or c, and follows
a first-order Markov process. The cost of a firm in the following period is equal to the
current cost with probability p ∈ [1/2�1), and is different from the current cost with the
remaining probability. The costs of the two firms are independent random processes.

In every period of this dynamic game, firms select prices simultaneously. A single
consumer is willing to pay up to r > c > c dollars for one unit of the good and buys from

13The favor-exchange model is somewhat specific, because the action space depends on an agent’s type,
and the reporting of types is not necessary.

So we refer here to an “isomorphic” model in which a transfer is assumed to be always feasible, but at
an infinite (or sufficiently high) cost if a player has not been given the dollar. Then, making a transfer is
equivalent to the player reporting being given a dollar, and making no transfer is equivalent to the player
reporting not being given a dollar.
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the firm that offers a lower price; if the two prices are equal, the consumer buys from
each firm with a fifty–fifty chance.

Firms are expected-profit maximizers and discount future payoffs by a common dis-
count factor δ < 1. In period 0, the cost of each firm takes the value c or c with a fifty–fifty
chance. Then the efficient, or most collusive, total payoff of the two firms is

v = r − 3
4
c − 1

4
c.

Our main result has the following implication.

Proposition 5. For every λ > 0, there exist δ < 1 and n such that if the players’ discount
factor is δ > δ, then the simple chip-strategy profile with n chips is an equilibrium, and
the ex ante payoff of each firm in this equilibrium exceeds v/2 − λ.

The simple chip strategies are constructed as follows. On the equilibrium path, if in
some period, one firm charges a lower price than the other, then it serves the consumer,
but gives an implicit chip to the other firm, and if one of the firms has no more chips, it
lets the other firm serve the consumer for one period and receives one chip for this favor.
Off the equilibrium path, the firms play a bad dynamic-game equilibrium. In terms of
our general result, this means that the firms charge prices aLH = aLL = r − ρ, aHL =
aHH = r, where ρ is a small number, and (bL1 � b

L
2 ) = (bH1 � bH2 ) = (r − ρ� r). Assumptions I

and II reduce to just saying that (r − c)/2 > (r − c)/2 > 0. Indeed, given the last period’s
type profile being (H�L), the difference in player 1’s expected payoff between playing
(bL1 � b

L
2 ) and (bH1 � bH2 ) and playing the efficient action profiles is

B = p2[r − c] + (1 −p)p

[
r − c

2

]
+p(1 −p)

[
r − c

2

]
∈

(
2p

r − c

2
�2p

r − c

2

)
,

where ρ is taken to be 0. The difference in player 2’s expected payoff between playing
the efficient action profiles and playing (bL1 � b

L
2 ) and (bH1 � bH2 ) is

A= p2[r − c] +p(1 −p)

[
r − c

2

]
+p(1 −p)

[
r − c

2

]
∈

(
2p

r − c

2
�2p

r − c

2

)
.

Similarly,

B′ = p2
[
r − c

2

]
+ (1 −p)2

[
r − c

2

]
+p(1 −p)[r − c]

= p2
[
r − c

2

]
+ (

1 −p2)[ r − c

2

]
∈

(
r − c

2
�
r − c

2

)

and

A′ = p(1 −p)[r − c] + (1 −p)2
[
r − c

2

]
+p2

[
r − c

2

]

= (
1 −p2)[ r − c

2

]
+p2

[
r − c

2

]
∈

(
r − c

2
�
r − c

2

)
.
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Off the equilibrium path, i.e., when a firm charges a price other than r or r − ρ, or
does not charge the prescribed price in states k = 0 or 2n, the firms switch to playing a
“bad” equilibrium, in which both firms obtain relatively low payoffs. The bad equilib-
rium used in this particular game can be, for example, the worst carrot-and-stick equi-
librium from Athey and Bagwell (2008).

In Athey and Bagwell’s carrot-and-stick equilibria, there are two states. In the war
state, both firms choose a price γ lower than r, and in the reward state, both firms charge
price r. The firms begin in the war state. In the war state, if both firms choose price γ < r,
the firms switch to the reward state with a probability μ, and return to the war state with
the remaining probability. In the reward state, if both firms choose price r, the firms
remain in the reward state with probability 1. In each period, if any firm charges a price
other than the prescribed price, the firms switch to the war state with probability 1.

The off-equilibrium payoff of each firm, when the discount factor converges to 1,
is bounded by r/2 − c/2 − c/2, regardless of the current cost profile, which is less than
the efficient payoff.14 Notice that in this application, chip strategies require no explicit
communication, because types are revealed through actions.

5.2 Taking turns

Suppose two individuals have to perform an unpleasant duty, such as cleaning their
shared apartment. This task must be performed in every single period. The cost of per-
forming the task is ci = c or c, i = 1�2, where c < c ∈ (1�2). The single player’s payoff from
having the task performed is 0, and the payoff is equal to −1 otherwise. The costs are in-
dependent across individuals and Markov over time. It is efficient if the task is always
performed by an individual with lower cost.

This model was studied by Leo (2015), who assumed that the costs are i.i.d. over
time, but allowed them to have more than two values; for example, to be continuously
distributed on (1�2). He showed numerically that the total payoff achieved by the simple
chip mechanism (with a sufficiently large number of chips and for the parameter values
assumed in the numeric exercise) converges to an appropriately defined second-best
outcome.

The approximate efficiency and incentive compatibility of the simple chip strategies
in Leo’s (2015) model with two possible cost values follow from our result. The effi-
cient actions are aLH is to perform or volunteer, aHL is to do nothing, aHL and aLH
are the symmetric actions, and (aLL�aLL) = (aHH�aHH) is the action profile in which
each individual performs the duty with probability 1/2.15 Finally, the action profile
(bL1 � b

L
2 ) = (bH1 � bH2 ) requires individual 2 to perform the task no matter what the cost

profile, while the action profile (bL2 � b
L
1 ) = (bH2 � bH1 ) requires individual 1 to perform the

task no matter what the cost profile. The bad equilibrium is not cleaning the apartment.

14The bound follows from the fact that strategies are independent of the firms’ costs.
15This action profile is feasible with a public randomization device, but does not require access to any

public randomization device, since players can generate the fifty–fifty lottery by communication.
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5.3 Other versions of favor exchange

In Section 2, we analyzed the version of the favor-exchange model introduced by
Abdulkadiroğlu and Bagwell (2012). The efficiency of chip strategies for this version of
the model does not follow directly from our main result (Proposition 3).16 One can, how-
ever, formulate an alternative favor-exchange model that captures the same idea as that
from Abdulkadiroglu and Bagwell, and that is covered by our more general setting in
Section 3. Suppose that in each period, each of two players has some good, let us say an
apple, that can be consumed by one of the players. The private type, high or low, of a
player i = 1�2 is the value of consuming any apple; “high” means that a player is hungry
and “low” means that she is not hungry. That is, player i’s utility from consuming each
apple in a given period is equal to her type in that period. In each period, each player
announces her type, and the player with the higher type consumes the two apples; if
both players announce the same type, they consume their apples themselves. A bad
repeated-game equilibrium in this setting means the players always consume their ap-
ples themselves. Now, it follows from Proposition 3 that simple chip equilibria approxi-
mate the efficient outcome.

5.4 Dynamic cheap talk

Suppose a sender recommends to a receiver one of two actions, say, to invest in a risky or
in a safe asset. The sender is equally likely to obtain the signal that the receiver should
invest in the risky asset as well as the signal that the receiver should invest in the safe
asset. The sender always gets an additional payoff if the receiver invests in the risky
asset; this additional payoff is higher conditional on the signal that the receiver should
indeed invest in the risky asset. The efficiency requires the “right” action of the receiver,
and the receiver will invest in the safe asset in the absence of any advice from the sender.

Since the game is asymmetric, our results do not apply directly. However, the ap-
proximate efficiency and incentive compatibility follow from analogous arguments. In
such a simple chip equilibrium, the sender recommends the right investment and the
receiver follows the sender’s advice. The receiver gives a chip to the sender if she invests
in the safe asset and takes a chip from the sender otherwise. The receiver always takes
the risky action if the sender collects all the chips and always takes the safe action if the
receiver collects all the chips.

6. Asymmetric games

So far, we have assumed the symmetry of a stage game and the symmetry of transition
probabilities. In this section, we use an example to show that the efficient outcome may
not be approximated in simple chip strategies in asymmetric settings. Then we intro-
duce a slightly more general class of random chip strategies and show that the efficient
outcome in this example can be approximated in this more general class. Random chip

16Indeed, the simple chip strategies are defined somewhat differently for k = 0 and 2n. A player with no
chips obtains a chip from the opponent only when she provides a favor.
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strategies differ from simple chip strategies in that they allow for different exchange rates
between favors and chips for different players. These different rates are implemented by
allowing for chips and favors to be provided or transferred only with some probability.
We still require the exchange rate between favors and chips to be independent of the
current state (i.e., the number of chips owned by each player) as long as the play has not
reached a limit state.

Consider the game in which the signal of player 1 determines which actions are ef-
ficient. This is a feature of numerous settings, including some asymmetric versions of
favor-exchange models and repeated auctions. More specifically, suppose that in each
period, players have an indivisible good, such as an apple, to share. If player 1’s signal is
high, then player 1 values the apple more; if player 1’s signal is low, player 2 values the
apple more. (For example, the value of the apple is constant for player 2, but varies over
time for player 1.) Player 1 obtains signal high with probability θ and obtains signal low
with the remaining probability. Suppose further that player 1 suggests who should con-
sume the apple (e.g., by saying “mine” or “yours”), and player 2 can agree or disagree. If
player 2 disagrees, no player is allowed to consume the apple. Otherwise, the apple is
allocated according to player 1’s suggestion.

The efficient outcome is attained when player 1 consumes the apple contingent on
signal high and player 2 consumes the apple contingent on signal low. If θ = 1/2, the ef-
ficient outcome can be approximated in equilibrium by the following simple chip strate-
gies. Players begin with n chips each. Player 1 consumes the apple and gives player 2 a
chip when player 1 says “mine.” In turn, player 2 consumes the apple and gives player 1
a chip when player 1 says “yours.” This is contingent on the number of chips not reach-
ing a limit value. In a limit state, player 1 says “mine” or “yours,” depending on whether
she or her opponent has all the chips and independent of her signal, and player 2 agrees
with this suggestion. Any off-equilibrium action triggers the phase in which no player is
ever allowed to consume an apple.

By arguments analogous to those used in Section 2.1, when θ = 1/2, one can show
that for every λ > 0, if players’ discount factor exceeds some cutoff and the initial num-
ber of chips n is large enough, then the simple chip-strategy profile with n chips is an
equilibrium of the repeated game, and the total payoff in this equilibrium falls below
the efficient total payoff by at most λ. (We omit the details of this proof.)

The above result, however, is no longer true when θ �= 1/2, as shown by the result
below.

Proposition 6. Suppose that θ �= 1/2. Then there exists a bound K > 0 such that for
all δ < 1, the ex ante expected total payoff of any simple chip strategies is lower than the
efficient total payoff at least by K.

Proof. Let θ > 1/2. Denote by k the number of chips that player 1 has. Then the transi-
tion probability from the state with k chips to the state with k− 1 chips is θ > 1/2, while
that to the state with k + 1 chips is 1 − θ < 1/2. Since the transition probability from
the state with 2n chips to the state with 2n − 1 chips and from the state with 0 chips to
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the state with 1 chip is equal to 1, the ergodic probability distribution over states πk,
k= 0�1� � � � �2n, must satisfy the system of linear equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 − θ 0 · · · 0
1 0 1 − θ · ·
0 θ 0 1 − θ · ·
· · · · · · ·
· · θ 0 1 − θ 0
· · θ 0 1
0 · · · 0 θ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π2n

·

·

·
π0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π2n

·

·

·
π0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This system can be solved by the Gauss–Jordan method. This yields

π2n = (1 − θ)

(
1 − θ

θ

)2n−2( 1
θ

)

·
{

1 +
(

1
θ

)[
1 +

(
1 − θ

θ

)
+ · · · +

(
1 − θ

θ

)2n−2]
+ (1 − θ)

(
1 − θ

θ

)2n−2(1
θ

)}−1
.

Thus the probability of being in an inefficient state 2n is

π2n →n→∞
2θ− 1

2θ
> 0.

This yields the required bound, since the efficient total payoff could be approximated in
simple chip strategies only when the probability of being in an inefficient state is limited
to 0. �

Remark 2. It can be shown that equilibria in simple chip strategies approximate out-
comes in which 1/2θ of the efficient total payoff is attained. We omit the proof of this
result.

We now show that the efficient outcome can be approximated by random chip strate-
gies. These strategies allow for using a public randomization device. Suppose that
θ > 1/2. When player 1 says “mine,” she obtains the apple, but gives player 2 a chip only
with probability p such that pθ = 1 − θ. Player 2 obtains the apple and gives player 1 a
chip (with probability 1) when player 1 says “yours.” This is contingent on the number of
chips not reaching a limit value. For a limit value, the apple is allocated independently
of player 1’s signal. Player 1 obtains the apple with a (presumably large) probability r2n
if player 2 has no chips, and player 1 obtains the apple with a (presumably small) prob-
ability r0 if player 1 has no chips. With probability 1 − θ, one chip is returned to the
player who currently has no chips. Off the equilibrium path, no player is ever allowed to
consume an apple.

Proposition 7. For every λ > 0, there exist δ < 1 and n such that if the players’ discount
factor is δ > δ, then a random chip-strategy profile with n chips is an equilibrium, and the
ex ante expected total payoff in this equilibrium is no lower than the efficient total payoff
by more than λ.
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Proof. The fact that the total payoff from the random chip strategies converges to the
efficient total payoff (as the number of chips 2n diverges to ∞) follows from the ergodic
theorem by the same arguments we used previously. In fact, the transition matrix is the
same as that in the proof of Lemma 1 if we replace p in the matrix from that proof with
1 − θ.

To show that incentive constraints are satisfied, we first evaluate the continuation
payoff of player 1; this payoff is denoted by Vk. For k ∈ {1� � � � �2n− 1}, we have

Vk = θ
{
(1 − δ)AH + δ

(
pVk−1 + (1 −p)Vk

)} + (1 − θ)δVk+1,

where At is the value of an apple for type t of player 1 being equal to high or low. For
k= 0 and 2n, we have

V0 = r0
[
(1 − δ)θAH + (1 − δ)(1 − θ)AL

] + θδV0 + (1 − θ)δV1,

V2n = r2n
[
(1 − δ)θAH + (1 − δ)(1 − θ)AL

] + θδV2n + (1 − θ)δV2n−1.

It follows that for the difference 	k = Vk − Vk−1,

	k = θpδ	k−1 + θ(1 −p)δ	k + (1 − θ)δ	k+1

for k= 2� � � � �2n− 1, which yields (since 1 − θ = pθ)

∂	k

∂δ
= 1

2
∂	k−1

∂δ
+ 1

2
∂	k+1

∂δ
, (7)

where the derivatives are evaluated at δ= 1. In addition, note that 	k = 0 for δ= 1.
Similarly,

	1 = (1 − r0)(1 − δ)θAH − r0(1 − δ)(1 − θ)AL + (1 − θ)δ	2 + θδ(1 −p)	1,

∂	1

∂δ
= −(1 − r0)θAH + r0(1 − θ)AL

2 − 2θ
+ 1

2
∂	2

∂δ

and

	2n = −(1 − r2n)(1 − δ)θAH + r2n(1 − δ)(1 − θ)AL + (1 − θ)δ	2n−1 + θδ(1 −p)	2n,

∂	2n

∂δ
= (1 − r2n)θAH − r2n(1 − θ)AL

2 − 2θ
+ 1

2
∂	2n−1

∂δ
.

Take r0 and r2n such that

−(1 − r0)θAH + r0(1 − θ)AL

2 − 2θ
= −1

2(1 +p)
AH ,

(1 − r2n)θAH − r2n(1 − θ)AL

2 − 2θ
= −1

2(1 +p)
AL.

Such values of r0� r2n ∈ (0�1) exist, since the left-hand side (LHS) falls below the RHS for
r0 = 0, but the LHS exceeds the RHS for r0 = 1; also, the LHS exceeds the RHS for r2n = 0,
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but the LHS falls below the RHS for r2n = 1. Thus,

∂	1

∂δ
= −1

2(1 +p)
AH + 1

2
∂	2

∂δ
(8)

and

∂	2n

∂δ
= −1

2(1 +p)
AL + 1

2
∂	2n−1

∂δ
. (9)

Equations (7)–(9) imply that 	k for k= 1� � � � �2n, for a sufficiently large discount fac-
tor and in approximation, is a convex combination of (1 − δ) 1

1+pAL and (1 − δ) 1
1+pAH .

This in turn implies that player 1 has the right incentives. Indeed, by “reporting” high
instead of low, player 1 gains AL, but loses one chip with probability 1 −p and loses two
chips with probability p; by reporting low instead of high, player 1 loses AH , but gains
one chip with probability 1 −p and gains two chips with probability p. �

Propositions 6 and 7 suggest a number of conclusions and conjectures. Note that
the symmetry of payoffs is inessential for approximating the efficient outcome in simple
chip strategies. Indeed, for θ = 1/2, the simple chip strategies are (approximately) effi-
cient, no matter by how much the value of an apple for player 1 exceeds (or by how much
it falls below) that for player 2 contingent on high (respectively, low) signal. This is intu-
itive since neither efficiency nor incentives depends on the symmetry of gains and losses
across players. What matters for the inefficiency result in Proposition 6 is the asymmetry
in the frequency with which each player needs a favor (represented by θ �= 1/2). Simple
chip strategies treat players’ needs symmetrically and fail to counteract this asymmetry,
which results in a positive frequency of being in an inefficient state in which one of the
players is running out of chips. Random chip strategies restore efficiency by carefully se-
lecting the probability of issuing chips to exactly offset the asymmetry in the frequencies
of favor needs.

We conjecture that in asymmetric games with two players of two types each, random
chip strategies attain approximate efficiency under assumptions that are similar to those
in Section 3. Note also that the inefficiency of simple chip strategies, represented in
the limit by the probability (2θ − 1)/2θ of being in an inefficient state, monotonically
vanishes as the asymmetry disappears (i.e., as θ → 1/2). We conjecture that this property
of vanishing inefficiency of simple chip strategies is true in a more general setting, such
as that studied in Section 3.

7. More than two types, more than two players

The case of more than two types turns out to be even more challenging. We demonstrate
below that even random chip strategies may not approximate efficient outcomes. Con-
sider the model in which two players have an apple in each period. Suppose that there
are three possible, equally likely values of the apple, 1, 2, and 3, that are i.i.d. over time
and independent across players.
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In symmetric random chip strategies,17 each player begins the game with n chips.
If player i announces type t ∈ {1�2�3} that is higher than type s ∈ {1�2�3} announced
by player j, then player i consumes the apple and gives player j a chip, but only with
some probability that depends on the two announcements. That is, if t > s, then player
i gives player j a chip with probability ps�t . If the players announce the same type, then
the state (i.e., the number of chips owned by each player) is unchanged and each player
consumes the apple with probability 1/2. If a player reaches 0 chips, the player’s oppo-
nent consumes the apple with probability q (presumably large) and gives the player a
chip with probability pr .

The efficient outcome is attained when, in each period, a player with higher type
consumes the apple. So the total efficient payoff is

5
9

· 3 + 3
9

· 2 + 1
9

· 1 = 22
9

.

We show that the following statement holds.

Proposition 8. There exist δ < 1 and V < 22/9 such that for all δ > δ, if the payoff of a
random chip-strategy profile exceeds V , then that profile is not incentive compatible.

The proof of this result can be found in Appendix B.
Proposition 8 concerns strategies such that the probabilities ps�t may depend on the

number of states (that is, they may depend on n), but are not allowed to depend on
the current state (i.e., the number of chips owned by each player). One may wonder
whether the efficient outcome could be attained if we allow them to depend on the cur-
rent state. We conjecture, but have not proved formally, that the answer is positive. The
intuition is that we could imitate the strategies used in our companion paper (Olszewski
and Safronov forthcoming), which in turn imitate the mechanism from Arrow (1979)
and d’Aspremont and Gérard-Varet (1979).

The case of more than two players raises yet an additional difficulty, namely, groups
of players may provide favors to other groups of players, and the contribution of differ-
ent players from the former groups, as well as the benefits to the players from the latter
groups, may be different. This must be reflected in the transition of chips among the
players.

Overcoming these difficulties calls for more involved strategies, which is somewhat
in conflict with the objective of providing a positive model of playing dynamic games. In
the companion paper (Olszewski and Safronov forthcoming), we suggest a more com-
plicated version of chip strategies, constructed by imitating the mechanisms in Arrow
(1979) and d’Aspremont and Gérard-Varet (1979), which approximate the efficient out-
comes for a large class of games (even with more than two players).

Remark 3. An inspection of the proof of Proposition 8 shows that the only equilib-
rium in simple chip strategies is the repetition of the bad stage-game equilibrium, in
which each player consumes the apple with probability 1/2, independent of players’

17Since the game is symmetric, assuming the symmetry of strategies is without loss of generality.
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types, whereas some random chip strategies attain a higher fraction of the maximum
total surplus.

Appendix A

The simple chip-strategy profile has 4(2n + 1) − 6 states. Each state is described by a
number k ∈ {0�1� � � � �2n} and the profile of players’ types t = (t1� t2) ∈ {L�H}2 as reported
in the previous period, with the exception that k = 0 implies that t = (L�H) and k = 2n
implies that t = (H�L). The number k stands for player 1 having k chips.

A.1 Continuation payoffs

As in Section 2.1.2, we analyze players’ continuation payoffs using the average cost opti-
mality equations. Assuming that both players play the prescribed strategies, we analyze
the continuation payoffs of player 1; the continuation payoff (of player 1) in state k, t is
denoted by Vk�t . By the symmetry of our model, the continuation payoff of player 2 can
be analyzed analogously. These continuation payoffs are computed before the players
learn about their types in the current period. For k ∈ {1� � � � �2n− 1}, we have

Vk�L�H = (1 − δ)
{
ϕu1(aLH�aHL�L�H)+μu1(aLL�aLL�L�L)

+ νu1(aHH�aHH�H�H)+χu1(aHL�aLH�H�L)
}

(10)

+ δ{ϕVk−1�L�H +μVk�L�L + νVk�H�H +χVk+1�H�L},

Vk�L�L = (1 − δ)
{
ζu1(aLH�aHL�L�H)+pL

Lu1(aLL�aLL�L�L)

+pL
Hu1(aHH�aHH�H�H)+ ζu1(aHL�aLH�H�L)

}
(11)

+ δ
{
ζVk−1�L�H +pL

LVk�L�L +pL
HVk�H�H + ζVk+1�H�L

}
,

Vk�H�H = (1 − δ)
{
ηu1(aLH�aHL�L�H)+pH

L u1(aLL�aLL�L�L)

+pH
Hu1(aHH�aHH�H�H)+ηu1(aHL�aLH�H�L)

}
(12)

+ δ
{
ηVk−1�L�H +pH

L Vk�L�L +pH
HVk�H�H +ηVk+1�H�L

}

and

Vk�H�L = (1 − δ)
{
χu1(aLH�aHL�L�H)+μu1(aLL�aLL�L�L)

+ νu1(aHH�aHH�H�H)+ϕu1(aHL�aLH�H�L)
}

(13)

+ δ{χVk−1�L�H +μVk�L�L + νVk�H�H +ϕVk+1�H�L}.

For k = 0 and 2n, we have

V0�L�H = (1 − δ)
{
ϕu1

(
bH2 � bH1 �L�H

) +μu1
(
bL2 � b

L
1 �L�L

)
+ νu1

(
bH2 � bH1 �H�H

) +χu1
(
bL2 � b

L
1 �H�L

)}
+ δ{ϕV1�L�H +μV1�L�L + νV1�H�H +χV1�H�L},
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V2n�H�L = (1 − δ)
{
χu1

(
bL1 � b

L
2 �L�H

) +μu1
(
bL1 � b

L
2 �L�L

)
+ νu1

(
bH1 � bH2 �H�H

) +ϕu1
(
bH1 � bH2 �H�L

)}
+ δ{χV2n−1�L�H +μV2n−1�L�L + νV2n−1�H�H +ϕV2n−1�H�L}.

A.1.1 Payoff efficiency of prescribed strategies We can now demonstrate the approxi-
mate efficiency of the prescribed strategies.

Proposition 9. For every λ > 0, there exist δ < 1 and n0 such that for every δ > δ and
n > n0, we have that ∣∣∣∣Vk�t − v

2

∣∣∣∣ < λ

for all k= 0� � � � �2n and t ∈ {L�H}2 (t = (L�H) when k = 0 and t = (H�L) when k= 2n).

Proof. The strategies induce a stochastic Markov chain over states k, t. It is easy to
check that in 2n + 2 periods, each state is reached from any other state with positive
probability. Thus, by the ergodic theorem there exists a probability distribution over
states {πk�t : k� t} such that the probability of being in state k, t after a sufficiently large
number of periods is arbitrarily close to πk�t . This probability distribution is an eigen-
vector of the transition matrix corresponding to eigenvalue 1.

To estimate the probabilities {πk�t : k� t}, consider first an auxiliary Markov chain
with 8n states in which, instead of the states with k = 0 or k = 2n, we have four states
{0�2n}, t for t ∈ {L�H}2. One should think of the “number” {0�2n} as being between the 1
and 2n− 1. The transitions are as in the Markov chain induced by our strategies, except
states {0�2n}, t. In state {0�2n}, (L�H), the chain transits to 1, (H�L) with probability
χ, transits to 2n− 1, (L�H) with probability ϕ, and transits to {0�2n}, (L�L) and {0�2n},
(H�H) with probabilities μ and ν, respectively. In state {0�2n}, (H�L), the chain transits
to 1, (H�L) with probability ϕ, transits to 2n − 1, (L�H) with probability χ, and tran-
sits to {0�2n}, (L�L) and {0�2n}, (H�H) with probabilities μ and ν, respectively. In state
{0�2n}, (L�L), the chain transits to 1, (H�L) and to 2n−1, (L�H) with probability ζ each,
transits to {0�2n}, (L�L) with probability pL

L, and transits to {0�2n}, (H�H) with proba-
bility pL

H . In state {0�2n}, (H�H), the chain transits to 1, (H�L) and to 2n−1, (L�H) with
probability η each, transits to {0�2n}, (L�L) with probability pH

L , and transits to {0�2n},
(H�H) with probability pH

H .
The ergodic theorem still applies to the new chain. For any t = (t1� t2) ∈ {H�L}2, this

new chain is completely symmetric across states k, where k= 1� � � � �2n− 1, {0�2n}, and,
therefore, for any k, the sum of ergodic probabilities πk�t over t ∈ {L�H}2 is equal to
1/2n.

Claim 1. We show that ergodic probabilities πk�t are proportional to the corresponding
ergodic probabilities of the Markov process over type profiles. More precisely, πk�(L�L) =
qL/2n, πk�(H�H) = qH/2n, and πk�(L�H) = πk�(H�L) = q/2n = (1 − qH − qL)/4n for all k.
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Indeed, the current state can be equal to k, (H�H) when (a) the previous state was
equal to k, (L�L) and then the Markov process transits to k, (H�H) with probability
pL
H , (b) the previous state was equal to k, (H�H) and then the Markov process transits

to k, (H�H) with probability pH
H , (c) the previous state was equal to k − 1, (H�L) or

k+ 1, (L�H) and in each of the two cases, the Markov process transits to k, (H�H) with
probability ν. This yields

πk�(H�H) = νπk�(L�H) +pL
Hπk�(L�L) +pH

Hπk�(H�H) + νπk�(H�L).

Similarly,

πk�(L�L) = μπk�(L�H) +pL
Lπk�(L�L) +pH

L πk�(H�H) +μπk�(H�L).

In turn, the current state can be equal to k, (H�L) only when the previous state was
k − 1, t. (Recall that k = {0�2n} is a number that is one above k = 2n − 1 and one below
k = 1.) This happens with probability ζ if t = (L�L), with probability η if t = (H�H),
with probability ϕ if t = (H�L), and with probability χ if t = (L�H). This yields

πk�(H�L) = χπk−1�(L�H) + ζπk−1�(L�L) +ηπk−1�(H�H) +ϕπk−1�(H�L).

Similarly,

πk�(L�H) = ϕπk+1�(L�H) + ζπk+1�(L�L) +ηπk+1�(H�H) +χπk+1�(H�L).

By the symmetry of our auxiliary Markov chain, we must have that πk�t does not depend
on k and πk�(L�H) = πk�(H�L). Therefore, such a solution πk�t of this system of four equa-
tions must coincide with the solution of the equations from Proposition 3. This gives the
claim.

We now return to the analysis of original chain induced by our strategies.

Claim 2. We show that the ratio πk�t/π1�(L�H), for k = 0�1 and all t, is independent of n,
and so is the ratio πk�t/π2n−1�(H�L) for k= 2n− 1�2n and all t.

Similarly to the proof of the previous claim, we obtain the “ergodic” equations

π0�(L�H) = ϕπ1�(L�H) + ζπ1�(L�L) +ηπ1�(H�H) +χπ1�(H�L),

π1�(H�H) = νπ1�(L�H) +pL
Hπ1�(L�L) +pH

Hπ1�(H�H) + νπ1�(H�L) + νπ0�(L�H),

π1�(L�L) = μπ1�(L�H) +pL
Lπ1�(L�L) +pH

L π1�(H�H) +μπ1�(H�L) +μπ0�(L�H),

and

π1�(H�L) = χπ0�(L�H).

Divide each equation by π1�(L�H). This yields a system of equations with variables
πk�t/π1�(L�H) for k = 0�1 and t �= (L�H). This system has a unique solution, independent
of n, and this yields the first part of the claim. Obviously, the second part can be proved
in an analogous way.
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Claim 3. We show that ergodic probabilities πk�t are proportional to the corresponding
ergodic probabilities of the Markov process over type profiles from Proposition 3; that is,

πk�(L�L)/qL = πk�(H�H)/qH = πk�(L�H)/q = πk�(H�L)/q

for k= 2� � � � �2n− 2.

Indeed, notice first that by symmetry π2�(H�L) = π2n−2�(L�H). Next observe that ex-
cept states 2, (H�L) and 2n − 2, (L�H), the ergodic equations for states k, t, where
k = 2� � � � �2n− 2, include no probability π0�d , π1�d , π2n−1�d , or π2n�d , for any d ∈ {L�H}2.
This means that for any given π2�(H�L) and π2n−2�(L�H), the remaining probabilities πk�t ,
where k= 2� � � � �2n− 2, are determined by these ergodic equations.

The original chain induced by our strategies can be obtained from the chain used
in Claim 1 by renaming state {0�2n}, (L�H) as 0, (L�H), renaming state {0�2n}, (H�L)

as 2n, (H�L), changing appropriately the transition probabilities in these two states,
and removing states {0�2n}, (L�L) and {0�2n}, (H�H). This means that for any given
π2�(H�L) = π2n−2�(L�H), the remaining probabilities πk�t , where k = 2� � � � �2n− 2, are de-
termined by the same ergodic equations as in the case of the original chain induced by
our strategies. In addition, since by Claim 1, πk�(L�L)/qL = πk�(H�H)/qH = πk�(L�H)/q =
πk�(H�L)/q = π2�(H�L)/q = π2n−2�(L�H)/q for k = 2� � � � �2n − 2, the same must be true
when πs are replaced with πs. �

To complete the proof of Proposition 9, notice that the ergodic equations for 2,
(H�L) and 2n− 2, (L�H) imply that π2�(H�L) is a weighted average of π1�t for t ∈ {L�H}2

and π2n−2�(L�H) is a weighted average of π2n−1�t for t ∈ {L�H}2. This together with
Claims 2 and 3 implies that any two probabilities πk�t , where k = 0�1�2n − 1�2n and
t ∈ {L�H}2, are proportional to π2�(H�L), and the coefficients of this proportionality de-
pend only on p, that is, are independent of n. Thus, all probabilities converge to zero as
n diverges to infinity.

Since our strategies are inefficient only in states 0, (L�H) and 2n, (H�L), this means
that as 1 − δ is sufficiently close to 0, the inefficiency is approximately proportional to
the sum of the ergodic probabilities of states 0, (L�H) and 2n, (H�L). Therefore, it dis-
appears when n diverges to infinity. By symmetry of the strategies, the payoff of each
player is close to half of the efficient payoff.

A.1.2 Incentive constraints We now turn to verifying the incentive constraints. The
constraints for the states in which k = 0 or 2n are immediate, since no player wants to
trigger the bad equilibrium, the action profiles bL and bH are independent of the report
of the player with no chips, and the player with all chips can choose between bL and bH .
Thus, consider the states in which k is such that 0 < k < 2n. For each of these 8n − 4
states, there are two constraints to check: one for the player with type L and one for the
player with type H.

Suppose that the play is in state k, t. We check the constraints for player 1. (By
symmetry, this implies the constraints for player 2.) Consider first the effect of playing
the prescribed strategies, compared to a deviation, on the state in the following period. If
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t1 =L, by reporting honestly, player 1 will be in a state with one fewer chip compared to
reporting state H, but the distribution over the next period’s type profiles t+1 ∈ {L�H}2

will be exactly the same under the two possible reports. Similarly, if t1 = H, player 1 will
be in a state with one more chip by reporting honestly compared to reporting L, but the
distribution over t+1 ∈ {L�H}2 will be exactly the same. This is so because the state in
the next period depends on the actual type of the player, not the reported type.

Let 	k�t := Vk�t − Vk−1�t for all k and t. The continuation payoff of player 1 of type
L with k chips decreases in expectation when reporting truthfully compared to lying
about her type. This loss in continuation payoff is a weighted average of 	k�(L�H) and
	k+1�(L�L), with weights depending on the type profile t−1 in the previous period. (For
example, for t−1 = (L�L), the loss of continuation payoff equals 	k�(L�H) · ζ/(ζ + pL

L) +
	k+1�(L�L) · pL

L/(ζ + pL
L).) Additionally, player 1 of type H gains by reporting truthfully

(in terms of the continuation payoff) a weighted average of 	k�(H�H) and 	k+1�(H�L). In
turn, when reporting truthfully rather than lying, the player of type L gains expression
(6) for t1 = L as a payoff in the current period and the player of type H loses expression
(6) for t1 = H.

Proposition 10. For all k= 1� � � � �2n−1 and t, player 1 has incentives to report her type
honestly.

Proof. We first establish the relationships between various 	s. For k= 2� � � � �2n− 1, by
applying (10)–(13), we obtain

	k�L�H = δ{ϕ	k−1�L�H +μ	k�L�L + ν	k�H�H +χ	k+1�H�L}, (14)

	k�L�L = δ
{
ζ	k−1�L�H +pL

L	k�L�L +pL
H	k�H�H + ζ	k+1�H�L

}
, (15)

	k�H�H = δ
{
η	k−1�L�H +pH

L 	k�L�L +pH
H	k�H�H +η	k+1�H�L

}
, (16)

and

	k�H�L = δ{χ	k−1�L�H +μ	k�L�L + ν	k�H�H +ϕ	k+1�H�L}. (17)

In turn, for k= 1 and t = (L�H), and k = 2n and t = (H�L), we obtain

	1�L�H = (1 − δ)A+ δ{−ϕ	1�L�H +χ	2�H�L} (18)

and

	2n�H�L = (1 − δ)B + δ{χ	2n−1�L�H −ϕ	2n�H�L}. (19)

Finally, we must also introduce the terms 	1�H�H and 	2n�L�L because, in states with
k = 1, chip player 1 of type H may deviate by reporting L, and in states with k = 2n− 1,
chips player 1 of type L may deviate by reporting H. This results in moving to a state
with 0 or 2n chips, respectively, but at profile t = (H�H) or (L�L). We have that

	1�H�H = δ{−η	1�L�H +η	2�H�L} + (1 − δ) ·A′
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and

	2n�L�L = δ{ζ	2n−1�L�H − ζ	2n�H�L} + (1 − δ) ·B′. (20)

For δ = 1, this system of linear equations is satisfied by all 	s being equal to 0. For
δ < 1, we evaluate 	s in approximation by referring to the implicit function theorem. By
taking the derivatives of the equations for 	s with respect to δ, and plugging in δ = 1
and 	k�t = 0 for all k and t, we obtain a system of equations for the derivatives of 	s
at δ = 1. That is, if we replace each 	k�t by its derivative ∂	k�t/∂δ, then our system of
linear equations must be satisfied for δ= 1, and (1 − δ)A and (1 − δ)B must be replaced
with −A and −B, respectively. We now show how to solve this new system of linear
equations of variables ∂	k�t/∂δ. This enables us to evaluate 	k�t ≈ (1 − δ) · (−∂	k�t/∂δ).
(In particular, we see that the solution of this new system is unique, which validates the
use of the implicit function theorem as well as guarantees that all 	s being equal to 0 is
a unique solution of the system for δ = 1.)

First, add together the equations for ∂	k�t/∂δ’s corresponding to (14)–(17), with
weights equal to the ergodic probabilities of stable distribution in Proposition 3. That
is, one sums up the equations for ∂	k�t/∂δ corresponding to (14) and (17) with weight q
each, the equations for ∂	k�t/∂δ corresponding to (15) with weight qL, and the equations
for ∂	k�t/∂δ corresponding to (16) with weight qH . As a result, we obtain

q · ∂	k�L�H/∂δ+ qL · ∂	k�L�L/∂δ+ qH · ∂	k�H�H/∂δ+ q · ∂	k�H�L/∂δ

= q · ∂	k−1�L�H/∂δ+ qL · ∂	k�L�L/∂δ+ qH · ∂	k�H�H/∂δ+ q · ∂	k+1�H�L/∂δ.

This yields

∂	k�L�H/∂δ+ ∂	k�H�L/∂δ = ∂	k−1�L�H/∂δ+ ∂	k+1�H�L/∂δ.

This equation can also be expressed as ∂	k�H�L/∂δ − ∂	k−1�L�H/∂δ = ∂	k+1�H�L/∂δ −
∂	k�L�H/∂δ, which means that the value of ∂	k�H�L/∂δ − ∂	k−1�L�H/∂δ is the same for
all k. To simplify notation, denote this value by ρ.

Subtracting the equations for ∂	k�t/∂δ corresponding to (14) from that correspond-
ing to (17), we obtain that

∂	k�H�L/∂δ− ∂	k�L�H/∂δ= 2(ϕ−χ)

1 + (ϕ−χ)
ρ,

from which we derive that

∂	k+1�H�L/∂δ− ∂	k�H�L/∂δ = ∂	k+1�L�H/∂δ− ∂	k�L�H/∂δ= 1 − (ϕ−χ)

1 + (ϕ−χ)
ρ. (21)

The last equation shows that the difference between ∂	k�t/∂δs for two consecutive
values of k, given type profiles H, L or L, H, is independent of k. The difference between
∂	k�t/∂δs for two consecutive values of k, given type profiles L, L or H, H is equal to
that given H, L or L, H by the equations for ∂	k�t/∂δ corresponding to (15) or (16). In
particular, this means that the values of ∂	k�t/∂δ change linearly with k.
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We can now find the values of ∂	k�t/∂δ explicitly by using the equations for the states
with extreme numbers of chips k= 1 and 2n. By the equation corresponding to (18),

∂	1�L�H/∂δ = −A+ {−ϕ∂	1�L�H/∂δ+χ∂	2�H�L/∂δ},

and since ∂	2�H�L/∂δ− ∂	1�L�H/∂δ= ρ, this is equivalent to

∂	1�L�H/∂δ = −A+χρ

1 + (ϕ−χ)
. (22)

Similarly by the equation corresponding to (19), as ∂	2n�H�L/∂δ− ∂	2n−1�L�H/∂δ = ρ, we
obtain that

∂	2n�H�L/∂δ= −B −χρ

1 + (ϕ−χ)
. (23)

Applying 2n− 2 times (21), we have that

∂	2n−1�L�H/∂δ = −A+χρ

1 + (ϕ−χ)
+ (2n− 2)

1 − (ϕ−χ)

1 + (ϕ−χ)
ρ

and

∂	2n�H�L/∂δ= −A+χρ

1 + (ϕ−χ)
+ (2n− 2)

1 − (ϕ−χ)

1 + (ϕ−χ)
ρ+ ρ. (24)

Combining (24) and (23), we obtain that

ρ= A−B

1 +ϕ+χ+ (2n− 2)
(
1 − (ϕ−χ)

) .

Using this value of ρ, one can find all ∂	k�t/∂δs for profiles (L�H) and (H�L) by
starting with (22) or (23), respectively, and then recursively applying (21). So, one can
find the (approximate) values of 	k�t for profiles (L�H) and (H�L). In particular, we

can immediately see that
	k�t

1−δ for k = 1� � � � �2n and types H, L and L, H are weighted

averages of A
1+(ϕ−χ) and B

1+(ϕ−χ) , and by (15) or (16), so are
	k�t

1−δ for k = 2� � � � �2n− 1 and

types L, L and H, H. The values of
	k�t

1−δ for k = 1 are the closest to A
1+(ϕ−χ) , and the values

of
	k�t

1−δ for k = 2n are the closest to B
1+(ϕ−χ) .

We can now show that all incentive constraints are satisfied for every given n, pro-
vided the discount factor is large enough.18 By Assumption I from Section 3, the obser-
vation from the previous paragraph shows that player 1 has incentives to report her type
truthfully, except in two cases: (i) when her type is L and she has 2n− 1 chips; (ii) when
her type is H and she has one chip. These two cases are exceptional because the analy-
sis of incentives involves 	2n�(L�L) and 	1�(H�H), respectively. So they must be considered
separately.

Consider case (i). By deviating and reporting H, player 1 gains, compared to report-
ing truthfully, a weighted average of 	2n−1�(L�H) and 	2n�(L�L) (with weights depending

18For larger values of n, the threshold for the discount factor above which the incentive constraints are
satisfied is typically larger.
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on previous type profile t−1), but loses expression (6) for t1 = L and previous type profile
t−1. By Assumption I, 	2n−1�(L�H) is smaller than the loss, and by Assumption II together
with (20), 	2n�(L�L) is smaller than the loss, which prevents player 1 from deviating. Case
(ii) follows from analogous arguments. �

Appendix B

In this appendix, we prove Proposition 8. Recall that the strategies considered in that
proposition specify a (presumably large) probability q such that when a player has no
chips, the player’s opponent consumes the apple with this probability q. Throughout
the proof, we assume that q = 1, which simplifies notation; we comment at the end
regarding why allowing for q < 1 does not affect the result.

Denote by Vk the continuation payoff of player 1 with k chips. Then Vk, 0 < k < 2n,
is equal to

Vk = 1
3

[
1(1 − δ)

1
6

+ δ

(
1
3
Vk + 1

3
[
p1�2Vk+1 + (1 −p1�2)Vk

]

+ 1
3
[
p1�3Vk+1 + (1 −p1�3)Vk

])]

+ 1
3

[
2(1 − δ)

3
6

+ δ

(
1
3
[
p1�2Vk−1 + (1 −p1�2)Vk

]

+ 1
3
Vk + 1

3
[
p2�3Vk+1 + (1 −p2�3)Vk

])]

+ 1
3

[
3(1 − δ)

5
6

+ δ

(
1
3
[
p1�3Vk−1 + (1 −p1�3)Vk

]

+ 1
3
[
p2�3Vk−1 + (1 −p2�3)Vk

] + 1
3
Vk

)]
.

The value function Vk is represented as the sum of three terms; each term corre-
sponds to one of the three player 1 types 1, 2, and 3. For example, the first of these terms
represents the case when the type of player 1 is equal to 1. In this case, player 1 values
the apple at 1 and obtains it with probability 1/6. With probability 1/3, player 2 is also
of type 1 and, therefore, the number of chips remains the same. With probability 1/3,
player 2’s type is 2 and then player 1 obtains a chip with probability p1�2. Finally, with
probability 1/3, player 2’s type is 3, and then player 1 obtains a chip with probability p1�3.

We derive recursive equations for Vk+1 − Vk, for k = 0� � � � �2n − 1, estimate (V1 −
V0)/(V2n − V2n−1), and by referring to this estimate, we conclude that incentive con-
straints cannot be satisfied for all k.

The expression above can be simplified to

Vk = (1 − δ)
22
18

+ δ
[
pVk−1 + (1 − 2p)Vk +pVk+1

]
, (25)
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where

p = 1
9
(p1�2 +p1�3 +p2�3).

For k = 2n, one has

V2n = (1 − δ)2 + δ
[
prV2n−1 + (1 −pr)V2n

]
.

Indeed, if a player has all the chips, she obtains the apple, no matter what the types,
which yields the expected payoff of 2. With probability pr , the opponent obtains a chip
back, and with the remaining probability, the distribution of chips remains unaltered.

When δ goes to 1,

V2n = (1 − δ)2 + δprV2n−1

(1 − δ)(1 −pr)+pr
= (1 − δ)2

pr
+

[
1 − (1 − δ)

pr

]
V2n−1 + o(1 − δ), (26)

where o(1−δ) stands for an expression that goes to 0 (when δ goes to 1) faster than 1−δ.
To check the second equality, multiply it (omitting term o(1 − δ)) by (1 − δ)(1 −pr)+pr

and remove each term containing (1 − δ)2. Similarly, for k = 0, one has

V0 =
[

1 − (1 − δ)

pr

]
V1 + o(1 − δ). (27)

From now on, we omit all terms o(1 − δ), that is, all equalities and equations should
be understood as holding up to such a term. We now derive the recursive formula

Vk = (1 − δ)αk + [
1 − (1 − δ)βk

]
Vk+1 (28)

for some coefficients αk and βk; these coefficients are also determined. By (27), this
formula holds for k = 0 with α0 = 0 and β0 = 1/pr . Assume that it holds for k. Plug the
expression for Vk from (28) into (25) with k replaced with k+ 1 to compute that

Vk+1 = (1 − δ)

(
22

18p
+ αk

)
+

[
1 − (1 − δ)

(
1
p

+βk

)]
Vk+2,

which gives the recursive equations

αk+1 = αk + 22
18p

,

βk+1 = βk + 1
p

.

Since α0 = 0 and β0 = 1/pr ,

α2n−1 = (2n− 1)
22

18p

and

β2n−1 = 1
pr

+ (2n− 1)
1
p

.
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By using (28) for k = 2n− 1 and (26), compute that

V2n =
2s + (2n− 1)

22
18

2s + (2n− 1)
, (29)

where

s = p

pr
.

Thus, V2n is a weighted average of 22/18—the efficient per-player payoff—and 1—
the expected per-player payoff in inefficient states (in which the player with 2n chips
obtains on average the payoff of (1/3)1 + (1/3)2 + (1/3)3 = 2, and the opponent obtains
the payoff of 0). To approximate the efficient outcome, s must be much lower than 2n.
(Recall that the probabilities ps�t are allowed to depend on n.)

First, estimate Vk+1 − Vk, the value of an extra chip for a player with k chips. By (28),

Vk+1 − Vk = −(1 − δ)αk + (1 − δ)βkVk+1.

It also follows from (28) that Vk+1 for k = 0� � � � �2n − 1 is equal to (up to a term of order
(1 − δ)) the same weighted average as V2n in (29). By plugging in this weighted average
for Vk+1 and plugging in the formulas for αk, βk, we obtain that

Vk+1 − Vk = −(1 − δ)k
22

18p
+ (1 − δ)

[
1
pr

+ k
1
p

]2s + (2n− 1)
22
18

2s + (2n− 1)
. (30)

Thus, Vk+1 − Vk is linear in k. At k= 0, one has

V1 − V0 = (1 − δ)
1
pr

2s + (2n− 1)
22
18

2s + (2n− 1)
.

In turn, at k= 2n− 1, one has

V2n − V2n−1 = −(1 − δ)(2n− 1)
22

18spr
+ (1 − δ)

[
1
pr

+ (2n− 1)
1
spr

]2s + (2n− 1)
22
18

2s + (2n− 1)
.

This enables us to compute the ratio of V1 − V0 to V2n − V2n−1 and, using the fact that
2n− 1 must be much larger than s, we obtain that this ratio is close to 11/7.

We can now show that incentive constraints cannot be satisfied for all k. Player 1
with type ti obtains the flow payoff of

(1 − δ)ti
1
6

;

by reporting type 1; if the current continuation payoff is Vk, this report changes her con-
tinuation payoff by [

1
3
p1�2 + 1

3
p1�3

]
(Vk+1 − Vk).
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We have omitted the factor δ, because Vk+1 − Vk is of order 1 − δ, and all our quantities
are evaluated up to terms o(1 − δ).

Therefore, the total effect on payoff of reporting type 2 is

(1 − δ)ti
3
6

+ 1
3
p1�2(Vk−1 − Vk)+ 1

3
p2�3(Vk+1 − Vk),

and the effect on player 1’s payoff of reporting type 3 is

(1 − δ)ti
5
6

+
[

1
3
p1�3 + 1

3
p2�3

]
(Vk−1 − Vk).

The strategies are incentive compatible when every type ti ∈ {1�2�3} of player 1 has
incentives to report this type honestly; in particular, types 2 and 3 cannot prefer to mimic
one another, which means that

(1 − δ)
4
6

≤ 1
3
p2�3(Vk+1 − Vk)+ 1

3
(−p1�2 +p1�3 +p2�3)(Vk − Vk−1) ≤ (1 − δ)

6
6

. (31)

Indeed, the leftmost term in (31) is the stage-game gain of type 2 from reporting type 3,
the rightmost term is the stage-game loss of type 3 from reporting type 2, and the middle
term represents the difference in continuation payoffs contingent on reporting types 2
and 3.

Since Vk+1 − Vk is linear in k (see (30)), when n is large, the ratio of the middle term
from (31) for k= 2 and the middle term from (31) for k= 2n−1 is close to (V1 −V0)/(V2n−
V2n−1). We have established that this last expression is close to 11/7. So (31) can be
satisfied only when the ratio of 6(1−δ)/6 and 4(1−δ)/6 is at least 11/7. Since 3/2 < 11/7,
the strategies cannot be incentive compatible for all k.

Remark 4. Note that the property that the ratio of the rightmost term of (31) to the
leftmost term of (31) is lower than (V1 − V0)/(V2n − V2n−1) is crucial for the conclusion
that the random chip strategies violated incentive constraints. Were it not the case, one
could fairly easily find probabilities p1�2, p1�3, p2�3, and pr such that the strategies would
be incentive compatible and would attain an almost-efficient outcome for large enough
discount factors.

Note also that if we allowed for “probabilistic consumption” of the apple in the limit
states (i.e., for q < 1), then both the values (V1 −V0) and (V2n −V2n−1) would decrease by
the same amount, which would make their ratio even greater than 11/7, and the result
would still hold true.
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Abdulkadiroğlu, Atila and Kyle Bagwell (2012), “Trust, reciprocity and favors in cooper-
ative relationships.” Report. [1192, 1194, 1195, 1213]
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