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Strategy-proof tie-breaking in matching with priorities

Lars Ehlers
Département de Sciences Économiques and CIREQ, Université de Montréal

Alexander Westkamp
Department of Management, Economics and Social Sciences, University of Cologne

A set of indivisible objects is allocated among agents with strict preferences. Each
object has a weak priority ranking of the agents. A collection of priority rank-
ings, a priority structure, is solvable if there is a strategy-proof mechanism that
is constrained efficient, i.e., that always produces a stable matching that is not
Pareto-dominated by another stable matching. We characterize all solvable pri-
ority structures satisfying the following two restrictions:

(A) Either there are no ties or there is at least one four-way tie.

(B) For any two agents i and j, if there is an object that assigns higher priority to i

than to j, there is also an object that assigns higher priority to j than to i.

We show that there are at most three types of solvable priority structures: The strict
type, the house allocation with existing tenants (HET) type, where, for each object,
there is at most one agent who has strictly higher priority than another agent,
and the task allocation with unqualified agents (TAU) type, where, for each object,
there is at most one agent who has strictly lower priority than another agent. Out
of these three, only HET priority structures are shown to admit a strongly group-
strategy-proof and constrained efficient mechanism.

Keywords. Weak priorities, stability, constrained efficiency, strategy-proofness.

JEL classification. C78, D61, D78, I20.

1. Introduction

In this paper we consider various classes of priority-based allocation problems where
a set of indivisible objects is allocated among a finite set of agents and no monetary
transfers are permitted. Agents have privately known strict preferences over available
objects. For any object there is an exogenously given weak priority ordering that speci-
fies strict rankings and ties. We restrict attention to strategy-proof (direct) mechanisms
that provide agents with dominant strategy incentives to report preferences truthfully.1
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We are grateful to the editor and three anonymous referees for their helpful comments and suggestions.
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1Strategy-proofness is the most widely used incentive compatibility requirement in the area of market
design without monetary transfers (see Roth 2008, as well as Sönmez and Ünver 2011, for recent surveys).
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A matching (of agents to objects) is stable if (i) no agent is worse off than receiving no
object (individual rationality), (ii) no agent strictly prefers an unassigned object to her
assignment (non-wastefulness), and (iii) there is no agent i who strictly prefers an object
o (over her assignment) that was assigned to another agent j who has strictly lower pri-
ority for o than i (fairness).2 A matching is constrained efficient (or agent-optimal) if it
is stable and not Pareto-dominated by another stable matching. Our goal is to charac-
terize priority structures that are solvable in the sense of admitting constrained efficient
and strategy-proof mechanisms.

Important real-life examples of the class of problems we analyze are school choice,
where a student’s priority for a school is determined by objective criteria such as dis-
tance or the existence of siblings already attending the school, the allocation of dorm
rooms, where an existing tenant is usually guaranteed priority for her room over others,
and (live-donor) kidney exchange, where a potential donor who is immunologically in-
compatible with her intended recipient is only willing to give her kidney to someone else
if her intended recipient receives a compatible kidney in exchange.3 These three prob-
lems share the feature that priorities are exogenous and commonly known. Further-
more, stability is an important allocative desideratum: For the school choice problem,
an unstable assignment is susceptible to appeals by unhappy parents and may be detri-
mental to public acceptance of an admissions procedure given the absence of a clear
rationale for rejections at over-demanded schools; in the dorm allocation or the kidney
exchange problem, a violation of stability means that some existing tenants/patients
would have been strictly better off not participating in the assignment procedure (stay-
ing in their old room in the former case and sparing their incompatible donor the pain of
kidney extraction in the latter case). While efficiency losses due to stability constraints
may thus be deemed acceptable, it is important to avoid any further efficiency losses
and thus ensure constrained efficiency of the chosen matching. Given the private infor-
mation that is inherent to the problems described above, whether a priority structure is
solvable is an important and practically relevant question.

Prior to our research, the only known types of solvable priority structures were the
strict type, where no two distinct agents can ever have the same priority for an object,
and the house allocation with existing tenants (HET) type, where, for each object, there
is at most one agent who has strictly higher priority than another agent. These positive
results for two very different types of priority structures—one without any ties and one
where, for each object, at least all but one agent have the same priority—may lead one
to believe that there should be many solvable priority structures. Our main result shows
that within a very general class of priority structures, there is at most one type of priority
structure that could be solvable and that has not already been discovered by the existing

See Abdulkadiroğlu et al. (2006) for a fairness rationale supporting strategy-proofness. Budish and Cantillon
(2012) provide a critical perspective on the restriction to strategy-proof mechanisms.

2See Roth and Sotomayor (1990) for an excellent introduction to the theory and applications of stable
matching mechanisms.

3See Abdulkadiroğlu and Sönmez (2003) for an analysis of school choice problems, Abdulkadiroğlu and
Sönmez (1999) for an analysis of the dorm room allocation problem, and Roth et al. (2004) for an analysis
of the kidney exchange problem.
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literature. This gives clear-cut guidance to market designers: If some real-life applica-
tion gives rise to a priority structure that does not belong to one of the three types that
we identify in this paper, one has to give up on either constrained efficiency or strategy-
proofness, and focus on designing a mechanism that achieves a reasonable compromise
between the two conflicting goals.

We consider a very general class of priority structures that satisfies two natural re-
strictions. First, we require that there are either no ties at all or there is at least one
four-way tie. This is likely to be satisfied in real-life applications, such as school choice,
where indifference classes are typically either very small, e.g., when exact grade point
averages (GPAs) and other criteria determine priorities, or very large, e.g., when schools
distinguish only between students living within a certain radius around a school and
those who do not. Second, we require reversibility, meaning that, for any two agents i

and j, if there is an object that assigns higher priority to i than to j, there is also an object
that assigns higher priority to j than to i. This second restriction ensures that possi-
bility results do not depend on intricate assumptions about the correlation of priorities
across objects. Our main result, Theorem 1, shows that within the just described class,
there are at most three types of solvable priority structures: The strict type, the HET type,
and the task allocation with unqualified agents (TAU) type, where, for each object, there
is at most one agent who has strictly lower priority than another agent. As discussed
above, solvability of strict and HET priority structures is well known. To the best of our
knowledge, TAU priority structures have not been explicitly considered in the previous
literature. We have not been able to rule out that TAU priority structures are solvable, but
strongly suspect that they are not. To substantiate our suspicion we show how various
approaches to resolving ties fail to give rise to a constrained efficient and strategy-proof
mechanism. We then shift attention to the stronger incentive compatibility requirement
of strong group-strategy-proofness, which requires that there should never be a group
of agents who can, through a coordinated deviation from truth-telling, obtain an out-
come that is weakly better for each and strictly better for at least one member of the
group. Theorem 2 shows that among all priority structures satisfying reversibility, only
HET priority structures permit a constrained efficient and strongly group-strategy-proof
mechanism. This result only relies on the reversibility assumption and does not require
us to assume that a nonstrict priority structure has at least one four-way tie.

Related literature

In recent years several important contributions have analyzed priority-based allocation
problems with weak priority orders. Erdil and Ergin (2008) study priority-based allo-
cation problems with arbitrary weak priority structures.4 Their main result, which we
use to prove our main results, is that whenever a stable matching is not constrained ef-
ficient, it is possible to increase agents’ welfare via a cyclical exchange of assignments
that respects stability constraints. Erdil and Ergin (2008) also provide a simple example
showing that the introduction of a tie between two agents in a strict priority structure

4Ehlers (2006) was the first to study stable and strategy-proof mechanism for priority-based allocation
problems with weak priorities.
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might result in an unsolvable priority structure. Prior to our research, it was not clear
whether unsolvable priority structures are the norm or an exception. This is not a trivial
question. Importantly, the two types of priority structures that have turned out to be
extremely useful for applications, strict and HET, are highly specific. Our main result
gives a precise sense in which these two classes of priority structures and TAU prior-
ity structures are the only ones that could be solvable without further information on
priority rankings: Any other type of priority structure will be solvable only if it has very
small indifference classes or if agents’ priorities are highly correlated across different
objects. In another important contribution, Abdulkadiroğlu et al. (2009) show that no
strategy-proof mechanism can Pareto-dominate the deferred acceptance (DA) mecha-
nism resulting from some exogenous, i.e., independent of submitted preferences, tie-
breaking rule for all profiles of agents’ preferences. The focus of our analysis is different
since we investigate whether a constrained efficient and strategy-proof mechanism ex-
ists without requiring that the mechanism Pareto-dominates the mechanism induced
by the DA algorithm. This distinction is important since, for example, for HET priority
structures the well known top-trading cycles (TTC) mechanism achieves efficiency and
(strong group) strategy-proofness, but does not Pareto-dominate any DA mechanism
with exogenous tie-breaking.

From the literature on priority-based allocation problems with strict priority orders
the most relevant paper is Ergin (2002). He characterizes the set of strict priority struc-
tures for which stability is compatible with efficiency by means of an acyclicity condi-
tion.5 The result of Ergin (2002) has been extended to the case of weak priority struc-
tures in two ways: First, Ehlers and Erdil (2010) characterize the set of weak priority
structures for which all constrained efficient matchings are guaranteed to be efficient.
Second, Han (2018) characterizes the set of weak priority structures for which a stable
and efficient matching is guaranteed to exist.6 The characterizations in both of the just
mentioned papers rely on different strengthenings of Ergin’s acyclicity condition. The
main difference between this line of research and our analysis is that the former is con-
cerned with the compatibility of two allocative criteria that are known to be in conflict
with each other for most strict priority structures. In contrast, we are interested in char-
acterizing when one allocative criterion—that could always be satisfied if no additional
criteria were imposed—is compatible with dominant strategy incentive compatibility.7

Finally, in an important contribution, Pápai (2000) characterizes the class of strongly
group-strategy-proof, efficient, and reallocation-proof mechanisms for settings in
which priorities are not primitives of the model (or, equivalently, where all agents
have the same priorities for all objects). She shows that mechanisms satisfying the
aforementioned properties work like TTC mechanisms in which agents iteratively ex-
change endowments that they receive according to a fixed hierarchical endowment

5He shows that the very same condition characterizes the sets of strict priority structures for which the
DA is strongly group-strategy-proof and consistent, respectively.

6Han (2018) also characterizes the classes of weak priority structures for which stable, efficient, and
(group) strategy-proof mechanisms exist. We comment on these results below.

7Several other papers have investigated consequences of the structural properties of strict priority struc-
tures; see, e.g., Kesten (2006) and Ehlers and Klaus (2006).
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structure. Hence, the combination of strong group-strategy-proofness, efficiency, and
reallocation-proofness gives rise to endogenously determined priorities. However, for
settings in which priorities are primitives of the model, as in those that we consider in
this paper, TTC-like mechanisms usually fail to satisfy stability since they allow agents
to freely trade their priorities, thus ignoring the veto power that stability constraints be-
stow upon agents. In a more recent contribution, Pycia and Ünver (2017) characterize
the slightly larger class of mechanisms, compared to the class of mechanisms identified
by Pápai (2000), that satisfy strong group-strategy-proofness and efficiency. We discuss
the just mentioned contribution in more detail below, when we explain why (extensions
of) the mechanisms described by Pycia and Ünver (2017) must fail either constrained
efficiency or strategy-proofness for TAU priority structures.

Organization of the paper

The remainder of the paper is organized as follows: Section 2 introduces the basic
priority-based allocation model and solvability. Section 2.1 describes different types of
priority structures that play an important role for our characterization results and states
the solvability of popular priority structures. In Section 3, we first introduce and mo-
tivate the two restrictions we place on priority structures, and then present our main
result, Theorem 1, and outline its proof. Section 3.1 studies the concept of strong solv-
ability. Section 4 concludes. The Appendix contains proofs of the main results and
two key auxiliary results. The Supplemental Appendix, available in a supplementary
file on the journal website, http://econtheory.org/supp/2547/supplement.pdf, contains
proofs of further auxiliary results and a discussion of the assumptions underlying our
main results.

2. Priority-based allocation problems

A priority-based allocation problem is a quadruple (I�O���R) that has the following
components:

• A finite set of agents I = {1� � � � �N}, where N ≥ 1.

• A finite set of objects O.

• A priority structure � = (�o)o∈O , where, for each o ∈ O, �o is a (weak) priority
ordering of I.

• A preference profile R= (Ri)i∈I , where, for each i ∈ I, Ri is a strict preference rela-
tion on O ∪ {i}.

We fix I, O, and � throughout, so that a problem is given by a (strict) preference profile.
We denote by i �o j that agent i has higher priority for object o than agent j and denote
by i ∼o j that i and j have equal priority for o. If i ∼o j and i �= j, we say that there is a
tie between i and j at o. An indifference class of �o consists of a set of agents who are
involved in a tie at o. We say that � is strict if, for all o ∈ O, �o contains no tie. Given an
object o ∈ O and two nonempty disjoint subsets J1� J2 ⊆ I, we write J1 �o J2 if i �o j for

http://econtheory.org/supp/2547/supplement.pdf
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all i ∈ J1 and all j ∈ J2. Given two nonempty disjoint subsets J1� J2 ⊆ I, we write J1 � J2 if
J1 �o J2 for all o ∈ O. For a strict ranking Ri of O ∪ {i} and any two options a�b ∈ O ∪ {i},
we denote by a Pi b that i strictly prefers a to b, and denote by a Ri b that either a Pi b or
a = b. We say that object o is acceptable for i if oPi i (and call o unacceptable otherwise).
We use the convention to write Ri : opq if o Pi p Pi q Pi i and all objects in O \ {o�p�q}
are unacceptable. Let P i denote the set of all strict preference rankings of O ∪ {i} and let
PI = ×i∈IP i denote the set of all preference profiles (or problems).

A matching is a mapping μ : I → I ∪O such that, for all i ∈ I, μ(i) ∈O∪{i}, and for all
distinct i� j ∈ I, μ(i) �= μ(j). Agent i is unmatched under μ if μ(i) = i. Given a matching
μ and o ∈O, let μ(o) := μ−1(o) denote the agent matched to object o (where μ(o) = ∅ if
o is unassigned under μ). Let M denote the set of all matchings. A matching μ is stable
for problem R ∈ PI if it satisfies the following conditions:

(i) It is individually rational, that is, for all i ∈ I, μ(i) Ri i.

(ii) It is non-wasteful, that is, there is no agent–object pair (i�o) such that o Pi μ(i)

and μ(o) =∅.

(iii) It is fair, that is, there is no agent–object pair (i�o) such that o Pi μ(i) and, for
some j ∈ μ(o), i �o j.

A matching μ is fully efficient for problem R ∈ PI if there is no other matching ν such
that, for all i ∈ I, ν(i) Ri μ(i), and, for at least one j ∈ I, ν(j) Pj μ(j). As shown by Ergin
(2002), stability is often incompatible with full efficiency. However, given that the set
of stable matchings is finite, there always exists at least one stable matching that is not
Pareto-dominated by any other stable matching. More formally, we call a matching μ

constrained efficient (or agent-optimal stable) for problem R ∈ PI if (i) μ is stable and
(ii) there is no other stable matching ν such that, for all i ∈ I, ν(i) Ri μ(i), and, for at
least one j ∈ I, ν(j) Pj μ(j). We denote the set of all constrained efficient matchings by
CE�(R). Erdil and Ergin (2008) develop an algorithm for finding constrained efficient
matchings that is based on the observation that whenever a stable matching μ is not
constrained efficient, it is possible to increase agents’ welfare via a cyclical exchange
that respects stability constraints. Formally, fix a problem R ∈ PI , let μ be an arbitrary
stable matching, and say that agent i desires object o at μ if o Pi μ(i), and, for each o,
let Do(μ) denote the set of highest �o-priority agents among those who desire o at μ.
A stable improvement cycle (SIC) of μ at R ∈ PI consists of m distinct agents i1� � � � � im
such that for all l = 1� � � � �m, il ∈ Dμ(il+1)(μ) (where m + 1 := 1). Erdil and Ergin (2008)
show that μ is constrained efficient at R ∈ PI if and only if μ admits no SIC of μ at R.

A (matching) mechanism is a function f : PI → M that, for each problem R ∈ PI ,
chooses one matching f (R). To avoid confusion, we sometimes include the priority
structure � in the description of a mechanism and write f�. Given i ∈ I and R ∈ PI , we
write fi(R) for i’s assignment at f (R). Mechanism f has the following properties:

• It is stable if, for all R ∈ PI , f (R) is stable.

• It is constrained efficient if, for all R ∈ PI , f (R) ∈ CE�(R).
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• It is strategy-proof if, for all R ∈ PI and all i ∈ I, there does not exist a manipulation
R̃i ∈ P i such that fi(R̃i�R−i) Pi fi(R).

A priority structure � is solvable if there exists a strategy-proof and constrained ef-
ficient mechanism f for � and is unsolvable otherwise. It sometimes is useful to think
about the existence of constrained efficient and strategy-proof mechanisms for situa-
tions where not all agents are present simultaneously. For this purpose, given some sub-
set J ⊆ I and a weak priority structure �, we denote by � |J the restriction of � to the
agents in J. We say that � |J is solvable if there exists a mechanism that is strategy-proof
and constrained efficient when the set of agents is J, the set of available objects is O, the
priority structure is � |J , and each agent j ∈ J is allowed to report any preference relation
in Pj .

By means of an example,8  Erdil and Ergin (2008) have shown that unsolvable priority
structures do exist. Apart from Erdil and Ergin’s example, not much is known about
unsolvable priority structures prior to our research. Our main goal is to characterize the
classes of solvable and unsolvable priority structures.

2.1 A taxonomy of priority structures

The next definition introduces three classes of priority structure that play a key role in
our analysis.

Definition 1. A priority structure � has the following properties:

(i) It is strict if there is no object o ∈O such that i ∼o j for two distinct i� j ∈ I.

(ii) It is in the house allocation with existing tenants (HET) class if, for any object
o ∈O, either i ∼o j for all agents i� j ∈ I or there exists exactly one agent i(o) such
that i(o) �o j ∼o k for all j�k ∈ I \ {i(o)}.

(iii) It is in the task allocation with unqualified agents (TAU) class if, for any object
o ∈O, either i ∼o j for all agents i� j ∈ I or there exists exactly one agent i(o) such
that j ∼o k�o i(o) for all j�k ∈ I \ {i(o)}.

Note that according to Definition 1, a trivial (no-) priority structure � such that, for
all o ∈ O and all i� j ∈ I, i ∼o j belongs to both the HET and the TAU class. We say that
� is a nontrivial HET/TAU priority structure if � is not the trivial (no-) priority structure
and belongs to the HET/TAU class. Note that for HET/TAU priority structures, we allow
for the possibility that a given agent has the highest/lowest priority for multiple objects,
i.e., it is possible that i(o) = i(p) for distinct objects o and p. We now discuss the three
classes introduced in Definition 1 in turn and summarize important findings from the
previous literature.

First, for strict priority structures, it is well known that, for any problem R ∈PI , there
is a unique constrained efficient matching that can be found by the agent-proposing
deferred acceptance (DA) algorithm of Gale and Shapley (1962):

8Example 2 in Section IV of Erdil and Ergin (2008).
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Step 1. Each agent proposes to her most preferred acceptable object. Each object ten-
tatively accepts the highest priority agent from its proposals and rejects all other agents.

Step k. Any agent who is not tentatively accepted proposes to her most preferred ac-
ceptable object among those that have not rejected her. Each object tentatively accepts
the highest priority agent from its new proposals and the tentatively accepted one (if
any), and rejects all other agents.

The DA algorithm stops when each agent has either proposed to all acceptable ob-
jects or been tentatively accepted by some object. At this point, tentative assignments
become final matches and agents who are not tentatively accepted remain unmatched.
Dubins and Freedman (1981) and Roth (1982a) have established that the direct mecha-
nism induced by the DA is strategy-proof, so that, in particular, any strict priority struc-
ture is solvable. For strict priority structures, it is well known that the existence of a
fully efficient stable matching can be guaranteed only if the priority structure satisfies
a strong acyclicity condition Ergin (2002). Finally, it is worth mentioning that the prop-
erties of the DA for strict priorities imply that strategy-proofness and stability are al-
ways compatible: If we arbitrarily break all ties in � while maintaining all strict priority
rankings, the DA for the resulting strict priority structure �′ is guaranteed to produce
a matching that is stable with respect to the original priority structure � and induces a
strategy-proof direct mechanism Abdulkadiroğlu et al. (2009).

Second, for HET priority structures, constrained efficient matchings can be found by
means of the top-trading cycles (TTC) algorithm of Abdulkadiroğlu and Sönmez (1999).
To describe this algorithm, it is convenient to think of the objects as houses. We say that
house o is occupied if there is an agent i(o), the owner of o, such that, for all j ∈ I \ {i(o)},
i(o) �o j, and that o is vacant otherwise.

Step 1. Each agent i points to her most preferred option in O∪{i}, each occupied house
points to its owner, and each vacant house points to the highest numbered agent.9 For
each cycle,10 assign each agent to the house he is pointing to and remove all agents and
houses belonging to the cycle from the procedure. Let I1 denote the set of remaining
agents and let O1 denote the set of remaining houses.

Step k ≥ 2. Each agent i ∈ Ik−1 points to her most preferred option in Ok−1 ∪ {i}, each
occupied house o ∈ Ok−1 for which i(o) ∈ Ik−1 points to i(o), and all other houses point
to the highest numbered agent in Ik−1. For each cycle, assign each agent to the house
he is pointing to and remove all agents and houses belonging to the cycle from the pro-
cedure. Let Ik denote the set of remaining agents and let Ok denote the set of remaining
houses.

9Recall that all agents have the same priority for each vacant house in a HET priority structure. It is
easy to see that any procedure to decide where vacant houses point that does not depend on submitted
preferences gives rise to a constrained efficient and strategy-proof mechanism. For simplicity, we focus on
a version of the TTC in which all vacant houses point to the same agent.

10A cycle is either a sequence i1�o1� � � � � iM�oM such that M ≥ 1 and, for each m ≤ M , im points to om

and om points to im+1 (where M + 1 ≡ 1) or an agent who points to himself because there are no acceptable
houses for him.
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The TTC algorithm ends when all agents are assigned. Abdulkadiroğlu and Sönmez
(1999) have established that the TTC algorithm always produces an efficient matching
and that the mechanism that picks the TTC outcome for each problem is strategy-proof.
Since it is evident that the TTC algorithm is guaranteed to respect all stability constraints
induced by a HET priority structure, the result of Abdulkadiroğlu and Sönmez (1999)
shows that HET priority structures are always solvable.11 In case all houses are vacant,
the TTC algorithm reduces to a serial dictatorship mechanism.12 For the case where
each agent owns exactly one house and there are no vacant houses,13

 Ma (1994) showed
that the TTC mechanism is the only mechanism that satisfies individual rationality for
owners (i.e., no agent is ever worse off than staying in the house that he was already oc-
cupying), full efficiency, and strategy-proofness. For HET priority structures, it is easy
to show that individual rationality for owners and full efficiency are equivalent to con-
strained efficiency. Thus, by Ma’s result, if any house is owned by exactly one agent,
then the mechanism induced by the TTC algorithm is the only strategy-proof and con-
strained efficient mechanism. In particular, stability and efficiency are compatible with
each other for HET priority structures.

Third, TAU priority structures have not been explicitly considered in the previous
literature. To interpret TAU priority structures. think of objects as representing “tasks”
that have to be performed by the agents. Our definition of a TAU priority structure then
requires that, for each task o, either all agents are qualified to perform the task (and have
equal priority) or there is a unique agent i(o) who is unqualified to perform o and should
only be allocated o if none of the qualified agents (who all have equal priority for o) is
willing to perform this task. In general, the stable improvement cycles algorithm of Erdil
and Ergin (2008) can be used to find constrained efficient matchings for a TAU priority
structure (because that algorithm produces constrained efficient matchings for any pri-
ority structure). However, the stable improvement cycles algorithm does not necessarily
induce a strategy-proof mechanism and it is not known whether TAU priority structures
are solvable. Finally, for TAU priority structures, it is easy to show that there always exists
at least one fully efficient and stable matching.14

11To be more precise, our definition of the HET class is slightly more general than that in Abdulkadiroğlu
and Sönmez (1999), since they assume that each agent owns at most one house, i.e., that i(o) �= i(q) for any
distinct houses o and q. It is straightforward to check that the arguments in Abdulkadiroğlu and Sönmez
(1999) apply to our setting as well.

12This variant is typically called the house allocation problem and was first studied by Hylland and Zeck-
hauser (1979). For the house allocation problem, the full class of strategy-proof and efficient mechanisms is
large and has not been characterized yet. See Svensson (1999), Pápai (2000), and Pycia and Ünver (2017) for
characterizations of different subclasses of the class of strategy-proof and efficient mechanisms in the de-
terministic setting, and see Bogomolnaia and Moulin (2001) for random assignment in the house allocation
problem.

13This variant is typically called the housing market and was first studied by Shapley and Scarf (1974),
who also proposed the first version of the TTC algorithm. In housing markets, each agent is endowed with
one object and Gale’s TTC algorithm finds for each problem its unique Roth and Postlewaite (1977) core
matching. Roth (1982b) was the first to show that the associated direct mechanism is strategy-proof.

14To see this, consider a variant of the DA in which, in each round, each object that gets a proposal from a
qualified agent is (randomly) allocated among applying qualified agents and removed from the procedure.
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3. Solvable priority structures

The main purpose of this section is to characterize solvable priority structures. We re-
strict attention to environments that satisfy the following two assumptions.

Assumption 1. (A) Strict/four-way tie. If � is not strict, then there exist o ∈ O and four
distinct agents i1� i2� i3� i4 ∈ I such that i1 ∼o i2 ∼o i3 ∼o i4.

(B) Reversibility. For any pair i� j ∈ I, either there exist objects p�q ∈ O such that i �p j

and j �q i or i ∼o j for all o ∈O.

Our first main result is a partial characterization of solvable priority structures within
the class of priority structures that satisfy both parts of Assumption 1.15 Before present-
ing our result, we now motivate our assumption. Assumption 1(A) is likely to be satisfied
in real-life applications, such as school choice, where indifference classes are typically
either very small, e.g., when exact GPAs and other criteria determine priorities, or very
large, e.g., when schools only distinguish between students living within a certain radius
around a school and those who do not. Assumption 1(B) ensures that possibility results
do not depend on assumptions about the correlation of priorities across objects. This
approach is in line with much of the literature on matching theory, where attention is
often restricted to domains that have a (Cartesian) product structure, i.e., domains de-
scribed by conditions that can be checked independently for each object.16 In the Sup-
plemental Appendix, we show that Assumption 1 is crucial for our results. Hence, we
cannot completely rule out that there are interesting solvable priority structures that do
not satisfy Assumption 1. However, the results in our earlier working paper Ehlers and
Westkamp (2011) suggest that one needs a very strong degree of correlation in priorities
across objects to find solvable priority structures that are not covered by our main result
below.17 Note that Assumption 1(B) allows for situations in which two or more agents
have equal priority for all objects. The following theorem is our first main result.

Theorem 1. Let N ≥ 6 and � be a priority structure satisfying Assumption 1. If � is
solvable, then � must be either a strict, HET, or TAU priority structure.

In particular, an object remains open for applications in later rounds only if it receives either no applica-
tions or exactly one application from the agent who is unqualified for the task. It is easy to show that the
procedure just outlined is fully efficient; details are available upon request.

15Note that Assumption 1 covers only those nontrivial HET priority structures in which all agents own
at least one house and only those nontrivial TAU priority structures in which all agents are unqualified for
at least one of the tasks. We discuss below how to weaken Assumption 1 so as to cover all HET and all TAU
priority structures.

16Two notable exceptions are Ostrovsky (2008) and Pycia (2012).
17More specifically, in Ehlers and Westkamp (2011), we characterize the class of all solvable priority struc-

tures for which priorities are only allowed at the bottom of priority rankings. In that paper, we do not im-
pose Assumption 1. The main results in Ehlers and Westkamp (2011) show that for a priority structure that
is neither of the strict nor the HET type (both of which satisfy the “ties only at the bottom” assumption)
to be solvable, agents’ priorities can vary by at most two ranks across all objects (e.g., an agent who has
the unique highest priority for one of the objects must have at least third highest priority for all other ob-
jects). These earlier results make us doubt that there are interesting solvable priority structures different
from strict, HET, or TAU priority structures that do not satisfy Assumption 1(B).
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One way to visualize Theorem 1 is the following: A weak priority order �o assigns to
each agent exactly one of at most |I| different “priority levels” (or bins). We use the con-
vention that higher priority for an object is associated with a lower priority level. Each
rule for assigning priorities induces a set of possible collections of level sets of �. For
example, a HET priority structure only allows for two possibilities: Either all agents have
the same priority level or exactly one agent has the first priority level and everyone else
has the second priority level. Theorem 1 establishes for which collections of level sets
a constrained efficient and strategy-proof mechanism could potentially be guaranteed
to exist, irrespective of who occupies which priority bin at which object. We see that we
are almost exclusively confined to the two, by now classical, examples of strict and HET
priority structures. This is a dramatic reduction from the set of all possible priority struc-
tures satisfying Assumption 1. The added value of our first main result is to give market
designers clear-cut guidance: If, for a particular application, rules for assigning prior-
ities do not give rise to one of the three priority structures in Theorem 1, then the ex-
istence of a constrained efficient and strategy-proof mechanism cannot be guaranteed,
and one has to settle for a compromise between efficiency and incentive properties. The
next corollary presents one special case of an unsolvable priority structure that seems
particularly relevant for applications to school choice, where multiple non-singleton in-
difference classes are very common (e.g., because of walk-zone priority).18

Corollary 1. Let N ≥ 6 and � be a priority structure satisfying Assumption 1. If there
are two or more objects that each have two or more non-singleton indifference classes,
then � is unsolvable.

Before proceeding to a sketch of the proof of Theorem 1, we mention one straight-
forward extension of our first main result to settings where Assumption 1 is not satisfied.
The extension rests on the following simple observation.

Lemma 1. If I1 and I2 are two nonempty disjoint subsets of I such that I1 ∪ I2 = I and
I1 � I2, then � is solvable if and only if � |I1 and � |I2 are both solvable.

Proof. Assume first that � is solvable. Let f be a constrained efficient and strategy-
proof mechanism for an economy with set of agents I1 ∪ I2. If we restrict f to those
profiles of preferences for which all agents in I2 rank all objects as unacceptable, then
we obtain a constrained efficient and strategy-proof mechanism for an economy with
set of agents I1. Analogously, if we restrict f to those profiles of preferences for which all
agents in I1 rank all objects as unacceptable, then we obtain a constrained efficient and
strategy-proof mechanism for an economy with set of agents I2.

Now assume that � |It is solvable for t = 1�2. Let ft be a constrained efficient and
strategy-proof mechanism for an economy with set of agents It for t = 1�2. Consider

18We thank an anonymous referee for suggesting we include Corollary 1.
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a mechanism f that is obtained from f1 and f2 as follows: For any preference pro-
file, first allocate objects among agents in I1 according to f1 and then allocate the re-
maining objects among agents in I2 according to f2.19 It is clear that f inherits the
strategy-proofness of its component mechanisms. Constrained efficiency of the com-
bined mechanism follows from the constrained efficiency of the component mecha-
nisms and the assumption that all agents in I1 have weakly higher priority than all agents
in I2. �

Lemma 1 immediately implies that we can extend Theorem 1 as follows.

Corollary 2. Assume that there exists a partition {I1� � � � � IT } of I such that, for all t =
1� � � � �T , |It | ≥ 6, It � I \ (I1 ∪ · · · ∪ It), and � |It satisfies Assumption 1. If � is solvable,
then, for all t = 1� � � � �T , � |It must be either a strict, HET, or TAU priority structure.

In words, if the set of agents can be partitioned into a sequence of sets that are or-
dered by agents’ priorities and satisfy Assumption 1, then the solvability of a priority
structure implies that it must be a succession of strict, HET, and TAU priority structures.
Note that Corollary 2 allows for the possibility that some parts of the priority structure
have a different structure than others (e.g., the priority structure for the highest priority
agents is HET, while the priority structure for lower priority agents is strict). The corol-
lary nests HET priority structures in which some agents are existing tenants, i.e,. initially
occupy at least one of the objects, and others are newcomers, i.e., do not initially occupy
any of the objects. To see why, note that if I1 is the set of existing tenants and I2 is the set
of newcomers, then the partition {I1� I2} satisfies the assumptions of Corollary 2. For the
case of HET priority structures, our main result can be interpreted as focusing only on
existing tenants since these are the only agents who impose stability constraints on the
system. Similarly, for general TAU priority structures, we can let I2 be the set of agents
who are unqualified for at least one task and take I1 = I \ I2 to obtain a partition that
satisfies the assumptions of Corollary 2.

We now provide a sketch of the proof of Theorem 1. Fundamental to our proof is the
following lemma that identifies two tie-breaking decisions that any constrained efficient
and strategy-proof mechanism has to respect.20

Lemma 2. (a) Let o�p ∈O and 1�2�3 ∈ I be such that 3 �o 2 ∼o 1 and 1 �p 3. Consider a
preference profile R such that

R R1 R2 R3

o o p
���

��� o

19More formally, given a preference profile R, we first allocate objects among agents in I1 according to

f1. We then allocate objects among agents in I2 according to f2 using a preference profile R̃ that is obtained
from R by having agents in I2 rank all objects already assigned to agents in I1 as unacceptable.

20More precisely, Lemma 2 is a simplified version of Lemmas 3, 4, which are stated and proved in the
Appendix.
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and such that no agent in I \ {1�2�3} ranks p as acceptable. If f is constrained
efficient and strategy-proof, then we must have f2(R) �= o.

(b) Let o�p ∈ O and 1�2�3 ∈ O be such that 1 ∼o 2 ∼o 3 and {1�2} �p 3. Consider a
preference profile R such that

R R1 R2 R3

o o o

p p
���

and such that no agent in I \ {1�2�3} ranks p as acceptable. If f is constrained
efficient and strategy-proof, then we must have f3(R) �= o.

Lemma 2 allows us to uncover a simple necessary condition for the solvability of a
priority structure:

There cannot be four distinct agents 1, 2, 3, 4 and three distinct objects o, p, q such
that either

1 �p 3� 2 �q 4 & {3�4} �o 1 ∼o 2

or

1 ∼o 2 ∼o 3 ∼o 4� 1 �p 3 �p 2 & 2 �q 4 �q 1�

To see why a priority structure with property (a) is unsolvable, consider a preference
profile R such that

R R1 R2 R3 R4

o o p q

o o

and such that no agent in I \ {1� � � � �4} ranks o, p, or q as acceptable. By the first part of
Lemma 2, if f is constrained efficient and strategy-proof, then f1(R) �= o and f2(R) �= o.
But then either o, p, or q must remain unassigned and f (R) is wasteful, i.e., f cannot be
constrained efficient. A similar argument can be used to show that the second part of
Lemma 2 implies that a priority structure with property (b) is also unsolvable.

Our proof of Theorem 1 uses the necessary condition that a solvable priority struc-
ture cannot have property (a) or (b) as a basic building block. We show first that a
solvable priority structure cannot have ties below the second priority level (Step 1). By
Assumption 1(A), a priority structure � that is not strict has at least one four-way tie
i1 ∼o i2 ∼o i3 ∼o i4. We show that the restriction of � to {i1� i2� i3� i4} can have at most
two priority levels (Steps 2 and 3) and then, that � must be either a HET or a TAU priority
structure (Steps 4 and 5). In the Supplemental Appendix, we provide counterexamples
that show that we cannot dispense with either part of Assumption 1. More specifically,
we provide counterexamples of solvable priority structures with an arbitrary number
of agents that are not of the strict/HET/TAU type when (i) there is a four-way tie but
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reversibility is not satisfied and (ii) reversibility is satisfied but there are no four-way
ties.21

As mentioned before, it is widely known that strict and HET priority structures are
both solvable. To the best of our knowledge, the full class of TAU priority structures
has not been analyzed in the previous literature. This is perhaps not entirely surprising
given that, in contrast to HET priority structures, it seems unlikely that one will be able
to find real-world applications that match the key characteristics of a TAU priority struc-
ture. It is easy to see that constrained efficient and strategy-proof mechanisms exist as
long as there are at most two unqualified agents across all objects/tasks.22 We have not
been able to answer the question of whether TAU priority structures with three or more
unqualified agents are solvable, but strongly suspect such priority structures to be un-
solvable. To substantiate our suspicion, we now outline why two approaches from the
previous literature do not work.

Example 1. Consider a priority-based allocation problem with three agents 1, 2, and 3,
and four objects o, p1, p2, and p3, where priorities are

�o �p1 �p2 �p3

1�2�3 2�3 1�3 1�2
1 2 3

Consider first an exogenous tie-breaking rule that randomly picks a strict priority
structure �′ that respects all strict priority rankings in � and then chooses the outcome
of DA with respect to �′ for each preference profile. Given the symmetries of the exam-
ple, we can assume without loss of generality (w.l.o.g.) that 1 �′

o 2 �′
o 3. Now consider a

preference profile R = (R1�R2�R3) such that R1 : p1o, R2 : o, and R3 : op1. The DA with
respect to �′ and R assigns o to 1 and p1 to 3, which is not constrained efficient.

Next, consider the trading cycles mechanisms introduced by Pycia and Ünver (2017).
A trading cycles mechanism can be described by a control rights structure that, for each
possible submatching 23 μ and, for each unassigned object o, determines which unas-
signed agent controls o at μ. Given a control rights structure and a preference profile,
the outcome of the corresponding trading cycles mechanism is determined sequentially
by allowing agents to trade control rights and updating controls according to the con-
trol rights structure after each round. In contrast to the usual TTC mechanism, the
mechanisms of Pycia and Ünver (2017) allow for a simple constraint on trading: In each
round, there can be at most one remaining object o that is brokered by the agent who
controls it in the sense that the agent is allowed to trade away her control right for o

for some other object p, but is not allowed to consume o. One may hope that we can

21In addition, we show in the Supplemental Appendix that any priority structure that (A) has ties only at
the top of priority rankings and (B) never assigns equal priority to more than two agents is always solvable.

22To see this, fix a TAU priority structure � in which i1 and i2 are the only agents who are unqualified for
some of the tasks. Let �′ be any strict priority structure such that (i) for all o ∈O and all j ∈ I \ {i1� i2}, j �′

o i1,
j �′

o i2, i1 �′
o i2 if i1 �o i2 and i2 �′

o i1 if i2 �o i1, and (ii) for o�p ∈ O, �′
o |I\{i1�i2} = �′

p|I\{i1�i2}. Clearly, the DA
with respect to �′ is guaranteed to yield constrained efficient outcomes.

23A submatching is a matching μ that leaves at least one agent and at least one object unassigned.
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construct a constrained efficient and strategy-proof mechanism for TAU priority struc-
tures by making agents brokers of the tasks that they are unqualified to perform. How-
ever, when there are more than two agents who are unqualified for some task, there is
no control rights structure that induces a constrained efficient and strategy-proof trad-
ing cycles mechanism. To see this, consider a preference profile R′ = (R′

1�R2�R
′
3) such

that R′
1 : o and R′

3 : o. Consider a trading cycles mechanism f such that f1(R
′) = o.

Now consider the preference profile R′′ = (R′
1�R

′
2�R3), where R′

2 : op1 (and, as defined
above, R3 : op1). Since control rights structures can only condition on submatchings,
we must have f1(R

′′) = o. Given that {2�3} �p1 1, the second part of Lemma 2 imme-
diately implies that f cannot be constrained efficient and strategy-proof. Analogous
arguments show that no trading cycles mechanism that assigns o to 2 or 3 at R′ can be
constrained efficient and strategy-proof. This implies that there is no constrained effi-
cient and strategy-proof trading cycles mechanism in the example we consider here. ♦

The preceding example suggests that if TAU priority structures are solvable, one
probably has to rely on intricate tie-breaking mechanisms to ensure constrained effi-
ciency and strategy-proofness.24

3.1 Strongly solvable priority structures

In some situations, it is conceivable that agents are able to engage in coordinated devi-
ations from truth-telling. Therefore, it may be desirable to design mechanisms that are
not only nonmanipulable by individuals, but also nonmanipulable by groups of agents.
In this subsection, we show how such a stronger incentive compatibility notion further
narrows the class of solvable priority structures.

We begin by introducing two notions of group-strategy-proofness:

• Mechanism f is group-strategy-proof if, for all J ⊆ I and all R, there does not exist
a joint manipulation R̃J = (R̃j)j∈J such that, for all j ∈ J, fj(R̃J�R−J) Pj fj(R).

• Mechanism f is strongly group-strategy-proof if, for all J ⊆ I and all P , there does
not exist a joint manipulation R̃J = (R̃j)j∈J such that, for all j ∈ J, fj(R̃J�R−J) Rj

fj(R), and, for at least one j∗ ∈ J, fj∗(R̃J�R−J) Pj∗ fj∗(R).25

A priority structure � is strongly solvable if there exists a strongly group-strategy-proof
and constrained efficient mechanism f for �. Our second main result shows that there
is only one type of strongly solvable priority structure among all priority structures sat-
isfying reversibility. For this result, we do not need to rely on Assumption 1(A).

24In related work, Han (2018) shows that if there are at least four agents, then HET priority structures
are the only priority structures for which stability, efficiency, and strategy-proofness are compatible. As we
have mentioned previously, stability and efficiency are usually in conflict with each other, while constrained
efficiency can always be satisfied.

25Barberà et al. (2010, 2016) show that for many relevant resource allocation problems, including the
priority-based allocation problem we study in this paper, strategy-proofness and group-strategy-proofness
are equivalent. It is well known that this equivalence does not extend to strong group-strategy-proofness.
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Theorem 2. Let N ≥ 4. If a strongly solvable priority structure � satisfies reversibility,
then � must be a HET priority structure.

One implication of Theorem 2 is that TAU priority structures are not strongly solv-
able. Note that N ≥ 4 is necessary in Theorem 2 because Ehlers (2006) shows that for
three agents and three objects, TAU structures are strongly solvable. Theorem 2 is re-
lated to Theorem 4 in Han (2018), which shows that HET is the only type of priority
structure for which stability, efficiency, and strong group-strategy-proofness are com-
patible. Our results show that, conditional on reversibility, constrained efficiency and
strong group-strategy-proofness are already sufficient to be left with only HET priority
structures.

4. Conclusion

We characterized the class of priority structures that are solvable in the sense of ad-
mitting a constrained efficient and strategy-proof mechanism. Within a large class of
priority structures—that, in our opinion, contain most priority structures that could po-
tentially be useful for practical market design purposes—we have shown that there are
at most three types of solvable priority structures: strict, the house allocation with ex-
isting tenants (HET) type, where, for each object, at most one agent has strictly higher
priority than another agent, and the task allocation with unqualified agents (TAU) type,
where, for each object, at most one agent has strictly lower priority than another agent.
Hence, apart from at most three isolated points in the vast space of possible priority
structures, imposing strategy-proofness and constrained efficiency comes at a strictly
higher welfare cost than imposing only strategy-proofness and stability. Out of the three
potentially solvable types of priority structures, only HET type structures are strongly
solvable in the sense of admitting a constrained efficient and strongly group-strategy-
proof mechanism.

Appendix A: Proof of Theorem 1

A.1 Preliminaries

In this subsection, we derive several tie-breaking rules that constrained efficient and
strategy-proof mechanisms always have to respect. The results in this subsection apply
to all priority structures, not just those that satisfy Assumption 1.

Definition 2. Fix a weak priority structure �, let i� j ∈ I be two distinct agents, and
let o�p ∈ O be two objects. An (i� j;o�p) path consists of M + 1 distinct agents i ≡
i0� i1� � � � � iM ∈ I \ {j} and M ≥ 0 distinct objects p1� � � � �pM ∈O \ {o�p} such that

(i) im �pm+1 im+1 for all m ∈ {0� � � � �M − 1}.

(ii) iM �p j.

We write i →p1 i1 →p2 i2 · · · →pM iM →p j to denote the (i� j;o�p) path.
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Note that an (i� j;o�p) path is connected to object o only insofar that o /∈
{p1� � � � �pM}. Note also that Definition 2 allows for the case of o = p. If o = p, we write
(i� j;o) instead of (i� j;o�p), and we often use the convention pM+1 ≡ p. Finally, note
that, for the case M = 0, an (i� j;o�p) path just specifies that i �p j. The next lemma uses
the concept of paths to derive a simple first tie-breaking rule that any stable mechanism
has to follow.

Lemma 3. Fix a weak priority structure �, let i� j ∈ I be two distinct agents, and let o ∈ O

be an object such that i ∼o j. Assume that there is an (i� j;o) path i →p1 i1 · · · →pM iM →o

j and let R be a preference profile such that26

R Ri Rim Rj Rz

o pm o
���

p1 pm+1 ���
���

���
���

If f is stable, then fj(R) �= o.

Proof. Suppose to the contrary that fj(R) = o. Since o can only be allocated to one
agent, we must have fi(R) �= o. Then stability together with i = i0 and i0 �p1 i1 im-

plies fi1(R) �= p1. Proceeding inductively, assume that, for some M ′ ≥ 1 and all m ∈
{1� � � � �M ′ − 1}, fim(R) �= pm. The definition of an (i� j;o) path, the construction of R,
and the stability of f (R) imply fiM′ (R) �= pM ′

given that iM
′−1 �pM′ iM

′
. In particular,

fiM (R) �= pM and o RiM fiM (R) (by pM+1 = o). Given that iM �o j, o RiM fiM (R) is com-
patible with stability only when fj(R) �= o. This contradiction completes the proof. �

Next, we derive a rule for breaking three-way ties. For this, we need the following
notion of compatibility between two paths in the priority structure.

Definition 3. Fix a weak priority structure �, let i� j�k ∈ I be three distinct agents, and
let o�p ∈ O be two objects. An (i�k;o�p) path i →p1 i1 · · · →pM iM →p k is compatible

with a (j�k;o�p) path j →q1 j1 · · · →qN jN →p k if there exist m∗ ≤ M and n∗ ≤ N such
that

(i) {i�p1� i1� � � � �pm∗
� im

∗} ∩ {j� q1� j1� � � � � qn
∗
� jn

∗} =∅.

(ii) M −m∗ = N − n∗.

(iii) for all t ∈ {1� � � � �M −m∗}, (pm∗+t � im
∗+t) = (qn

∗+t � jn
∗+t ).

Roughly speaking, compatibility of two paths requires that the paths coincide from
the first point at which they intersect. This includes the case in which the paths are dis-
joint, i.e., when m∗ =M and n∗ =N . The simplest possible example of compatible paths

26In the preference profile R, m runs from 1 through M and z runs through all agents in I \{i1� � � � � iM� i� j}.
This convention applies to all preference profiles used in the Appendix.
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is when i �p k and j �p k (where M = N = 0). We l now use the concept of compatible
paths to derive a second tie-breaking rule that any constrained efficient and strategy-
proof mechanism has to respect.

Lemma 4. Fix a weak priority structure �, let i� j�k ∈ I be three distinct agents, and let
o ∈ O be an object such that i ∼o j ∼o k. Let p ∈ O \ {o} and assume that there exists
an (i�k;o�p) path i →p1 i1 · · · →pM iM →p k that is compatible with the (j�k;o�p) path

j →q1 j1 · · · →qN jN →p k. Let R be a preference profile such that

R Ri Rj Rk Rim Rjn

o o o pm qn

p1 q1 ��� pm+1 qn+1

and such that for all z ∈ I \ {i� j�k� i1� � � � � iM� j1� � � � � jN } and all q ∈ {o�p�p1� � � � �pM�

q1� � � � � qN} for which z �q l for some l ∈ {i� j�k� i1� � � � � iM� j1� � � � � jN }, z Pz q. If f is con-
strained efficient and strategy-proof, then fk(R) �= o.

Proof. Note that the compatibility of the two paths ensures that R is well defined: For
any l ∈ {i1� � � � � iM} ∩ {j1� � � � � jN }, there exist m∗, n∗, and t such that l = im

∗+t = jn
∗+t and

pm∗+t = qn
∗+t as well as pm∗+t+1 = qn

∗+t+1.
Now let f be an arbitrary constrained efficient and strategy-proof mechanism.

Suppose that, contrary to what we want to show, fk(R) = o. We establish that
f cannot be constrained efficient and strategy-proof. Throughout the proof, we
specify only the preferences of agents in {i� j�k� i1� � � � � iM� j1� � � � � jN } over objects in
{o�p�p1� � � � �pM�q1� � � � � qN}.27

Consider first the preference profile

R1 Ri Rj R1
k Rim Rjn

o o p pm qn

p1 q1 o pm+1 qn+1

We claim that fk(R) = o implies fk(R
1) = o. Suppose to the contrary that fk(R1) �= o.

Since fk(R) = o, strategy-proofness then requires fk(R
1) = p. Since there is only one

copy of o, we must have either fi(R
1) �= o or fj(R

1) �= o. Suppose the former, i.e.,
fi(R

1) �= o. Then, by constrained efficiency, we must have fj(R
1) = o. By the defi-

nition of an (i�k;o�p) path and the construction of R, stability implies that, for all
m = 0� � � � �M , fim(R1) = pm+1. Given that pM+1 = p and iM �= k, we obtain a contra-
diction to our assumption that fk(R1) = p. The argument is completely symmetric in
the case fj(R

1) �= o. Since fk(R
1)= p necessarily leads to a contradiction, we must have

fk(R
1) = o.

27This implicitly assumes that the preferences of agents in I \ {i� j�k� i1� � � � � iM� j1� � � � � jN } are fixed at the
preferences these agents have in the profile R. This convention applies to all proofs in the Appendix.
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We now complete the proof of Lemma 4 by showing that no constrained efficient and
strategy-proof mechanism can assign o to k at R1. The following diagram summarizes
our proof:28

R1 Ri Rj R1
k Rim Rjn

o o p pm qn

p1 q1 o pm+1 qn+1

→
R2 R1

i Rj R1
k Rim Rjn

o o p pm qn

q1 o pm+1 qn+1

↓ ↓
R3 Ri R1

j R1
k Rim Rjn

o o p pm qn

p1 o pm+1 qn+1

→
R4 R1

i R1
j R1

k Rim Rjn

o o p pm qn

o pm+1 qn+1

We show first that fk(R1)= o implies fj(R2) = o. Suppose to the contrary that fj(R2) �= o.
Since f is strategy-proof and fi(R

1) �= o, we must have fi(R
2) �= o as well. Next, note

that since i →p1 i1 · · · →pM iM →p k is an (i�k;o�p) path and j →q1 j1 · · · →qN jN →p

k is a (j�k;o�p) path, we must have o /∈ {p1� � � � �pM�q1� � � � � qN�p} given that o �= p.
Note that by definition of R and R2, for all m ∈ {1� � � � �M}, fim(R2) ∈ {pm�pm+1}, and
for all n ∈ {1� � � � �N}, fjn(R2) ∈ {qn�qn+1}. Hence, again by definition of R2, object o is
assigned at R2 to agent i, j, or k. But then it has to be the case that fk(R2) = o if fj(R2) �=
o and fi(R

2) �= o since f (R2) would not be non-wasteful otherwise. Since fj(R
2) �= o,

stability requires that, for all n = 0� � � � �N , fjn(R2) = qn+1 given that jn �qn+1 jn+1 (where

jN+1 ≡ k). But then j = j0� � � � � jN+1 = k form a stable improvement cycle of f (R2) at
R2,29 contradicting constrained efficiency of f . Hence, we must have fj(R

2) = o.
A completely symmetric argument shows that fk(R

1) = o implies fi(R
3) = o. We

omit the details.
However, if f is strategy-proof, fj(R2) = o implies fj(R

4) = o and fi(R
3) = o implies

fi(R
4) = o. Since there is only one copy of o and i �= j, fj(R4) = fi(R

4) = o is impossible.
Hence, f cannot be a constrained efficient and strategy-proof mechanism if fk(R) = o. �

The next lemma lists three further tie-breaking rules that are important for the proof
of Theorem 1. The proof involves a series of straightforward but tedious implications of
Lemmas 3, 4, and we relegate the full details to the Supplemental Appendix.

Lemma 5. Fix a weak priority structure �.

(a) Let i� j�k ∈ I be three distinct agents and let o�p ∈ O be two distinct objects such
that i ∼o j ∼o k and i �p k�p j. Let R be a preference profile such that

Ri Rj Rk

o o p

28Here and in all proofs that follow, arrows indicate how we move between profiles and boxes indicate
object assignments.

29Note that the definition of compatible paths and stability imply that, for all m ∈ {1� � � � �M} such that
im /∈ {j1� � � � � jN }, fim(R2) = pm.
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and such that for all z ∈ I \ {i� j�k} and all õ ∈ {o�p} for which z �õ ĩ for some
ĩ ∈ {i� j�k}, z Pz õ. If f is constrained efficient and strategy-proof, then fi(R) = o.

(b) Let i� j�k� l ∈ I be four distinct agents and let o�p�q ∈ O be three distinct objects
such that i ∼o j ∼o k ∼o l, {i� j} �p k �p l, and i �q l �q j. Let R be a preference
profile such that

Ri Rj Rk Rl

o o p q

and such that for all z ∈ I \ {i� j�k� l} and all õ ∈ {o�p�q} for which z �õ ĩ for some
ĩ ∈ {i� j�k� l}, z Pz õ. If f is constrained efficient and strategy-proof, then fi(R) = o.

(c) Let i� j�k� l ∈ I be four distinct agents and let o�p�q ∈ O be three distinct objects
such that i ∼o j ∼o k, i �p l �p k, and k �q l �q j. Let R be a preference profile
such that

Ri Rj Rk Rl

o o p q

and such that for all z ∈ I \ {i� j�k� l} and all õ ∈ {o�p�q} for which z �õ ĩ for some
ĩ ∈ {i� j�k� l}, z Pz õ. If f is constrained efficient and strategy-proof, then fi(R) = o.

Next, we use Lemmas 3, 4, 5 to derive two simple conditions for the nonexistence of
a constrained efficient and strategy-proof mechanism. Again, we relegate the details to
the Supplemental Appendix.

Lemma 6. Fix a weak priority structure �.

(a) Let i� j ∈ I be two distinct agents and let o ∈O be an object such that i ∼o j. If there
is an (i� j;o) path i →p1 i1 · · · →pM iM →o j that is compatible with a (j� i;o) path

j →q1 j1 · · · →qN jN →o i, then � is unsolvable.

(b) Let i� j�k� l ∈ I be four distinct agents and let o ∈O be an object such that i ∼o j ∼o

k ∼o l. If there exist two objects p�q ∈ O such that i �p k�p j and j �q l �q i, then
� is unsolvable.

Finally, the next lemma points out six basic unsolvable priority structures. We use
these structures as building blocks for the proof of Theorem 1. The proof is provided in
the Supplemental Appendix.

Lemma 7. Let i1, i2, i3, i4, and i5 be five distinct agents and let o1, o2, o3, o4, and o5 be five
distinct objects. Each of the following priority structures is unsolvable:

i1 ∼o1 i2 ∼o1 i3 ∼o1 i4
{i1� i2} �o2 i3 �o2 i4
{i1� i2} �o3 i3
i2 �o4 i4 �o4 i1
i1 �o5 i4 �o5 i2

(1∗)
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i1 ∼o1 i2 ∼o1 i3 ∼o1 i4
{i1� i2} �o2 i3 �o2 i4
i4 �o3 {i2� i5}
i2 �o4 i5 �o4 i1

(2∗)

i1 ∼o1 i2 ∼o1 i3
i1 ∼o2 i4 ∼o2 i5 �o2 i2 �o2 i3
i4 �o3 i5 �o3 i1

{i2� i3} �o4 i4

(3∗)

i1 ∼o1 i2 ∼o1 i3
{i2� i3} �o2 i4
i4 �o3 i1 �o3 {i2� i3}

(4∗)

i1 ∼o1 i2 ∼o1 i3
i1 �o2 i4
i2 �o3 i5

{i2� i4} �o4 i3 �o4 i1
{i1� i5} �o5 i3 �o5 i2

(5∗)

i1 ∼o1 i2 ∼o1 i3
{i1� i2} �o2 i5 �o2 i3
i2 �o3 i4
i3 �o4 i5 �o4 i1

{i3� i4} �o5 i5 �o5 i2

(6∗)

A.2 Proof of Theorem 1

Throughout the proof, we fix a solvable weak priority structure � that satisfies Assump-
tion 1.

Step 1. There cannot exist four distinct agents 1�2�3�4 ∈ I and an object o ∈ O such
that {3�4} �o 1 ∼o 2.

Suppose to the contrary. Since 3 �o 1 and 4 �o 2, Assumption 1(B) guarantees that
there exist two objects q1 and q2 such that 1 �q1 3 and 2 �q2 4.

If q1 = q2, then we must have either {1�2} �q1 3 (if 4 �q1 3) or {1�2} �q1 4 (if 3 �q1 4),
say {1�2} �q1 3. Then 1 →q1 3 →o 2 is an (1�2;o) path that is compatible with the (2�1;o)
path 2 →q1 3 →o 1. But then the first part of Lemma 6 implies that � is unsolvable.
Hence, we must have q1 �= q2.

If q1 �= q2, then 1 →q1 3 →o 2 is a (1�2;o) path that is compatible with the (2�1;o)
path 2 →q2 4 →o 1. The first part of Lemma 6 again implies that � is unsolvable. �

Step 2. There cannot exist four distinct agents 1�2�3�4 ∈ I and three distinct objects
o�p�q ∈ O such that 1 ∼o 2 ∼o 3 ∼o 4, {1�2} �p 3 �p 4, and {2�4} �q 3 �q 1.
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Suppose to the contrary. We derive a contradiction through a series of six claims.

Claim 1. We have 2 �p 1 and 2 �q 4.

Proof. We argue first that 2 �p 1. If 1 �p 2, then the second part of Lemma 6 im-
plies that � is unsolvable since 1 �p 2 �p 4 and 4 �q 3 �q 1. The argument for 2 �q 4
is analogous. �

Before proceeding to the second claim, note that by Claim 1 and the priority rankings
assumed in Step 2, we must have 2 �p 1 �p 3 �p 4 and 2 �q 4 �q 3 �q 1.

Claim 2. There exists an object q′ ∈O \ {o�p�q} such that 1 ∼q′ 4 �q′ 2 and 3 �q′ 2.

Proof. Since 2 �p 4, Assumption 1(B) implies that there exists an object q′ such that
4 �q′ 2. By Claim 1 and the properties of � that were already specified, we must have
q′ ∈O \ {o�p�q}.

We argue first that we must have 1 ∼q′ 4. If 1 �q′ 4 �q′ 2, then the second part of
Lemma 6 implies that � is unsolvable since we also have that 2 �q 3 �q 1. Similarly, if
4 �q′ 1 �q′ 2 (or 4 �q′ 2 �q′ 1), then the second part of Lemma 6 implies that � is un-
solvable since we also have that 2 �p 3 �p 4 (or 1 �p 3 �p 4). If 1 ∼q′ 2, the first part of
Lemma 6 implies that � is unsolvable since {1�2} �p 4 �q′ 1 ∼q′ 2. Since we have now
exhausted all possible cases, we must have 1 ∼q′ 4 �q′ 2.

Next, assume that, contrary to what we want to show, 2 �q′ 3. Since {1�4} �q′ 2, Step 1
implies 2 �q′ 3. Thus, 1 ∼q′ 4 �q′ 2 �q′ 3. By Assumption 1(B) and the properties of � that
were already specified, there has to exist an object q̃ ∈O \ {o�p�q�q′} such that 3 �q̃ 2. If
4 �q̃ 2, the arguments used to show that 1 ∼q′ 4 are easily seen to imply 1 ∼q̃ 4. But then
we have 1 ∼o 2 ∼o 3 ∼o 4, {1�2} �p 3 �p 4, {1�2} �q′ 3, 2 �q 4 �q 1, and 1 �q̃ 4 �q̃ 2, so
that, by Lemma 7, � is unsolvable because it is of the form in (1∗). If 2 ∼q̃ 4, the first part
of Lemma 6 implies that � is unsolvable since {2�4} �q 3 �q̃ 2 ∼q̃ 4. Hence, we must have
2 �q̃ 4. A completely symmetric argument establishes that 2 �q̃ 1. Since {1�4} �q′ 2 �q′ 3
and 3 �q̃ 2 �q̃ {1�4}, the first part (if 1 ∼q̃ 4) or the second part (if 1 �q̃ 4) of Lemma 6
again implies that � must be unsolvable. Thus, we must have 3 �q′ 2 and this completes
the proof of Claim 2. �

Claim 3. We have 2 ∼p 1 and 2 ∼q 4.

Proof. We show that 2 ∼p 1 (the arguments to establish 2 ∼q 4 are completely analo-
gous). By Claim 1, 2 �p 1 implies 2 �p 1. By Claim 2, there exists a q′ ∈ O \ {o�p�q} such
that {1�3�4} �q′ 2. Since 1 ∼o 3 ∼o 4 and 2 �p 1 �p {3�4}, � is of the form in (4∗) (where
2 is in the role of i4) and, hence, by Lemma 7, unsolvable. The only possible case is thus
2 ∼p 1. �

Claim 4. There does not exist an agent 5 ∈ I \ {1�2�3�4} such that either 1 �p 5 �p 4 or
4 �q 5 �q 1.
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Proof. Suppose to the contrary that there is an agent 5 ∈ I \ {1�2�3�4} such that 1 �p

5 �p 4 (the argument in the case 4 �q 5 �q 1 is completely analogous).
We argue first that we must have 4 �o 5. Since {1�2} �p 5 and 1 ∼o 2, the first part

of Lemma 6 implies that � is unsolvable if 5 �o 1 ∼o 2. Thus, it has to be the case that
1 ∼o 2 ∼o 3 ∼o 4 �o 5. If 1 ∼o 2 ∼o 3 ∼o 4 ∼o 5, then the second part of Lemma 6 implies
that � is unsolvable since we also have 4 �q 3 �q 1 and 1 �p 5 �p 4. Hence, we must have
4 �o 5.

For the remainder of the proof of Claim 4, let q′ ∈O \ {o�p�q} be such that 1 ∼q′ 4 �q′
2 and 3 �q′ 2. Remember that the existence of such an object follows from Claim 2.

Next, note that the solvability of � implies 4 ∼q′ 5: If 4 �q′ 5, Lemma 7 implies that
� is unsolvable because it is of the form in (2∗) given that we also have {2�4} �q 3 �q

1, 1 �q′ {2�5}, and 2 �p 5 �p 4; if 5 �q′ 4, the first part of Lemma 6 implies that � is
unsolvable given that {1�4} �o 5 �q′ 4 ∼q′ 1. Since 3 �q′ 2, the only remaining options
are 1 ∼q′ 4 ∼q′ 3 ∼q′ 5 and 3 �q′ 1 ∼q′ 4 ∼q′ 5 �q′ 2. In the first case, the second part of
Lemma 6 implies that � is unsolvable since 1 �p 5 �p 4 and 4 �q 3 �q 1. In the second
case, the first part of Lemma 6 implies that � is unsolvable since {1�4} �o 5 �p 4 �q 3 �q′
1 ∼q′ 4. This completes the proof of Claim 4. �

Claim 5. There does not exist an agent 5 ∈ I \ {1�2�3�4} such that either 4 �p 5 or 1 �q 5.

Proof. Suppose to the contrary that there is an agent 5 ∈ I \ {1�2�3�4} such that 4 �p 5
(the argument for 1 �q 5 is completely symmetric). Since {1�2�3�4} �p 5 and 1 ∼o 2 ∼o

3 ∼o 4, the first part of Lemma 6 implies that � is unsolvable if 5 �o 1. Hence, we must
have 4 �o 5.

First, we show that there is no object q̃ such that 4 �q̃ 5 �q̃ 2; otherwise, Lemma 7
implies that � is unsolvable because it is of the form in (2∗) given that 1 ∼o 2 ∼o 3 ∼o 4,
{2�4} �q 3 �q 1, 4 �q̃ 5 �q̃ 2, and 1 �p {4�5}.

Second, we argue that there is no object q̃ such that 5 �q̃ {2� i} for some i ∈ {1�4}.
Assume to the contrary that there is an object q̃ such that 5 �q̃ {1�2} (the argument in
the case 5 �q̃ {2�4} is completely symmetric). If 5 �q̃ {1�2�4}, then by {1�2�4} �p 5 and
the first part of Lemma 6, we must have 1 �q̃ 2, 1 �q̃ 4, and 2 �q̃ 4. But then Lemma 7
implies that � is unsolvable because it is of the form in (4∗) given that we also have
1 ∼o 2 ∼o 4 and {1�2�4} �p 5. If 4 �q̃ 5 �q̃ {1�2}, the second part of Lemma 6 implies that
� is unsolvable given that {1�2} �p 3 �p 4 and given that Step 1 implies that we cannot
have 1 ∼q̃ 2.

Third, note that for any q̃ such that 5 �q̃ 2, we must have 1 ∼q̃ 4 ∼q̃ 5 �q̃ 2: By the
previous arguments in the proof of Claim 5, we must have 4 ∼q̃ 5 �q̃ 2 and 1 �q̃ 5 �q̃ 2. If
1 �q̃ 4, we have 1 �q̃ 4 �q̃ 2 and the second part of Lemma 6 implies that � is unsolvable
since we also have that 2 �q 3 �q 1.

Finally, we show that if � is solvable and 4 �p 5, there cannot exist q̂ ∈ O \ {o�p}
such that 5 �q̂ 2. Hence, Assumption 1(B) must be violated given that 2 �o 5 and 2 �p 5.
This then completes the proof of Claim 5. Suppose to the contrary that there exists q̂

such that 5 �q̂ 2. We show that � must be unsolvable. The previous arguments in the
proof of Claim 5 immediately imply that 1 ∼q̂ 4 ∼q̂ 5 �q̂ 2. We now distinguish four cases



1032 Ehlers and Westkamp Theoretical Economics 13 (2018)

according to the priority of agent 3 for q̂ and show that � must be unsolvable for each of
these cases.

Case 1. 2 �q̂ 3. If 2 ∼q̂ 3, then by Step 1, � is unsolvable. Suppose that 2 �q̂ 3. Note
that {1�4} �q̂ 2 implies q̂ ∈ O \ {o�p�q}. Since 1 ∼q̂ 4 �q̂ 2, the arguments in the proof of
Claim 2 are easily seen to imply that � is unsolvable if 2 �q̂ 3.

Case 2. 1 ∼q̂ 3 ∼q̂ 4 ∼q̂ 5 �q̂ 2. By Assumption 1(B), there must exist an object q̂′ ∈ O \
{o�p� q̂} such that 5 �q̂′ 1. If q̂′ = q, Lemma 7 implies that � is unsolvable because it is of
the form in (4∗) given that 3 ∼q̂ 4 ∼q̂ 5, 1 �p 3 �p {4�5}, and {4�5} �q 1. Hence, we must
have 1 �q 5 and q̂′ �= q. Since 1 �p 3 �p 4 �p 5 and 4 �q 3 �q 1 �q 5, � is unsolvable if
5 �q̂′ 4: If 5 �q̂′ 4 ∼q̂′ 1, then the first part of Lemma 6 implies that � is unsolvable given
that we also have {4�1} �p 5; if 5 �q̂′ 4 �q̂′ 1, then the second part of Lemma 6 implies
that � is unsolvable given that we also have 1 �p 3 �p 5; if 5 �q̂′ 1 �q̂′ 4, then the second
part of Lemma 6 implies that � is unsolvable given that we also have 4 �q 3 �q 5. Hence,
it has to be the case that 4 �q̂′ 5 �q̂′ 1.

But then Lemma 7 implies that � is not solvable since it is of the form in (4∗) given
that 3 ∼q̂ 4 ∼q̂ 5, 1 �p 3 �p {4�5}, and {4�5} �q̂′ 1.

Case 3. 3 �q̂ 1 ∼q̂ 4 ∼q̂ 5 �q̂ 2. The first part of Lemma 6 implies that � is unsolvable
since {1�4} �p 5 and since there exists a q̂′ ∈O \ {p� q̂} such that 5 �q̂′ 3.

Case 4. 1 ∼q̂ 4 ∼q̂ 5 �q̂ 3 �q̂ 2. Note first that we must have 4 �q 5; otherwise, Lemma 7
implies that � is unsolvable since it is of the form in (4∗) given that 1 ∼o 3 ∼o 4,
{1�3�4} �p 5, and 5 �q 4 �q {1�3}. But then Assumption 1(B) implies that there exists an
object q̂′ ∈ O \ {o�p�q� q̂} such that 5 �q̂′ 4. If 1 �q̂′ 4, Lemma 7 implies that � is unsolv-
able since it is of the form in (5∗) given that we also have 1 ∼o 2 ∼o 3 ∼o 4, {2�4} �q 3 �q 1,
{1�4�5} �q̂ 3 �q̂ 2, and 2 �p 5. Hence, it has to be the case that 5 �q̂′ 4 �q̂′ 1. If 4 ∼q̂′ 1, then
the first part of Lemma 6 implies that � is unsolvable since {4�1} �p 5. Thus, we are left
to consider the possibility that 5 �q̂′ 4 �q̂′ 1. By the previous arguments in the proof of
Claim 5, 5 �q̂′ {1�4} implies 2 �q̂′ 5. But then the second part of Lemma 6 implies that �
is unsolvable since 1 �q̂ 3 �q̂ 2 and 2 �q̂′ 4 �q̂′ 1. �

Claim 6. A priority structure of the type specified in Step 2 is unsolvable.

Proof. For this part of the proof, fix an object q′ ∈ O \ {o�p�q} such that 1 ∼q′ 4 �q′ 2
and 3 �q′ 2. Such an object exists by Claim 2.

Next, note that Claims 4 and 5 imply that, for all j ∈ I \ {1�2�3�4}, either j �p 1 or
j ∼p 4, and either j �q 4 or j ∼q 1. By Step 1, j ∼p 4 and j ∼q 1 are both impossible.
Hence, for all j ∈ I \ {1�2�3�4}, j �p 1 and j �q 4.

We now show that, for all j ∈ I \ {1�2�3�4}, 4 �o j. If there is a j ∈ I \ {1�2�3�4} such
that j �o 1, the first part of Lemma 6 implies that � is unsolvable since j �o 1 ∼o 2,
{1�2} �p 3, and there exists a q̃ ∈O \ {o�p�q} such that 3 �q̃ j. If there is a j ∈ I \ {1�2�3�4}
such that j ∼o 1, Assumption 1(B) requires that there exists an object q̃ ∈ O \ {o�p�q}
such that 1 �q̃ j. If q̃ = q′, the second part of Lemma 6 implies that � is unsolvable since
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{2� j} �q 3 �q 1 and 1 �q̃ {2� j}. Hence, we must have q̃ �= q′. But then Lemma 7 implies
that � is unsolvable since it is of the form in (5∗) given that 1 ∼o 3 ∼o 4, {1�2} �p 3 �p 4,
{4� j} �q 3 �q 1, 4 �q′ 2, and 1 �q̃ j. Since we have exhausted all possible cases, we must
have 4 �o j.

Next, we argue that, for all j ∈ I \ {1�2�3�4}, j ∼p 1 and j ∼q 4. Suppose to the con-
trary that there is a j ∈ I \ {1�2�3�4} such that j �p 1 (the argument in the case j �q 4
is completely analogous). By Claim 3, we have 1 ∼p 2. By the previous arguments,
{1�2} �o j �p 1 ∼p 2 and � is not solvable by the first part of Lemma 6.

For the remainder of the proof, let 5 and 6 be two distinct agents in I \ {1�2�3�4}.30

By the above, we can assume without loss of generality that 1 ∼o 2 ∼o 3 ∼o 4 �o 5 �o 6
(where again 5 ∼o 6 is impossible by Step 1), 1 ∼p 2 ∼p 5 ∼p 6 �p 3 �p 4, and 2 ∼q 4 ∼q

5 ∼q 6 �q 3 �q 1.
We now show that we must have 5 �q′ 2. Suppose to the contrary that 2 �q′ 5. By

Step 1 and {1�4} �q′ 2, we must have 2 �q′ 5. If 2 �q′ 5, Assumption 1(B) implies that
there exists a q̂ ∈ O \ {o�p�q�q′} such that 5 �q̂ 2. If either 1 �q̂ 2 or 4 �q̂ 2, Lemma 7
implies that � is unsolvable since it is of the form in (5∗) given that 1 ∼o 2 ∼o 3 ∼o 4,
{1�2�5�6} �p 3 �p 4, {2�4�5�6} �q 3 �q 1, and {1�4} �q′ 2 �q′ 5. Next, note that the first
part of Lemma 6 and 5 �q̂ {1�2�4} imply 1 �q̂ 2, 1 �q̂ 4, and 2 �q̂ 4. But then Lemma 7
implies that � is unsolvable since it is of the form in (4∗) given that we also have 1 ∼o

2 ∼o 4 and {1�2�4} �q′ 5. Since we have shown that � is unsolvable whenever 2 �q′ 5, we
must have 5 �q′ 2.

Next, we argue that 1 ∼q′ 4 ∼q′ 5 �q′ 2. If 5 �q′ 1 ∼q′ 4 �q′ 2, then 1 ∼o 4 �o 5 together
with the first part of Lemma 6 implies that � is unsolvable. Given that 5 �q′ 2, the only
other possibility in the case of 5 �q′ 1 is 1 ∼q′ 4 �q′ 5 �q′ 2. But then Claim 4 implies that
� is unsolvable if 1 ∼q′ 4 �q′ 3 �q′ 2 (substitute q′ for q and switch the roles of 1 and 2 in
the statement of Claim 4). Furthermore, if 3 �q′ 1, then the first part of Lemma 6 implies
that � is unsolvable since {1�4} �o 5, 5 �p 3, and 3 �q′ 1 ∼q′ 4. By 3 �q′ 2 and Step 1,
the only remaining option is 1 ∼q′ 3 ∼q′ 4 �q′ 5 �q′ 2. If 1 �q′ 6, then, again by Step 1,
6 �q′ 5 and 6 �q′ 2. Hence, if 1 �q′ 6, Lemma 7 implies that � is unsolvable since it is
of the form in (4∗) given that 2 ∼p 5 ∼p 6, {2�5�6} �q 1, 1 �q′ {2�5�6}, and that �q′ |{2�5�6}
is strict. By the first part of Lemma 6 and {1�3�4} �o 6, the only remaining option is
that 1 ∼q′ 3 ∼q′ 4 ∼q′ 6 �q′ 5 �q′ 2. But then Lemma 7 implies that � is unsolvable since
it is of the form in (3∗) given that 1 ∼q′ 3 ∼q′ 6, 4 ∼q 5 ∼q 6 �q 3 �q 1, 4 �o 5 �o 6, and
{1�3} �p 4. Since 1 ∼q′ 4 �q′ 5 �q′ 2 necessarily implies that � is unsolvable, we must
have 1 ∼q′ 4 ∼q′ 5 �q′ 2.

Now by Assumption 1(B), there exists q̃ ∈O \ {o�p�q} such that 6 �q̃ 5. If q̃ = q′, then
{1�4} �o 6 �q′ 1 ∼q′ 4 and � is unsolvable by the first part of Lemma 6. Thus, q̃ �= q′.
If 1 �q̃ 5 or 4 �q̃ 5, Lemma 7 implies that � is unsolvable since it is of the form in (5∗)
given that we also have 1 ∼o 2 ∼o 3 ∼o 4, {1�2�5�6} �p 3 �p 4, {2�4�5�6} �q 3 �q 1, and
{1�4} �q′ 2. Hence, we must have 5 �q̃ 1 and 5 �q̃ 1, so that 6 �q̃ 5 implies 6 �q̃ {1�4�5}.
By the first part of Lemma 6 and {1�4�5} �o 6, we must have 1 �q̃ 4, 1 �q̃ 5, and 4 �q̃ 5.
But then Lemma 7 implies that � is unsolvable since it is of the form in (4∗) given that
1 ∼q′ 4 ∼q′ 5, {1�4�5} �o 6, 6 �q̃ {1�4�5}, and that �q̃ |{1�4�5} is strict.

30This is the only place in the proof where we rely on the existence of six distinct agents.
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The preceding arguments show that a priority structure � such that 1 ∼o 2 ∼o 3 ∼o

4 �o 5 �o 6, 1 ∼p 2 ∼p 5 ∼p 6 �p 3 �p 4, and 2 ∼q 4 ∼q 5 ∼q 6 �q 3 �q 1 must be unsolv-
able. This completes the proof of Claim 6. �

Step 3. If 1, 2, 3, 4 are four distinct agents such that, for some object o, 1 ∼o 2 ∼o 3 ∼o 4,
then � |{1�2�3�4} has at most two priority levels.

Suppose to the contrary that there exists an object p such that 1 �p 2 �p 3 �p 4 and
�p |{1�2�3�4} contains more than two priority levels. By Step 1, 3 ∼p 4 is impossible and
3 �p 4. We show that without loss of generality, we may suppose {1�2} �p 3 �p 4.

If not, then 1 �p 2 ∼p 3 �p 4. By Assumption 1(B), there must exist q ∈ O \ {o�p}
such that 4 �q 1. By the second part of Lemma 6, 4 �q 2 �q 1 and 4 �q 3 �q 1 are impos-
sible. If {2�3} �q 1, then by 1 �p 2 ∼p 3 and the first part of Lemma 6, � is unsolvable,
a contradiction. Thus, 4 �q 1 �q 2 (or 4 �q 1 �q 3). If 4 �q 1 ∼q 2, then by {1�2} �p 4
and the first part of Lemma 6, � is unsolvable, a contradiction. Thus, 4 �q 1 �q 2. The
same argument yields a contradiction if 1 ∼q 3. By Step 1, 3 ∼q 2 is impossible. Thus,
{4�3} �q 1 �q 2 or {4�1} �q 2 �q 3 or {4�1} �q 3 �q 2. In all cases we may choose q instead
of p (with the appropriate relabeling of the agents).

Thus, let {1�2} �p 3 �p 4. Let q1 and q2 be such that 4 �q1 1 and 4 �q2 2. Since
{1�2} �p 3 �p 4, we cannot have 4 �q1 1 ∼q1 2 (since the first part of Lemma 6 implies
that � is unsolvable in this case) or 4 �q1 {1�2} and 1 �q1 2 (since the second part of
Lemma 6 implies that � is unsolvable in this case). Thus, 2 �q1 4 �q1 1 and, using similar
arguments, 1 �q2 4 �q2 2.

We show first that 3 �q1 1 and 3 �q2 2. Assume to the contrary that 1 �q1 3 (the argu-
ments to establish that 2 �q2 3 leads to a contradiction are completely analogous). Then
2 �q1 4 �q1 1 �q1 3 and, by Assumption 1(B), there must exist an object q3 ∈ O \ {o�p�q1}
such that 3 �q3 1. If q3 = q2, then the second part of Lemma 6 implies that � is un-
solvable given that 3 �q2 1 �q2 4 �q2 2 and 2 �q1 4 �q1 1 �q1 3. Thus, q3 �= q2. If 4 �q3 1,
we can use the same arguments used to establish 2 �q1 4 �q1 1 to show that we must
have 2 �q3 4 �q3 1 as well. But then Lemma 7 implies that � is unsolvable since it is of
the form in (1∗) given that 1 ∼o 2 ∼o 3 ∼o 4, {1�2} �p 3 �p 4, {1�2} �q1 3, 1 �q2 4 �q2 2,
and 2 �q3 4 �q3 1. Hence, we must have 3 �q3 1 �q3 4. Since {2�4} �q1 1 �q1 3, the first
part of Lemma 6 implies 1 �q3 4. Hence, we must have 3 �q3 1 �q3 4. If 3 �q3 2 �q3 4 or
3 �q3 1 �q3 4 �q3 2, the second part of Lemma 6 implies that � is unsolvable given that
we also have 2 �q1 4 �q1 1 �q1 3. Furthermore, since {1�3} �q3 4, Step 1 implies 4 �q3 2.
Hence, we are left to consider the case of 2 �q3 3 �q3 1 �q3 4. But in this case Step 2 is
easily seen to imply that � is unsolvable since 1 ∼o 2 ∼o 3 ∼o 4, {2�4} �q1 1 �q1 3, and
{2�3} �q3 1 �q3 4.31 Since we have shown that � is unsolvable if 1 �q1 3, we must have
3 �q1 1.

Next, we argue that 3 �q1 4 and 3 �q2 4. If 4 �q1 3, then by 2 �q1 4 �q1 1 and 3 �q1 1,
Step 1 implies 3 �q1 1. Thus, {2�4} �q1 3 �q1 1. Given that {1�2} �p 3 �p 4, Step 2 implies

31One just needs to switch the roles of 1 and 3, replace p with q3, and replace q with q1 in the arguments
used to establish Step 2.
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that � is unsolvable. The argument for 3 �q2 4 is completely analogous. Thus, {2�3} �q1

4 �q1 1 and {1�3} �q2 4 �q2 2.
Now by Assumption 1(B), there must exist an object q3 ∈ O \ {o�p�q1� q2} such that

4 �q3 3. If {1�2} �q3 3, Lemma 7 implies that � is unsolvable since it is of the form in (1∗)
given that we also have 1 ∼o 2 ∼o 3 ∼o 4, {1�2} �p 3 �p 4, 2 �q1 4 �q1 1, and 1 �q2 4 �q2 2.
Thus, 3 �q3 2 or 3 �q3 1. Since {1�2�3} �p 4 �q3 3, the first part of Lemma 6 implies 3 �q3 2
if 3 �q3 2 and 3 �q3 1 if 3 �q3 1. If 4 �q3 3 �q3 {1�2}, the second part of Lemma 6 implies
that � is unsolvable given that we also have {1�2} �p 3 �p 4. Hence, we can assume
w.l.o.g. that {2�4} �q3 3 �q3 1. Given that we also have {1�2} �p 3 �p 4, Step 2 implies that
� is unsolvable.

Step 4. Let 1, 2, 3, and 4 be four distinct agents and let o be an object such that 1 ∼o

2 ∼o 3 ∼o 4. If there exists an object p such that, for some i ∈ {1�2�3�4} and two distinct
j�k ∈ {1�2�3�4} \ {i}, i �p {j�k}, then � is a HET priority structure.

Assume that there exists an object p such that 4 �p {1�2}. Since � |{1�2�3�4} has at most
two priority levels, Step 1 implies that we must have 4 �p 1 ∼p 2 ∼p 3.

We argue first that �o satisfies the requirements of a HET priority structure. Given
that 1 ∼o 2 ∼o 3 ∼o 4, Step 1 immediately implies that there exists at most one agent
j ∈ I \ {1�2�3�4} such that j �o 1. Next, note that, for any j ∈ I \ {1�2�3�4}, we must have
j �o 1; otherwise, {1�2} �o j and the first part of Lemma 6 implies that � is unsolvable
since there exists q′ ∈O \ {o} such that j �q′ 4 and since we also have that 4 �p 1 ∼p 2.

Second, we show that, for all j ∈ I \ {1�2�3�4}, j ∼p 1. By Step 1 and our assumption
that 4 �p 1 ∼p 2, we cannot have j �p 1. Hence, j �p 1 implies 4 �p 1 ∼p 2 �p j. By the
first part of Lemma 6, � is unsolvable if j �o 1 ∼o 2 �p j. Since j �o 1, 4 �p 1 ∼p 2 �p j

thus implies 1 ∼o 2 ∼o 4 ∼o j. But then Step 3 implies that � |{1�2�4�j} can have at most
two priority levels, contradicting 4 �p 1 ∼p 2 �p j.

Finally, let q ∈ O \ {o�p} be an arbitrary object. We show that �q also satisfies
the requirements of a HET priority structure. Suppose to the contrary that there exist
three distinct agents i1� i2� i3 ∈ I such that {i1� i2} �q i3. Note first that we can assume
w.l.o.g. that i1 = 1 and i2 = 2: If there is only one agent i′ ∈ {1�2�3} such that i′ �q i3,
say i′ = 1, Step 3 implies that {i1� i2� i′} �q i3 �q 2 ∼q 3 so that � is unsolvable by Step 1.
Now if i3 = 4, the first part of Lemma 6 immediately implies that � is not solvable since
{1�2} �q 4 �p 1 ∼p 2. If i3 �= 4 and 4 �q i3, the first part of Lemma 6 again implies that
� is unsolvable given that {1�2} �q i3 and given that either i3 �o 1 ∼o 2 or, by Assump-
tion 1(B), there is an object q′ ∈O \ {o�p�q} such that i3 �q′ 4.

Step 5. Let 1, 2, 3, and 4 be four distinct agents and let o be an object such that 1 ∼o

2 ∼o 3 ∼o 4. If there does not exist an object p such that, for some i ∈ {1�2�3�4} and two
distinct j�k ∈ {1�2�3�4} \ {i}, i �p {j�k}, then � is a TAU priority structure.

Suppose to the contrary that � is not a TAU priority structure. Then there exist an
object q and three distinct agents i, j, and k such that i �q {j�k}. We show that � is
unsolvable. Throughout the proof, we use the fact that � |{1�2�3�4} has at most two priority
levels (which follows from Step 3 since 1 ∼o 2 ∼o 3 ∼o 4).
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First, we show that we can assume w.l.o.g. i ∈ {1�2�3�4}. Assume that i ∈ I \ {1�2�3�4}
and i �q {1�2�3�4}. Because � |{1�2�3�4} contains at most two priority levels, there must be
a tie between two agents in {1�2�3�4} at �q, say 1 ∼q 2. By Assumption 1(B) there exists
q′ ∈ O \ {q} such that 1 �q′ i. By the first part of Lemma 6 and i �q 1 ∼q 2, we cannot
have {1�2} �q′ i. Hence, i �q′ 2 and 1 �q′ i �q′ 2 so that we have found an object with the
desired properties.

For the remainder of Step 5, we assume w.l.o.g. that 1 �q {j�k}. By the assumptions
of Step 5, we must have either j ∈ {2�3�4} and k ∈ I \ {1�2�3�4}, or j�k ∈ I \ {1�2�3�4}.

Assume first that j ∈ {2�3�4}, say j = 4, and that k ∈ I \ {1�2�3�4}, say k = 5. Since
� |{1�2�3�4} has at most two priority levels, we must have 1 ∼q 2 ∼q 3 �q {4�5}. By As-
sumption 1(B), there is an object q1 such that 5 �q1 1. We argue next that {2�3�4} �q1 1.
Since 1 ∼q 2 ∼q 3 �q {4�5}, the first part of Lemma 6 implies that � is unsolvable if ei-
ther 2 ∼q1 1 or 3 ∼q1 1. If 1 �q1 2, Step 1 implies that 3 �q1 2 since {1�5} �q1 2. But then
�q1 |{1�2�3} must be strict and we obtain a contradiction to Step 3. An analogous argu-
ment shows that 3 �q1 1. But if {2�3} �q1 1, Step 1 implies that 1 �q1 4 and �q1 |{1�2�3�4}
has at least three priority levels if 4 �q1 1—another contradiction to Step 3. Hence, we
must have {2�3�4} �q1 1. By Step 3, � |{1�2�3�4} has at most two priority levels and we
obtain that 2 ∼q1 3 ∼q1 4. If 4 ∼q1 5, we obtain an immediate contradiction to Step 3
since {2�3} �p {4�5} and, by Step 1, 4 �p 5. If 5 �q1 2, the first part of Lemma 6 im-
plies that � is unsolvable given that {2�3} �q 5 and 5 �q1 2 ∼q1 3. Hence, we must have
{2�3�4} �q1 5 �q1 1. Proceeding analogously, there must also exist two objects q2 and q3
such that {1�3�4} �q2 5 �q2 2 and {1�2�4} �q3 5 �q3 3. But then Lemma 7 implies that �
is unsolvable since it is of the form in (6∗).

Hence, we are left to consider the case where there are two distinct agents j�k ∈ I \
{1�2�3�4}, say j = 5 and k = 6, such that {2�3�4} �q 1 �q {5�6}. Assumption 1(B) implies
that there exists an object q1 such that 5 �q1 1. By the arguments from the previous
paragraph (which only depended on the fact that {1�2�3} �q 5), we must have that 2 ∼q1

3 ∼q1 4 �q1 5 �q1 1. If 4 �q1 5, an argument analogous to that showing that we cannot
have j = 4 and k = 5 can be used to show that � is unsolvable. If 2 ∼q1 3 ∼q1 4 ∼q1 5, we
can again use analogous arguments as in the case of j = 4 and k= 5 to show that � must
be unsolvable.32

Appendix B: Proof of Theorem 2

Let |I| ≥ 4. If, for some o ∈ O, �o contains three or more priority levels, then there exist
i� j�k ∈ I such that i �o j �o k. By Assumption 1(B) there exists q ∈ O such that k �q i.
Obviously, q �= o and the strict part of � contains a cycle à la Ergin (2002). Then his argu-
ments can be used to show that no strongly group-strategy-proof and stable mechanism
exists, and, thus, � is not strongly solvable.

Thus, for all o ∈ O, �o contains at most two priority levels. If for some i� j�k� l ∈ I

and some o ∈ O, {i� j} �o k ∼o l, then by Step 1, which only relies on Assumption 1(B),
of the proof of Theorem 1, � is unsolvable, a contradiction. Similarly, by the first part

32This follows since {2�3�4} �q {5�6} so that we can use the four-way tie 2 ∼q1 3 ∼q1 4 ∼q1 5 instead of the
four-way tie 1 ∼o 2 ∼o 3 ∼o 4 in the above arguments.
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of Lemma 6, if for some i� j�k ∈ I and some o�p ∈ O, we have k �o i ∼o j and {i� j} �p k,
then � is unsolvable.

Thus, if � is not HET, then there exists o ∈ O such that for some i(o) ∈ I, we have
I \{i(o)} �o i(o), and for all i� j ∈ I \{i(o)}, we have i ∼o j. But then, given that � contains
at most two priority levels, � is a TAU structure.

Using |I| ≥ 4 and the fact that � is not HET, it is easy to see that Assumption 1(B)
implies the existence of three distinct agents, 1, 2, and 3, and four distinct objects, o, p1,
p2, and p3 such that

1 ∼o 2 ∼o 3
2 ∼p1 3 �p1 1
1 ∼p2 3 �p2 2
1 ∼p3 2 �p3 3

We show that � is not strongly solvable. We assume throughout that the preferences
of agents in I \ {1�2�3} are fixed at some profile at which they do not rank any of the
objects in {o�p1�p2�p3} as acceptable. The proof revolves around the preference profile

R R1 R2 R3

o o o
p1 p2 p3

For the following discussion, let f be an arbitrary strongly group-strategy-proof and
constrained efficient mechanism. We show by contradiction that f1(R) = o is impos-
sible. Since all three agents play completely symmetric roles in the preference profile
R, completely analogous arguments then show that we can also not have f2(R) = o or
f3(R) = o. Hence, f has to be wasteful at R and � can therefore not be strongly solvable.

Assume that f1(R) = o and consider the preference profile

R1 R1 R1
2 R3

o o o
p1 p1 p3

By strategy-proofness, we must have f2(R
1) �= o. Hence, either f1(R

1) = o or f3(R
1) = o.

We show that both cases necessarily lead to a contradiction.

Case 1. f1(R
1) = o. Consider the profile

R1�1 R1 R1
2 R0

3

o o o
p1 p1 p1

By f1(R
1) = o, we have f3(R

1) �= o. From strategy-proofness for 3, we can infer that
f3(R

1�1) �= o. Since 2 →p1 1 is an (2�1;o�p1) path that is compatible with the (3�1;o�p1)

path 3 →p1 1 and since 1 ∼o 2 ∼o 3, Lemma 4 implies f1(R
1�1) �= o. Hence, we must have

f2(R
1�1) = o. By 3 �p1 1, we have f3(R

1�1)= p1.
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Next, we derive a few implications from our initial assumption f1(R) = o:

R R1 R2 R3

o o o

p1 p2 p3

→
R1�2 R1

1 R2 R3

o o o

p3 p2 p3

↓
R1�4 R1 R2

2 R3

o o o

p1 p3 p3

←
R1�3 R1

1 R2
2 R3

o o o

p3 p3 p3

In moving from R to R1�2 we have used f1(R) = o and strategy-proofness for 1 to infer
f1(R

1�2) = o. Given that f2(R
1�2) �= o, strategy-proofness for 2 implies f2(R

1�3) �= o. Since
1 →p3 3 is an (1�3;o�p3) path that is compatible with the (2�3;o�p3) path 2 →p3 3 and
since 1 ∼o 2 ∼o 3, Lemma 4 implies f3(R

1�3) �= o. Hence, we must have f1(R
1�3) = o.

Strategy-proofness for 1 then yields f1(R
1�4) = o. Given that 2 �p3 3, stability requires

that f2(R
1�4)= p3 and f3(R

1�4) = 3.
Finally, consider the preference profile

R1�5 R1 R2
2 R1

3

o o o
p1 p3 p3

p1

By strategy-proofness and the just established fact that f1(R) = o implies f1(R
1�4) = o

and f3(R
1�4) = 3, we must have f3(R

1�5) /∈ {o�p3}. This is compatible with constrained
efficiency only if f1(R

1�5) = o, f2(R
1�5) = p3, and f3(R

1�5) = p1. Given that 2 and 3 can
obtain R1�1 from R1�5 by means of a coordinated deviation to (R1

2�R
0
3) and given that

f2(R
1�1) = o as well as f3(R

1�1) = f3(R
1�5) = p1, f cannot be strongly group-strategy-

proof. This completes the proof for Case 1.

Case 2. Strategy-proofness for 3 implies f3(R
1�1) = o (where R1�1 is the profile defined

at the beginning of Case 1). By 2 �p1 1, we have f2(R
1�1) = p1. Switching the roles of 2

and 3 and of p2 and p3 in the arguments used in Case 1, we find that f1(R) = o implies

R̃ R1 R̃2 R̃3

o o o
p1 p2 p2

p1

We again obtain a contradiction to the strong group-strategy-proofness of f given that 2
and 3 can obtain R1�1 from R̃ by means of a coordinated deviation to (R1

2�R
0
3) and given

that f2(R
1�1)= f2(R̃) = p1 as well as f3(R

1�1) = o.
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