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Existence and indeterminacy of Markovian equilibria in
dynamic bargaining games

Vincent Anesi
School of Economics, University of Nottingham

John Duggan
Department of Political Science and Department of Economics, University of Rochester

This paper studies stationary Markov perfect equilibria in multidimensional mod-
els of dynamic bargaining, in which the alternative chosen in one period deter-
mines the status quo for the next. We generalize a sufficient condition for ex-
istence of equilibrium due to Anesi and Seidmann (2015). We then use this ex-
istence result to show that if a weak gradient restriction holds at an alternative,
then when players are sufficiently patient, there is a continuum of equilibria with
absorbing sets arbitrarily close to that alternative. A sufficient condition for our
gradient restriction is that the gradients of all players’ utilities are linearly inde-
pendent at that alternative. When the dimensionality of the set of alternatives
is high, this linear independence condition holds at almost all alternatives, and
equilibrium absorbing sets are dense in the set of alternatives. This implies that
constructive techniques, which are common in the literature, fail to identify many
plausible outcomes in dynamic bargaining games.

Keywords. Legislative bargaining, endogenous status quo, Markovian equilib-
rium, simple solution.

JEL classification. C78, D71, D72.

1. Introduction

Most formal political analyses of legislative policymaking, until recently, have used mod-
els in which legislative interaction ends once a proposal is passed (e.g., Romer and
Rosenthal 1978, Baron and Ferejohn 1989, and Banks and Duggan 2000, 2006). As
pointed out by Baron (1996) and later by Kalandrakis (2004), however, most legislatures
have the authority to change existing laws by enacting new legislation, so that laws con-
tinue in effect only in the absence of new legislation. To explore this dynamic feature of
legislative policymaking, these authors have introduced an alternative model that casts
the classical spatial collective-choice problem into a dynamic bargaining framework.
Each period begins with a status quo policy inherited from the previous period, and a
legislator is chosen randomly to propose any feasible policy, which is then subject to an
up or down vote. If the proposal is voted up, then it is implemented in that period and
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becomes the next period’s status quo; if it is voted down, then the ongoing status quo
is implemented and remains in place until the next period. This process continues ad
infinitum.

The problem immediately encountered in this framework is that existence results for
stationary Markov perfect equilibria provided in the extant game-theoretic literature do
not apply. The consequence has been a fast growing body of literature consisting of work
that explicitly constructs stationary Markovian equilibria for bargaining games with an
endogenous status quo, and then analyzes the properties of policy outcomes implied by
these constructions (e.g., Baron 1996, Kalandrakis 2004, 2010, 2016, Bowen and Zahran
2012, Nunnari 2017, Richter 2014, Baron and Bowen 2016, Zápal 2014, and Anesi and
Seidmann 2015). These analyses are an important development in the study of legisla-
tive dynamics, but almost all either assume that the space of alternatives is unidimen-
sional or focus on pie-division settings where each bargainer’s utility only depends on
her own share of the pie. There are no known conditions that guarantee the existence of
a stationary Markovian equilibrium for more general multidimensional choice spaces.1

In this paper, we provide gradient restrictions at a given alternative that are suffi-
cient for existence of a stationary Markov perfect equilibrium in pure strategies with an
absorbing set close to that alternative, when players are sufficiently patient. In fact, our
gradient restriction holds at every interior alternative when there is private good that
can be allocated across the players, and it delivers a continuum of stationary Markov
perfect equilibria with distinct absorbing points close to that alternative. Thus, in a
large class of models of dynamic bargaining with an endogenous status quo, equilib-
ria are indeterminate—despite the fact that stationary Markovian strategies depend on
the history of play only through the current status quo, sharply constraining the ability
to punish and reward players for past behavior. Our results have important implica-
tions for applied bargaining models of legislative policymaking, where the norm is to
construct a particular equilibrium in closed form and to analyze the properties of this
equilibrium selection as parameters are varied: when players are sufficiently patient, the
implicit equilibrium selection made in such analyses may be restrictive, with the danger
that insights derived from those analyses are driven by the equilibrium selection, rather
than equilibrium incentives in general. In the absence of further justifications for such a
selection, the multiplicity of equilibria we highlight suggests limits on the usefulness of
these constructions in predicting the policy outcomes, and understanding the dynamics
and comparative statics of legislative bargaining. Studies of dynamic bargaining with an
endogenous status quo thus face an important equilibrium refinement issue.

Our analysis allows the feasible set of alternatives to be any nonempty subset of
multidimensional Euclidean space, and we rely only on smoothness of utilities to apply
techniques from differential topology. We do not impose any functional form restric-
tions or assume the existence of a private good. The bargaining protocol is the standard
one described above, and we permit the voting rule to be any noncollegial rule, i.e., no

1An exception is Duggan and Kalandrakis (2012), who establish existence of stationary Markovian equi-
libria in pure strategies for general environments. They modify the basic framework by adding noise to the
status quo transition and assuming preference shocks in each period. This paper concentrates on existence
conditions that do not rely on such noise.
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player has a veto. Our main indeterminacy result is that when players are sufficiently pa-
tient, a continuum of stationary Markov perfect equilibria in pure strategies can be con-
structed with absorbing sets close to any alternative at which a weak gradient restriction
holds. This gradient restriction holds if the gradients of all players’ utilities are linearly
independent at the given alternative, and, generically, this in turn holds at almost all
alternatives when the dimensionality of the set of alternatives is greater than or equal
to the number of players. Linear independence of all players’ gradients is sufficient for
our condition, but not necessary: we provide a more general condition requiring only
linear independence of the gradients of players belonging to a given “oversized” coali-
tion (a decisive coalition that remains decisive if any one member is removed), and that
linear independence is maintained if a player outside the coalition is switched with one
inside. Given a high-dimensional set of alternatives, our linear independence condition
holds generically outside a set of alternatives with measure zero, with the implication
that equilibria typically abound in such models.

Though the above indeterminacy result makes use of equilibria in which Pareto inef-
ficient alternatives are proposed and passed, we show in our companion working paper
Anesi and Duggan (2017) that when players are sufficiently patient, a second gradient
restriction leads to a continuum of stationary Markov perfect equilibria in pure strate-
gies with Pareto optimal absorbing points close to a given Pareto optimal alternative.
Thus, the use of Pareto inefficient alternatives is not essential for the indeterminacy re-
sult, and refining away equilibria with inefficient outcomes still leaves a continuum of
equilibria. We emphasize that both gradient restrictions are easily verified in economic
environments and, together, cover many applications encountered in the literature, in-
cluding pie-division settings and, more generally, the large class of economies with a
private good component.

The analysis of equilibrium indeterminacy develops constructive techniques due to
Anesi and Seidmann (2015), who establish existence, but not indeterminacy, of station-
ary Markov perfect equilibria for the pie-division model. The approach rests in identify-
ing possible absorbing sets of equilibria when players are sufficiently patient. In doing
so, the authors define the concept of a “simple solution” as a list of alternatives, each
associated with a decisive coalition supporting it, such that for every player, the player’s
utility takes two values over the list of alternatives—a reward payoff and a punishment
payoff, the player is included in some but not all coalitions, and the player receives her
reward payoff when included in a coalition and receives her punishment payoff when
excluded. The authors show that in the pie-division setting, given any simple solution
and assuming sufficiently patient players, there is a stationary Markov perfect equilib-
rium with an absorbing set that coincides with the simple solution. To capture more
general environments, our equilibrium construction uses the concept of “semi-simple
solution,” which generalizes Anesi and Seidmann’s (2015) simple solutions by allowing
for the possibility of multiple punishment payoffs. This gain in flexibility allows us to
push their approach well beyond pie division and to shed many of the assumptions usu-
ally made in the dynamic bargaining literature, dropping convexity and compactness of
the set of alternatives, and assuming only weak gradient restrictions on players’ utilities.
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As mentioned earlier, existence results for stationary Markov perfect equilibria pro-
vided in the literature on stochastic games do not apply to the dynamic bargaining
framework, as they rely on continuity conditions on the transition probability that are
violated in the bargaining model (see Duggan 2017 for a more detailed discussion). Ex-
istence and characterization results for Markov perfect equilibria have been obtained in
alternative frameworks of dynamic bargaining in which the policy space is finite (Anesi
2010, Diermeier and Fong 2011, 2012, and Battaglini and Palfrey 2012) or without dis-
counting (Anesi and Seidmann 2014) or when the set of possible status quos is countable
(Duggan 2017).

A road map of the paper is as follows. The bargaining framework and equilibrium
concept are defined in Section 2. Section 3 presents the concept of semi-simple solu-
tion and establishes that when players are sufficiently patient, a semi-simple solution
can be obtained as the absorbing set of a stationary Markov perfect equilibrium in pure
strategies.2  Section 4 shows that, given any alternative, if the gradients of members of an
oversized coalition are linearly independent and if linear independence is maintained
when a player outside the coalition is switched with one inside, then there is a contin-
uum of semi-simple solutions in an arbitrarily small neighborhood of that alternative.
Section 5 combines the above observations and presents our result on indeterminacy
of equilibria in dynamic bargaining games. Finally, Appendices A and B contain formal
proofs omitted from the text.

2. Dynamic bargaining framework

In each of an infinite number of discrete periods, indexed t = 1�2� � � � , a finite set of
players N ≡ {1� � � � � n} with n ≥ 3 must reach a collective choice from a nonempty set of
alternatives, X ⊆ �d , with nonempty interior. Let xt denote the alternative chosen in pe-
riod t. Bargaining takes place as follows. Each period t begins with a status quo alterna-
tive xt−1, which is in place from the previous period. Player i is selected with probability
pi ∈ (0�1) to propose a policy in X ; all players then simultaneously vote to accept or to
reject the chosen proposal. It is accepted if a coalition C ∈ D of players vote to accept,
and it is rejected otherwise, where D ⊆ 2N \ {∅} is the nonempty collection of decisive
coalitions, which have the authority to decide policy in a given period. If proposal y is
accepted, then it is implemented in period t and becomes the status quo next period
(i.e., xt = y); otherwise, the previous status quo, xt−1, is implemented and remains the
status quo in period t+1 (i.e., xt = xt−1). This process continues ad infinitum. The initial
status quo, x0 ∈X , is exogenously given.

We assume the voting rule D is proper, i.e., every pair of decisive coalitions has
nonempty intersection: C�C ′ ∈ D implies C ∩ C ′ 	= ∅. In addition, we assume D is
monotonic, i.e., any superset of a decisive coalition is itself decisive: C ∈ D and C ⊆ C ′
imply C ′ ∈ D. Finally, we assume that D is noncollegial, in the sense that no player has
a veto: we have N \ {i} ∈ D for all i ∈ N . Thus, we allow for any quota rule defined by

2We also present the weaker concept of “mixed” semi-simple solution and show that it can be supported
if mixed proposal strategies are permitted in the working paper version of this paper (Anesi and Duggan
2017).
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D = {C : |C| ≥ q}, the only restrictions on the quota q being n
2 < q < n. For future use, we

say a decisive coalition C is oversized if every member of the coalition is redundant: for
all i ∈ C, C \ {i} ∈ D. Let D∗ denote the collection of oversized coalitions, and note that
N ∈ D∗, since D is noncollegial.

The preferences of each player i over lotteries over sequences of alternatives are rep-
resented by a von Neumann–Morgenstern stage utility function ui : X → � that is twice
continuously differentiable and bounded above. Say x is Pareto optimal if there is no
y ∈ X such that for all i ∈ N , we have ui(y) ≥ ui(x), with strict inequality for at least
one member of N . Given a sequence of alternatives {xt} ∈ X∞, player i’s payoff is the
discounted sum (1 − δi)

∑∞
t=1 δ

t−1
i ui(x

t), where δi ∈ [0�1) is her discount factor.
A noteworthy special case of our general environment is that of a mixed economy,

in which an alternative x = (x1� � � � � xn�g) consists of a private component (x1� � � � � xn) ∈
�n+ and possibly a public component g ∈ �d−n+ , d ≥ n. Here, the set of alternatives is
X = {x ∈ �d : f (−∑

i∈N xi�g) ≤ 0}, where f : �d−n+1+ → � is a continuous, weakly mono-
tonic function. We then require that each ui is strictly increasing in xi and constant in
x1� � � � � xi−1�xi+1� � � � � xn; more formally, ∂ui

∂xi
(x) > 0 and ∂ui

∂xj
(x) = 0 for all x and all j 	= i.

We interpret xi as an amount of a resource allocated to i, and our restriction on utili-
ties reflects the assumption that there are no consumption externalities in the private
good. An obvious example of a mixed economy (where the public good level is fixed at
zero and therefore suppressed) is the setting of pie-division with free disposal, in which
X = {(x1� � � � � xn) ∈ [0�1]n : ∑

i∈N xi ≤ 1} is the n-dimensional unit simplex; however,
mixed economies with richer policy spaces are also common in the political economy
literature (e.g., Jackson and Moselle 2002).

An alternative setting is that of pie-division with no disposal, in which the pie must
be fully divided; it does not constitute a mixed economy, as defined above. This model,
which has received considerable attention in the literature on bargaining (both with
and without an endogenous status quo), is also captured by our framework. To this end,
define X = {(x1� � � � � xn−1) ∈ [0�1]n−1 : ∑n−1

i=1 xi ≤ 1} as the (n− 1)-dimensional unit sim-
plex, and assume (i) ∂ui

∂xi
(x) > 0 and ∂ui

∂xj
(x) = 0 for all x, all i < n, and all j ∈ N \ {i� n},

and (ii) there exists a differentiable, real-valued function v on [0�1] with v′ > 0 such
that un(x) = v(1 − ∑n−1

i=1 xi) for all x = (x1� � � � � xn−1). The set of alternatives, formulated
thusly, has full dimension, and an alternative at which each player consumes a positive
amount belongs to the interior of X , so calculus-based methods can be directly applied.

We focus on subgame perfect equilibria in which players use pure stationary Markov
strategies, defined as follows. For any player i ∈ N , a stationary Markov strategy σi =
(πi�αi) consists of a proposal strategy πi : X → X , where πi(x) is the proposal made by
player i when the current status quo is x (conditional on her being selected to propose),
and a voting strategy αi : X2 → {0�1}, where αi(x� y) is the (degenerate) probability that
i votes to accept a proposal y when the current status quo is x. A stationary Markov
perfect equilibrium is a subgame perfect equilibrium in which all players use station-
ary Markov strategies. We follow the standard approach of concentrating throughout
on equilibria in stage-undominated voting strategies, i.e., those in which, at any voting
stage, no player uses a weakly dominated strategy. Hence, we refer to a pure stationary
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Markov perfect equilibrium in stage-undominated voting strategies more succinctly as
a stationary bargaining equilibrium.

Every stationary Markov strategy profile σ = (σ1� � � � �σn) (in conjunction with recog-
nition probabilities) generates a transition function Pσ : X2 → [0�1], where Pσ(x� y) is
the probability, given σ , that the alternative implemented in the next period is y, given
that the alternative implemented in the current period is x.3 We say that x ∈ X is an ab-
sorbing point of σ if and only if Pσ(x�x) = 1, and we denote the set of absorbing points
of σ by A(σ) ≡ {x ∈ X : Pσ(x�x) = 1}. We will say that σ is no-delay if and only if (i)
A(σ) 	=∅ and (ii) for all x ∈X , there is y ∈A(σ) such that Pσ(x� y) = 1. In words, a strat-
egy profile is no-delay if an absorbing point is implemented in every period (both on
and off the equilibrium path).

3. Semi-simple solutions and existence of equilibria

Anesi and Seidmann (2015) show that in pie-division settings with free disposal, each
simple solution (as defined in the Introduction) identifies alternatives that are absorb-
ing points of stationary bargaining equilibria for the corresponding bargaining games
when players are sufficiently patient. Simple solutions always exist in the pie division
model with free disposal, but there remains the possibility that a more general concept
has greater applicability in general environments yet is still sufficient for the construc-
tion of stationary bargaining equilibria. In this section, we push the approach of Anesi
and Seidmann (2015) further to obtain the existence of stationary bargaining equilibria
corresponding to sets of alternatives exhibiting a more general structure. To this end,
we propose the weaker concept of semi-simple solution and show that when players
are sufficiently patient, every semi-simple solution can be supported as the absorbing
set of a stationary bargaining equilibrium. This generalizes the result of Anesi and Seid-
mann (2015), and as we show in the following section, it allows us to obtain a continuum
of stationary bargaining equilibria near any alternative satisfying a general gradient re-
striction. In turn, this will imply indeterminacy of stationary bargaining equilibria in a
broad class of dynamic bargaining games.

Definition 1. A set of alternatives S ⊂ X is a semi-simple solution if the following con-
ditions hold:

(i) There is a one-to-one mapping ρ : S → N such that for all x ∈ S,

ρ(x) ∈ C(x) ≡
{
i ∈N : ui(x) = max

z∈S
ui(z)

}
∈ D�

(ii) For all i ∈N , ui is not constant on S.

In the definition of semi-simple solution, for any player i, we interpret maxz∈S ui(z)
as the player’s reward payoff, and interpret payoffs below this value as punishments.
Thus, part (i) requires that for each x ∈ S, there is a decisive coalition that supports x

3As all players use pure strategies, Pσ(x� ·) is a discrete probability density with | supp(Pσ(x� ·))| ≤ n for
all x ∈ X .
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to implement the reward payoff of player ρ(x), and since uρ(x) is not constant on S, by
part (ii), it follows that there is also a decisive coalition willing to implement a punish-
ment payoff for the player. Semi-simple solutions are a generalization of Anesi and Seid-
mann’s (2015) simple solutions,4 the critical difference between the two concepts being
that, in the definition of a semi-simple solution, a player i does not have a single pun-
ishment payoff, but instead it can vary across alternatives that do not solve maxz∈S ui(z).
The first part of Definition 1 implies that a semi-simple solution contains at most n al-
ternatives; the second part implies that the collection {C(x) : x ∈ S} of decisive coalitions
has empty intersection. It is known from the social choice literature that the number of
coalitions must therefore meet or exceed the Nakamura number of the voting rule; for
the quota rule case, this means that any simple solution S must satisfy |S| ≥ � n

n−q�.5

Next, we generalize Anesi and Seidmann’s (2015) result to support any semi-simple
solution as the absorbing set of a stationary bargaining equilibrium. Thus, if one can
show that a semi-simple solution exists, then necessarily the dynamic bargaining game
(with discount factors close enough to 1) will possess a stationary bargaining equilib-
rium. However, existence of a semi-simple solution is not generally guaranteed. For
instance, it is readily checked that no semi-simple solution can exist in settings with a
unidimensional set of alternatives, n≥ 3, majority rule, and single-peaked utilities, as in
Baron (1996), Kalandrakis (2016), and Zápal (2014).6

Theorem 1. Let S be a semi-simple solution. There is a threshold δ̄ ∈ (0�1) such that if
mini∈N δi > δ̄, then there exists a no-delay stationary bargaining equilibrium σ such that
A(σ) = S.

The proof of Theorem 1 generally follows the lines of the construction of Anesi and
Seidmann (2015). To convey the idea of the proof, consider the special case in which
n = 5, D is majority rule, and assume that δi ≈ 1 for each player i. Let {x̄1� x̄2� x̄3� x̄4} be a
semi-simple solution with payoffs as depicted by

1 2 3 4 5

x̄1 1 1 1 0 3
x̄2 1 1 0 1 2
x̄3 1 0 1 1 1
x̄4 0 1 1 1 0

so that C(x̄1) = {1�2�3�5}, C(x̄2) = {1�2�4}, C(x̄3) = {1�3�4}, and C(x̄4) = {2�3�4}. (To
fulfill Definition 1, define the mapping ρ on {x̄1� x̄2� x̄3� x̄4} by ρ(x̄k) = k for all k =
1�2�3�4.) For each i ∈N , let Ci be the decisive coalition defined by Ci ≡ C(x̄i) if i ∈N \{5}
and C5 ≡ C(x̄1). We say that coalition Ci “forms” in period t if alternative x̄k is imple-
mented, i.e., if xt = x̄k. Observe that the players in Ci, and only these players, receive

4See Section 3 of our companion working paper for a proof.
5The Nakamura number of a general, noncollegial voting rule D is the size of the smallest collection of

decisive coalitions having empty intersection. In the discussion, �r� is the smallest integer greater than or
equal to real number r.

6Also note that a semi-simple solution would not exist if D were collegial, as in Nunnari (2017).
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their reward payoff when Ci forms. Now consider a stationary Markov strategy profile
σ with the following features. In every period t, the current status quo reveals whether
a coalition formed in period t − 1; then events unfold as follows: (a) if no coalition in
{Cj}j∈N formed in period t − 1, then every proposer i offers to form coalition Ci, and this
proposal is accepted by all the members of Ci; (b) if a coalition in {Cj}j∈N , say Ci, formed
in t − 1, then every proposer j offers to form coalition Ci again in t by proposing x̄i; (c) if
a coalition in {Cj}j∈N , say Ci, formed in t − 1, then any (off-the-equilibrium-path) pro-
posal that does not involve forming Ci is rejected by the members of Ci. Observe that
on the path of play prescribed by σ , one of the alternatives in {x̄1� x̄2� x̄3� x̄4� x̄5} is imple-
mented in the first period and then never amended: in the first period, some coalition
Ci forms with probability pi and then forms in all future periods with probability 1. The
same occurs following any period in which no coalition formed. Hence, each player’s
maximum utility in each period t is given by her reward payoff, which she obtains if and
only if she is a member of the coalition that forms in t.

Suppose that coalition Ci formed in period t − 1 and that, contrary to (b) above,
the proposer selected in period t does not offer to form Ci again. By accepting such a
proposal, each member j of Ci would face the risk of not being a member of the coalition
that will form and, therefore, of not receiving her reward payoff in all future periods. This
implies that, in period t, it is always profitable for the farsighted members of coalition Ci

to oppose any proposal that does not involve forming Ci again, as prescribed by (c). As Ci

is a majority coalition, it is thus impossible for any proposer j to prevent Ci from forming
in period t. Therefore, proposer j cannot profitably deviate from passing, as prescribed
by (b). By the same logic, if no coalition formed in period t − 1, then no player j can
improve on accepting an offer to form coalition Ci � j, thereby obtaining her reward
payoff with probability 1 in all future periods. It is therefore optimal for proposer i to
(successfully) offer to form Ci, as prescribed by (a).

4. Multiplicity of semi-simple solutions

To leverage Theorem 1, it remains to find conditions under which semi-simple solu-
tions exist. Our approach is to exploit restrictions on the gradients of players’ utility
functions at an interior alternative x that are sufficient for existence of semi-simple so-
lutions near x. To provide a preliminary intuition, consider the case of the pie division
with free disposal. In this setting, one can easily satisfy the conditions of Definition 1 at
any interior alternative x= (x1� � � � � xn) by transferring shares of the pie between players:
for example, given sufficiently small ε > 0, we can construct x̄i by transferring (n − 1)ε
from player i to the other players, increasing the consumption of every other player by
ε. Then {x̄1� � � � � x̄n} is a semi-simple solution in which each player i receives her unique
punishment payoff from x̄i and her reward payoff from x̄j for j 	= i. Of course, a con-
tinuum of semi-simple solutions can thus be obtained arbitrarily close to x by varying ε.
The crux of the proof of our first existence result is to translate this simple argument into
more general environments, where we cannot freely adjust the players’ payoffs by re-
allocating a transferable private good. This is where our first gradient restriction, called
Condition C1, kicks in: it allows us to apply the logic of the pie-division model with free
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disposal to construct a continuum of semi-simple solutions in any open neighborhood
of an alternative satisfying the condition. Condition C1 can fail in pie division mod-
els with no disposal (this occurs when D is a quota rule with q = n − 1), but at the end
of this section, we state a result that yields a continuum of semi-simple solutions near
any Pareto optimal alternative satisfying a gradient restriction that is satisfied in such
settings.

More precisely, Condition C1 requires that the gradients of the members of some
oversized coalition C∗ are linearly independent at an interior alternative x; moreover,
there is some member j of the coalition such that if we switch j with any nonmember k,
the gradients of members of the resulting coalition (C∗ \ {j})∪ {k} remain linearly inde-
pendent. The condition is obviously implied if the gradients {∇ui(x) : i ∈ N} of all play-
ers are linearly independent, for in this case, the second requirement is in fact vacuously
satisfied.

Condition C1. There is an oversized coalition C∗ ∈ D∗ such that (i) the gradients
{∇ui(x) : i ∈ C∗} are linearly independent, and (ii) there exists j ∈ C∗ such that for all
k ∈N \C∗, the gradients {∇ui(x) : i ∈ (C∗ \ {j})∪ {k}} are linearly independent.

Intuitively, when Condition C1 holds at x, we can obtain all values of the utility pro-
file u = (ui)i∈C∗ in some open neighborhood of u(x) ∈ �|C∗| by arbitrarily small varia-
tions of x, i.e., the Jacobian of u at x has full row rank. As mentioned above, a sufficient
condition for Condition C1 that is satisfied in many economic applications is that the
collection {∇ui(x) : i ∈ N} of all players’ gradients is linearly independent. The latter
condition is satisfied whenever the set of alternatives has a private good component; a
fortiori, given our formulation of mixed economies, Condition C1 holds at any alter-
native x in the interior of X . In particular, Condition C1 holds in the model of pie-
division with free disposal, as studied in Baron and Bowen (2016), Richter (2014), and
Anesi and Seidmann (2015). Letting m∗ denote the size of the smallest oversized coali-
tion, i.e., m∗ = min{|C| : C ∈ D∗}, Condition C1 holds as well in the model of pie division
with no disposal as long as m∗ < n, for then if a coalition of size m∗ includes player n, it
must exclude some player i < n, and the members’ gradients will be linearly indepen-
dent. More generally, Condition C1 holds if for every size m∗ coalition C, the gradients
{∇ui(x) : i ∈ C} are linearly independent, and for a quota rule, this reduces to the require-
ment that the gradients of every coalition with q + 1 members are linearly independent
at x. In multidimensional settings with d ≥m∗, Schofield’s (1980) Singularity Theorem A
establishes that for generic profiles of utility functions, Condition C1 holds at every al-
ternative outside a union of manifolds of dimension m∗ − 1 or less; that is, Condition C1
generically holds on a closed set of alternatives with measure zero.7

7Schofield’s (1980) result holds if we give the space of twice continuously differentiable utility profiles
the Whitney topology. Condition C1 fails at alternatives x such that the rank of {∇ui(x) : i ∈ C∗} has rank
m∗ − r for r ≥ 1. Setting w = d and z = m∗ in Schofield’s theorem, the claim follows. Smale (1974) establishes
a similar result for the case of exchange economies.
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The next result establishes a continuum of semi-simple solutions in noncollegial,
dynamic bargaining games under Condition C1. In fact, we show that given any interior
alternative satisfying Condition C1, we can find a continuum of semi-simple solutions
arbitrarily close to that alternative.

Theorem 2. Let x be any interior point of X at which Condition C1 is satisfied. Every
open neighborhood U of x contains a continuum of semi-simple solutions.

For a sketch of the proof, consider a simple three-player majority-voting game, let
x be any interior point of X , and, for simplicity, assume that Condition C1 is satis-
fied at x. Since the only oversized coalition is N = {1�2�3}, Condition C1 implies that
{∇ui(x) : i = 1�2�3} is linearly independent. Our approach, in the context of this exam-
ple, is to find a set of alternatives {x̄1� x̄2� x̄3} such that for each alternative k= 1�2�3, the
coalition supporting x̄k is C(x̄k) = N \ {k}, whereas player k receives her punishment
payoff from x̄k. Then each C(x̄k) is decisive, and we fulfill Definition 1 by specifying
the mapping ρ so that ρ(x̄k) = k + 1 for k = 1�2, and ρ(x̄3) = 1. To this end, define
f as the function that maps vectors of alternatives (x1�x2�x3) ∈ X3 to corresponding
utility vectors (ui(x

j))i�j∈N ∈ �9. The argument is depicted in Figure 1, where we place
(u1(x)�u2(x)�u3(x)) at the center of the simplex in �3. Condition C1 implies that the Ja-
cobian of f has full row rank at x. By the local submersion theorem (e.g., Guillemin and
Pollack 1974), therefore, we can select alternatives x̄1 , x̄2, and x̄3 near x so as to give each
player i her punishment payoff at x̄i and the remaining players their reward payoffs; e.g.,
for sufficiently small ε > 0, we can set ui(x̄i) = ui(x) − ε, whereas uj(x̄

i) = uj(x) + ε for
each j ∈ N \ {i}. Thus, {x̄1� x̄2� x̄3} is a semi-simple solution. It is readily checked that
we can use the same argument for a continuum of values of ε that each yield a different
semi-simple solution.

Figure 1. Mapping to utility vectors.
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The preceding argument illustrates the proof approach in a particular example,
where the only oversized coalition is the entire set of players, N itself. This is neces-
sarily the case if the voting rule is a quota rule with q = n − 1, but more generally (as in
the case of majority rule with n ≥ 5), the gradient restriction imposed in Condition C1
will be weaker when satisfied using a smaller coalition C∗ �N . Returning to the exam-
ple of Figure 1, maintain majority rule, but now assume n = 5, and assume that Con-
dition C1 is satisfied with C∗ = {1�2�3�4}. In this case, the the selection of four alter-
natives {x1� x̄2� x̄3� x̄4} proceeds as above and satisfies part (i) of Definition 1, but we
must address the possibility that a player outside C∗, namely player 5, is indifferent over
{x1� x̄2� x̄3� x̄4}. In case player 5 is not indifferent, then we set x̄1 = x1, and otherwise,
we perturb x1 as follows. Following the argument of Figure 1, we can, by varying x1 in
an arbitrarily small open set, vary the payoffs of players in (C∗ \ {1}) ∪ {5} in an open
set around (u2(x

1)�u3(x
1)�u4(x

1)�u5(x
1)). Thus, we can perturb x1 to x̄1 such that the

utilities of players 2, 3, and 4 are unchanged (preserving their reward and punishment
payoffs), and such that player 5’s utility changes; moreover, we can make the perturba-
tion small enough that player 1’s payoff from x̄1 remains less than her reward payoff. In
both cases, we obtain a set {x̄1� x̄2� x̄3� x̄4} such that part (i) of Definition 1 is preserved,
and such that player 5 is not indifferent over {x̄1� x̄2� x̄3� x̄4}, fulfilling part (ii); that is, the
set is a semi-simple solution. In the general case, if multiple players outside C∗ are in-
different over the alternatives in the provisional solution, then we iterate this procedure
for each one.

Remark on pie division with no disposal and m∗ = n. As mentioned above, Theo-
rem 2 does not cover the model of pie division with no disposal when m∗ = n. Neverthe-
less, the result can be adapted to cover that environment by adding the assumption that
x is Pareto optimal and weakening the gradient restriction of Condition C1 so that the
gradients of every size n− 1 coalition are linearly independent.

Condition C1*. (i) The alternative x is Pareto optimal and (ii) for all i ∈ N , the gradi-
ents {∇uj(x) : j ∈ N \ {i}} are linearly independent.

Although Condition C1 fails in the model of pie division with no disposal when
m∗ = n, Condition C1* holds at all interior alternatives in this environment, capturing
the settings of Kalandrakis (2004 and 2010) and Bowen and Zahran (2012). These and
the previous examples show that Conditions C1 and C1* are easy to check and that they
apply to a range of economic environments of interest, and the following variant of The-
orem 2 shows that Condition C1* also leads to a continuum of semi-simple solutions
near any alternative satisfying the condition.8

Theorem 2*. Let x be any interior point of X at which Condition C1* is satisfied. Every
open neighborhood U of x contains a continuum of semi-simple solutions.

8The proof of this theorem can be found in the working paper version (Anesi and Duggan 2017).
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5. Indeterminacy of stationary bargaining equilibria

Theorem 1, combined with Theorem 2, immediately yields an equilibrium existence re-
sult for the dynamic bargaining game: as discount factors become close to 1, absorbing
points of stationary bargaining equilibria exist near every alternative that satisfies Con-
dition C1. Of greater importance are the implications of these results for the predictive
power of stationary bargaining equilibria in this class of games: when players are suf-
ficiently patient, the dynamic bargaining game admits a continuum of equilibria. The
next result establishes indeterminacy of stationary bargaining equilibria when any al-
ternative satisfies Condition C1 and players are sufficiently patient.

Theorem 3. Let x be any interior point of X at which Condition C1 is satisfied. For every
open neighborhood U of x, there exists δ̂ ∈ (0�1) such that if mini∈N δi > δ̂, then there is
a continuum of semi-simple solutions in U corresponding to absorbing sets of no-delay
stationary bargaining equilibria with discount factors δ1� � � � � δn.

Note that the theorem is not an immediate corollary of Theorems 1 and 2. Indeed,
the threshold δ̄ = δ̄S identified in Theorem 1 was only shown to apply to a given semi-
simple solution S, not to the continuum of semi-simple solutions in U described in The-
orem 2. Henceforth, let δ̄S be the threshold associated with S, and let S be the contin-
uum of semi-simple solutions from Theorem 2. It remains to be established that there
is a subcontinuum, say S∗, of that continuum such that δ̂ = sup{δ̄S : S ∈ S∗} < 1. To this
end, let U ⊆ X be an arbitrary open neighborhood of x. For each natural number k, set
Sk = {S ∈ S : δ̄S < 1 − 1

k } and note that S = ⋃∞
k=1 Sk. Thus, S is the union of countably

many sets, and since S is a continuum, some set Sk is also a continuum.9 Then we set
S∗ = Sk and δ̂ = 1 − 1

k to complete the proof.
The political economy literature on bargaining games with an endogenous status

quo has devoted considerable attention to the set A∗ of dynamically stable alternatives,
i.e., the alternatives that can be supported as long-run outcomes of stationary bargain-
ing equilibria. Formally, we define A∗ to consist of every alternative x for which there ex-
ists δ̂ ∈ (0�1) such that if mini∈N δi > δ̂, then there is a stationary bargaining equilibrium
σ for discount factors δ1� � � � � δn such that x ∈ A(σ). In terms of predicting bargaining
outcomes, the characterization of dynamically stable alternatives is only informative if
A∗ is “small” relative to the set of alternatives. This is typically not the case in the dy-
namic bargaining game with a high-dimensional set of alternatives. As discussed above,
when d ≥m∗ − 1, for generic utility profiles, Condition C1 is satisfied on a set of alterna-
tives with full measure, and thus the dynamically stable alternatives are dense in the set
of alternatives.

Corollary 1. If the set of alternatives at which Condition C1 holds is dense in intX , then
the set A∗ of dynamically stable alternatives is dense in intX .

9More precisely, if we had |Sk| < |S| for all k, then it would follow from König’s theorem (e.g., Holz et al.
1999) that |S| ≤ ∑∞

k=1 |Sk| < ∏∞
k=1 |S| = |S|, a contradiction.
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This observation is reminiscent of the cycling results in the social choice literature
(e.g., McKelvey 1979). Just as the top cycle is generically dense in the set of alternatives
in sufficiently high-dimensional spaces, we find that long-run bargaining outcomes
for any such environment are highly indeterminate. Whereas McKelvey’s chaos theo-
rem evokes the picture of collective choices moving arbitrarily through the set of alter-
natives over time, however, our results establish the possibility that collective choices
via dynamic bargaining can come to rest at arbitrary locations in the set of alterna-
tives.

We conclude that as players become patient, stationary bargaining equilibria may
not only be indeterminate, but when the space of alternatives is high dimensional, ev-
ery interior alternative can be approximated by equilibrium absorbing points. Note that
the indeterminacy is not created by the possibility of Pareto inefficient equilibria: our
companion working paper Anesi and Duggan (2017) provides a second gradient restric-
tion under which near a given Pareto optimal alternative, we can find a continuum of
semi-simple solutions involving only Pareto optimal alternatives. In the absence of a
priori bounds on the players’ discount factors, our results demonstrate difficulties for
the prediction and analysis of outcomes in dynamic settings that must be addressed in
future work on dynamic bargaining with an endogenous status quo.

Appendix A: Proof of Theorem 1

Let S = {x̄1� � � � � x̄m}, m ≤ n, be a semi-simple solution. We will proceed in six steps.
Step 1 defines the threshold δ̄ = δ̄(x̄1� � � � � x̄m). Steps 2 and 3 construct σ and verify that
it is a no-delay stationary Markov strategy profile. Step 4 derives players’ continuation
values from the definition of σ . Finally, Steps 5 and 6 use these continuation values to
establish that σ is a stationary bargaining equilibrium.

Step 1: Definition of δ̄(x̄1� � � � � x̄m). Let pmin ≡ mini∈N pi and, for each i ∈N , let

δ̄i
(
x̄1� � � � � x̄m

) ≡
u

sup
i − max

h
ui

(
x̄h

)
u

sup
i −pmin min

h
ui

(
x̄h

) − (
1 −pmin)

max
h

ui
(
x̄h

) ,

where u
sup
i > maxh ui(x̄h) is an upper bound for ui(X) (recall that the uis are bounded

above). By condition (ii) in the definition of a semi-simple solution,

pmin min
h

ui
(
x̄h

) + (
1 −pmin)

max
h

ui
(
x̄h

)
< max

h
ui

(
x̄h

)

and, therefore, δ̄i(x̄1� � � � � x̄m) ∈ (0�1) for every i ∈N . This in turn implies that

δ̄
(
x̄1� � � � � x̄m

) ≡ max
i∈N

δ̄i
(
x̄1� � � � � x̄m

) ∈ (0�1)�

Moreover, as ui is continuous for each i, δ̄i is continuous in (x̄1� � � � � x̄m). Hence, δ̄ is a
continuous function of (x̄1� � � � � x̄m).
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Henceforth, we assume that mini∈N δi > δ̄(x̄1� � � � � x̄m).
Step 2: Definition of stationary Markov strategy profile σ . The definition of pro-

posal strategies relies on an n-tuple of alternatives (“x1� � � � � “xn) ∈ {x̄1� � � � � x̄m}n, defined
as follows. From condition (i) in Definition 1, there exists a one-to-one mapping
ρ : {x̄1� � � � � x̄m} → N such that for all k = 1� � � � �m, ρ(x̄k) ∈ {i ∈ N : ui(x̄k) = maxh ui(x̄h)}.
For each i ∈ ρ({x̄1� � � � � x̄m}), we define “xi as the alternative x̄k in the semi-simple solu-
tion such that x̄k = ρ−1(i). If N \ ρ({x̄1� � � � � x̄m}) 	= ∅, then, for each i /∈ ρ({x̄1� � � � � x̄m}),
we select “xi among the maximizers of ui on {x̄1� � � � � x̄m}. Observe that, by condition (ii)
in Definition 1, we have ui(“x

i) = maxh ui(x̄h) > minh ui(x̄
h) for all i ∈ N . Moreover, since

ρ is one-to-one, we also have∑
j∈N

pjui
(
“xj

) ≤ pmin min
h

ui
(
x̄h

) + (
1 −pmin)

max
h

ui
(
x̄h

)

for all i ∈N .
We are now in a position to define σ = (σ1� � � � �σn). For each i ∈N , σi prescribes the

following behavior to player i:
(a) In the proposal stage of any period t with ongoing status quo x (conditional on

her being selected to make a proposal), she proposes

φi(x) ≡
{
x if x ∈ {

x̄1� � � � � x̄m
}

“xi otherwise.

(b) In the voting stage of any period t with ongoing status quo x, she accepts proposal
y if and only if Wi(y) >Wi(x),10 where

Wi(z) ≡ (1 − δi)ui(z)+ δi
∑
j∈N

pjui
(
φj(z)

)
for all z ∈ X�

It is easy to see that σ is stationary Markov.
Step 3: Verification that σ is no-delay with A(σ) = {x̄1� � � � � x̄m}. It follows immedi-

ately from part (a) in the definition of σ that every element of the semi-simple solution is
absorbing, that is, {x̄1� � � � � x̄m} ⊆A(σ). What remains to be established, therefore, is that
any status quo x /∈ {x̄1� � � � � x̄m} is immediately amended to an alternative in {x̄1� � � � � x̄m}
with probability 1. To see this, observe that each proposer i ∈ N offers alternative “xi in
{x̄1� � � � � x̄m} when the status quo is x /∈ {x̄1� � � � � x̄m}. Moreover, by definition of a semi-
simple solution, there is a decisive coalition C(“xi) ∈ D such that

Wk

(
“xi

) = uk
(
“xi

)
= max

h
uk(x̄h)

10These voting strategies are, in a sense, simpler than those used in Anesi and Seidmann’s (2015) result
with simple solutions, where indifferent voters reject proposals in some cases but not in others. This differ-
ence in voting behavior is immaterial for the derivation of the result, but assuming that indifferent voters
always reject eases the exposition in our more general framework.
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> (1 − δk)u
sup
k + δk

[
pmin min

h
uk

(
x̄h

) + (
1 −pmin)

max
h

uk
(
x̄h

)]
≥ (1 − δk)uk(x)+ δk

∑
j∈N

pjuk
(
“xj

)

=Wk(x)

for all k ∈ C(“xi). (The first inequality follows from Step 1: δk > δ̄k(x̄
1� � � � � x̄m) for all

k ∈ N .) From part (b) in the definition of σ , all players in the decisive coalition C(“xi)

accept “xi ∈A(σ), which is therefore implemented.
Step 4: Continuation values. We denote by Vi(x|σ) player i’s expected discounted

payoff from implementing alternative x in a given period. Suppose first that x ∈
{x̄1� � � � � x̄m}. It follows immediately from part (a) in the definition of σ that

Vi(x|σ)= ui(x) = (1 − δi)ui(x)+ δi
∑
j∈N

pjui
(
φj(x)

) =Wi(x)�

Suppose now that x /∈ {x̄1� � � � � x̄m}. Each player i receives (1 − δi)ui(x) in the current
period. Then, in the next period, player j is selected with probability pj and, as shown
in Step 3, successfully proposes “xj =φj(x). Hence,

Vi(x|σ)= (1 − δi)ui(x)+ δi
∑
j∈N

pjui
(
φj(x)

) =Wi(x) (1)

for all i ∈N and all x ∈X .
Step 5: Verification that players do not cast stage-dominated votes. Consider an ar-

bitrary voting stage, in which a proposal y has been made to amend the current status
quo x. Coupled with (1), part (b) in the definition of σ guarantees that each player i only
accepts y if Vi(y|σ) > Vi(x|σ), and only rejects y if Vi(y|σ)≤ Vi(x|σ).

Step 6: Verification that σ is a stationary bargaining equilibrium. It follows from
Step 5 (and the one-shot deviation principle) that, in any voting stage, no player can
profitably deviate from σ . To complete the proof of Theorem 1, we must therefore show
that there is no profitable (one-shot) deviation from σ in any proposal stage. Suppose
first that the current status quo x belongs to {x̄1� � � � � x̄m}. In this case, σ prescribes pro-
poser i to maintain x. If she deviates by proposing to change x to any other alterna-
tive y 	= x, then her proposal will be rejected. Indeed, if y also belongs to {x̄1� � � � � x̄m},
then part (i) in Definition 1 implies that there is a decisive coalition C(x) ∈ D such that
Wi(x) = ui(x) ≥ ui(y) = Wi(y) for all i ∈ C(x); if y does not belong to {x̄1� � � � � x̄m}, then
similarly part (i) in Definition 1 implies that, for each member i of the decisive coalition
C(x),

Wi(x) = ui(x)

= max
h

ui(x̄h)

> (1 − δi)u
sup
i + δi

[
pmin min

h
ui

(
x̄h

) + (
1 −pmin)

max
h

ui
(
x̄h

)]
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≥ (1 − δi)ui(y)+ δi
∑
j∈N

pjui
(
“xj

)

= (1 − δi)ui(y)+ δi
∑
j∈N

pjui
(
φj(y)

)

=Wi(y)�

(The first inequality follows from Step 1: δi > δ̄i(x̄
1� � � � � x̄m) for all i ∈ N .) Hence,

all members of the decisive coalition reject y in both cases. It is therefore impossi-
ble for any proposer to profitably deviate from σ when the current status quo is in
{x̄1� � � � � x̄m}.

Suppose now that the current status quo x does not belong to {x̄1� � � � � x̄m}. If pro-
poser i plays according to σ , then she successfully proposes “xi (recall Step 3), thus ob-
taining a dynamic payoff of Vi(“x

i|σ) = ui(“x
i) = maxh ui(x̄h). Because she could sim-

ply propose x itself, instead of proposing an alternative that is rejected, it follows that
if she has a profitable deviation, then she can profit from making a successful pro-
posal y. If y belongs to {x̄1� � � � � x̄m}, then the deviation is not profitable since Vi(“x

i|σ) =
maxh ui(x̄h)≥ ui(y) = Vi(y|σ). If y does not belong to {x̄1� � � � � x̄m}, then

Vi
(
“xi|σ) = max

h
ui(x̄h) > (1 − δi)ui(y)+ δi

∑
j∈N

pjui
(
φj(y)

) = Vi(y|σ),

where, as above, the inequality follows from δi > δ̄i(x̄
1� � � � � x̄m). Hence, the deviation is

again unprofitable. This completes the proof of the theorem.

Appendix B: Proof of Theorem 2

Let x be an interior point of X that satisfies Condition C1 using coalition C∗ ∈ D∗, i.e.,
(i) the gradients {∇ui(x) : i ∈ C∗} are linearly independent and (ii) there exists j ∈ C∗ such
that for all k ∈N \C∗, the gradients {∇ui(x) : i ∈ (C∗ \{j})∪{k}} are linearly independent.
For simplicity, enumerate the members of C∗ as {1� � � � �m}, and assume without loss of
generality that player j = 1 fulfills part (ii) of Condition C1. Now, let U ⊆ X be an open
neighborhood of x. Define the mapping f : Xm → �m2

by

f
(
x1� � � � � xm

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
(
x1)
���

u1
(
xm

)
���

um
(
x1)
���

um
(
xm

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

where, for each player i = 1� � � � �m, there are m rows giving player i’s payoff from al-
ternatives x1� � � � � xm. The derivative of f at arbitrary (x1� � � � � xm) ∈ Xm is the m2 × md
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matrix

Df
(
x1� � � � � xm

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Du1
(
x1) 0 · · · 0 0

���
���

� � �
���

���

0 0 · · · 0 Du1
(
xm

)
Du2

(
x1) 0 · · · 0 0

���
���

� � �
���

���

0 0 · · · 0 Du2
(
xm

)
���

���
� � �

���
���

Dum
(
x1) 0 · · · 0 0

���
���

� � �
���

���

0 0 · · · 0 Dum
(
xm

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

where we view Dui(x
j) as a 1 × d row matrix. By assumption, the matrix Df(x1� � � � � xm)

has full row rank at (x� � � � � x). Moreover, we have d ≥ m, since the players’ gradients are
linearly independent, and therefore dm≥m2.

Let y = (y1� � � � � ym) = f (x� � � � � x), where yi = (ui(x)� � � � �ui(x)) is then the m-fold
copy of player i’s utility from x. By the local submersion theorem (e.g., Guillemin and
Pollack 1974), we can choose an arbitrarily small open set Ũ ⊆U containing x such that
the image Ṽ ≡ f (Ũm) is an open set containing y. Therefore, there exists ε > 0 such that

yε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1(x)− ε

u1(x)+ ε
���

u1(x)+ ε

u2(x)+ ε

u2(x)− ε

u2(x)+ ε
���

u2(x)+ ε
���

um(x)+ ε
���

um(x)+ ε

um(x)− ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

belongs to Ṽ . Moreover, by part (ii) of Condition C1, we can choose Ũ sufficiently small
such that for all x̃ ∈ Ũ and all k=m+ 1� � � � � n, the gradients {∇ui(x̃) : i = 2� � � � �m�k} are
linearly independent.

Since yε ∈ Ṽ , there is a vector (x1
ε� � � � � x

m
ε ) ∈ Ũm such that f (x1

ε� � � � � x
m
ε ) = yε. We

claim that for all i = 1� � � � �m, ui is not constant on {x1
ε� � � � � x

m
ε }. Indeed, for each k =
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1� � � � �m and each i ∈ C∗ \ {k}, we have

ui
(
xkε

) = ui(x)+ ε= max
h

ui
(
xhε

)
�

which is strictly greater than ui(x
i
ε) = ui(x) − ε = minh ui(x

h
ε ), as claimed. To fulfill part

(ii) of Definition 1, it remains for us to confront the possibility that players outside C∗ are
indifferent over the m alternatives, i.e., for some i ∈N \C∗, ui is constant on {x1

ε� � � � � x
m
ε }.

To address this problem, we iteratively perturb x1
ε, and we construct these perturbations

recursively to break any indifferences over {x1
ε� � � � � x

m
ε } among players m+1� � � � � n, while

continuing to punish player 1 and maintaining the reward payoffs of players 2� � � � �m. To
begin, set z0 = x1

ε.
Step 1. If player m + 1 is indifferent over {z0�x2

ε� � � � � x
m
ε }, then we form the coalition

C1 = (C∗ \ {1})∪ {m+ 1}, which has size m. Define the mapping g1 : X → �m by

g1(z) =

⎛
⎜⎜⎜⎜⎝

u2(z)
���

um(z)

um+1(z)

⎞
⎟⎟⎟⎟⎠ �

which gives the vector of payoffs to players in C1. Since z0 ∈ Ũ , the gradients {∇ui(z
0) :

i ∈ C1} are linearly independent, so that Dg1(z0) has full row rank. By the local submer-
sion theorem, we can choose an open set Ũ1 ⊆ Ũ containing z0 such that Ṽ 1 ≡ g1(Ũ1) is
open. Moreover, we can choose Ũ1 sufficiently small that for all z ∈ Ũ1, we have

u1(x) > u1(z)�

Since Ṽ 1 is open and contains g1(z0), there exists ε1 > 0 such that

y1 =

⎛
⎜⎜⎜⎜⎝

u2
(
x1
ε

)
���

um
(
x1
ε

)
um+1

(
z0) + ε1

⎞
⎟⎟⎟⎟⎠

belongs to Ṽ 1. Since y1 ∈ Ṽ 1, there is an alternative z1 ∈ Ũ1 such that g1(z1) = y1. If
player m+ 1 is not indifferent over {z0�x2

ε� � � � � x
m
ε }, then set z1 = z0.

In general, assume we are given zk−1 ∈ Ũ such that (a) u1(x) > u1(z
k−1), (b) for all

i = 2� � � � �m, we have ui(z
k−1) = ui(x

1
ε), and (c) for all i = m + 1� � � � �m + k − 1, ui is not

constant on {zk−1�x2
ε� � � � � x

m
ε }. Then we proceed as follows.

Step k. If playerm+k is indifferent over {zk−1�x2
ε� � � � � x

m
ε }, then we form the coalition

Ck = (C∗ \ {1})∪ {m+ k}, which has size m. Define the mapping gk : X → �m by

gk(z) =

⎛
⎜⎜⎜⎜⎝

u2(z)
���

um(z)

um+k(z)

⎞
⎟⎟⎟⎟⎠ �
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which gives the vector of payoffs to players in Ck. Since zk−1 ∈ Ũ , the gradients
{∇ui(z

k−1) : i ∈ Ck} are linearly independent, so that Dgk(zk−1) has full row rank. By
the local submersion theorem, we can choose an open set Ũk ⊆ Ũ containing zk−1 such
that Ṽ k ≡ gk(Ũk) is open. Moreover, by (a), we can choose Ũk sufficiently small such
that for all z ∈ Ũk, we have

u1(x) > u1(z)�

Finally, by (c), we can choose Ũk small enough such that for all z ∈ Ũk and all i = m +
1� � � � �m + k − 1, ui is not constant on {z�x2

ε� � � � � x
m
ε }. Since Ṽ k is open and contains

gk(zk−1), there exists εk > 0 such that

yk =

⎛
⎜⎜⎜⎜⎝

u2
(
zk−1)
���

um
(
zk−1)

um+k

(
zk−1) + εk

⎞
⎟⎟⎟⎟⎠

belongs to Ṽ k. Since yk ∈ Ṽ k, there is an alternative zk ∈ Ũk such that gk(zk) = yk, and
by (b), we have ui(z

k) = ui(x
1
ε) for all i = 2� � � � �m. If player m+ k is not indifferent over

{zk−1�x2
ε� � � � � x

m
ε }, then set zk = zk−1.

After Step n − m, we define the m-tuple (x̄1
ε� � � � � x̄

m
ε ) = (zn−m�x2

ε� � � � � x
m
ε ), and we

claim that {x̄1
ε� x̄

2
ε� � � � � x̄

m
ε } is a semi-simple solution. Indeed, define the mapping

ρ : {x̄1
ε� � � � � x̄

m
ε } → N such that ρ(x̄iε) = i + 1 for all i = 1� � � � �m − 1 and ρ(x̄mε ) = 1. For

each k = 1� � � � �m, the coalition C(x̄kε ) of players supporting x̄kε includes C∗ \ {k}, and
since C∗ is oversized, this implies C(x̄kε ) ∈ D. Of course, it follows that ρ is a one-to-one
selection from the coalitions C(x̄kε ). Thus, the set {x̄1

ε� � � � � x̄
m
ε } satisfies parts (i) and (ii)

of Definition 1, i.e., it is a semi-simple solution contained in the open set U , as claimed.
Following the argument for ε > 0, we can similarly construct vectors yγ ∈ Ṽ and

(x1
γ� � � � � x

m
γ ) ∈ Um for all γ ∈ (0� ε). By construction, γ1 	= γ2 implies u1(x

2
γ1
) = u1(x) +

γ1 	= u1(x)+γ2 = u1(x
2
γ2
) and, therefore, {x1

γ1
� � � � � xmγ1

} 	= {x1
γ2
� � � � � xmγ2

}. We conclude that
there is a continuum of semi-simple solutions contained in U .
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