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Preference discovery and experimentation

Kevin Cooke
Department of Economics, Boston University

I provide axiomatic foundations for a model of taste uncertainty with endogenous
learning through consumption. In this setting, uncertainty is over an unobserv-
able, subjective state space. Preference over lottery–menu pairs is sufficient to
identify the state space and the learning process. In this model, the agent is viewed
as if he learns the utility of an object upon its consumption. This information is
used to improve choice from the follow-on menu. This implies a trade-off be-
tween consumption value and information leading to experimentation. I provide
a behavioral definition of experimentation. While the literature focuses on identi-
fying subjective states through a demand for flexibility, I show that experimenta-
tion also (partially) identifies taste uncertainty.

Keywords. Taste uncertainty, learning through consumption, experimentation,
endogenous learning, subjective state space, decision theory.

JEL classification. D11, D83.

1. Introduction

Traditional economic models of uncertainty treat agents as knowing their preferences
and having uncertainty over the extrinsic state of the world. However, individuals can
also face uncertainty over their own preferences. This taste uncertainty may exist despite
perfect information about the extrinsic state of the world. Importantly, taste uncertainty
is over a subjective state space that is unobservable to the analyst. This paper studies the
choice behaviors that can be used to make inferences about an agent’s taste uncertainty.

The literature has shown that subjective states can be inferred from preference over
menus (Kreps (1979) and Dekel et al. (2001) (henceforth DLR)). When an agent displays a
preference for flexibility, strictly preferring a menu to all of its subsets, he can be viewed
as having uncertainty over the ranking of objects in the menu. Under this interpretation,
it is the anticipated resolution of that uncertainty that drives the demand for flexibility.
Typically, the subjective state space is viewed as a set of preference relations. Seem-
ingly, taste uncertainty is a natural application of such models. However, these models
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make use of an implicit and exogenous information process. When information is ex-
ogenous to the agent’s choices, any form of learning through consumption is precluded.
I contend that endogenous learning through consumption is an essential ingredient in a
model of taste uncertainty. Intuitively, the act of consuming an object of unknown value
must provide information. Therefore, a main goal of my analysis is to show how the DLR
framework can be adjusted to accommodate learning through consumption. To facili-
tate this goal, I extend the DLR domain from preference over menus to preference over
consumption–menu pairs, (c�A). This extended domain allows several notable behav-
iors to be captured.

First, I observe that learning through consumption means that the demand for flex-
ibility may depend on consumption. For instance, suppose Alice lives in a city where
the Uber ride sharing company has just entered the market. She can commute to work
by bus, b, or by Uber, u. She knows her tastes for buses, but is uncertain of whether she
will like Uber. Further, suppose that she believes the bus is most likely better than Uber.
Then we might expect to observe(

b� {b�u})∼ (b� {b}) and
(
u� {b�u})� (u� {b})� (1)

That is to say, if Alice plans to take the bus today (and gain no taste information), she is
indifferent between committing to use the bus tomorrow (perhaps by buying a monthly
pass) or being able to choose between the bus and Uber when tomorrow comes. How-
ever, if she plans to try Uber today, she may wish to keep the option open of taking Uber
again tomorrow, in case she discovers that Uber is awesome! Experiencing Uber induces
a demand for flexibility that the bus does not.

Second, flexibility may be demanded even when today’s consumption is not in-
cluded in tomorrow’s menu. Suppose Alice is on a trip today where she expects to use
Uber’s competitor, Lyft, l. If she believes her tastes for all ride share services are corre-
lated, we may well observe (

l� {b�u})� (l� {b})� (l� {u})� (2)

Here the larger menu is strictly preferred to committing to either the bus or Uber for
tomorrow. This is because Alice believes that experiencing Lyft will inform her about
her taste for Uber. This indirect learning results from a correlation in Alice’s prior beliefs
about her tastes. More generally, every consumption choice of (subjectively) uncertain
value provides information to the agent. This information can be used to update beliefs
and improve decision making in the future.

Finally, learning through consumption leads to a trade-off between current con-
sumption utility and (endogenously generated) taste information. This can lead to ex-
perimentation: purposeful action with the goal of resolving uncertainty. Formally, ex-
perimentation can be captured by the preferences(

b� {w})� (u� {w}) and
(
u� {b�u})� (b� {b�u})� (3)

To understand experimentation in this context, consider the following example: To-
morrow Alice plans to start a new job to which she will walk, w. She still has to get to
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work today. She can take either the bus or the new Uber service. We observe her taking
the bus to work. This corresponds to (b� {w}) � (u� {w}). A standard revealed preference
approach would conclude that Alice prefers the bus to the Uber.

However, during the workday she finds out she will be with her current company
for a few extra weeks. Knowing that she will face the choice between the bus and the
Uber several more times, we see her take the Uber home from work; that is, (u� {b�u}) �
(b� {b�u}). Now we might conclude Alice is revealing a preference for Uber over the bus.
Is this consistent with what we observed before?

Yes, there is an important informational difference between these situations. In the
first situation, Alice expected the Uber to provide only current consumption value. How-
ever, in the second situation Alice expects to face the bus/Uber choice again in the fu-
ture. This means taking the Uber provides Alice with taste information that will be useful
in her future decisions. This information may be valuable enough to sway Alice’s deci-
sion, causing her to experiment.

To accommodate these behaviors, I extend the DLR framework to include consump-
tion prior to the choice from the menu. Formally, I study preference over pairs of current
consumption lotteries and follow-on menus (of lotteries). A typical choice object is de-
noted (p�A), where p is a lottery over current consumption and A is a follow-on menu.
Each (pure) current consumption alternative is viewed as inducing a positive additive
expected utility (PAEU) preference over menus (as in DLR). While in principle consump-
tion can reveal information in a variety of ways, I model the agent as if he learns u(c)

after consumption of alternative c. In other words, prior to consumption, the agent has
a rough idea of his utility function; he knows it lies in set U and has formed a prior prob-
ability, μ, over this set. Now suppose p resolves to yield a current consumption of c.
Following consumption of c, the agent expects to learn u(c). Given this information,
he will be able to refine his knowledge (and update μ accordingly) to the smaller set
Pc(u) ⊂ U in which u′ ∈ Pc(u) if and only if u′(c) = u(c). Using this new information, he
then selects tomorrow’s consumption q from the previously chosen follow-on menu A.
Importantly, A is selected prior to consumption; thus the agent is concerned with its
ex ante value. This ex ante value is the expected utility of the menu conditional on the
endogenous information generated by the choice of current consumption. This process
is captured by the preference discovery (PD) representation

W (p�A) = Ep

∑
u∈U

[
u(c)+ δmax

q∈A
∑

u′∈Pc(u)
u′(q)μ

(
u′ | Pc(u)

)]
μ(u)�

where Pc(u) = {u′ ∈ U : u′(c) = u(c)
}
�

A notable feature of the above representation is that there is no exogenous set of
states. Rather, the agent’s state space, U, is subjective and can be identified through
choice over consumption–menu pairs. When we think about taste uncertainty, the nat-
ural state space to consider is the set of possible utility functions, which is by nature
subjective. However, subjective states are unobservable. So not only is a subjective state
space natural, but in fact this unobservability precludes the use of an objective state
space. To see this, note that in the Savage and Anscombe–Aumann settings, the role
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of the objective state space is to allow event-contingent claims to be used to identify
an agent’s utility and subjective probability. However, in the case of taste uncertainty,
there is no longer an incentive compatible way to condition payoffs on particular events
because the events are subjective and unverifiable. Therefore, a subjective state space
framework, like DLR, is necessary to study taste uncertainty.

After introducing the model and studying some of its implications, I turn to the ques-
tion of eliciting parameters. Specifically, because full menu choice data are not always
available, I focus on providing results that aid in revealing taste uncertainty with lim-
ited choice data. First, I show that experimentation can partially identify the agent’s
taste uncertainty. Thus, in a repeated choice context, observed preference reversals
are enough to reveal an agent’s taste uncertainty without needing to directly observe
an agent’s choice of follow-on menu. This means experimentation is a potential behav-
ioral alternative to flexibility that may be more readily observable. The parameters of
the PD model cannot be uniquely identified by experimentation behavior alone; how-
ever, I show that preferences over a special class of small menus (analogous to financial
options) can be used to construct an agent’s entire subjective state space.

The paper proceeds as follows. Section 2 discusses the related literature. Section 3
begins by describing the setting, preference domain, and timing assumptions. I then
describe the baseline model—a simple extension of the DLR framework to include a
prior consumption stage. The baseline model puts very few restrictions on the learning
process. The PD model restricts learning to be Bayesian: this model is introduced in Sec-
tion 4. This section also characterizes a special case of the PD model in which there is no
indirect consumption learning (Theorem 1). Section 5 uses this restricted PD represen-
tation to introduce the potential value concept. Section 6 uses this concept to explore
the case of indirect consumption learning. This leads to the main representation result
(Theorem 2). Examples of several types of taste uncertainty permitted by the PD model
are discussed.

Finally, Section 7 focuses on eliciting the parameters of the PD model, with a particu-
lar focus on limited data settings. The axioms imply that an agent with taste uncertainty
has an experimentation incentive. A behavioral definition of experimentation is pro-
vided. By observing this experimentation behavior, I show that taste uncertainty can
be (partially) identified. I then give a graphical interpretation of the potential value con-
cept. This points to the final result of the paper: the parameters of the PD representation
can be elicited with a “small” set of choice data (Theorem 3). Proofs are provided in the
main text when useful; all omitted proofs are collected in Appendix A.3. Additionally,
Appendix A.2 discusses the independence of the axioms and their relation to alternate
learning processes.

2. Related literature

Subjective state space models were introduced by Kreps (1979). His study of preferences
over menus yielded a representation featuring the agent’s implicit view of the world.
A seminal contribution of that paper was to suggest that it is possible to model uncer-
tainty without needing to assume a particular form for that uncertainty (i.e., an objective
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set of states). However, Kreps’s state space was not unique. This made the interpretation
of his representation difficult. This issue is addressed by DLR. By expanding the domain
from Kreps’s menus of alternatives to menus of lotteries, they show that under minimal
assumptions (weak order, continuity, indifference to randomization (IR), and nontrivi-
ality), this additional structure delivers a unique state space consisting of a set of pref-
erence relations. When DLR strengthen IR to independence and rule out a preference
for commitment (preferring smaller menus), they get a positive additive expected utility
(PAEU) representation. The PAEU representation provides the backbone of the model
I describe in this paper. My main point of divergence from that model is the addition
of the prior consumption period; this allows the information process to be endogenous
to consumption. Behaviorally, endogenizing information acquisition leads to a taste for
experimentation.

Hyogo (2007) axiomatizes a model of experimentation. Hyogo studies an environ-
ment with an abstract set of first stage actions that deliver a subjective signal about the
objective state of the world. This information is used to choose an Anscombe–Aumann
act from a follow-on menu. Conceptually, this is quite similar to the environment I study.
In fact, I begin my analysis by adapting his model to the subjective state space context.
Nonetheless, the choice data we utilize is quite different. First, I do not require an ob-
jective set of states. This permits the interpretation of my model as one of taste uncer-
tainty. This interpretation is precluded when states are assumed to be directly observed.
Second, I restrict his abstract first period actions to be consumption alternatives drawn
from the same domain as the elements of the follow-on menu. This restriction tightly
links my model to the idea of learning through consumption. Most importantly, I focus
on a particular signal process in which the agent’s realized consumption utility acts as
the signal.

A key point of interest in my paper is the axiomatic characterization of Bayesian up-
dating in a subjective state space framework. Riella (2013) studies a closely related ques-
tion. In standard objective state space models, imposing dynamic consistency ensures
Bayesian updating. However, Riella points out that the standard dynamic consistency
axiom relies on objective states. He develops an alternative formulation, which he calls
flexibility consistency, that plays the same role in a subjective state space environment.
My paper differs from his in several ways. First, he works with exogenous, objective in-
formation. Instead, I study a setting where subjective information is endogenously gen-
erated through consumption. Additionally, we use different timing assumptions. In his
model, an event is observed prior to the selection of the menu. My framework focuses
on partitional information where the event is realized only after the menu is selected.
This timing assumption is also adopted in Dillenberger et al. (2014) and Krishna and
Sadowski (2014). However, both of these papers focus on exogenous information pro-
cesses and require a set of objective states. Since information is exogenous to the agent’s
actions, these papers preclude the experimentation behavior that motivates my work.

The most closely related papers to mine are Ke (2013) and Piermont, Takeoka, and
Teper (2016). Both of these studies explore the role of consumption in determining fu-
ture preference. Ke models consumption externalities more generally. For instance, his
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framework allows first period consumption to affect future preference through a prefer-
ence for variety or consumption complementarities. I instead focus specifically on the
informational channel. Also, Ke works in a two-period Krepsian world. This leads to the
same nonuniqueness as in Kreps (1979).

In contemporaneous work, Piermont et al. (2016) also focus on a setting with taste
uncertainty in which information is only generated through consumption. In their
model, after an agent tries two alternatives, he learns his ordinal preference between
them. This process implies that an anticipated consumption stream induces an ex ante
partition of the agent’s subjective state space. This generates a demand for flexibility
over menus that follow the consumption stream. Observing this demand for flexibility
allows the analyst to infer the induced partition and thus identify the agent’s anticipated
information process. Their main analysis takes place in a recursive menu framework
that allows them to identify the agent’s anticipated conditional learning process. That
is, conditional on a certain signal realization, they can infer which future signals the
agent believes possible.

My analysis differs from Piermont et al. (2016) in several ways. Conceptually, our
models differ in the type of learning that we study. In my representation, the agent learns
the cardinal utility of the object he consumes rather than simply its ordinal ranking rel-
ative to previously experienced goods. This means the agent expects to learn about his
preferences after a single instance of consumption. However, I do not explore multi-
ple consumption periods, which means I cannot identify the agent’s anticipated condi-
tional learning process. Additionally, I offer a behavioral definition of experimentation
and show how this relates to the parameters of my model. My technical analysis is also
distinct. By focusing on a setting with lotteries and universal best and worst alternatives,
I show how the parameters of the model can be elicited with much less choice data than
is typical in the literature.

3. The baseline model

In this paper, I study an agent with taste uncertainty. I investigate the choice behavior
such an agent exhibits when some of his uncertainty can be resolved through experi-
ence. By imposing axioms consistent with experiential learning, I derive a utility repre-
sentation with the interpretation that the act of consumption allows the decision maker
(DM) to learn about his own preferences.

Formally, consider a finite set of consumption alternatives C. Let �C denote the set of
lotteries over C and let K be the collection of nonempty, compact subsets of �C. Endow
�C with the standard Euclidean topology. The collection of menus, K , is endowed with
the Hausdorff topology1 and a mixture operation such that for α ∈ [0�1],

αA+ (1 − α)B = {αp+ (1 − α)q | p ∈A�q ∈ B
}
�

1The Hausdorff topology refers to the topology induced by the Hausdorff metric, where the Hausdorff
metric is

dH(A�B) = max
{

sup
a∈A

inf
b∈B

d(a�b)� sup
b∈B

inf
a∈A

d(a�b)
}
�
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The product space, �C × K , has the product topology.
Notice that each c ∈ C can be naturally identified with the degenerate lottery δc ∈ �C

and each lottery p ∈ �C can be identified with the singleton menu {p} ∈ K . Where it
does not cause confusion, I abuse notation and write c instead of δc . Likewise, the set
of degenerate lotteries is denoted C and each singleton menu, {p}, is identified with its
unique element p.

I take a binary relation � on �C × K as primitive. A typical choice object is (p�A).
Here p is a lottery over possible consumption alternatives. The realization of this lottery
is consumed prior to the agent’s choice from the follow-on menu, A. Therefore, different
lotteries provide potentially different information to the agent and thus induce different
preferences over menus. Let this induced preference, �p, be defined such that

A�p B iff (p�A)� (p�B)�

The timing is as follows:

First, the agent chooses a consumption lottery and a follow-on menu of lotteries.
After the realization of the first period lottery, consumption occurs. The agent observes
the utility of the consumed object and updates his beliefs accordingly. Then, in an un-
modeled second period, he chooses an option from the follow-on menu.

The induced preferences are assumed to be representable in the following way.

Definition 1. Say (U�μ) is a finite positive additive expected utility (fPAEU) represen-
tation of the induced preference �c if there exists a finite set of expected utility functions,
U, and a strictly positive measure, μ, such that the function

Vc(A) =
∑
u∈U

max
a∈A

u(a)μ(u)

satisfies A�c B if and only if Vc(A) ≥ Vc(B) for all A�B ∈ K .
The above representation was introduced in DLR (2001, 2009). These papers show

that the fPAEU representation is equivalent to the induced preference, �c , satisfying
weak order, continuity, independence, monotonicity (i.e., a preference for flexibility),
and a technical finiteness condition. These conditions are stated formally in the Ap-
pendix. The major point of interest is that the set of utility functions, U, acts as a sub-
jective state space. Here the uncertainty can be understood to be over preferences; this
provides a natural starting point for a model of taste uncertainty.

Under this interpretation of the fPAEU model, the agent should be viewed as expect-
ing the true state, u ∈ U, to be revealed prior to choosing from the menu. Therefore,
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the demand for flexibility is driven by an unmodeled, exogenous information process.
However, as argued in the Introduction, taste uncertainty is resolved in a natural and
endogenous way through consumption. To capture this feature, I extend the model to
include a prior consumption stage in which (expected) consumption can affect menu
preferences. To begin my analysis, I consider a simple extension of the fPAEU frame-
work to incorporate an explicit prior consumption phase. I relegate a full behavioral
characterization of this to Appendix A.1, but I note that the associated representation
theorem is a slight adaptation of the results of Hyogo (2007) to the subjective state space
setting.

Definition 2. A baseline representation of � is a tuple ({Uc�μc}c∈C� δ) such that � is
represented by a function of the form

W (p�A) = Ep
[
V (c)+ δVc(A)

]
� (4)

where for some c∗� c∗ ∈ C and for all c� c′� c′′ ∈ C, it is true that:

(i) δ > 0,

(ii) Vc({c′′}) = Vc′({c′′}) ≡ V (c′′)�

(iii) Vc(A) =∑u∈Uc
maxa∈A u(a)μc(u), such that (Uc�μc) is

an fPAEU representation of �c .

(iv) μc is a probability measure with support Uc , and

(v) u(c∗) = 1, u(c∗) = 0, and u(c′) ∈ [0�1] ∀u ∈ Uc .

The above model is a natural generalization of the fPAEU model to include informative
first period consumption. Equation (4) is a standard ex ante expected utility model in
which the pair (p�A) is valued according to the (expected) weighted sum of first period
consumption utility and the anticipated utility of the follow-on menu. Notice that the
value of the follow-on menu depends on first period consumption (the realization of the
lottery p). I impose five restrictions on this general form.

The first two restrictions require that the agent (i) values second period consumption
and (ii) ranks follow-on singleton menus the same way as he ranks the analogous first
period consumption, regardless of his prior consumption decision. This second restric-
tion rules out changing tastes as well as non-informational, intertemporal complemen-
tarities. For instance, models of habit formation or a preference for variety would not fit
into this framework. Recall that the follow-on menu is selected concurrently with first
period consumption. When the menu is singleton, consumption information cannot
affect the ex ante valuation of that menu.

Next, (iii) assumes that any degenerate first period consumption induces a menu
preference, �c , which has an fPAEU representation. This allows me to carry the sub-
jective state space framework into this extended domain. Then (iv) imposes that μc is
a probability measure rather than the general positive measure allowed in the fPAEU
representation.
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Finally, (v) restricts attention to settings that feature a best and worst alternative,
which are common across all subjective states. This assumption greatly simplifies expo-
sition; however, it can be relaxed substantially.2 One benefit of such settings is that they
suggest a natural restriction on the state space:

Definition 3. A pair (Uc�μc) is regular if μc is a probability measure with support Uc

and

Uc ⊆ {u : �C → [0�1] | u({βc∗ + (1 −β)c∗
})= β

}
�

By restricting attention to cases where u(c∗) = 1 and u(c∗) = 0 for all u ∈ Uc , the fPAEU
representation is uniquely identified. In DLR, Uc and μc are only jointly identified. Un-
der this restriction, a meaningful probability measure can be obtained.

Additionally, under this restriction, each menu is indifferent to some singleton menu
containing only a lottery between c∗ and c∗. In other words, for each pair (c�A), there
exists some β ∈ [0�1] such that

A∼c
{
βc∗ + (1 −β)c∗

}≡ {β̂}�

Notice that β is a real number between 0 and 1, while β̂ is a lottery that places probability
β on the best outcome and probability (1 − β) on the worst outcome. It may be useful
to think of these β̂s as money values. Under this interpretation, c∗ (c∗), can be seen as
an amount of money greater (less) than all possible valuations of anything else in C.

4. (Only) direct consumption learning

In the baseline model, the value of the follow-on menu is dependent on first period
consumption. Therefore, it permits learning through consumption. However, the base-
line model does not rule out other learning processes. For instance, if Vc = Vc′ for every
c� c′ ∈ C, then it is as if the agent receives the same information regardless of his con-
sumption choice. Such a situation should not be interpreted as learning through con-
sumption, but rather as an exogenous information process. Furthermore, the baseline
model imposes very little discipline on the relationship across the induced preferences.
Thus, no specific learning process is implied.

In this subsection, I place a simple restriction on the learning process that pins down
a particularly simple endogenous information process as well as a Bayesian updating
rule.

No Indirect Learning (NIL). For any β ∈ [0�1] and c� c′ ∈ C,

c = c′ =⇒ {
c′� β̂

}∼c
{
c′} or

{
c′� β̂

}∼c {β̂}�

Notice that if consuming c provides taste information about c′, the agent may wish
to delay the choice between c′ and β̂ until after consumption of c. This would generate a

2All results hold as long as the agent strictly prefers c∗ to c∗ with certainty. See Remark 1 in the Appendix
for a behavioral statement of this condition.
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preference for flexibility, the agent strictly preferring {c′� β̂} to either of its singleton sub-
sets. The NIL axiom rules out this behavior. An agent satisfying NIL will only demand
flexibility if c′ will be tried prior to choosing from the menu. If this condition holds for
all c′, then the agent can be thought of as only learning through direct experience. In par-
ticular, for each c, the induced preference, �c , will only exhibit a demand for flexibility
over menus that contain c or a lottery with c in its support.

Suppose an agent has uncertainty about his tastes for Uber. NIL implies this un-
certainty can only be resolved by using Uber. Consumption of other goods or services
(for instance, Lyft) would not help the agent make a better determination of his val-
uation of Uber rides. In the Introduction, three motivating behaviors were discussed.
Consumption-dependent flexibility, (1), and experimentation, (3), are compatible with
NIL. However, indirect consumption-dependent flexibility, (2), is ruled out by NIL.

Adding this assumption to the baseline model pins down a particularly simple learn-
ing process and yields an easily interpretable model. Before showing this, I first define a
few terms.

Definition 4. A preference discovery (PD) representation of � is a tuple (U�μ�δ),
where (U�μ) is a regular pair in which U is a finite set of expected utility functions and
δ is a positive constant such that � is represented by

W (p�A)= Ep

∑
u∈U

[
u(c)+ δmax

q∈A
∑

u′∈Pc(u)
u′(q)μ

(
u′ | Pc(u)

)]
μ(u)�

where Pc(u) = {u′ ∈ U : u′(c) = u(c)
}
�

The PD representation is the main model of interest in this paper. While the base-
line representation allows for nearly arbitrary learning processes, the PD model focuses
on a specific model of learning in which consumption of c informs the agent of u(c).3

This information is then used to Bayesian update the agent’s beliefs about his tastes.
This model reduces the parameter space of the baseline model from ({Uc�μc}c∈C� δ) to
(U�μ�δ), thus offering a more parsimonious view of the agent.

Definition 5. A PD representation, (U�μ�δ), has a product structure if for all u ∈ U,

μ(u)=
∏
c∈C

μ
(
Pc(u)

)
�

where Pc(u) = {u′ ∈ U : u′(c) = u(c)
}
�

Imposing this product structure on the PD representation rules out any correlation
across alternatives in the agent’s prior belief about his tastes. Therefore, consumption
is only able to provide direct information about the consumed alternative. Theorem 1
demonstrates that this structure is equivalent to the behavioral condition, NIL.

3The requirement that (U�μ) is regular is what allows the cardinal utility of c to be interpreted as a
meaningful quantity.
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Theorem 1. A preference, �, has a baseline representation and satisfies NIL if and only
if it has a PD representation with a product structure. Moreover, a preference, �, has at
most one PD representation with a product structure.

This theorem shows that the NIL condition characterizes a specific learning process
for the agent.4 Specifically, in the PD representation, (U�μ�δ), μ can be viewed as the
agent’s prior belief about his tastes. This prior belief, μ, has support U. This prior is
consistent with the fPAEU representation, (Uc�μc), of each induced menu preference,
�c , in the sense that

μc
(
Pc(u)

)= μ
(
Pc(u)

)
for every c ∈ C and u ∈ U�

So in the PD model, the agent can be interpreted as expecting to learn the utility value of
his first period consumption, c, prior to choosing from the follow-on menu. The product
structure rules out any other learning. Specifically,

μ
(
Pc′(u)

)= μ
(
Pc′(u) | Pc(u)

)
for every c� c′ ∈ C and u ∈ U�

That is, given the product structure, learning the value of c cannot affect the agent’s
beliefs about the value of c′.

5. c-Potential values

The next step in exploring the PD model is to look for a weakening of NIL that provides
the PD structure while allowing the possibility of indirect learning. In service of this goal,
this section calls attention to some features of the representation that can be mapped di-
rectly into behavior. Specifically, I investigate the structure of the set of utility functions,
U. Given some U, it will be useful to consider the set

Kc�c = {u(c) ∈ [0�1] : u ∈ U
}
�

where Kc�c is the set of potential values of alternative c.5 This is the set of the agent’s sub-
jectively possible utility realizations of c. Given this definition, I can state the following
simple result.

Proposition 1. If (U�μ�δ) is a PD representation, then

U ⊆
∏
c∈C

Kc�c�

Moreover, if (U�μ�δ) has a product structure, then U =∏c∈C Kc�c .

This proposition highlights the essential role played by potential values in the con-
struction of the PD representation. Notably, these potential values can be identified
behaviorally; this is shown below.

4The example in Section 7.4 explores the limitations of the uniqueness result in Theorem 1.
5The reason for the double subscript become clear shortly.
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Proposition 2. Suppose � has a PD representation, (U�μ�δ). Then for any c ∈ C,

β ∈Kc�c ⇐⇒ {β̂� c} ∪
{

1
2
c + 1

2
β̂′
}

�c {β̂� c} for every β′ ∈ (β�1]�

To understand this proposition, first notice that the agent’s only taste uncertainty in
the menus on the right is about c. Moreover, the agent expects to consume c (and learn
its true value) prior to a choice from the menu. Therefore, if β = β′, the agent would
always be indifferent between the two menus, i.e.,

{β̂� c} ∪
{

1
2
c + 1

2
β̂

}
∼c {β̂� c}�

This indifference follows because if consumption of c reveals u(c) > β, the agent
chooses c and otherwise chooses β̂. The agent never strictly prefers the lottery. Now
suppose that for every u ∈ U, u(c) = β. Then, for any sufficiently small ε, the above indif-
ference continues to hold even if the lottery 1

2c+ 1
2 β̂ is slightly improved to 1

2c+ 1
2(β̂+ ε).

So the only time the right hand side of the proposition can be true for all β′ >β is when
the agent believes he may learn that u(c) = β. Thus the set of potential values of c is
exactly characterized by this behavior. This potential value concept focuses on what the
agent believes he may learn about u(c) given the consumption of c.

Next, I introduce a generalization of this concept. This is used extensively in the next
section to explore the case of indirect learning.

Definition 6. Fix c ∈ C and p ∈ �C. Then β ∈ [0�1] is a c-potential value of p if

{β̂�p} ∪
{

1
2
p+ 1

2
β̂′
}

�c {β̂�p} for every β′ ∈ (β�1]�

While potential values only talk about how consumption teaches the agent about the
thing that was consumed, the c-potential value concept extends the logic of the poten-
tial value to handle cases in which consuming c can inform the agent about his tastes
for an arbitrary lottery p. The set of c-potential values of p (denoted Kc�p) should be
thought of as the set of updated expected values of p that the agent believes he may face
conditional on observing the realized value of c. The next section shows how c-potential
values can be used to relax NIL and characterize a version of the PD model in which in-
direct learning is permitted.

6. Indirect consumption learning

In Section 4, I characterized a special case of the PD model that rules out indirect con-
sumption learning. However, there are many cases in which this is not desirable. For
instance, an agent may believe his tastes for products within the same category are cor-
related. Thus consuming one product may affect the agent’s beliefs about his tastes for
related products. Prior to exploring such examples in Section 6.3, I characterize another
special case of the PD model in which indirect learning is allowed. The characterization
is based on two axioms that jointly weaken NIL and a structural condition that ensures
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uniqueness of the representation. This last condition is incompatible with NIL; there-
fore, I am unable to provide a unique representation result for the general PD model.
This is because the two-period setting examined here is not sufficient to pin down the
agent’s conditional beliefs. That is to say, in terms of the PD model, for a given realization
of the u(c) all we can infer about c′ is Eμ(u

′(c′) | Pc(u)) and not some finer information
structure. This is more thoroughly discussed in Section 7.4.

6.1 Weakening NIL

Axiom A1 (Weak Indirect Learning). For any c ∈ C and p ∈ �C, |Kc�p| ≤ |Kc�c|.

Loosely, this axiom says that consumption of c tells the agent more about c than
about things that are not c. More formally, A1 ensures that two subjective states that
agree on the value of c cannot be distinguished through the consumption of c.

This restriction is what delivers the key feature of the PD representation, that the
agent only learns by discovering u(c) upon consumption of c. Since this learning process
is so specialized, A1 is ruling out quite a few other potential avenues of learning. For
instance, a first period consumption of known constant value cannot be informative
about the follow-on menu.

Additionally, A1 is potentially incompatible with separately learning about the con-
stituent parts of a consumption object. Suppose c is a meal consisting of two ingredients
that both have an uncertain value. The agent is certain that he dislikes one ingredient
and likes the other, but is unsure which is which. If in both possible states, the com-
plete meal has the same aggregate utility, then A1 requires the agent not learn anything.
Specifically, anticipated consumption of the two-ingredient meal cannot induce a de-
mand for flexibility in follow-on menus containing one or both of these ingredients.

Furthermore, A1 rules out a wide class of exogenous information processes that
could, in principle, provide information regardless of the agent’s consumption choices.
One notable process that is ruled out by this axiom is learning through introspection.
Suppose, that between choosing (c�A) and picking an element from the menu A, the
agent plans to spend time thinking about his preferences for things in A. Then even if c
is of known consumption value (having a unique potential value), we should expect the
agent to have multiple c-potential values for the options he spends time introspecting
about. This would violate A1. Adding introspection to a model of preference discovery is
an interesting direction for future work. Of particular interest is endogenous introspec-
tion, which can vary with (c�A).

Weak indirect learning is implied by NIL. To see this, suppose NIL holds. If c = c′,
then the unique c-potential value of c′ would be the ex ante expected value of c′. It is
straightforward to show that there is always at least one c-potential value of c; therefore,
A1 is satisfied. It is also worth noticing that since the β̂ lotteries are of certain expected
value, every lottery p has a unique β̂-potential value. So under A1, information can only
be revealed if the value of the first period consumption is uncertain.

Axiom A1 places restrictions on what each induced preference may look like. How-
ever, it places no restriction across different induced preferences. The following axiom
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imposes this type of consistency condition, ensuring that the various induced prefer-
ences can be viewed as Bayesian posteriors of the same prior.

Axiom A2 (Choice Relevant Value). Take any c ∈ C, β ∈ [0�1], and any sequence of lotter-
ies, {pn}, in which pn → c. Define β̂′

pn
such that {β̂′

pn
} ∼c {pn� β̂}. Then for any c′ ∈ C,

{pn� β̂} �c′
{
β̂′
pn

} ∀n =⇒ β is a c-potential value of c.

Let us understand this axiom in parts. First, β̂′
pn

is defined to be the ex ante ex-

pected value of the menu {pn� β̂} conditional on the information process generated by
consuming c. This means {pn� β̂} �c′ {β̂′

pn
} can only be true if c′ provides more choice

relevant information than c, in the sense that consumption of c′ instead of c improves
the expected choice from the menu.

Next, observe that if � has a baseline representation, then A2 implies that consum-
ing c provides as much information about c as does consuming any c′. Formally, A2
implies6 that for any β�β′ ∈ [0�1],{

β̂′}∼c {c� β̂} =⇒ {
β̂′}�c′ {c� β̂} ∀c′ ∈ C�

Given this observation, if {pn� β̂} �c′ {β̂′
pn

} is true for all n, then under continuity
(implicit in the baseline representation) we find

{c� β̂} ∼c′
{
β̂′}∼c {c� β̂}�

It is easy to verify that this implies that the set of c′-potential values of c (denoted Kc′�c)
exactly coincides with Kc�c . Intuitively, this means that A2 ensures that there is no better
way to learn about c than to try it (loosely, for every c′, |Kc′�c| ≤ |Kc�c|). This is subtly
different from A1, which restricts the degree of indirect learning. That is, A1 limits what
the consumption of c can teach the agent about c′ (i.e., |Kc�c′ | ≤ |Kc�c|). In other words,
A1 places an upper bound on indirect learning and A2 places a lower bound on direct
learning.

Now notice that as pn approaches c, each c′-potential value of pn approaches some
particular c′-potential value of c. Thus, if β /∈ Kc′�c , there is some sufficiently large n

such that the realized c′-potential value of pn is greater than β if and only if the realized
c′-potential value of c is greater than β. Since Kc′�c =Kc�c , this implies that consumption
of c′ instead of c can only affect the agent’s (state contingent) choice from the menu if
β ∈Kc�c .

When � has a baseline representation and NIL holds, A2 has no additional content.
This result follows since A2 only has content if Kc′�c = Kc�c . But under NIL, this can only
happen if there is no taste uncertainty about c (i.e., Kc�c is singleton). But in that case, A2
only imposes that {c} has the same β̂ equivalent under each induced preference. This is
a form of stationarity that is implied by the baseline model (see B5 in the Appendix).

6This implication is proven in Proposition 5 in the Appendix.
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So given a baseline representation, A1 and A2 are jointly weaker than NIL. Unfortu-
nately, these axioms do not provide quite enough structure to yield a unique representa-
tion theorem. To provide a result for the case of indirect learning, I will restrict attention
to settings in which there is a maximally informative alternative (MIA). Consumption
of the MIA provides at least as much information about taste as can be gleaned from
any other consumption alternative. Notice that the existence of an MIA is incompati-
ble with NIL. This means the resulting representation theorem is not a generalization
of Theorem 1, but rather characterize a distinct special case of the general PD model.
Behaviorally, settings with an MIA satisfy the following condition.

Axiom A3 (Maximally Informative Alternative). There exists some c̄ ∈ C such that for ev-
ery c ∈ C and A ∈ K ,

A∼c {β̂} =⇒ A�c̄ {β̂}�

For each c, every menu has some β-equivalent that can be interpreted as the ex-
pected value of that menu given the anticipated information revealed by consumption
of c. If c is replaced by a more informative alternative, we expect the valuation of all
menus to increase. This axiom assumes there is some c̄ ∈ C that provides a superset
of the information of all other consumption possibilities. At first glance this assumption
seems very strong. However, this axiom only imposes an assumption on the information
value of c, not its consumption value. Because of this, oftentimes a suitable transforma-
tion of the domain yields such a c̄.

For instance, suppose C = {steak, chicken, lobster}. Here consuming chicken may
provide different information than the other meals. This situation fails to satisfy A3.
However, augmenting the set of outcomes to include a sampler platter with all three
meals intuitively solves this issue.7 Though consuming this sampler platter likely pro-
vides more information than any of the individual meals, it may be very costly. But that
is fine; the maximally informative alternative may be nearly as bad as the worst alterna-
tive.

Ultimately, this axiom provides a measuring stick with which to compare all other
induced preferences. In particular, the proof of the representation theorem relies on the
sequences in A2 to ensure that more informative consumption choices induce fPAEU
preferences that are consistent with all less informative choices.8 However, in general,
information is partially ordered. This axiom ensures there is a maximum of this order-
ing on C. In turn, this allows the PD representation to be uniquely identified using only
ex ante preference data over two periods. Axiom A3 could be relaxed if more periods of
choice data are observed. In essence, if the agent has enough periods to try all the alter-
natives in C before selecting from the menu, it is as if he tried the maximally informative
alternative. In this sense, A3 provides a sufficient condition for the unique identification

7Note that there is some tension between this sampler platter idea and the multi-ingredient meal issue
pointed out in the discussion of A1. However, as long as each subjective state is associated with a distin-
guishable consumption value for the sampler platter, this tension disappears.

8Here the information ranking can be thought of in terms of the Blackwell ordering. Formally, this can
be shown by adapting Theorem 2 from Dillenberger et al. (2014) to the subjective state space setting.
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of the PD representation without having to consider a much larger domain. Piermont et
al. (2016) study an infinite horizon problem, which alleviates the need for an analogous
assumption in their setting.

With these three axioms in hand, I can now turn to the main result of this paper. But
first I need one definition.

Definition 7. A PD representation, (U�μ�δ), is separating if there is some c ∈ C such
that when u = u′,

u�u′ ∈ U =⇒ u(c) = u′(c)�

This defines a restriction on the PD model such that alternative c separates the states
in U in the sense that u(c) takes a distinct value for each u ∈ U. In this paper, the max-
imally informative alternative, c̄, plays this role. We can think of u(c̄) as a sufficient
statistic with respect to the agent’s subjective state space. So learning the value of the
maximally informative alternative resolves all the uncertainty that is possible to resolve
through a single instance of consumption.

Now the main representation theorem.

Theorem 2. A preference, �, has a baseline representation and satisfies A1, A2, and A3 if
and only if it has a unique separating PD representation.

Theorem 2 shows that relaxing NIL to A1 and A2 removes the product structure re-
striction from the representation. Because of this, there can now be correlation across
alternatives in the agent’s beliefs about his taste uncertainty. This allows the possibility
of indirect learning. However, to get a unique representation, I assume the existence of
a maximally informative alternative. Since an MIA is incompatible with NIL, Theorem 2
is not a generalization of Theorem 1. Instead it characterizes a distinct special case of
the PD representation.

6.2 Proof sketch of Theorem 2

A full proof is provided in the Appendix, but I discuss the proof of sufficiency of the
axioms here in broad strokes. The starting point of the proof is the baseline represen-
tation. By assumption, we know that � has a baseline representation. This means that
there exists a tuple ({Uc�μc}c∈C� δ) such that � is represented by

W (p�A) = Ep
[
V (c)+ δVc(A)

]
�

where for all c� c′� c′′ ∈ C, Vc(A) =∑Uc
maxa∈A u(a)μc(u), (Uc�μc) is a regular fPAEU of

the induced preference �c , and Vc({c′′}) = Vc′({c′′}) ≡ V ({c′′}).
This already has a flavor of learning through consumption. Specifically, the valua-

tion of A, Vc(A), is indexed by c. Thus c is valuable not only for its consumption utility,
V (c), but also for its effect on the value of the menu A. However, the nature of the learn-
ing process in this representation is arbitrary. To develop a full model of consumption
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learning, it is desirable to have an explicit model of the relationship between the various
pairs (Uc�μc).

The key task of this proof is to show that A1–A3 imply that this relationship is
Bayesian. Axiom A3 postulates the existence of a maximally informative alternative, c̄.
With A1, I show that the fPAEU representation of the menu preference induced by this
maximally informative alternative, �c̄ , has the separating form. The remainder of the
proof shows that all other induced preferences are “consistent” with this one in the sense
that their fPAEU representations can be viewed as coarser partitions of (Uc̄ �μc̄).

The main insight is that comparisons of the form {p� β̂} ∼c {β̂′} tell us about the
agent’s conditional expected utility for p. As is discussed in Section 7.2 (Theorem 3),
this can be used to construct the agent’s induced state space for each c. The contrapos-
itive of A2 implies that for a sequence of lotteries pn that approaches c, there is some
sufficiently large n for which the following statement is true:

For β /∈Kc�c� {pn� β̂} ∼c
{
β̂′} =⇒ {pn� β̂} ∼c′

{
β̂′} ∀c′ ∈ C�

This condition allows me to relate the conditional expected value of pn,

Eμc

[
u(pn) | u(pn) > β

]
�

across the menu preferences induced by different consumptions. The meat of the proof
argues that this is sufficient to provide the desired consistency. Having shown this, it be-
comes clear that (Uc̄ �μc̄� δ) is a separating PD representation that is numerically iden-
tical to the baseline representation. Since (Uc̄ �μc̄) is a regular fPAEU representation,
uniqueness follows from the DLR result.

6.3 Examples of taste uncertainty

To explore some possible applications of the PD model, I consider two special cases in
which additional structure is placed on the domain of consumption objects, C. This
highlights two particular types of taste uncertainty that fit into the PD framework. Each
is substantiated by a real world example.

Related experience goods The most straightforward interpretation of the PD model is
that of an agent learning the match specific utility of some experience good through
consumption. When an agent believes his tastes to be correlated across related experi-
ence goods, he can learn through indirect consumption. That is, consuming one prod-
uct can help the agent learn about his tastes for related products.

For instance, antidepressants are a well known example of experience goods.9 Treat-
ment success for this class of drugs tends to have idiosyncratic variation across patients.
Therefore, a patient’s utility for a particular prescription is unknown until he has spent
time taking the drug. Moreover, there are several families of drugs that are known to
affect similar patients in similar ways. Thus if one drug is unsuccessful, the patient (or

9This example is adapted from Dickstein (2014). See his article for a thorough description of the market
and a structural model that permits indirect consumption learning within product categories.
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more probably his doctor) not only learns that his utility for that drug is low, but also
updates his beliefs about the value of taking other antidepressants from the same family.

This sort of learning only within (exogenous) product categories is equivalent to the
following variant of the No Indirect Learning axiom.

Category Learning (CL). Suppose C is partitioned into categories. If c and c′ are in
distinct categories, then for each β ∈ [0�1], either {c′� β̂} ∼c {c′} or {c′� β̂} ∼c {β̂}.

Definition 8. A PD representation, (U�μ�δ) has a product structure across categories
if for any c and c′ in distinct categories and u ∈ U,

μ
(
Pc(u)

)= μ
(
Pc(u) | Pc′(u)

)
�

The proof of Theorem 1 can be easily adapted to show that any PD representation of
a preference satisfying CL must have a product structure across categories. Alternatively,
CL can be viewed as a test for whether an agent’s behavior is consistent with a particular
(partitional) categorization scheme.

Trade-offs across product attributes10 Now consider the case where C ⊂ RN . In this set-
ting, consumption objects can be viewed as multi-attribute products. An agent may well
be certain of his tastes within each particular attribute. Even so, he may be uncertain of
his ranking of all objects in C. Specifically, he may be unsure of the trade-off across
attributes.

For instance, when searching for apartments, a renter tends to consider many at-
tributes. Among other features, the renter might value apartment size, age, and price.
He may even know he strictly prefers larger, newer, and cheaper apartments. However,
he might have difficulty ranking a smaller, cheaper apartment against a larger, more
expensive one. To be concrete, consider the following (equally new) apartments:

Apartment A: 900 sq. ft, $900/month rent

Apartment B: 500 sq. ft, $900/month rent

Apartment C: 900 sq. ft, $2500/month rent.

The renter may well be certain that apartment A is better than B or C, yet be uncertain
of his relative preference for apartments B and C. For instance, he may be uncertain
whether he values the apartments according to u1 = size

rent or u2 = size
30

√
rent

. This approxi-

mately corresponds to

u1 u2

A 1 1
B 0�56 0�56
C 0�36 0�6

10Thanks to Ran Spiegler for bringing this type of taste uncertainty to my attention.
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If the renter views u1 and u2 as equally likely and apartment A is unavailable, we
might expect him to lease apartment B. Notice that under the PD framework, this would
not help him to resolve his taste uncertainty. While apartment C has a lower expected
consumption value, it also has the benefit of helping the renter to resolve his taste un-
certainty. Therefore, the renter may well find it optimal to take a short term lease on
apartment C and leave open the option of moving to the smaller, cheaper apartment B
once he figures out his preferences. In terms of the PD model, this could occur if δ is
sufficiently large. Intuitively, this happens if the agent rents for sufficiently many pe-
riods to make the information gain outweigh the expected present consumption loss.
This would be an example of experimentation. This idea is explored more formally in
the next section.

7. Identifying taste uncertainty

7.1 Partial identification through experimentation

The motivating idea behind this paper is the observation that (unobservable) taste un-
certainty generates an incentive to experiment and that this (observable) experimen-
tation can in turn reveal an agent’s taste uncertainty. In this subsection, I explore the
question of what exactly experimentation can reveal. In service of this question, I begin
by formally defining what I mean by experimentation.

Definition 9. Given �, 〈a�b�A〉 is an experimentation tuple if and only if for every
c ∈ C, (

a� {c})� (b� {c}) and (b�A)� (a�A)�

The idea behind this definition is that we can say the agent is experimenting if and only
if he is willing to forego current consumption utility to gain (taste) information relevant
to his future choice problem, A. When the follow-on menu is a singleton, there is no
instrumental role for information. Therefore, the ranking of current consumption alter-
natives should reveal the agent’s true preference ordering. If the agent’s ranking of cur-
rent consumption choices changes when the follow-on menu is a nonsingleton, then
we may infer that he is engaging in costly experimentation.11 That is, he is willing to
sacrifice current consumption utility to obtain new information.

This behavioral definition of experimentation allows the analyst to observe exper-
imentation without needing any knowledge of the payoffs associated with individual
consumption objects. Moreover, this does not assume any particular learning rule for
the agent. I believe this is the first nonparametric definition of experimentation in the
literature. The existing literature on experimentation relies on knowledge of the agent’s
beliefs, updating rule, and/or payoffs to identify when an agent is experimenting.

11Requiring Definition 9 to hold for every c is unnecessary in the context of the PD model since this con-
sistency is imposed by the baseline representation. However, defining experimentation in this way allows
Definition 9 to be viewed as a general definition of experimentation, independent from the assumptions
underlying the PD model. Imposing this consistency requirement rules out alternate causes of the prefer-
ence reversal, such as preference for variety or habit formation.
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With this definition in hand, I move on to the question of what we can learn from ob-
served experimentation. This exercise is motivated by the observation that menu choice
data (that is, choice between menus) may be difficult to observe in many empirical set-
tings. In such settings, the standard approach of eliciting subjective states by observing
the demand for flexibility cannot be applied.

For instance, doctors do not choose the menu of drugs from which they can write
prescriptions; this is set by the marketplace. However, we do observe their choices of
what drugs to prescribe. Suppose there are two depressed patients with identical symp-
toms who go visit a benevolent doctor. The doctor expects the first patient to visit reg-
ularly, but believes the second patient is unlikely to return for a future visit. In the first
case the doctor will be able to adjust the medication in the future, essentially facing a
repeated choice problem over drugs. For the other, the prescription is a commitment
to only use a single course of treatment. Antidepressants typically have idiosyncratic
efficacy across patients and experimentation can be useful to determine the best drug–
patient match. If the doctor prescribes different antidepressants to these two patients,
we might infer that he is “experimenting” on the first patient. That is, he assigns a drug
that has a lower immediate expected payoff, but may be more informative about future
treatment options.12 Notice in this example that the doctor’s preference for flexibility is
not observed. Whether the follow-on menu was singleton was simply a characteristic
of the patient he was treating and not his own choice. Nonetheless, we could observe
his experimentation. Thus, when the data do not permit the demand for flexibility to be
observed, it may still be possible to detect experimentation.

The following two propositions demonstrate what this experimentation can teach us
about taste uncertainty. Both of them focus on a simple type of binary experimentation,
which I call the experimentation pair.

Definition 10. Given �, 〈a�b〉 is an experimentation pair if and only if for every c ∈ C,(
a� {c})� (b� {c}) and

(
b� {a�b})� (a� {a�b})�

First, I observe that experimentation pairs occur in the PD model when b is inferior to
a in terms of expected consumption value, but promises to provide (sufficiently) more
taste information. This can only happen when there is uncertainty with respect to the
relative ranking of a and b. This very intuitive property can be formalized as follows.

Proposition 3. Fix a PD representation (U�μ�δ). If 〈a�b〉 is an experimentation pair,
then there are u and u′ in U such that u(a) > u(b) and u′(a) < u′(b).

Proposition 3 shows that observed experimentation is a sufficient (but not neces-
sary) condition to infer relative taste uncertainty. Specifically, an agent may believe that
there is some subjective state in which u(b) > u(a) and still not be willing to experiment
in the first period if the immediate loss in expected utility is too large. Thus Proposition 3

12Perhaps one class of drugs is unlikely to completely control the depression, but produces a range of
minor side effects that are differentially informative about what other antidepressants might work.
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can be interpreted as showing that relative taste uncertainty can be revealed by experi-
mentation, but only sometimes. However, the next proposition shows that the absolute
presence of taste uncertainty is always revealed by experimentation.

Proposition 4. Fix a PD representation (U�μ�δ) and some c ∈ C. Then the following
statements are true:

(i) There are u�u′ ∈ U such that u(c) = u′(c) if and only if there exists β ∈ [0�1] such
that 〈β̂� c〉 is an experimentation pair.

(ii) If 〈β̂� c〉 is an experimentation pair for some β, then

V (c) ≡ Eμ
[
u(c)

]= inf
{
β ∈ [0�1] | 〈β̂� c〉 is an experimentation pair

}
�

This proposition shows that (i) taste uncertainty always manifests itself in experi-
mentation and that (ii) when an agent is uncertain about his tastes for c, the expected
utility of c can be identified as the lower bound of the set of βs for which 〈β̂� c〉 is an ex-
perimentation pair. So while experimentation behavior alone cannot fully identify the
parameters of the PD representation, it nonetheless is useful in diagnosing the presence
of taste uncertainty and provides a way to elicit expected utilities.

7.2 Identification with option menus

In Section 5, it was demonstrated that c-potential values play a crucial role in the con-
struction of the PD representation. A behavioral description of this concept was already
developed; however, a graphical representation reveals another important insight. This
subsection uses this graphical representation to fully identify the parameters of a regular
fPAEU representation with limited choice data.

Recall that every induced menu preference, �c , has a regular fPAEU representation.
In this section, I describe a novel approach to eliciting the representation’s parameters,
(Uc�μc). The literature (see DLR) typically relies on studying instances where flexibility
is demanded to elicit the subjective state space, Uc . When there exists a known best and
worst alternative, I observe that this elicitation can be achieved with substantially less
choice data. This is motivated by viewing the βs as money values. Under this interpre-
tation, menus of the form {p� β̂} can be seen as an analogue to financial options.

Definition 11. A menu, A ∈ K , is an option if A= {p� β̂}, where p ∈ �C and β ∈ [0�1].

Consider the option, {p� β̂}. To make the analogy to financial options clear, I refer to
the lottery p as the underlying asset and to β as the strike price. There is (potentially)
subjective uncertainty about the value of the underlying lottery, p. Alternatively, the
strike price yields a state-independent expected payoff. Here p is analogous to a share
of stock and β is analogous to a fixed money value. I refer to the β-equivalent of an
option as its price. Formally, for some particular initial consumption c, we have the
following definition.
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Figure 1. No taste uncertainty.

Figure 2. Two subjective states.

Definition 12. The value β′ ∈ [0�1] is the price of the option {p� β̂} if {p� β̂} ∼c {β̂′}.

It is helpful to think of an option’s price, β′, as a function of its strike price, β. Such
functions are useful for identifying the parameters of the PD representation. Figures 1
and 2 illustrate the essential features of this function under two simple cases.

First, I consider a standard expected utility (EU) maximizing agent who is subjec-
tively certain that the degenerate lottery c has an expected value of 0�5 utils. Behav-
iorally, this implies whenever β ≤ 0�5, the agent is ex ante certain that he will choose c

from the menu {c� β̂}.
Thus, we should expect {c� β̂} ∼c {c} ∼c {0̂�5} whenever β ≤ 0�5 and, by similar rea-

soning, {c� β̂} ∼c {β̂} whenever β> 0�5. This is illustrated in Figure 1.
Figure 2 illustrates the case of an agent who has subjective uncertainty about the

value of c. In particular, he believes that, with equal probability, c is worth either 0.3 or
0.7 utils and that this uncertainty will resolve prior to choosing from the menu. Notice
that c is still worth 0�5 utils in expectation. As before, we should expect the price of the
option to be 0.5 for low strike prices and equal to the strike price for high strike prices. In
particular, {c� β̂} ∼c {0̂�5} if β≤ 0�3 and {c� β̂} ∼c {β̂} whenever β ≥ 0�7. In these cases, the
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agent is certain of what he will choose from the option menu even before the value of c is
realized. The interesting question is what price the option should take for intermediate
values of β. When β ∈ (0�3�0�7), the agent conditions his choice from the menu on the
realized value of c.

After this realization, he determines whether it is better to choose β̂ or c. Ex ante,
the agent believes each utility level of c is equally likely (probability = 1

2 ). Therefore, he
is (ex ante) indifferent between the option {c� β̂} and the singleton { 1

2(0̂�7)+ 1
2 β̂}. That is,

he believes that with probability 0�5, the state in which the value of c is 0�7 will occur and
he will choose c from the menu. The rest of the time he anticipates choosing β̂. Since
we know

{c� β̂} ∼c

{
1
2
(0̂�7)+ 1

2
β̂

}
�

we can apply the PD representation to fill in the middle part of the function in Figure 2.
Specifically, for intermediate values of the strike price (i.e., β ∈ (0�3�0�7)),

W
(
c� {c� β̂})= W

(
c�

{
1
2
(0̂�7)+ 1

2
β̂

})
�

V (c)+ δVc
({c� β̂})= V (c)+ δVc

({
1
2
(0̂�7)+ 1

2
β̂

})
�

Vc
({c� β̂})︸ ︷︷ ︸

option price

= 0�35 + 0�5︸︷︷︸
μ{u|u(c)<β}

∗ β︸︷︷︸
strike price

�

In Figures 1 and 2, notice that the x-axis position of each kink corresponds directly to
a c-potential value of c. If instead we consider the option price induced by initial con-
sumption of c′ (rather than c), then these kinks will be the c′-potential values of c. If we
change the underlying asset from c to p, then the kinks are the c-potential values of p.
A function with more kinks corresponds to more potential values and, therefore, more
states that the agent expects to become distinguishable prior to choice from the menu.

I have shown that the kinks of the option price curve associated with {c� β̂} can be
interpreted as the c-potential values of the c. Interestingly, we can also interpret the
slope of this curve as the agent’s subjective cumulative distribution function (CDF) over
these c-potential values of c. Specifically, at a strike price of β, the slope of the option
curve equals μc(u ∈ Uc | u(c) ≤ β). Since the option curve can be derived from behavior,
this gives us a way to elicit the u(c) marginals of μc . Moreover, the option curves for
nondegenerate underlying lotteries allow the full identification of (Uc�μc). This idea is
formalized in Theorem 3.13

Theorem 3. Consider two induced preferences, �a and �b, that both have fPAEU
representations and share common best and worst alternatives.14 If, for every option

13Lu (2016) proves a result with a similar flavor in the context of an objective state space. He also finds
that binary menus are enough to identify his model; however, his technique does not readily generalize in
the absence of objective states. Thus the method of proof for Theorem 3 is novel to this paper.

14An fPAEU representation, (Uc�μc), has a known best and worst alternative if there exist c∗ and c∗ such
that for every u ∈ Uc , u(c∗) = 1, and u(c∗) = 0, and for all c′ ∈ C, u(c) ∈ [0�1]. A behavioral characterization
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menu, {p� β̂},

{p� β̂} ∼a
{
β̂′} ⇐⇒ {p� β̂} ∼b

{
β̂′}� then �a =�b �

Theorem 3 shows that if two preferences share a common state-independent best
and worst alternative and have distinct fPAEU representations, then they must price
some option menu differently. In other words, if the consumption of a and b each in-
duces the same preference over option menus, then they must induce the same pref-
erence over all menus. If we restrict attention to a preference known to have a regular
fPAEU representation, this theorem implies that preference data on options are suffi-
cient to identify its parameters.

The proof of this theorem is constructive and therefore could be useful in applica-
tions. Moreover, it demonstrates how the c-potential value concept aids in model identi-
fication. For instance, models that characterize the optimal pricing of experience goods
take the distribution of possible utilities as an input. The proof suggests that observing
an agent’s willingness to pay for option menus would allow a firm to learn this distribu-
tion. Of particular interest is the case of related experience goods. There, the construc-
tion of the state space reveals the agent’s beliefs about the correlation of his utility across
goods.

7.3 Proof of Theorem 3

The β̂ lotteries over the common best and worst alternatives provide a numeraire with
which to “price” the option menus using each preference. By assumption, �a and �b

agree on this price for all option menus. Then, by Lemma 1 in the Appendix, both of
the induced preferences will have unique regular fPAEU representations, respectively,
(Ua�μa) and (Ub�μb). The body of this proof constructs a regular pair (U�μ) and argues
that this must be equal to both (Ua�μa) and (Ub�μb).

Use the common price data on options to construct the option price curves for any
underlying lottery p. Recall that the kinks in the option price functions correspond
to c-potential values of p. Since we are only dealing with the induced portion of the
preference, the information process (or, equivalently, the prior consumption, c) can be
thought of as given. Therefore, I drop the c and refer to the set of these potential values
(for some p) as Kp. Now define the potential state space as

Û =
∏
c∈C

Kc�

Because �a and �b have fPAEU representations, we know #Û < ∞. For either prefer-
ence, the agent’s regular subjective state space will be a subset of Û . If the agent be-
lieved that all his taste uncertainty was uncorrelated across consumption alternatives,
we would find that the subjective state space would be this entire set. So the objective
is to figure out what correlations the agent believes to be impossible. In other words,

of this condition is provided in the Appendix. Moreover, best/worst can be relaxed to u(c∗) < u(c∗) for all
u ∈ Uc . This relaxation is further discussed in a remark at the end of Appendix A.1.



Theoretical Economics 12 (2017) Preference discovery and experimentation 1331

which potential states are given a subjective probability of 0? Choose a lottery q such
that there is some u�u′ ∈ Û, where u(q) = u′(q). If no such q exists, then Û is singleton
and the proof is complete.

Now think of q as partitioning Û such that each cell agrees on the utility of q. If q fully
separates Û, in the sense that all cells are singleton, then we can use the option price
curve for q to read off the probabilities of each cell and the proof is once again complete.
So the only interesting case is when some cell contains multiple distinct states. Choose
two distinct states (u1 and u2) in such a cell. Since these states are distinct, they must
disagree on the utility of some outcome c. Fix some small ε > 0 and define q′ = (1−ε)q+
εc. So by construction, u1(q

′) = u2(q
′). Moreover, because there are finitely many states,

each cell can be uniformly separated from another in the sense that for some δ > 0, if
u and u′ are in different cells, |u(q) − u′(q)| > δ. Therefore, for sufficiently small ε, q′
will generate a strictly finer partition of Û than q did. Once again taking advantage of
finiteness, this process can be iterated (a finite number of times) until every cell of the
partition consists of only one state. In particular, note that there is some lottery q̄ that
induces the complete partition of Û.

As before, it is straightforward to use the slope of the option price function for q̄

to read off the subjective probability of each cell. Let U be the subset of Û that takes
positive probability and let μ be the probability measure on U constructed as described.

Finally, suppose (Ua�μa) = (Ub�μb). We already know Ua�Ub ⊆ Û. So we can sim-
ply extend the strictly positive probability measures to the larger set by adding zeros
where necessary. However, if the measures differ anywhere, then they generate differ-
ent option value curves for q̄, which violates the assumption that options are priced the
same in both preference orderings. Moreover, it is easy to verify that (U�μ) must be the
fPAEU representation of both preferences. This completes the proof.

7.4 Eliciting the parameters of the PD model

A PD model has three main components, (U�μ�δ). The last of these is straightfor-
ward to identify from preference data. For instance, when δ ≤ 1, it will be exactly
equal to the β ∈ (0�1] such that (c∗� {c∗}) ∼ (β̂� {c∗}). The two remaining components
have a more subtle connection to the observables. Recall that Proposition 1 shows
U ⊂∏c∈C Kc�c ≡ Û and that each Kc�c is shown to be observable in Proposition 2. This
places an upper bound on the set of utility functions that the agent believes may rep-
resent his preferences. Later, Section 7.2 introduced the option value curves. These
curves are in principle observable and can be used to infer some of the structure of μ.
Specifically, the slope of the option value curve (induced by consumption of c) for {c� β̂}
corresponds to the agent’s subjective CDF over c-potential values of c. This is sufficient
to identify μ(Pc(u)) for every u ∈ Û. When attention is restricted to PD representations
with the product structure, these marginal beliefs are sufficient to identify the model.
Moreover, when there is an MIA, c̄, Pc̄(u) is a singleton for every u ∈ Û. So once again
this is sufficient to identify the model.

However, in the general case there are additional degrees of freedom related to the
beliefs of the agent conditional on learning some u(c). Given the domain considered
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here, there is only enough preference data to infer μ{u ∈ Û : u(c) = γ ∧ u(c′) = γ′}.15

I cannot, for instance, identify μ{u ∈ Û : u(c) = γ ∧ u(c′) = γ′ ∧ u(c′′) = γ′′}. For this
reason, Theorem 1 only has a uniqueness result within the product structure class of PD
representations. This issue is illustrated in the following example.

Define

C = {a�b� c∗� c∗
}
�

Ka�a = {0�0�5}�
Kb�b = {0�0�5�1}�

U =Ka�a ×Kb�b × {1} × {0}�

μ(u) = 1
6

∀u ∈ U�

where Ka�a is the set of a-potential values of a and U can be viewed as a set of utility
functions on C. Let ui�j denote the utility function in which u(a) = i and u(b) = j. Also we
can treat μ as a probability measure on U. Notice that Ka and Kb are observable through
behavior. Moreover, for any c ∈ C and u ∈ U, μ(Pc(u)) is also observable (this can be
determined by the option value curves as seen in the proof of Theorem 3). Now observe
that, for any δ > 0, (U�μ�δ) is a regular PD representation with a product structure.

Now consider μ′ such that

μ′(u0�0) = 1
12

� μ′(u0�0�5)= 4
12

� μ′(u0�1) = 1
12

�

μ′(u0�5�0) = 3
12

� μ′(u0�5�0�5) = 0� and μ′(u1�1)= 3
12

�

The PD representation, (U�μ′� δ), does not have a product structure. However, it is ob-
servably equivalent to (U�μ�δ) on the considered domain (i.e., the two represent the
same preference �).

8. Concluding remarks

In this paper, I axiomatized a model of taste uncertainty in which an agent learns the
cardinal utility of an object upon its consumption. This endogenously generated infor-
mation produces an experimentation incentive. Using a novel, nonparametric defini-
tion of experimentation I show how the agent’s taste uncertainty can be inferred from
his observed experimentation behavior. This departs from the literature that typically
identifies subjective states through an agent’s demand for flexibility. In many empirical
settings, menu choice data are often unavailable. In such situations, experimentation
offers a useful alternative method of eliciting taste uncertainty.

15Intuitively, this can be determined by looking at how the c-potential values of (1 −ε)c+εc′ are affected
by moving from ε= 0 to some small positive ε. Details of this can be found in the proof of Theorem 2.
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Additionally, my model permits indirect learning. Thus consumption of one object
can provide taste information about untried alternatives. This indirect learning is a re-
sult of correlations in an agent’s subjective belief about his tastes. These subjective cor-
relations can be elicited from choice data. To the extent that agents believe their tastes
for “similar” products to be correlated, this suggests a method of eliciting a subjective
similarity relation. This observation may provide an interesting avenue for future work.

The main interpretation of the preference discovery model is one of complete learn-
ing after a single instance of consumption. Adding more periods of choice data would
likely allow this to be relaxed so that repeated consumption of a single good can provide
increasingly precise taste information. I conjecture that a suitable generalization of the
c-potential value concept would prove useful in characterizing this type of partial learn-
ing model. Specifically, treating c as a consumption stream would allow a generalized
c-potential value to be used to elicit the agent’s conditional beliefs.

Appendices

A.1 Behavioral foundations for the baseline model

The main text of this paper begins the analysis, taking for granted that the observed
preference can be represented by a separable representation based on DLR menu rep-
resentation. This appendix describes the axiomatic foundations for such a model.

Axiom B1 (Continuous Weak Order). The relation � is complete, transitive, and, for any
pair (p�A) ∈ �C × K , the upper and lower contour sets,{(

p′�A′) ∈ �C × K | (p′�A′)� (p�A)
}

and
{(
p′�A′) ∈ �C × K | (p�A)�

(
p′�A′)}�

are closed in the product topology.

Definition 13. The subset A′ ⊆ conv(A) is critical for A if for all B with A′ ⊆ conv(B) ⊆
conv(A), we have (p�A) ∼ (p�B) ∀p ∈ �C.

Axiom B2 (Ex post fPAEU). For each c ∈ C, the induced menu preference, �c , satisfies the
following properties:

(a) Monotonicity: B ⊂A =⇒A�c B.

(b) Independence: For any α ∈ [0�1] and any A�A′�B ∈ K(monotonicity),

A�c A
′ =⇒ αA+ (1 − α)B �c αA

′ + (1 − α)B�

(c) Finiteness: Every menu, A, has a finite critical subset.

(d) Weak Order: �c is complete and transitive.

(e) Continuity: {A′ |A′ �c A} and {A′ | A�c A
′} are closed in the Hausdorff topology.
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Axiom B2 is a set of standard axioms that together are necessary and sufficient for
each initial consumption choice, c ∈ C, to induce a preference over menus, �c , which has
an fPAEU representation. This is explored in DLR (2009). Obviously parts (e) and (f) of
B2 are implied by B1. Axiom B1 strengthens completeness, transitivity, and continuity to
the extended domain considered in this paper rather than only to the domain of menus
considered by DLR.

The main text of this paper also makes extensive use of the presence of a state-
independent best and worst outcome. Behaviorally this is equivalent to the following
condition.

Axiom B3 (Best/Worst). There exist c∗ and c∗ such that for all c ∈ C and for all menus
A ∈ K , the following properties hold:

(a) Nondegeneracy: {c∗} �c {c∗}.

(b) Best always chosen: {c∗} ∼c A∪ {c∗}.

(c) Worst never chosen: A∼c A∪ {c∗}.

The next three axioms impose some consistency conditions on the types of interac-
tion between the initial consumption and the associated menu preferences.

Axiom B4 (Rational Expectations). For α�β�β′ ∈ [0�1] and p�q ∈ �C,

A∼p {β̂} and A∼q
{
β̂′} =⇒ A∼αp+(1−α)q

{
αβ̂+ (1 − α)β̂′}�

This axiom is best understood for the case of degenerate consumption lotteries. Let
p = c and q = c′. Suppose the DM expects the menu A to be worth β given a first
period consumption lottery c and worth β′ given c′. This axiom requires a first pe-
riod consumption lottery of αc + (1 − α)c′ to lead the DM’s expected value of A to be
αβ + (1 − α)β′. Since I am interested in modeling an agent who learns through the act
of consumption, only the (expected) outcome of the consumption lottery should affect
the ex ante valuation of the menu.

This axiom rules out any correlation between the first period randomization device
and either the agent’s taste uncertainty or second stage randomization devices. For in-
stance, if both current and future lotteries were decided by a single (publicly observed)
roll of a die, then this axiom would not be satisfied. In this sense, this axiom rules out
certain types of information processes.

Axiom B5 (Weak Separability). For any a�b� c� c′ ∈ C,(
a� {c})� (a�{c′}) ⇐⇒ (

c� {b})� (c′� {b})�
Axiom B5 combines two assumptions. First, let a = b. Then the above expression

reduces to (b� {c})� (b� {c′}) ⇐⇒ (c� {b})� (c′� {b}). This is a stationarity assumption. It
requires that if c is expected to be preferred to c′ tomorrow, then it must also be preferred
today.
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Second, combining the axiom with its implication of stationarity (stated above)
shows that B5 also implies (a� {c}) � (a� {c′}) =⇒ (b� {c}) � (b� {c′}). That is to say, I as-
sume that the induced relations �a and �b agree on singleton menus. Notice that it is
likely that the consumption of different objects will provide different information that
could lead the agent’s ranking of menus to be different. However, the induced menu
preferences are determined ex ante. The singleton menu is chosen prior to any con-
sumption activity and thus all anticipated information is irrelevant since there is no ac-
tive choice following the information revelation. Singleton menus will be valued at their
ex ante expected value, regardless of the expected information process. A similar axiom
is discussed by Hyogo (2007).

Axiom B6 (Additivity). (a) For every c� c′� c′′ ∈ C and p�p′�p′′ ∈ �C,(
c�
{
p′})∼ (c′� {p}) and

(
c�
{
p′′})∼ (c′′� {p})=⇒ (

c′�
{
p′′})∼ (c′′�

{
p′})�

(b) For α ∈ [0�1] and p�p′� q�q′� r� r ′ ∈ �C,(
p�
{
p′})� (q�{q′})

⇐⇒ (
αp+ (1 − α)r�

{
αp′ + (1 − α)r ′

})
�
(
αq+ (1 − α)r�

{
αq′ + (1 − α)r ′

})
�

Part (a) is the well known hexagon condition from Debreu (1960). To understand
the hexagon condition, suppose c is better than c′, which is better than c′′ and simi-
larly for the p’s. Now suppose the gain from consuming c instead of c′ is exactly offset
by switching from p to p′ tomorrow and similarly that consuming c instead of c′′ is ex-
actly offset by switching from p to p′′. Then the hexagon condition requires the gain
from consuming c′ instead of c′′ to be exactly offset by the loss of switching from p′ to
p′′ tomorrow. Part (b) is a weakening of independence such that it only holds when
the follow-on menu is restricted to singletons. This weakening (relative to full indepen-
dence) allows for the possibility that first period consumption can have intertemporal
complementarities with nontrivial menus. This is essential if learning is to be valuable to
the DM. Additionally, this implies an analogue to the “uniform utility differences” con-
dition introduced in Karni (2004). This analogue is used more explicitly in Hyogo (2007).
If I were to expand the domain to �(�C × K), then part (a) would be unnecessary and
an Anscombe–Aumann-like argument could be used to derive additivity instead.

Together these conditions B1–B6 provide the behavioral foundations for the base-
line representation. To formalize this result, I first state a series of lemmas. The first
lemma shows that one of the useful features of a domain with a best and worst alterna-
tive is to provide a unique regular fPAEU representation. Recall, an fPAEU representa-
tion, (Uc�μc), is regular if Uc ⊆ {u : �C → [0�1] | u({βc∗ + (1 − β)c∗}) = β} and μc is a
probability measure with support U.

Lemma 1. If � satisfies B2 and B3, then for each induced menu preference, �c , there exists
a unique regular fPAEU representation, (Uc�μc).
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Proof. It follows from DLR’s (2009) Theorem 6 that B2 is sufficient to ensure each in-
duced preference has an fPAEU representation, which I denote (U�μ). In this represen-
tation, U is a set of expected utility functions and μ is a positive measure with support
U. Axiom B3 implies the existence of universal best and worst alternatives, c∗ and c∗.
The fPAEU representation, (U�μ), can be easily “regularized” as

Uc ≡
{
u− u(c∗)
u
(
c∗) ∣∣∣ u ∈ U

}
and μc(u) ≡ u

(
c∗)μ(u)
μ(U)

�

It is easy to verify that (Uc�μc) is a regular fPAEU representation of �c . It remains to
show that it is the unique one. Notice that the DLR theorem guarantees that Uc is or-
dinally unique. That means the set Uc is identified up to positive affine transforma-
tions of its members. However, regularity removes these degrees of freedom by requir-
ing u(β̂) = β. It only remains to show that no probability measure, other than μc , will
represent �c .

Suppose toward a contradiction that (Uc�μ
′) also is a regular fPAEU representation

of �c . Without loss of generality (WLOG), there is some u′ ∈ Uc such that μc(u
′) > μ′(u′).

Adapting an argument from DLR, we know there are menus A and B such that

max
a∈A

u′(a) > max
b∈B

u′(b) and max
a∈A

u(a) = max
b∈B

u(b) if u = u′�

Let β̂A and β̂B be the β-equivalents of A and B, respectively. Since we have β̂A ∼ A

and β̂B ∼ B, it must be that

βA −βB =
∑
u∈Uc

[
max
a∈A

u(a)μc(u)− max
b∈B

u(a)μc(u)
]

=
∑
u∈Uc

[
max
a∈A

u(a)μ′(u)− max
b∈B

u(a)μ′(u)
]
�

(
max
a∈A

u′(a)− max
b∈B

u′(b)
)
μc
(
u′) =

(
max
a∈A

u′(a)− max
b∈B

u′(b)
)
μ′(u′)�

μc
(
u′) = μ′(u′)�

This is a contradiction because we said that μc(u
′) > μ′(u′). �

The next lemma shows that singleton independence, my B6(b), implies part (b) of
the additivity condition used in Hyogo (2007). Moreover, it is straightforward to show
that adding B5 implies that if we interchange period consumptions [such that (a�b) be-
comes (b�a)], this implication will continue to hold.

Lemma 2. Suppose � satisfies transitivity and B6(b). Then for every c� c′� c′′ ∈ C and
p�p′� q�q′ ∈ �C,

(
c�
{
p′})∼ (c′{p}) and

(
c�

{
1
2
p′ + 1

2
q

})
∼
(
c�

{
1
2
p+ 1

2
q′
})

=⇒ (
c�
{
q′})∼ (c′{q})�
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Proof. By assumption we have

(
c�
{
p′})∼ (c′� {p}) and

(
c�

{
1
2
p′ + 1

2
q

})
∼
(
c�

{
1
2
p+ 1

2
q′
})

�

Applying singleton independence B6(b), we can mix each side of the first indifference
with 1

2(c�q) to find (
c�

{
1
2
p′ + 1

2
q

})
∼
(

1
2
c′ + 1

2
c�

{
1
2
p+ 1

2
q

})
�

Then, by the second indifference and transitivity, we find(
1
2
c′ + 1

2
c�

{
1
2
p+ 1

2
q′
})

∼
(

1
2
c′ + 1

2
c�

{
1
2
p+ 1

2
q

})
�

Another application of B6(b) lets us “unmix” a 1
2(c�p) from each side, yielding(

c�
{
q′})∼ (c′� {q})� �

Using these lemmas, I now state the formal characterization of the baseline repre-
sentation.

Theorem 4. The preference � satisfies B1–B6 if and only if it has a baseline representa-
tion, ({Uc�μc}c∈C� δ). Moreover, a baseline representation is unique.

Proof. Necessity is trivial. To show sufficiency, I adapt Lemma 4 from Hyogo (2007)
to the case of a subjective state space. I begin by restricting attention to the restricted
domain �C ×�C. Notice that this space is isomorphic to [0�1]|C| × [0�1]|C|, and therefore
is connected and separable.

So by Debreu (1960), B1 (order and continuity), B3(a) (nondegeneracy), B5 (weak
separability), and B6(a) (hexagon condition) imply that there exist continuous and non-
constant functions v : �C →R and w : �C → R such that � is represented by

Ŵ
(
p� {q})= v(p)+w(q)�

For each induced preference �c , Lemma 1 pins down a unique pair (Uc�μc) such that
�c is represented by

Vc(A)=
∑
u∈Uc

max
a∈A

u(a)μ′(u) for A ∈ K�

By B4, when a lottery p ∈ �C over prior consumption is chosen, the induced preference
�p can be represented by

Vp(A) = Ep

∑
u∈Uc

max
a∈A

u(a)μ′(u) for A ∈ K�

When we restrict the domain of Vp to singleton menus, we know that it must be a pos-
itive monotonic transformation of w. Moreover, weak separability (Axiom B5) implies
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that the representations of all induced preferences must agree on singletons. That is,
Vc({c′′}) = Vc({c′′}) for all c� c′� c′′ ∈ C. So when they are restricted to singleton menus,
the representations are independent of c; thus we can drop the c and just call this func-
tion V . Further, the stationarity component of B5 implies that V must also be a positive
monotonic transformation of v. Let φ and φ′ be these transformations. Now we can ex-
press the representation as follows: constant functions v : �C → R and w : �C → R such
that � is represented by

Ŵ
(
p� {q})=φ

(
V (p)

)+φ′(V (q)
)
�

Now I wish to show that φ′ is affine. Toward that end, Lemma 2 shows that a condition
analogous to Karni’s (2004) uniform utility differences is implied by B6(b). Following
Hyogo (2007), this is sufficient to show that the restricted preference can be represented
by

Ŵ
(
p� {q})= φ

(
V (p)

)+ V (q)�

In fact (by an analogue to Lemma 2), B5 and B6(b) together imply a symmetric condition
that guarantees that φ is also affine. Thus there is a δ > 0 such that

Ŵ
(
p� {q})= V (p)+ δV (q)�

Further, the uniqueness portion of Debreu’s theorem implies that δ is unique.
Best/worst and continuous weak order guarantee all menus have a singleton β-equi-
valent. Thus there is a natural extension of Ŵ to �C × K . Denote this by

W (p�A)= V (p)+ δVp(A) = Ep
[
v(c)+ δVc(A)

]
�

This is the baseline representation that we were seeking. Uniqueness follows from
Lemma 1 and Debreu. �

Remark 1. The results of this paper utilize a state-independent best and worst out-
come. In many settings this is an odious assumption. However, it is not necessary. In
fact, B3 can be relaxed to the existence of a pair of alternatives that are strictly ranked
(the same way) in every subjective state. All of my results can be suitably modified to
hold in this setting. This condition can be formalized in terms of the preference relation
as follows.

Axiom B3* (Better/Worse). There exist c∗ and c∗ such that for all c ∈ C and A ∈ K , there
is a sufficiently small ε > 0 such that

(a) {c∗} �c {c∗}
(b) {c∗} ∼c {c∗} ∪ {(1 − ε)c∗ + εA}
(c) {(1 − ε)c∗ + εA} ∼c {(1 − ε)c∗ + εA} ∪ {c∗}.
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A.2 Independence of axioms

In this appendix, I explore the logical independence of the main learning axioms, A1
and A2. To this end, I give examples of learning processes that satisfy one but not the
other.

In terms of the PD representation, A1 requires that the signal generated by consump-
tion of c is measurable with respect to Pc , the partition of U generated by u(c). One
implication of A2 is that consuming c should be the best way to learn about u(c).

Consider a model in which consumption produces a signal coarser than Pc . Clearly
such a model satisfies A1. In particular, fix some ε > 0 and consider the partition Pε

c in
which cells are defined by

Pε
c (u) = {u′ ∈ U | ε≥ ∣∣u(c)− u′(c)

∣∣}�
If we modify the PD representation such that Pε

c (u) replaces Pc(u), there will be sets of
utility functions, U, such that trying c is no longer the best way to learn u(c). Specifically
consider a separating PD representation (with the above modification) with a maximally
informative alternative, c̄. That is to say u�u′ ∈ U implies |u(c̄) − u′(c̄)| > ε. If there are
u and u′ such that |u(c) − u′(c)| ≤ ε, then trying c will not be able to separate these
states even though c̄ could. This sort of “bandwidth” learning would violate A2 while
satisfying A1.

For the opposite case, I apply similar logic and consider a learning process by which
consumption of c produces a more informative signal than Pc . Any such process will
violate A1. The question is whether A2 can continue to hold in this setting. To find the
answer, I need only consider the simplest possible case in which every consumption
choice produces the same signal (assumed to be a partition finer than Pc). Now A2 is
vacuously true. To see this, notice that A2 only has content if consuming some c′ = c is
sometimes more informative about a menu {pn� β̂} than consuming c. However, if c and
c′ generate the same signal (and thus induce identical menu preferences), this can never
be relevant.

Finally notice that a preference with a PD representation without the separating
qualification necessarily satisfies A1 and A2, but will not have a maximally informative
alternative and therefore fails to satisfy A3.

A.3 Proofs

This appendix collects the proofs omitted from the main body of the paper. I begin by
considering the case of a preference with a baseline representation that satisfies No Indi-
rect Learning (NIL). Recall from Appendix A.1 that a baseline representation specifies a
unique set of fPAEU representations {Uc�μc}c∈C that represent the induced preferences
{�c}c∈C . To prove Theorem 1, the definitions

Û ≡ {u ∈ [0�1]|C| | for each c, u(c) = u′(c) for some u′ ∈ Uc
}
�

Pc(u) ≡ {u′ ∈ Û | u′(c) = u(c)
}
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will be helpful and μ̂ is a probability measure satisfying

μ̂(u) =
∏
c∈C

μc
{
Pc(u)

}
for every u ∈ Û�

Before proceeding to Theorem 1, I provide a lemma that helps illustrate the restriction
NIL places on the baseline model.

Lemma 3. If � has a baseline representation and satisfies NIL, then the induced prefer-
ence, �c , can be represented by

Vc(A) =
∑
u∈Û

max
q∈A

⎧⎨⎩
∑

u′∈Pc(u)
u′(q)μ̂

(
u′ | Pc(u)

)
if c ∈ supp(q)

V (q) else

⎫⎬⎭ μ̂(u)�

Proof. Notice, for every c′ = c ∈ C, that NIL implies there is exactly one c-potential
value of c′. The proof of Theorem 3 demonstrates that the unique regular fPAEU rep-
resentation of �c , denoted (Uc�μc), satisfies Uc ⊆∏Kc�c′ . Here Kc�c′ refers to the set of
c-potential values of c′. Thus distinct subjective states in Uc can only differ on the val-
uation of c. Immediately we can see that the agent cannot demand flexibility in menus
that do not contain c (or a lottery placing weight on c). Furthermore, because we know
that all induced preferences agree on the ex ante value of singletons, we can determine

u′′ ∈ Uc =⇒ u′′(c′)= V
(
c′) ∀c′ = c�

Noting that V is linear in probabilities, we find that

Vc(A)=
∑

u′′∈Uc

max
q∈A

u′′(q)μc
(
u′′)= ∑

u′′∈Uc

max
q∈A

{
u′′(q) if c ∈ supp(q)
V (q) else

}
μ
(
u′′)�

Now we can simply identify u′′ ∈ Uc with the cell Pc(u
′′). Given this identification, it is

straightforward to see the desired numerical equivalence:

Vc(A) =
∑
u∈Û

max
q∈A

⎧⎨⎩
∑

u′∈Pc(u)
u′(q)μ̂

(
u′ | Pc(u)

)
if c ∈ supp(q)

V (q) else

⎫⎬⎭ μ̂(u)�
�

With Lemma 3 in place, the proof Theorem 1 becomes fairly straightforward.

Theorem 1 (restatement). A preference, �, has a baseline representation and satisfies
NIL if and only if it has a PD representation with a product structure. Moreover, a prefer-
ence, �, has at most one PD representation with a product structure.

Proof. Necessity is obvious. To show sufficiency, first notice that the baseline repre-
sentation is numerically equivalent to

W (p�A) = Ep

∑
u∈Û

[
u(c)+ δVc(A)

]
μ̂(u)�
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Now by applying Lemma 3, this can be rewritten as

W (p�A)= Ep

∑
u∈Û

⎡⎣u(c)+ δmax
q∈A

⎧⎨⎩
∑

u′∈Pc(u)
u′(q)μ̂

(
u′ | Pc(u)

)
if c ∈ supp(q)

V (q) else

⎫⎬⎭
⎤⎦ μ̂(u)�

Taking advantage of the product structure of (Û� μ̂), I observe that for every u ∈ Û,

V (q)=
∑

u′∈Pc(u)
u′′(q)μ̂

(
u′′ | Pc(u)

)
as long as c /∈ supp(q)�

This observation allows me to show that

W (p�A) = Ep

∑
u∈Û

⎡⎢⎢⎣u(c)+ δmax
q∈A

⎧⎪⎪⎨⎪⎪⎩
∑

u′∈Pc(u)
u′(q)μ̂

(
u′ | Pc(u)

)
if c ∈ supp(q)∑

u′′∈Pc(u)
u′′(q)μ̂

(
u′′ | Pc(u)

)
else

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦ μ̂(u)�

W (p�A) = Ep

∑
u∈Û

[
u(c)+ δmax

q∈A
∑

u′∈Pc(u)
u′(q)μ̂

(
u′ | Pc(u)

)]
μ̂(u)�

Thus the tuple (Û� μ̂� δ) is a PD representation of �. Given the definitions of Û and μ̂, it
is easy to verify that this tuple has the desired product structure.

To establish uniqueness, suppose there is a second PD representation with a prod-
uct structure, (U′�μ′� δ′), that also represents �. Together, the restatements of Propo-
sitions 1 and 2 below demonstrate that Û = U′. Suppose δ ≤ 1. Find β such that
(β̂� c∗) ∼ (c∗� c∗). Clearly, δ = δ′ = β. For δ > 1, find β such that (c∗� β̂) ∼ (c∗� c∗). Here,
δ = δ′ = 1/β. Finally, suppose toward a contradiction that μ̂ = μ′. Because of the prod-
uct structure restriction, this can only be true if there is some c ∈ C and u ∈ Û for which
μ̂(Pc(u)) = μ′(Pc(u)). However, if this were true, then the two representations would im-
ply different subjective CDFs over the c-potential values of c. This is not possible since
this would imply different observable behavior that can be seen as changing the slope
of the option value curve for (c� β̂). Hence there is a contradiction and (Û� μ̂� δ) must be
the only PD representation of � that satisfies the product structure restriction. �

Proposition 1 (modified restatement). If (U�μ�δ) is a PD representation and Kc�c ≡
{u(c) | u ∈ U}, then

U ⊆
∏
c∈C

Kc�c�

Moreover, if (U�μ�δ) has a product structure, then U =∏c∈C Kc�c .

Proof. The first part of the proposition is trivially true by construction of Kc�c . The
second part of the proposition is more subtle. However, it follows as a consequence of
the construction used to prove Theorem 1. If (U�μ�δ) has a product structure, then
Theorem 1 implies there is a corresponding baseline representation, ({Uc�μc}c∈C� δ). As
was shown in the proof of Theorem 1, U can be expressed as

U = {u ∈ [0�1]|C| | for each c, u(c) = u′(c) for some u′ ∈ Uc
}
� (�)
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Now suppose toward a contradiction that there exists some u ∈∏Kc�c \ U. For every c,
we know by definition of Kc�c that there is a uc ∈ U such that u(c) = uc(c). However, this
means that there was some u′

c ∈ Uc such that u′
c(c) = uc(c) = u(c). Since this is true for

every c ∈ C, (�) implies that u ∈ U. This is a contradiction and thus proves the result. �

Proposition 2 (restatement). Suppose � has a PD representation, (U�μ�δ). Then

β ∈Kc�c ⇐⇒ {β̂� c} ∪
{

1
2
c + 1

2
β̂′
}

�c {β̂� c} whenever β<β′ ≤ 1�

Proof. (⇐=) Let

Uc =
{
u′
∣∣∣ u′ =

∑
u∈U

uμ
(
u | u(c) = α

)
for some α ∈ [0�1]

}
and μc

(
u′)= μ

(
Pc
(
u′))�

It is straightforward to see that (Uc�μc) is a regular fPAEU representation of the induced
preference �c . We know that, for every β′ ∈ (β�1],∑

u∈Uc

max
(
u(β̂)�u(c)�u

(
1
2
β̂′ + 1

2
c

))
μ(u) >

∑
u∈Uc

max
(
u(β̂)�u(c)

)
μ(u)�

This means that, for some state u′ ∈ Uc , it must be the case that

1
2
β′ + 1

2
u′(c) = u′

(
1
2
β̂′ + 1

2
c

)
> max

(
β�u′(c)

)≥ 1
2
β+ 1

2
u′(c)�

This must hold for all β′ arbitrarily close to β. This can only be true if β = u′(c), and by
the construction of Uc , this means that Pc(u

′)⊂ U is nonempty. Thus β ∈ Kc�c .
(=⇒) This direction is trivial and can be shown by following the above logic in reverse

order. �

In the discussion of A2, I claim that the axiom (together with the baseline represen-
tation) implies that “consuming c provides as much information about c’s value as does
consuming any c′.” This is shown below:

Proposition 5. If � has a baseline representation and satisfies A2, then for any β�β′ ∈
[0�1], {

β̂′}∼c {c� β̂} =⇒ {
β̂′}�c′ {c� β̂} ∀c′ ∈ C�

Proof. The supposition that � has a baseline representation ensures that all induced
preferences share a commonly agreed upon state-independent best and worst alterna-
tive. The contrapositive of A2 implies

β /∈Kc�c =⇒ {
β̂′
pn

}
�c′ {pn� β̂} for some n�

In the above expression, pn is any sequence approaching c and c′ is an arbitrary element
of C. Clearly the constant sequence pn = c for all n works. Then, for any β /∈ Kc�c , this
gives

{c� β̂} ∼c
{
β̂′} =⇒ {

β̂′}�c′ {c� β̂} ∀c′ ∈ C�
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As long as Kc�c is finite, the continuity of �c′ gives the required result. These finiteness
and continuity conditions are guaranteed by the fPAEU form. These conditions are for-
mally stated in Appendix A.1. �

Propositions 3 and 4 demonstrate the implications that can be drawn from experi-
mentation behavior.

Proposition 3 (restatement). Fix a PD representation, (U�μ�δ). If 〈a�b〉 is an experi-
mentation pair, then there are u and u′ in U such that u(a) > u(b) and u′(a) < u′(b).

Proof. First notice that 〈a�b〉 is an experimentation pair if and only if

δ
(
Vb
({a�b})− Va

({a�b}))> V (a)− V (b) > 0�16

Clearly V (a) > V (b) implies that for some u ∈ U, u(a) > u(b). Suppose toward a con-
tradiction this is true for all u ∈ U. Then there is no need for taste information since
the agent will choose a out of the menu {a�b} in every contingency. Thus we would find
Vb({a�b}) = Va(24{a�b}), but this is a contradiction. �

Proposition 4 (restatement). Fix a PD representation, (U�μ�δ), and some c ∈ C. Then
the following statements are true:

(i) There are u�u′ ∈ U such that u(c) = u′(c) if and only if there exists β ∈ [0�1] such
that 〈β̂� c〉 is an experimentation pair.

(ii) If 〈β̂� c〉 is an experimentation pair for some β, then

V (c) ≡ Eμ
[
u(c)

]= inf
{
β ∈ [0�1] | 〈β̂� c〉 is an experimentation pair

}
�

Proof. For part (i), if 〈β̂� c〉 is an experimentation pair (EP), the existence of an appro-
priate u and u′ follows from Proposition 3. Conversely, if there are u�u′ ∈ U such that
u(c) = u′(c), then WLOG I can assume u(c) > V (c) > u′(c). Let β = V (c)+ ε. Then 〈β̂� c〉
is an EP if and only if δ ·μ[u : u(c) > V (c)+ ε] · (Eμ[u(c) : u(c) > V (c)+ ε] − V (c)− ε) >

ε > 0.
Notice that the finiteness of U implies that for sufficiently small ε, we have both

μ̄ ≡ μ
[
u : u(c) > V (c)+ ε

]= μ
[
u : u(c) > V (c)

]
> 0 and

V̄ ≡ Eμ
[
u(c) : u(c) > V (c)+ ε

]= Eμ
[
u(c) : u(c) > V (c)

]
> V (c)�

For small ε, μ̄ and V̄ are independent of ε. Now the sufficient condition for 〈β̂� c〉 to be
an EP can be rewritten as

μ̄ · (V̄ − V (c)
)
>

(1 + δ)ε

δ
> 0�

16Here Vc(A) is the expected utility of A conditional on consumption c and V (p) is the ex ante expected
utility of p. Formally,

Vc(A) =
∑
u∈U

max
q∈A

∑
u′∈Pc(u)

u′(q)μ
(
u′ | Pc(u)

)
μ(u) and V (p) ≡ Vc

({p})= Vc′
({p}) ∀c� c′ ∈ C�
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As long as a sufficiently small positive ε is chosen this will be satisfied. This proves
part (i). The proof of part (ii) also follows from this argument. By assumption there
is some 〈β̂� c〉 that is an EP. Therefore, we know there are WLOG u�u′ ∈ U such that
u(c) > V (c) > u′(c). By repeating the argument above, we can rule out the case that
the infimum of {β ∈ [0�1] | 〈β̂� c〉 is an experimentation pair} is strictly greater than V(c).
The definition of an EP rules out the infimum being strictly less than V(c); thus, we are
left to conclude that part (ii) must be true. �

Now I turn to proving the main representation result of the paper.

Theorem 2 (restatement). A preference � has a baseline representation and satisfies A1,
A2, and A3 if and only if it has a unique separating preference discovery representation.

Proof. (⇐=) Necessity of the axioms is straightforward, though it is worth pointing out
that A3 is only necessary because of the separating qualification. This qualification en-
sures there is some c̄ that separates the subjective state space, U. This will act as the
maximally informative alternative.

(=⇒) The existence of a baseline representation means that each induced prefer-
ence, �c , has an fPAEU representation denoted (Uc�μc). The strategy of this proof is to
show that A1–A3 imply that these various representations are consistent with the repre-
sentation of the maximally informative alternative (Uc̄ �μc̄).

Step 1. For each c (including c̄), (Uc�μc) is regular and Uc has a separating form.
Specifically, for distinct elements u�u′ ∈ Uc it is the case that u(c) = u′(c).

Fix some c ∈ C. Regularity is a condition of the baseline representation. Now suppose
toward a contradiction that Uc is not separating. Then there exists u�u′ ∈ Uc , such that
u(c) = u′(c) and u(p) = u′(p) for some p ∈ �C. Notice that the set of c-potential values
of p can be expressed as

Kc�p = {u(p) | u ∈ Uc
}
�

Now fix some arbitrarily small ε > 0 and perturb p toward c. Call this perturbed lottery
p′ = (1 − ε)p + εc. Any us that differ on either the value of c or p will also differ on this
perturbed lottery. This implies #Kc�p′ > #Kc�c , which is a violation of A1.

It is now sufficient to show that for each fPAEU representation, (Uc�μc), the follow-
ing equalities are true:

Uc =
⋃
u∈Uc̄

{ ∑
u′∈Pc(u)

u′(q)μ
(
u′ | Pc(u)

)}
and

μc

( ∑
u′∈Pc(u)

u′(q)μ
(
u′ | Pc(u)

))= μc̄
(
Pc(u)

)
�

where Pc(u) = {u′ ∈ Uc̄ | u′(c) = u(c)}.
Step 2. For c ∈ C, μc(v) = μc̄(Pc(v)) ∀v ∈ Uc , where Pc(v)≡ {u′ ∈ Uc̄ | u′(c) = v(c)}.
To prove this step it will be useful to work with the (logically equivalent) contraposi-

tive of A2 rather than A2 itself:
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Axiom A2* (Contrapositive of A2). If β /∈ Kc�c and pn → c, then for sufficiently large n,
{β̂′} ∼c {pn� β̂} =⇒ {β̂′} ∼c̄ {pn� β̂}.

Recall that c̄ denotes the maximally informative alternative assumed to exist by A3.
The baseline representation requires that both Uc̄ and Uc have only finitely many el-
ements. Let γi and λi denote the ith highest utility value of c on the sets Uc̄ and Uc ,
respectively. Now define

μi = μc̄
(
u ∈ Uc̄ : u(c) = γi

)
�

ηi = μc
(
v ∈ Uc : v(c)= λi

)
�

For example, for i = 1, μ1 is the subjective probability (conditional on trying c̄) that u(c)
is the highest value that is (subjectively) possible. I proceed by induction over the values
of i.

For the base case, I show that λ1 = γ1 and μ1 = η1. Suppose toward a contradiction
that λ1 > γ1. By finiteness, there exists a β ∈ (γ1�λ1) \Kc�c . Then by A2*, it must be that∑

v∈Uc

max
{
v(c)�β

}
μc(v)=

∑
u∈Uc̄

max
{
u(c)�β

}
μc̄(u)�

λ1η
1 +β

(
1 −η1)= β

=⇒ η1 = 0 (because λ1 >β)�

But given the definition of η1 and the fact that Uc is nonempty, this cannot be true. The
case where λ1 < γ1 is identical. Thus we must have γ1 = λ1.

Given this, choose β′ ∈ (max{γ2�λ2}�λ1) \Kc�c . Apply A2* again to find

γ1μ
1 +β′(1 −μ1)= λ1η

1 +β′(1 −η1)�
λ1μ

1 +β′(1 −μ1)= λ1η
1 +β′(1 −η1) (λ1 = γ1 from above)�

β′(η1 −μ1)= λ1
(
η1 −μ1)

=⇒ η1 = μ1 (
because β′ < λ1

)
�

Now assume for i ≤ k− 1, that λi = γi and μi = ηi. Finally for the inductive step, I need
to show that this holds for i = k.

Suppose toward a contradiction that λk < γk. Choose β ∈ (max{λk�γk+1}�γk) \Kc�c .
Once again apply A2*:∑

v∈Uc

max
{
v(c)�β

}
μc(v)=

∑
u∈Uc̄

max
{
u(c)�β

}
μc̄(v)�

k−1∑
i=1

λiη
i +β

(
1 −

k−1∑
i=1

ηi

)
=

k−1∑
i=1

γiμ
i + γkμ

k +β

(
1 −

k−1∑
i=1

μi

)
−βμk�

(γk −β)μk = 0 (by inductive assumption)�

γk = β�
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This is a contradiction.
The case where λk > γk is identical. Thus we must have λk = γk.
WLOG suppose γk > λk+1 > minu∈Uc̄ u(c). Otherwise the proof is trivial. Now choose

β′ ∈ (max{γk+1�λk+1}�γk). Another application of A2* yields

k∑
i=1

λiη
i +β′

(
1 −

k∑
i=1

ηi

)
=

k∑
i=1

γiμ
i +β′

(
1 −

k∑
i=1

μi

)
�

(
λk −β′)ηk = (γk −β′)μk�

ηk = μk (since λk = γk)�

This completes Step 2. I have shown that if vi ∈ Uc assigns the ith highest utility value to
c on Uc , then

μi = μc̄
{
u ∈ Uc̄ | u(c) = vi(c)

}= μc̄
{
Pc(vi)

}= ηi = μc
{
v ∈ Uc | v(c)= λi

}= μc(vi)�

The last equality follows since c separates Uc (by Step 1).
Step 3. For every b� c ∈ C and v ∈ Uc , it must be that

v(b)=
∑

u∈Pc(v)
u(b)μc̄

(
u | Pc(v)

)= Eμ
[
u(b) | u(c) = v(c)

]
�

From Step 1 we know that each v ∈ Uc takes a distinct value for v(c). Index these vs
so that vi takes the ith largest value of v(c). Let b′ = αc + (1 − α)b. Notice that for α

sufficiently close to 1, if the vs were indexed by their valuation of b′, the ordering would
be the same.

For any β /∈Kc�c , A2* ensures that there is some α such that for α ∈ (α�1] we have∑
v∈Uc

max
{
v
(
b′)�β}μc(v)=

∑
u∈Uc̄

max
{
u
(
b′)�β}μc̄(u)�

Picking a sufficiently large α ensures∑
{i|λi>β}

vi
(
b′)ηi +

∑
{i|λi≤β}

βηi =
∑

{u∈Uc |u(c)>β}
u
(
b′)μc̄

(
u | u(c) > β

)+ ∑
{i|γi≤β}

βμi�

Apply Step 2 to find ∑
{i|γi>β}

vi
(
b′)μi =

∑
{u∈Uc |u(c)>β}

u�

Since v and u are EU functions, apply linearity to find∑
{i|γi>β}

[
αvi(c)+ (1 − α)vi(b)

]
μi

=
∑

{u∈Uc |u(c)>β}

[
αu(c)+ (1 − α)u(b)

]
μc̄
(
u | u(c) > β

)
�
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One more application of Step 2 gives∑
{i|γi>β}

vi(b)μ
i =

∑
{u∈Uc |u(c)>β}

u(b)μc̄
(
u | u(c) > β

)
�

Choose β1 ∈ (γ2�γ1) \Kc�c . Then we have

v1(b) =
∑

{u∈Uc |u(c)=γ1}
u(b)μc̄

(
u | u(c) = γ1

)
(by Step 2)

or, equivalently,

v1(b)= Eμ
[
u(b) | u(c) = v1(c)

]
�

Now by choosing β2 ∈ (γ3�γ2) \Kc�c , we can use similar logic to find

v1(b)μ
1 + v2(b)μ

2 = Eμ
[
u(b) | u(c) = γ1

]
μ1 +Eμ

[
u(b) | u(c) = γ2

]
μ2�

v2(b) = Eμ
[
u(b) | u(c) = γ2

]
�

Iterating this procedure completes the step. Together Steps 2 and 3 show that all of
the induced fPAEU representations take the desired form. Specifically, they can all be
viewed as coarsenings of the representations induced by c̄.

Step 4. Within the class of separating PD representations, there is a unique tuple that
represents �.

Notice that for any separating PD representation, (U�μ�δ), satisfying A3, it must
be that (U�μ) is the regular fPAEU representation of the menu preference induced by
the maximally informative alternative. Therefore, uniqueness of the separating rep-
resentation can be established by the uniqueness of the regular fPAEU representation
(Lemma 1) and the fact that δ can be uniquely elicited from time preference over β̂s. �
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