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Friends and enemies: A model of signed network formation

Timo Hiller
Department of Economics, University of Bristol

I propose a simple model of signed network formation, where agents make friends
to extract payoffs from weaker enemies. The model thereby accounts for the inter-
play between friendship and alliance on one hand and enmity and antagonism on
the other. Nash equilibrium configurations are such that either everyone is friends
with everyone or agents can be partitioned into different sets, where agents within
the same set are friends and agents in different sets are enemies. Any strong Nash
equilibrium must be such that a single agent is in an antagonistic relationship
with everyone else. Furthermore, I show that Nash equilibria cannot be Pareto
ranked. This paper offers a game-theoretic foundation for a large body of work on
signed networks, called structural balance theory, which has been studied in so-
ciology, social psychology, bullying, international relations, and applied physics.
The paper also contributes to the literature on contests and economics of conflict.

Keywords. Signed network formation, structural balance, contest success func-
tion, bullying, economics of conflict, international relations.

JEL classification. D74, D85, F51.

1. Introduction

In much of the economics literature on networks, links have a positive meaning and are
commonly interpreted as friendship, collaboration, or transmission of information. In
many contexts, however, links may also be associated with negative sentiments, such as
antagonism, coercion, or even outright conflict. The aim of this paper is to shed light
on the interplay between these two forces by way of a game-theoretic model of signed
network formation.
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The study of signed networks, consisting of positive and negative links, has a long
tradition in sociology and social psychology, dating back to Heider’s (1946) seminal con-
tribution on “cognitive dissonance.” The essential idea is that positively connected indi-
viduals tend to match their attitudes relative to third agents. That is, triads are expected
to either consist of three positive, or one positive and two negative links. Cartwright and
Harary (1956) proved that these local properties, which they coined as structural bal-
ance, yield sharp predictions globally.1 In particular, the only network configurations
that are structurally balanced are such that either all agents are friends or there exist two
distinct sets, also called cliques, where agents in the same set are friends and agents in
different sets sustain antagonistic relationships. Davis (1967) showed that, when allow-
ing for triads of three negative links, “weakly balanced” graphs may consist of multiple
cliques. Structural balance has also been employed in the study of international rela-
tions, as discussed in more detail below, and has more recently gained increased interest
in the physics and mathematics literature.2

This paper provides a game-theoretic foundation for structural balance. One of the
central features of my model is that stronger agents are able to obtain payoffs at the
expense of weaker enemies and that the strength of agents is determined endogenously.
That is, my model may be interpreted as one of bullying, where agents gang up on others
for their own benefit. Incentives to bully may be present in different contexts and the
exercise of power, as well as the particular mechanism at work, may take different forms.
What is common to the situations I have in mind is that there is little scope for agents
to avoid being bullied, that having more and stronger friends or allies is advantageous
in a given antagonistic relationship, and that payoff extraction is embedded in pairwise
connections.

Bullying has been studied extensively in interpersonal relationships and is defined
as “negative actions which may be physical or verbal, have hostile intent [...] and in-
volve a power differential” (O’Connell et al. 1999). Studies range from bullying behavior
among children and youth in schools to bullying at the workplace, in prisons, and in the
army.3 Bullying is considered to be a group phenomenon and its driving force is thought
to be a quest for high status and dominance within the peer group.4 The act of bullying
is associated with prestige in terms of perceived status and popularity, while victims are
typically those of low status.5 Differences in power (where power is interpreted as the
ability to force one’s will on others) and status differences (differences in popularity) are
understood to be key aspects of bullying.6 Furthermore, a crucial source of power dif-
ferentials in the bully–victim relationship are peers backing the aggressor, while victims
may also seek the support of others.7

1For a good introduction to the literature on structural balance, see Easley and Kleinberg (2010).
2See, for example, Antal et al. (2005), Marvel et al. (2011), and Marvel et al. (2009).
3See Björkqvist et al. (1996), Veenstra et al. (2005), Bowling and Beehr (2006), Hoel and Rayner (1997),

Nielsen et al. (2008), Ireland (1999 and 2005), Ireland et al. (2007), and Østvik and Rudmin (2001).
4See Pellegrini (2002), Peets and Salmivalli (2008), and South and Wood (2006).
5See, for example, Lindenberg et al. (2009). Note, however, that perceived popularity is more strongly

linked to perceptions of power than social preference (Vaillancourt et al., 2003). That is, individuals, who
are perceived as popular are not necessarily well liked.

6See Vaillancourt et al. (2003).
7See O’Connell et al. (1999), Boulton and Fox (2006), and Hodges et al. (1999).
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Interpersonal bullying has also been studied in a network context. Huttunen et al.
(1997) analyze the structure of peer networks and bullying in schools, while Cairns et al.
(1988) conduct a study with a similar focus among adolescents. Both papers find that
bullies belong to social clusters and are supported in their activities by their peer group,
while victims and children that side with victims form separate clusters. These results
are much in line with my model predictions. A recent paper by Huitsing et al. (2012)
explicitly studies structural balance properties in the context of bullying. The authors
find structural balance in general like and bullying relationships. Children who were
nominated as bullies by the same victims tend to like each other, while children who are
victimized by the same bullies also often like each other. Note, however, that Huitsing
et al. (2012) do not find structural balance for general like and general dislike relation-
ships. I take this as an indication that a tendency toward structural balance properties
is, in fact, driven by bullying motives.8

Incentives of agents to gang up on others are not confined to interpersonal relations,
but may also be present in other contexts. An area where the study of structural balance
has been applied fruitfully, and where incentives to bully are thought to be important, is
international relations. Military alliances enhance a country’s military weight, either via
direct logistic and military support or via intelligence and spillovers in terms of the use
of military machinery. Note that this may not only be valuable in military or diplomatic
disputes, but also has implications for the distribution of the gains from trade.9 One of
the earliest applications of structural balance to international relations is Harary (1961),
who examines the rapid shifts of relationships among nations in the Middle Eastern cri-
sis of 1956 and observes a strong tendency toward balance. Moore (1979) also employs
structural balance when explaining the “United States’ somewhat surprising support of
Pakistan” in the conflict over Bangladesh’s separation from Pakistan in 1972. Another
case in point is provided by Antal et al. (2006). They link the formation of alliances in the
19th century—ultimately leading up to WWI—to structural balance. While the above ex-
amples provide interesting anecdotal evidence, it is worth nothing that my simple model
abstracts from many important issues that are relevant for international relations, such
as trade, aggressive vs. defensive military alliances, complexity or coordination cost of
alliances, and a distinction between open conflict and diplomatic disputes. A brief dis-
cussion concerning international relations is provided toward the end of the paper, to-
gether with extensions of the setup.

This paper presents a parsimonious model of signed network formation, which pro-
vides a game-theoretic foundation for structural balance and builds on agents’ incen-
tives to bully and gang up on each other. Players can either extend a friendly (positive)
or an antagonistic (negative) link to each of the remaining agents. A reciprocated pos-
itive link constitutes a friendship or alliance. Extending a negative link is thought of as

8More generally, research in sociology has examined the evolution of signed network relations. Doreian
and Mrvar (1996) and Doreian and Krackhardt (2001) are two such empirical studies. In both cases a move-
ment toward balance is apparent.

9Riddell (1988) records a positive relationship between the United States’ military power on the one hand
and the terms of trade and the profit rate of domestic firms on the other hand. See also Brito and Intriligator
(1978), who state that “the distribution of the gains from trade is a function not only of markets and initial
resources, as in the classical theory of international trade, but also of the power of the nations involved.”
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Figure 1. Three examples of Nash equilibrium networks.

picking a fight (or argument) and triggers an antagonistic or enemy relationship. I as-
sume that picking a fight is costly (this cost may be arbitrarily small) and I also allow for
a cost of conflict, which is incurred by both agents involved in an antagonistic relation-
ship. An agent’s strength is determined endogenously. More precisely, the strength of an
agent is given by the agent’s intrinsic strength plus the intrinsic strength of the agent’s
friends or allies. Note that, unless otherwise stated, I mean by strength an agent’s ex
post strength, i.e., the strength of an agent given a particular network. An important at-
tribute of the model is that the payoff a stronger agent can extract from a weaker enemy
is strictly increasing in own strength and strictly decreasing in the respective enemy’s
strength. This is what drives stronger agents to match their strategies relative to weaker
agents. Essentially, by coordinating on who to bully, the bullied agent is weaker and
extraction payoffs are therefore higher.

The first main finding is that every Nash equilibrium obeys (weak) structural bal-
ance. That is, Nash equilibrium configurations are such that either all links are positive
or agents can be divided into two or more distinct sets, where agents within the same
set are friends and agents in different sets are enemies. Furthermore, stronger agents
extend negative links to weaker agents.

The above result is illustrated via the three examples depicted in Figure 1. Agents in
the same clique are circled and a solid line represents a positive link. All negative links
across cliques are summarized by a single dashed line. The direction of the link indicates
who extends the negative link and, therefore, who is bullying or extracting payoffs from
whom. Note that when agents are homogeneous with respect to their intrinsic strength,
then only the graph on the very left can be sustained as a Nash equilibrium. In this
case, strength is determined by the number of friends and, for negative links to arise in
equilibrium, cliques must be of different sizes.

I characterize pure strategy Nash equilibria for a general class of payoff functions,
which map the respective strengths of agents into an extraction payoff under an antag-
onistic relationship. The characterization, together with my existence results, allows for
agents who differ in their intrinsic strength, while the remainder of the paper focuses on
the homogeneous agents case. Sufficient conditions for at most two cliques to arise in
any Nash equilibrium and for the existence of Nash equilibria with multiple cliques are
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derived. I thereby differentiate the case of strong structural balance (which allows for at
most two cliques) from weak structural balance (which allows for multiple cliques).

Multiplicity of equilibria is addressed by characterizing the set of strong Nash equi-
libria. These are shown to be such that one agent is the enemy of everyone else. That
is, if a strong Nash equilibrium exists, then it yields a unique prediction. I provide sim-
ple conditions for the existence of a strong Nash equilibrium. Note next that my results
are largely driven by agents’ incentives to coordinate their linking behavior relative to
weaker agents. To highlight the role of these incentives, I show that if the extraction value
is assumed to be a constant and coordination incentives are, therefore, not present, then
Nash equilibria exist that are not structurally balanced. Finally, I analyze welfare prop-
erties of the model. The configuration with the highest sum of payoffs is the network
where all links are positive, as this minimizes the cost of negative links. I then show the
somewhat surprising result that Nash equilibria cannot be Pareto ranked.

This paper relates to the economics of conflict literature, where conflict is modeled
in terms of a contest success function (see Tullock 1967, 1980, and Hirshleifer 1989) and
an agent’s probability of winning is determined by the resources available for arming.
Part of this research focuses on coalition formation. See, for example, Wärneryd (1998)
and Esteban and Sákovics (2003).10 Note that in these models of distributional con-
flict, agents typically obtain identical outcomes. In contrast, payoffs may differ across
agents in my setup.11

 Jordan (2006) considers coalitional games, where wealth must
be allocated among agents and opportunities to pillage by varying coalitions are deter-
mined by a power function, which at least partly depends on the wealth of the mem-
bers of a coalition. Any coalition can take all the wealth of any other coalition that
is less powerful at zero cost. The farsighted core allocations, where no coalitions are
formed and no acts of pillage occur, depend on the properties of the power function.
In the specification that may be considered as most closely related to my model, i.e.,
when the power to pillage mainly depends on the size of a coalition (and the num-
ber of agents is odd), then there exists a stable set such that aggregate wealth is di-
vided among a minimal majority. A similar equilibrium exists in my model if payoff
extraction is very efficient (and agents are homogeneous). Another important strand
of the economics of conflict literature studies production and appropriation. To re-
late to this body of work, an extension that allows for costly production is provided in
Appendix B, which is available in a supplementary file on the journal website, http://
econtheory.org/supp/1937/supplement.pdf. I assume (as, for example, Garfinkel 1990,
Hirshleifer 1995, and Skaperdas 1992) that production enters into a common pool,
which is subject to appropriation. A simple condition is provided such that again all
Nash equilibria are structurally balanced. However, efficiency results are now shown to
depend on the curvature of the cost function.

This paper contributes to the literature on networks in economics. See, for exam-
ple, Myerson (1977), Aumann and Myerson (1988), Bala and Goyal (2000), and Jackson
and Wolinsky (1996). Recent papers that feature contest success functions in a network

10Good overviews of this literature are Garfinkel and Skaperdas (2007) and Bloch (2012).
11See Rietzke and Roberson (2013) for a setting in which two potential allies face a fixed, common enemy.

http://econtheory.org/supp/1937/supplement.pdf
http://econtheory.org/supp/1937/supplement.pdf
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setting are Goyal and Vigier (2014), König et al. (2015), and Jackson and Nei (2015), all
of which have a different focus. Goyal and Vigier (2014) study a design problem and ask
how to optimally structure networks so that they are robust to attacks in the face of an
adversary. König et al. (2015) model a setting where agents are embedded in a network
of bilateral alliances and conflicts, and bring their model to the data. The authors are
concerned with conflict intensity on a fixed network and do not consider endogenous
alliance formation and conflict. Note that the extension presented in Appendix B may
be viewed as a variant of König et al. (2015), where, instead of assuming that the network
of alliances and conflicts is fixed and agents choose their fighting effort endogenously,
fighting effort is now assumed to be fixed, while the network of alliances and conflicts
is endogenous (and production is introduced). Jackson and Nei (2015) aim to under-
stand the relationship between trade and war among countries. In their model, agents
create bilateral military alliances, which allow agents to coordinate attacks against other
agents, who in turn may be defended by their allies. The authors establish that, in the
absence of trade, there is no stable network such that no country has an incentive to
start a war. The authors then shown that trade may restore stability and prevent the
outbreak of war. Jackson and Nei (2015) and my paper study very different, yet comple-
mentary, questions. More specifically, while Jackson and Nei (2015) are concerned with
conditions for equilibria such that no conflict arises, I am concerned with commonly
observed network patterns in the presence of antagonism and conflict. To the best of
my knowledge, my paper presents the first game-theoretic model of signed network for-
mation.12 The remaining parts of the paper are organized as follows: Section 2 intro-
duces the model, Section 3 presents the results formally, Section 4 provides a discussion
of applications, and Section 5 concludes. All proofs of the main part of the paper are
relegated to Appendix A. Appendix B (the supplementary file) introduces production.

2. Model

Let N = {1�2� � � � � n} be the set of agents, with n ≥ 3. A strategy for an agent i ∈ N is
defined as a row vector gi = (gi�1� gi�2� � � � � gi�i−1� gi�i+1� � � � � gi�n), where gi�j ∈ {−1�1} for
each j ∈ N\{i}. Agent i is said to extend a positive link to j if gi�j = 1 and a negative link
if gi�j = −1. The set of strategies of i is defined by Gi and the strategy space is defined by
G = G1 ×· · ·×Gn. The resulting network of relationships is written as g = (g1�g2� � � � �gn).
Define the undirected network ḡ in the following way: The link between agents i and j

is positive in the undirected network ḡ if both directed links are positive, so that ḡi�j = 1
if gi�j = gj�i = 1; the link in the undirected network is negative if at least one of the two
undirected links is negative, so that ḡi�j = −1 if either gi�j = −1 or gj�i = −1 (or both).
Given a network g, g + g+

i�j and g + g−
i�j have the following interpretation. If gi�j = −1 in

g, then g + g+
i�j changes the directed link gi�j = −1 into gi�j = 1, while if gi�j = 1 in g, then

g + g+
i�j = g. Similarly, if gi�j = 1 in g, then g + g−

i�j changes the directed link gi�j = 1 into

gi�j = −1, while if gi�j = −1 in g, then g + g−
i�j = g. We sometimes use the summation sign

to denote multiple link changes.

12Note that a variant of the model, presented in a previous working paper version Hiller (2013), features
positive, negative, and zero links in equilibrium. I provide a short discussion toward the end of the paper.
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Define the following sets: N+
i (g) = {j ∈ N | ḡi�j = 1} is the set of agents to which

agent i reciprocates a positive link and, therefore, ḡi�j = 1 in the undirected network
ḡ; N−

i (g) = {j ∈ N | ḡi�j = −1} is the set of agents such that i extends and/or receives a
negative link and, therefore, ḡi�j = −1; Ne−

i (g) = {j ∈ N | gi�j = −1} is the set of agents to
which agent i extends a negative link. Note that Ne−

i (g) ⊆ N−
i (g). Denote the cardinal-

ities ci(g) = |N−
i (g)| and ei(g) = |Ne−

i (g)|. Strength or power of an agent is determined
endogenously and consists of an agent i’s intrinsic strength, λi > 0, and the strength of
all agents that reciprocate agent i’s positive link. The strength of agent i in network g is
then given by ni(g) = λi + ∑

j∈N+
i (g) λj . Note that we refer to ni(g) as an agent’s strength

in network g and specifically state it when referring to an agent’s intrinsic strength, λi.
When considering homogeneous agents, we assume for simplicity that λi = 1 ∀i and,
therefore, ni(g) = |N+

i (g)| + 1.
Links are interpreted in the following way: A reciprocated positive link, i.e., a positive

link in the undirected network, ḡ, establishes a friendship or alliance, which is assumed
to contribute to the agents’ strengths. Extending a negative link initiates an antagonistic
relationship and may be thought of as picking a fight, where picking a fight incurs a cost
of ε > 0. Furthermore, we also allow for a cost of conflict, κ ≥ 0. Note that for a pair of
agents to enter into an antagonistic or conflict relationship, it is sufficient that only one
agent extends a negative link. That is, once at least one negative link is extended, then
both agents are assumed to engage in conflict (and to incur the cost of conflict, κ).13

Gross payoffs from a negative link are determined by a function f (ni(g)�nj(g)), which
depends on the agents’ respective strengths ni(g) and nj(g). We present this function in
detail below.

The utility of player i under strategy profile g is given by

ui(g) =
∑

j∈N−
i (g)

f
(
ni(g)�nj(g)

) − ei(g)ε− ci(g)κ�

To simplify notation, we sometimes write ni for ni(g) and f (ni�nj) for f (ni(g)�nj(g)).
Note first that we only sum over agents with whom a negative link is sustained. That is,
direct payoffs from a reciprocated positive link are zero. The purpose of a friendship
or alliance is, therefore, to increase the respective agents’ strengths, thereby increasing
payoffs on any negative links, and to avoid the cost associated with antagonistic links.
This brings out the tension between friendship/alliance and antagonism in the stark-
est manner.14 The value an agent extracts through an antagonistic link is assumed to
be another agent’s loss and, therefore, f (ni�nj)+ f (nj�ni) = 0 ∀ni�nj . If a pair of agents
of equal strength is negatively connected, then no payoff extraction takes place, so that

13Note that our equilibrium characterization also goes through when allowing for stronger agents to
incur a different cost of conflict than weaker agents. However, for notational simplicity and clarity, we
present the case when cost of conflict is symmetric.

14Alternatively, one could specify a model where each pair of agents divides a fixed payoff, which is
shared equally if agents are friends, while the shares are determined by the respective agents’ strengths
in the case of antagonistic links. The equilibrium characterization goes through for this specification as
well. Normalizing makes the exposition clearer, as we only need to sum over negative links.
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f (ni�nj)= 0 ∀ni�nj : ni = nj . We assume that f is strictly increasing in ni. This implies, to-
gether with f (ni�nj)+ f (nj�ni) = 0 ∀ni�nj , that f is strictly decreasing in nj . Finally, note
that the total linking cost of an agent i in network g is determined by ei(g) extended neg-
ative links, which each incurs a cost of ε > 0, and ci(g) undirected negative links, which
each incurs a cost of κ ≥ 0. To allow for the possibility of negative links in equilibrium,
we assume that f (

∑
j∈N\{k} λj�λk) > ε+ κ, where k is such that λk ≤ λj ∀j ∈N .

The two most prominent contest success functions (henceforth CSFs) in the eco-
nomics of conflict literature are the CSF in ratio and the CSF in difference form (for a
detailed account, see Hirshleifer 1989). Normalizing these functions by subtracting 1

2
yields functions that satisfy our requirements on f . Note that in both cases the function
is parametrized by φ, where a higher value of φ is favorable for the stronger agent.

Definition 1. The normalized CSF in ratio form is

(1) f (ni�nj) = n
φ
i

n
φ
i + n

φ
j

− 1
2

and in difference form15

(2) f (ni�nj)= 1

1 + eφ(nj−ni)
− 1

2
�

The equilibrium concept used is pure strategy Nash equilibrium. A strategy profile g∗ is
a pure strategy Nash equilibrium (NE) if and only if

ui
(
g∗
i �g∗

−i

) ≥ ui
(
gi�g∗

−i

) ∀gi ∈ Gi�∀i ∈N�

We denote agent i’s deviation strategy from a given network g with g′
i and the net-

work after a proposed deviation is denoted with g′. Social welfare is defined as the sum
of individual payoffs. For any network g, social welfare is given by W (g) = ∑

i∈N ui(g).
A network ĝ is socially efficient if and only if W (ĝ) ≥W (g) ∀g ∈G.

3. Analysis

3.1 Equilibrium characterization

This section provides a characterization of pure strategy Nash equilibria. We show that
either all links are positive or agents can be partitioned into maximal cliques of different

15Note that for φ> 0,
n
φ
i

n
φ
i +n

φ
j

∈ (0�1) holds ∀ni�nj ∈ R+ and, since
n
φ
i

n
φ
i +n

φ
j

− 1
2 can be written as

n
φ
i

n
φ
i +n

φ
j

· 1
2 +

(1 − n
φ
i

n
φ
i +n

φ
j

) · (− 1
2 ), we can interpret the gross payoffs of an antagonistic link under the normalized CSF as a

bilateral zero-sum contest over a payoff of 1
2 . In the case of a discrete either–or competition,

n
φ
i

n
φ
i +n

φ
j

may be

thought of as the probability of winning the bilateral contest. The normalized CSF in difference form can
be interpreted in the same way. is
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Figure 2. Coordination Incentives.

(ex post) strength, where agents in stronger cliques extract payoffs from agents in weaker
cliques.16

To illustrate where and how our model assumptions come into play, we briefly com-
ment on some of the main arguments of the equilibrium characterization. Note first
that a negative link is never reciprocated by a negative link in any Nash equilibrium,
since extending a positive link instead increases payoffs by ε (Lemma 1 in Appendix A).
Furthermore, in any Nash equilibrium, there does not exist an agent that extends a neg-
ative link to a weakly stronger agent. By extending a positive link instead, the agent not
only increases payoffs from that link (by at least ε + κ), but the agent’s strength also in-
creases, which in turn increases payoffs on any remaining negative links (Lemma 2 and
Step 1 of Proposition 1 in Appendix A). Therefore, agents of equal strength are positively
connected and stronger agents determine the sign of links relative to weaker agents.

For the following discussion, it is convenient to rank agents by their strength in net-
work g, ni(g). We denote the set of the strongest agents with Pm(g), the set of the second
strongest agents with Pm−1(g), and proceed in this way until the set of weakest agents,
P1(g). From the previous paragraph we know that all agents in Pm(g) must be posi-
tively connected. Our equilibrium characterization is driven by incentives of agents to
coordinate their strategies relative to weaker agents. These incentives are due to our as-
sumption that f (ni�nj) is strictly decreasing in nj . We illustrate this by way of a simple
example. Assume that g is a NE. Take a pair of agents i and j in Pm(g), and assume that
i and j display identical linking behavior to all remaining agents, with the exception of
agents k and l, with k� l /∈ Pm(g).

Such a configuration is depicted on the left hand side of Figure 2, where we focus
only on the relevant links between agents i, j, k, and l. Note that agent i is positively
connected with agent l and negatively connected with agent k, while the opposite is
true for agent j. Without loss of generality, assume that uj(g) ≥ ui(g) and consider a
deviation where agent i imitates agent j’s strategy. That is, after proposed deviation,
agent i extends a negative link to l and a positive link to k, as depicted on the right hand
side of Figure 2. After proposed deviation, ni(g′) = nj(g) holds, since i and j are linked to
each other and share the same friends in g′. However, l has fewer friends after proposed
deviation and, since f (ni�nj) is decreasing in the second argument, i extracts more from
l in g′ than j in g, while payoffs from any other links remain unchanged. Therefore,
ui(g′) > uj(g) and proposed deviation is profitable. The same intuition carries over to

16Formally, a clique is a set of agents C(g) ⊆ N , such that ḡi�j = 1 ∀i� j ∈ C(g). A clique is maximal and
denoted with Cm(g) if, for any l /∈ Cm(g), Cm(g)∪ {l} is not a clique.
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strategies that differ in more complicated ways. By iteratively using similar imitation
strategies, one can then show that in any NE, agents in Pm(g) must extend negative links
to all agents not in Pm(g). Finally, we use an induction argument to show that all agents
in Pm−x(g) with x ∈N extend negative links to agents in cliques with weaker agents. Our
first main result is summarized in Proposition 1.

Proposition 1 (Heterogeneous agents). In any NE, if ni(g) = nj(g), then ḡi�j = 1, and if
ni(g) 
= nj(g), then ḡi�j = −1.

Proposition 2 provides existence results. We only present the analysis for homo-
geneous agents here. However, one can easily extend the analysis for heterogeneous
agents, as is briefly discussed at the end of this section. We first show that there always
exists an equilibrium where everyone extends positive links to everyone else. In this
case, payoffs are zero for each agent and a deviation consists of extending negative links
to some subset of the remaining n − 1 agents. Note that after a deviation, the deviating
agent is either the weakest agent or at most as strong as one other agent (if the deviation
consists of extending a single negative link). Therefore, gross payoffs from each negative
link are at most zero, while each negative link incurs a cost of ε + κ > 0. Therefore, no
profitable deviation exists. We then show that there also always exists an equilibrium
such that n − 1 agents form a clique and extract payoffs from a single agent. The intu-
ition is similar to the previous argument, but we now need to also account for deviations
where one of the n− 1 agents extends a positive link to the agent that is an enemy of ev-
eryone else, while extending negative links to some subset of the remaining agents. To
see why networks different from the ones mentioned above may not be Nash equilibria,
consider a network with two cliques: one of size n−2 and the other of size 2. An agent in
the larger clique may now find it profitable to extend a positive link to one of the agents
in the smaller clique, forgoing the extraction payoff of this agent, so as to increase the
payoff from the remaining negative link.

Proposition 2 (Homogeneous agents). Any network g such that (i) all agents are
friends and (ii) n − 1 agents are friends of each other and one agent is an enemy of ev-
eryone else (and Lemmas 1 and 2 hold) is a NE.

Next we comment briefly and informally on the case of heterogeneous agents. If f
is continuous and agents are sufficiently homogeneous, then, for any ε and κ, a Nash
equilibrium exists such that all links are positive. The intuition is that if f is continuous
and agents are sufficiently homogeneous, then the gross payoff from a negative link in a
deviation is either negative, zero, or arbitrarily close to zero. Therefore, for given ε and
κ, again no profitable deviation exists. For the equilibrium where n − 1 agents gang up
on a single agent, assume that the single agent is of (weakly) lowest intrinsic strength.
One can then show that assuming the function f to be continuous and agents to be
sufficiently homogeneous is again sufficient for this type of equilibrium to exist.17

17Formal proofs for the heterogeneous agent case are available upon request.
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Figure 3. Two examples illustrating Proposition 3.

3.2 Strong versus weak structural balance

For the remaining part of the paper, we assume that agents are homogeneous. Next we
offer two results regarding the number of cliques. Proposition 3 presents a condition for
the existence of Nash equilibria that display multiple cliques, while Proposition 4 pro-
vides a condition for any Nash equilibrium to display at most two cliques. We thereby
disentangle the case when all Nash equilibria obey structural balance in its strong form
(no triads of negative links and at most two cliques) from the case when Nash equi-
libria allow for weak structural balance (triads of negative links and multiple cliques).
Propositions 3 and 4 translate into simple requirements for both of the contest success
functions considered.

Before introducing Proposition 3, we define δ= f (n− 1�1)− min2≤x≤n−1 f (x�x− 1).
Note that f (n− 1�1) is the maximum extraction value that can be obtained from a single
negative link with n agents and δ may therefore be interpreted as a measure of the effec-
tiveness of the conflict technology. That is, if δ is small, then conflict is effective in the
sense that having just one more friend than the respective enemy yields an extraction
payoff that is close to f (n − 1�1). Note also that Proposition 3 implies that the relative
size of groups is at least geometrically increasing with common ratio 2.

Proposition 3 (Homogeneous agents). If δ is sufficiently small, then g is a NE if and
only if either gi�j = 1 ∀i� j or

∑j−1
i=1 |Pi(g)| < |Pj(g)| holds ∀Pj(g) (together with Lemma 1,

Lemma 2, and Proposition 1).

We illustrate Proposition 3 by way of two examples. Assume δ to be arbitrarily close
to zero. Consider first the network structure depicted on the left hand side of Figure 3.
This configuration is not an equilibrium, since agent i in clique 2 can profitably deviate
by extending a positive link to agent j in clique 1. Agent i forgoes the payoff from the link
with j, which is arbitrarily close to f (n−1�1)−(ε+κ) > 0. However, since after proposed
deviation agent i has the same strength as agents in clique 3, i’s payoffs increases by
arbitrarily close to three times f (n− 1�1) and proposed deviation is therefore profitable.
The same argument cannot be made for the example on the right hand side of Figure 3.
After extending a positive links to agent j in clique 1, agent i in clique 2 is still weaker
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than agents in clique 3. Agent i thereby forgoes a payoff of arbitrarily close to f (n−1�1)−
(ε+κ), while gaining arbitrarily little from links with agents in clique 3. Such a deviation
is therefore not profitable for δ sufficiently small. One can show that relative group size
must increase at least geometrically to preclude these types of deviations. Finally, agents
in the largest clique do not find it profitable to deviate by extending positive links, as
they forgo payoffs arbitrarily close to f (n− 1�1)− (ε+ κ), while gaining arbitrarily little
from any remaining negative links. Proposition 3 directly extends to the aforementioned
contest success functions. To see this, note that δ is arbitrarily small for φ sufficiently
large.

Corollary 1. If f is the normalized CSF in ratio form or the normalized CSF in differ-
ence form, then for φ sufficiently large, g is a NE if and only if the conditions of Proposi-
tion 3 hold.

Proposition 4 provides sufficient conditions such that there are at most two cliques
in any Nash equilibrium. We assume that f is twice differentiable. Essentially, the con-
ditions ensure that an agent in the second smallest clique always finds it profitable to
extend a positive link to an agent in the smallest clique.

Proposition 4 (Homogeneous agents). If ∂2f (ni�nj)/∂ni∂nj and ∂2f (ni�nj)/∂
2ni are

sufficiently close to zero ∀ni�nj and ∂2f (ni�nj)/∂
2ni ≤ 0 ∀ni ≥ nj , then there are at most

two maximal cliques in any Nash equilibrium.

Corollary 2 shows that Proposition 4 also extends to both of the contest success func-
tions. More precisely, if φ is sufficiently small, then both contest success functions sat-
isfy the conditions of Proposition 4 and therefore any Nash equilibrium displays at most
two cliques. The intuition is that, for φ sufficiently small, the contest success functions
become almost linear in ni and the derivative with respect to ni depends arbitrarily little
on nj . That is, what drives this result is not that the conflict technology is very inefficient,
but rather that, for φ sufficiently small, the contest success functions approach a linear
function in the relevant range. To contrast this with the result in Proposition 3, note that,
for φ sufficiently large, both contest success functions approach a step function.

Corollary 2. If f is the normalized CSF in ratio form or the normalized CSF in differ-
ence form, and φ is sufficiently small, then there are at most two maximal cliques in any
Nash equilibrium.

3.3 Strong Nash equilibrium

In this section we show that any strong Nash equilibrium must be such that n− 1 agents
gang up on a single agent. Note that strong Nash equilibrium allows for deviations of
any subset of agents and a deviation is considered profitable if payoffs strictly increase
for all deviating agents. A formal definition is provided below.

Definition 2. A Nash equilibrium g ∈ G is a strong Nash equilibrium if there is no
J ⊆ N and g′ ∈ G such that (i) g′

i = gi ∀i /∈ J and (ii) ui(g′) > ui(g) ∀i ∈ J.
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The following example illustrates our result. Assume there are two cliques such that
the smaller clique consists of three agents and the larger clique consists of four agents.
Consider a deviation where three of the agents in the larger clique and one agent in the
smaller clique deviate to create a new maximal clique. There are then three cliques,
where the smallest is of size 1, the second smallest is of size 2, and the largest clique is of
size 4. The deviation proposed is profitable for all deviating agents. A similar argument
can be made for any Nash equilibrium, other than the Nash equilibrium in which n− 1
agents gang up on a single agent.

Proposition 5 (Homogeneous agents). In any strong Nash equilibrium there are two
maximal cliques and |P1(g)| = 1.

A strong Nash equilibrium may not always exist. However, a simple sufficient con-
dition for the existence of a strong Nash equilibrium is that ε + κ is sufficiently close to
f (n− 1�1).18 Below we provide two simple examples, which both display three types of
Nash equilibria, but only in the first example does a strong Nash equilibrium exists.

Example 1 (Strong Nash equilibrium). Assume n = 5 and that f is such that f (4�1) = 7,
f (4�2) = f (3�1) = 3, f (3�2) = 2, and f (4�3) = f (2�1) = 1 with ε = 1 and κ = 0. There
are then three types of Nash equilibria: (i) all agents are friends, (ii) one clique of size 3
and one clique of size 2, and (iii) one clique of size 4 and one singleton agent. The latter
Nash equilibrium is a strong Nash equilibrium. To see this, note that for any deviation
of at least two agents, at least one of the agents must be from the clique of size 4. Note
also that an agent with one reciprocated positive link can at most obtain a payoff of
3 in any network, while the equilibrium payoff of an agent in the clique of size 4 is 6.
Therefore, after any profitable deviation, a deviating agent from the clique of size 4 must
have at least two reciprocated positive links. One can then show that the largest relevant
deviation payoff for an agent from this clique is 5. Therefore, no profitable deviation
exists. ♦

Example 2 (Strong Nash equilibrium). Assume that f (4�1) = 4, while the remaining
payoffs and parameter values are as in Example 1. The set of Nash equilibria is the same
as in Example 1. However, the configuration with a clique of size 4 and a singleton agent
is not a strong Nash equilibrium and, therefore, no strong Nash equilibrium exists. To
see this, note that the equilibrium payoff of an agent in the clique of size 4 is 3, while a
deviation in which three agents gang up on the remaining agent in the clique of size 4
yields a deviation payoff of 4. ♦

18Note that if ε + κ is sufficiently close to f (n − 1�1), then the only Nash equilibria are such that either
all agents are positively connected or n − 1 agents extract payoffs from a single agent. One can show that
a different, more elaborate sufficient condition for the existence of a strong Nash equilibrium is given by
f (n − 1�1) − ε ≥ maxx∈[1� n−1

2 )∩N x · (f (n − 1 − x�x) − ε − κ) + f (n − 1 − x�1). The proof is available upon

request. Note further that the latter condition is satisfied in Example 1, but not in Example 2.
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3.4 The role of coordination incentives (constant extraction values)

Our equilibrium characterization provides sufficient conditions for all pure strategy
Nash equilibria to be structurally balanced. However, it is also interesting to understand
the conditions on f under which we may obtain Nash equilibria that are not structurally
balanced. In the following discussion, we uphold our assumptions, with one exception.
We assume that f (ni�nj) = z > 0 holds ∀ni�nj : ni > nj . That is, the extraction value is
constant. Furthermore, we assume that z > ε + κ. In Proposition 6, we show that there
then exist Nash equilibria that are not structurally balanced. Note that with a constant
extraction value, there are no incentives for stronger agents to coordinate their actions
relative to weaker agents. This result thereby highlights the relevance of coordination
incentives for obtaining structurally balanced structures. Note also that in the network
configuration considered in Proposition 6, balanced and unbalanced triads coexist.

Proposition 6 (Homogeneous agents). If f (ni�nj) = z > 0 holds ∀ni�nj : ni > nj , then
for any n ≥ 4, there exists a n′ with |n′ − n| ≤ 2 such that a Nash equilibrium exists that is
not structurally balanced.

3.5 Efficiency

This section analyzes welfare properties of our model. It is easy to see that the sum of
payoffs is largest if all links are positive, as this minimizes the cost of negative links. In
Proposition 7 we show that Nash equilibria cannot be Pareto ranked. More specifically,
when comparing a Nash equilibrium, g, to another Nash equilibrium, g̃, then there al-
ways exists an agent who is strictly worse off in g̃ than in g. For the following discussion,
it is convenient to define the set of agents who have strictly fewer friends in g̃ than in g,
which we denote with S(g → g̃), and to define the set of agents who have weakly more
friends in g̃ than in g, which we denote with B(g → g̃). To simplify notation we some-
times just write S and B. Formal definitions, together with additional definitions and
notation used in the proof, can be found in Appendix A.

To build intuition for our result, we briefly discuss some of the relevant cases, with-
out commenting on all of them here. Note first that if all agents have strictly fewer posi-
tive links in g̃ than in g, so that S(g → g̃) =N , then the number of negative links is strictly
larger in g̃ than in g. Therefore, the sum of payoffs is strictly smaller in g̃ and at least one
agent is strictly worse off in g̃. If all agents have strictly more positive links in g̃ than in
g, so that B(g → g̃) = N , then one can show that there exists an agent i with a deviation
payoff in g that is strictly larger than i’s equilibrium payoff in g̃. Therefore, agent i is
strictly worse off in g̃. If g̃ is such that S(g → g̃) 
= ∅ and B(g → g̃) 
= ∅, then we can fo-
cus on the set S. We first show that payoffs of agents in S must decrease from their links
with agents in B. Then, for agents in S to be at least as well off in g̃ as in g, it must be the
case that there are fewer negative links among agents in S in g̃ than in g. However, for
agents in S to display more negative links in g̃ than in g, it must also be the case that for
each negative link less than among agents in S, there must be at least two more negative
links that agents in B extend to agents in S in g̃ than in g. We show that this more than
outweighs any benefits from fewer negative links among agents in S. Therefore, there
exists at least one agent in S that is strictly worse off in g̃ than in g.
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Proposition 7 (Homogeneous agents). Nash equilibria cannot be Pareto ranked.

4. Discussion of extensions and applications

The focus of this paper is to provide a simple game-theoretic model for structural bal-
ance. However, the framework lends itself to study many other, potentially interest-
ing questions. A particularly promising area is international relations and international
conflict. Jackson and Nei (2015) argue that the study of multilateral conflicts is, in fact,
a network problem. The authors find that multilateral wars between 1823 and 2003
never involved conflict with fully allied coalitions (i.e., cliques) of more than two coun-
tries fighting each other. In our current model specification, fully connected cliques
arise because we do not incorporate zero (or neutral) links and we assume that posi-
tive links are costless. However, one can easily allow for costly alliances and for positive,
zero, and negative links. In this setting one can show that there exist equilibrium con-
figurations involving conflict that do not consist of fully allied coalitions and that again
all triads are structurally balanced (for a detailed account, see Hiller 2013). Note further
that our present model, as well as the literature on structural balance, only considers
one type of negative link. In particular, we do not allow for the choice between fight-
ing back and giving in, which may be of interest for applications in the economics of
conflict. These types of considerations can be addressed in our framework and we have
solved a simple extension of the model where we distinguish between fighting back and
giving in. Fighting back is assumed to be costly, but, relative to giving in, it decreases the
value that the stronger agent is able to extract from the weaker. Again simple conditions
can be derived such that all equilibria are structurally balanced.19

In the current model, extending a negative link triggers costly conflict and agents
cannot bargain to avoid this cost. However, one can show that an alternative setup with
strictly positive conflict cost and Nash bargaining is analytically equivalent to assum-
ing a conflict cost of zero in the original specification presented here.20 This reading
of the model may be a starting point for the study of applications related to corruption
and payment of bribes. More generally, Fearon (1995) points out that asymmetric infor-
mation, lack of commitment, and dynamic motives may prevent agents from reaching
bargaining outcomes and all of these considerations are interesting in our context.

There are many other questions that may be worthwhile to study in our framework.
For example, the existing theoretical and empirical literature on the formation of coali-
tions, states, and alliances typically models a trade-off between economies of scale and

19For both of the extensions described, we use bilateral equilibrium Goyal and Vega-Redondo (2007) as
our notion of strategic stability. Bilateral equilibrium allows pairs of agents to deviate and refines Nash
equilibrium and pairwise stability. Furthermore, we make an additional concavity assumption (which is
satisfied for both contest success functions for 0 < φ < 1). A bilateral equilibrium may not always exist.
However, simple sufficient conditions for the existence of a bilateral equilibrium can be obtained.

20Assume κ > 0 and that agents can engage in bilateral bargaining in isolation. More precisely, assume
that once a negative link is extended, then agents may either engage in costly conflict or reach an agree-
ment over the payoffs from the negative link, thereby avoiding the cost of conflict, while linking behavior is
assumed to be fixed. Calculating the Nash bargaining solution yields payoffs from negative links as if κ = 0.
That is, the analysis is then equivalent to assuming κ = 0 in our model.
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cost from being part of a larger and more heterogeneous group (see, for example, Alesina
and Spolare 2005). Allowing for investment into arming may lead to incentives to free
ride among allies, potentially favoring smaller groups (see Olson 1965, but also Esteban
and Ray 2001). Furthermore, combining the incentives of arming and production may
yield novel insights into the trade-off between “guns and butter.”

Finally, note that the current model specification may be interpreted as individual
level conflict and value extraction. However, one may also be interested in conflict or
value extraction that operates at a group level. In this vein, consider a setup where
agents create positive links and agents in a positively connected component are able
to coordinate and optimally choose their negative links relative to other components
(possibly in a second stage of the game). Payoffs of agents in a given component may
now depend on the relative strength of the component, which in turn may depend on
the particular pattern of negative links across components.21 A model along these lines
may provide new insights regarding the formation of alliances and conflict. If payoffs
are evenly distributed within components and negative links among agents in the same
component weaken a component’s strength, then negative links will only exist across
components and again all equilibrium configurations are structurally balanced.

5. Conclusion

This paper presents, to the best of my knowledge, the first game-theoretic model of
signed network formation. Agents enter positive (friendship or alliance) and negative
(antagonism or conflict) relationships. Stronger agents extract payoffs from weaker en-
emies and an agent’s power is determined endogenously. There are three main insights
to be drawn. First, the model shows how in this context self-interested behavior yields
the following sharp structural predictions under Nash equilibrium. Either everyone is
friends with everyone or agents can be partitioned into distinct sets, also called cliques,
such that agents within the same set are friends and agents in different sets are enemies.
This provides a game-theoretic foundation for structural balance theory and mirrors
findings on signed networks obtained in sociology, social psychology, bullying, inter-
national relations, and applied physics. Second, cliques are asymmetric in terms of
strength. This stands in contrast to models of coalition formation in the economics
of conflict in two dimensions. Groups are typically shown to be symmetric in this lit-
erature, while our model allows for asymmetric structures. Furthermore, agents then
also obtain identical payoffs, while our setup allows for payoff differences across agents.
Third, the game-theoretic approach permits us to provide answers to novel questions,
which could previously not be addressed. We provide conditions that disentangle strong
and weak structural balance. For the contest success functions in difference and ratio
form these imply that if payoff extraction is sufficiently effective, then there exist Nash
equilibria with multiple cliques, while if payoff extraction is sufficiently ineffective, then
there are at most two cliques in equilibrium. The only strong Nash equilibria are such

21For example, assume that the ability of an agent to stay operational in the light of attacks from agents
in other components depends on the structure of the respective components, while the strength (and total
payoffs) of a component depends on the network of operational agents only.
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that one agent is enemies of everyone else. Furthermore, Nash equilibria are shown to
not be Pareto ranked.

Appendix A

Before characterizing the set of Nash equilibria, we present two auxiliary lemmas.
Lemma 1 shows that there does not exist a Nash equilibrium such that a negative link is
reciprocated by a negative link. In Lemma 2, we show that in any Nash equilibrium, for
all negative links in place in the undirected network ḡ, it must be the stronger agent that
extends the directed negative link.

Lemma 1. In any NE, there does not exist a pair of agents i and j such that gi�j = gj�i = −1.

Proof. Assume there exists a pair of agents i and j that extend negative links to each
other. Assume without loss of generality that agent i deviates by extending a positive
link to j. The sets of i’s friends and enemies are not altered by the deviation and payoffs
accruing from any agent other than j remain the same. However, payoffs from the link
with j strictly increase by ε > 0 and proposed deviation is therefore profitable. �

Lemma 2. In any NE, if ḡi�j = −1 with ni(g) < nj(g), then gi�j = 1.

Proof. Note first that, from Lemma 1, we know that a negative link is not reciprocated
in any Nash equilibrium. Assume next, and contrary to the above, that ḡi�j = −1 with
gi�j = −1, gj�i = 1, and ni(g) < nj(g). Then i can profitably deviate with deviation strategy
gi + g+

i�j , which yields ḡ′
i�j = 1. Payoffs strictly increase for i from the link with j. To

see this, note that the payoff in g is given by f (ni(g)�nj(g)) − (ε + κ), which is negative
for ni(g) < nj(g), while the payoff is zero after proposed deviation. Furthermore, by
reciprocating a positive link from j, agent i increases his strength and payoffs from any
remaining negative links also increase. Proposed deviation is therefore profitable. �

Proof of Proposition 1. We start with the first part of the statement.
Step 1. In any NE, if ni(g) = nj(g), then ḡi�j = 1.
Assume, to the contrary, that there exists a pair of agents i and j, such that ni(g) =

nj(g) and ḡi�j = −1. From Lemma 1, we know that a negative link is not reciprocated
in any Nash equilibrium. Assume without loss of generality (w.l.o.g.) that i extends the
negative link, i.e., gi�j = −1 and gj�i = 1. Note that since ni(g) = nj(g), payoffs for agent
i from the link ḡi�j = −1 are then given by −(ε + κ). Agent i can profitably deviate by
extending a positive link to j. Payoffs from the link increase by ε + κ > 0, while payoffs
on any remaining negative links also increase, since ni(g′) > ni(g). Note further that if
ni(g) = nj(g) ∀i� j ∈ N , then all links must be positive.

The remaining part of the proof uses an induction argument and we start by proving
the base case in three steps (Steps 2–4).

Base Case (Steps 2–4). In any NE, ḡi�j = 1 ∀i� j ∈ Pm(g) and ḡi�k = −1 ∀i ∈ Pm(g) and
∀k /∈ Pm(g).

Step 2. In any NE, N+
i (g)\{j} = N+

j (g)\{i} and N−
i (g) = N−

j (g) ∀i� j ∈ Pm(g).
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This statement holds trivially for |Pm(g)| = 1. Assume |Pm(g)| ≥ 2 and, contrary to
the above, that ∃i� j ∈ Pm(g) : N+

i (g)\{j} 
= N+
j (g)\{i} (and therefore N−

i (g) 
= N−
j (g)).

That is, there exists a pair of agents i� j ∈ Pm(g), such that their respective sets of friends
and enemies are different. Note that from the first part of the proof, we know that
ḡi�j = 1 ∀i� j ∈ Pm(g). From Lemma 2 we further know that agents not in Pm(g) ex-
tend positive links to all agents in Pm(g). That is, gk�i = 1 ∀k� i such that k /∈ Pm(g)
and i ∈ Pm(g). Therefore, for a pair of agents i and j to exist such that i� j ∈ Pm(g) and
N+

i (g)\{j} 
= N+
j (g)\{i} (and therefore N−

i (g) 
= N−
j (g)), it must be that i and j play dif-

ferent strategies relative to third agents, which we denote with gi\j 
= gj\i. Without loss of
generality, assume uj(g) ≥ ui(g). We show that i can then profitably deviate by imitating
j’s strategy (while keeping the positive link to j), so that g′

i\j = gj\i. More specifically, we
show that ui(g′) > uj(g) ≥ ui(g) holds. There are two types of agents to consider when
comparing payoffs of i after proposed deviation, ui(g′), with payoffs of j prior to it, uj(g):
first, agents k that are i and j’s enemies prior to the deviation, k ∈ N−

j (g) ∩ N−
i (g); sec-

ond, agents l that are j’s enemies, but i’s friends prior to the deviation, l ∈N−
j (g)∩N+

i (g).

We start by showing that i’s payoffs from links with agents k ∈ N−
j (g) ∩ N−

i (g) in g′ are
the same as the payoffs that j obtains from these agents in g. Note first that since i is im-
itating j’s strategy, ni(g′) = nj(g). To see this, note that nj(g) = λj + λi + ∑

k∈N+
j (g)\{i} λk,

while ni(g′) = λi + λj + ∑
k∈N+

i (g′)\{j} λk = λi + λj + ∑
k∈N+

j (g)\{i} λk. Because i does not

change his linking behavior relative to agents k ∈ N−
j (g) ∩ N−

i (g) in g′, nk(g) = nk(g′)
also holds. Therefore, i’s payoffs from all links with agents k ∈ N−

j (g) ∩ N−
i (g) are the

same for i in g′ as for j in g. Next, we consider payoffs from agents that are j’s enemies,
but i’s friends prior to the deviation, i.e., payoffs from agents l ∈ N−

j (g) ∩ N+
i (g). From

gi\j 
= gj\i and i� j ∈ Pm(g) we know that at least one such agent l exists. Since i extends a
positive link to l in g and a negative link in g′, nl(g′) < nl(g) holds. Recall from the above
that when i imitates j’s strategy, then ni(g′) = nj(g). Therefore, agent i’s payoffs from
agents l ∈ N−

j (g) ∩ N+
i (g) in g′ are strictly larger than j’s payoffs from these agents in g.

That is, ui(g′) > uj(g) ≥ ui(g) holds and proposed deviation is profitable.
Step 3.In any NE, ḡi�k = −1 ∀i ∈ Pm(g) and ∀k ∈ Pm−1(g).
Assume to the contrary that there exists an agent k ∈ Pm−1(g) such that ḡi�k = 1 for

some i ∈ Pm(g). From Step 2, we know that then ḡi�k = 1 ∀i ∈ Pm(g). Furthermore, from
Lemma 1, we know that then ḡj�k = 1 must hold ∀j�k ∈ Pm−1(g). By Lemma 2, we further
know that gh�k = 1 ∀h ∈ Pm−x(g) and ∀x ∈ N: x ≥ 2. Therefore, gl�k = 1 ∀l ∈ N\{k}. We
discern two cases. If gk\i 
= gi\k, then we can again use the same argument as in Step 2 to
show that either k or i (or both) can strictly increase payoffs by imitating the respective
other agent’s strategy. If gk\i = gi\k, then we reach an immediate contradiction, as then
nk(g) = ni(g) for k ∈ Pm−1(g) and i ∈ Pm(g).

Step 4. In any NE, ḡi�k = −1 ∀i ∈ Pm(g) and ∀k /∈ Pm(g).
If there are only two sets of agents with different numbers of friends, Pm(g) and

Pm−1(g), then we are done by Step 3. Assume that there are at least three such sets
and that there exists a pair of agents i ∈ P(g) and k ∈ Pm−2(g) such that ḡi�k = 1. From
Step 2, we know that then ḡi�k = 1 ∀i ∈ P(g). Assume first that uk(g) ≤ ui(g). Recall that
ḡi�l = −1 ∀i� l such that i ∈ Pm(g) and l ∈ Pm−1(g). Next we construct a deviation strategy
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for agent k such that the sets of friends and enemies of k in g′ are the same as those
of i in g. If gl�k = 1 for l ∈ Pm−1(g), then g′

k�l = −1, while if gl�k = −1 for l ∈ Pm−1(g),

then g′
k�l = 1 (and therefore ḡk�l = −1 ∀l ∈ Pm−1(g)). For all remaining agents, assume

agent k imitates agent i’s strategy in g. From Step 1, Step 2, and Lemma 2, we know that
gl�k = 1 ∀l /∈ Pm−1(g). Therefore, if ḡi�l = 1, then ḡk�l = 1 and if ḡi�l = −1, then ḡk�l = −1
∀l /∈ Pm−1(g). That is, after proposed deviation N+

i (g)\{k} =N+
k (g′)\{i}, N−

i (g) = N−
k (g′)

and ni(g) = nk(g′) hold. We can now employ an argument similar to the one used in
Step 2. Agent k obtains the same payoffs in g′ as i in g from all agents l ∈ N−

i (g)∩N−
k (g)

and obtains strictly larger payoffs in g′ than i in g from all agents l ∈ N−
i (g) ∩ N+

k (g). If
there exists an agent l ∈ Pm−1(g) with ḡl�k = 1, then l ∈ N−

i (g) ∩ N+
k (g) and proposed

deviation is profitable. Assume next that such an agent does not exist. That is, gl�k = −1
∀l ∈ Pm−1(g). But then linking costs of agent k are lower in g′ than for agent i in g (since
g′
k�l = 1 and gi�l = −1 ∀l ∈ Pm−1(g)), while gross payoffs are the same for agent k in g′

as for i in g. Again, uk(g′) > ui(g) and proposed deviation is profitable. Assume next
that uk(g) > ui(g). Consider the following deviation. Agent i extends positive links to
agents in Pm−1(g) and imitates k’s linking behavior to all remaining agents. Note that
i’s payoffs are zero in g′ from all links with agents in Pm−1(g), while they are at most
zero for agent k in g (and negative for k if the link between k and an agent in Pm−1(g) is
negative in g). Note further that ni(g′) ≥ nk(g) and nl(g′) ≤ nl(g) ∀l ∈ N−

i (g′). Therefore,
ui(g′) ≥ uk(g) > ui(g) and proposed deviation is profitable. If there are more than three
sets of agents with different numbers of friends, then we can use the above argument
iteratively to show that ḡi�k = −1 ∀i ∈ Pm(g) and ∀k /∈ Pm(g).

Define the super set P̃r(g) = ⋃i=m
i=m−r P

i(g). Note that P̃0(g) = Pm(g).
Inductive Step. In any NE, if ḡi�j = 1 ∀i� j ∈ Pm−x(g), ḡi�k = −1 ∀i ∈ Pm−x(g), and

∀k /∈ Pm−x(g) holds ∀x ∈ N : 0 ≤ x ≤ r, then ḡi�j = 1 ∀i� j ∈ Pm−(r+1)(g), ḡi�k = −1 ∀i ∈
Pm−(r+1)(g), and ∀k /∈ Pm−(r+1)(g).

In Step 4 we showed that ḡi�j = 1 ∀i� j ∈ Pm(g) and ḡi�k = −1 ∀i ∈ Pm(g) and ∀k /∈
Pm(g). Assume the statement holds for all sets Pm−x(g) with x ∈ N : 0 ≤ x ≤ r. From
Lemma 2, we know that gi�k = −1 and gk�i = 1 ∀i ∈ P̃r(g) and ∀k /∈ P̃r(g), while from
Lemma 1, we know that in any Nash equilibrium there does not exist a pair of agents i

and k such that gi�k = gk�i = −1. We can now use an argument analogous to that used in
Step 2, Step 3, and Step 4 of the base case, relabeling Pm(g) with Pm−(r+1)(g), Pm−1(g)
with Pm−(r+2)(g), and Pm−2(g) with Pm−(r+3)(g), to establish the above result. �

Proof of Proposition 2. We start by proving the first statement. Note that if all agents
are friends, then payoffs are zero for all agents. A deviation for agent i then consists of
extending negative links to some subset of N\{i}. Note that in any deviation of agent
i, ni(g′) ≤ nj(g′) and, therefore, f (ni(g′)�nj(g′)) ≤ 0 holds ∀j ∈ N−

i (g′). Furthermore,
ei(g′)ε > 0 and, therefore, no profitable deviation exists. Next we prove the second state-
ment. Denote with k the agent that is in an antagonistic relationship with everyone else.
First we check for deviations by k. From Lemma 2, we know that for a negative link in
the undirected network, ḡi�k = −1, it must be the weaker agent extending the positive
link. From nk(g) < ni(g) ∀i ∈ N\{k}, it then follows that gk�i = 1 ∀i ∈ N\{k}. A deviation
for agent k therefore consists of extending negative links to some subset of N\{k}. For
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each agent to which k extends a negative link in a deviation, payoffs decrease by ε and
no such deviation is profitable. Next we consider an agent i different from k. There are
three types of deviations to consider. First, i extends a positive link to k. Agent i’s pay-
off from the link with k decreases strictly, since nk(g) < ni(g) and f (n − 1�1) > ε + κ,
while payoffs from all other links remain zero in g′. Proposed deviation is therefore not
profitable. Second, i extends negative links to some subset of N\{k� i}. Note that each of
these negative links incurs a negative payoff, by the argument used above. Furthermore,
agent i’s payoffs from the link with k decrease since ni(g′) < ni(g). Proposed deviation
is therefore not profitable. Third, consider a combination of the two deviations above.
Assume first that i extends a positive link to k and one negative link to some j ∈N\{k� i}.
Agent i’s payoffs remain constant if n = 3, as then nj(g′) = nk(g) = 1. For n ≥ 4, i obtains
strictly lower payoffs. To see this, note that ni(g′) = ni(g) = n − 1, while nj(g′) = n − 2
and nk(g) = 1. Therefore, nj(g′) > nk(g) holds and proposed deviation is not profitable.
Extending more than one negative link to N\{k� i} yields even lower payoffs, by an argu-
ment analogous to that used to prove the first statement. �

Proof of Proposition 3. From Proposition 2 we know that the network g such that
gi�j = 1 ∀i� j is always a Nash equilibrium when agents are homogenous. Assume next,
and contrary to Proposition 3, that there exists a Nash equilibrium g such that not all
undirected links are positive and

∑j−1
i=1 |Pi(g)| ≥ |Pj(g)| holds for some Pj(g). Consider a

deviation where k ∈ Pj−1(g) extends positive links to a subset of agents in
⋃i=j−2

i=1 Pi(g),

such that nk(g′)= nj(g) for j ∈ Pj(g). This is feasible since
∑j−1

i=1 |Pi(g)| ≥ |Pj(g)|. Denote
with x the number of agents to which k needs to extend a positive link such that nk(g′) =
nj(g). Note first that |Pj−1(g)| + x = |Pj(g)| with x < |Pj(g)|. For δ sufficiently small, k
forgoes payoffs of arbitrarily close to f (n − 1�1) − (ε + κ) from each of the x agents
to which k extends a positive link. However, k increases payoffs by arbitrarily close to
f (n − 1�1) from the |Pj(g)| agents in Pj(g). Furthermore, since nk(g′) > nk(g), payoffs
from any remaining negative links are larger in g′ than in g. From |Pj(g)| > x it then
follows that proposed deviation is profitable. Assume next that

∑j−1
i=1 |Pi(g)| < |Pj(g)|

holds. Note that in this case no agent can obtain at least as many friends as agents in
any of the larger cliques by extending positive links to agents in smaller cliques. The
only relevant deviations then consist of extending positive links to weaker agents (by
an argument analogous to Proposition 2). However, payoffs from any such deviation
are negative for δ sufficiently small. To see this, note that since f (n− 1�1) > ε+κ holds,
f (n−1�1)−δ− (ε+κ) > 0 also holds for δ sufficiently small. A deviating agent therefore
forgoes payoffs of at least f (n− 1�1)− δ− (ε+ κ) > 0 for each positive link extended to
agents in smaller cliques, while payoffs on each remaining negative link increase by at
most δ. For δ sufficiently small, proposed deviation is not profitable. �

Proof of Corollary 1. For the contest success function in ratio form, min2≤x≤n−1 f (x�

x− 1) is given by 2φ/(2φ + 1φ) and, therefore, δ is given by

δ = (n− 1)φ

(n− 1)φ + 1φ
− 2φ

2φ + 1φ
�
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Note that δ is decreasing and continuous in φ, and

lim
φ→∞

(n− 1)φ

(n− 1)φ + 1φ
− 2φ

2φ + 1φ
= 0�

That is, for φ sufficiently high, δ is arbitrarily close to zero and Proposition 3 applies.
For the contest success function in difference form, min2≤x≤n−1 f (x�x − 1) is given by
1/(1 + e−φ) and δ is, therefore, given by

δ = 1

1 + e−nφ
− 1

1 + e−φ
�

Note that δ is again decreasing and continuous in φ, and

lim
φ→∞

1

1 + e−φn
− 1

1 + e−φ
= 0�

That is, for φ sufficiently high, δ is arbitrarily close to zero and Proposition 3 again
applies. �

Proof of Proposition 4. Assume, contrary to the above discussion, that g is such
that there are at least three cliques. We consider a deviation in which an agent i ∈ P2(g)
extends a positive links to an agent j ∈ P1(g). We start by analyzing marginal payoffs
accruing from links to agents in the three smallest cliques, where we denote |P1(g)| = x,
|P2(g)| = y, and |P3(g)| = z with 1 ≤ x < y < z. Proposed deviation is profitable for any
ε > 0 and κ≥ 0 if the following condition holds:

(x− 1) · (f (y + 1�x)− f (y�x)
) + z · (f (y + 1� z)− f (y� z)

) + ε > f(y�x)�

Note first that from ∂2f (ni�nj)/∂
2ni ≤ 0 ∀ni ≥ nj we know that the inequality (y − x) ·

(f (x + 1�x) − f (x�x)) ≥ f (y�x) holds. A sufficient condition for the above condition to
hold and a deviation to be profitable is therefore given by

z · (f (y + 1� z)− f (y� z)
) + ε > (y − x) · (f (x+ 1�x)− f (x�x)

)
�

Note that for ∂2f (ni�nj)/∂ni∂nj and ∂2f (ni�nj)/∂
2ni sufficiently close to zero ∀ni�nj , the

terms f (y + 1� z) − f (y� z) and f (x + 1�x) − f (x�x) are arbitrarily close to each other.
The above inequality then holds, since ε > 0 and z > y − x. Note that for any additional
clique(s) with |Pl(g)| = l > z, proposed deviation yields strictly larger marginal payoffs,
as agent i now also increases payoffs from any negative links with agents k ∈ Pl(g). �

Proof of Corollary 2. Note first that for both contest success functions, for φ suffi-
ciently low, ∂2f (ni�nj)/∂

2ni < 0 holds ∀ni�nj . For the contest success function in ratio
form, the partial cross-derivative is given by

∂2f (ni�nj)

∂ni∂nj
=

2nφ−1
i n

φ−1
j

(
n
φ
i − 2nφj

)
φ2

(
n
φ
i − 2nφj

)3
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and the second derivative with respect to ni is given by

∂2f (ni�nj)

∂2ni
= n

φ−2
i (φ− 1)φ

n
φ
i + 2nφj

+ 2n3φ−2
i φ2

n
φ
i + 2nφj

− n
2φ−2
i φ2

(
n
φ
i + 2nφj

)2 − n
2φ−2
i (2φ− 1)
(
n
φ
i + 2nφj

)2 �

The corresponding limits when φ approaches zero are given by limφ→0 ∂
2f (ni�nj)/

∂ni∂nj = 0 and limφ→0 ∂
2f (ni�nj)/∂

2ni = 0. Both ∂2f (ni�nj)/∂ni∂nj and ∂2f (ni�nj)/∂
2ni

are continuous functions in φ and, for φ sufficiently small, the conditions provided in
Proposition 4 are therefore satisfied. For the normalized contest success function in
difference form, the corresponding expressions are given by

∂2f (ni�nj)

∂ni∂nj
= eφ(ni+nj)

(
eφni − eφnj

)
φ2

((
eφni − eφnj

))3

and

∂2f (ni�nj)

∂2ni
= 2e2(nj−ni)φφ2

(
1 + e(nj−ni)φ

)3 − e(nj−ni)φφ2

(
1 + e(nj−ni)φ

)2 �

The corresponding limits when φ approaches zero are given by limφ→0 ∂
2f (ni�nj)/

∂ni∂nj = 0 and limφ→0 ∂
2f (ni�nj)/∂

2ni = 0. Again ∂2f (ni�nj)/∂ni∂nj and ∂2f (ni�nj)/∂
2ni

are continuous functions in φ and, for φ sufficiently small, the conditions provided in
Proposition 4 are therefore satisfied.22 �

We present the auxiliary Lemma 3 and Lemma 4, which are useful to show Proposi-
tion 5 and Proposition 7.

Lemma 3. In any NE g, if gi�j = −1, then i obtains strictly positive payoffs from the link
with j.

Proof. Note first that the only type of Nash equilibrium network such that there exists
an agent i with |N−

i (g)| = 1 is the one with two cliques and |P1(g)| = 1. That is, g is such
that n− 1 agents gang up on a singleton agent. The payoff from a negative link is strictly
positive, due to the assumption that f (n − 1�1) > ε + κ. Assume next that g is a Nash
equilibrium that is different from the previous case. Assume without loss of generality
that agent i extends a negative link to agent j, so that gi�j = −1. Assume further that
the payoff from gi�j = −1 is zero, i.e., f (ni(g)�nj(g)) − (ε + κ) = 0. Agent i can then
profitably deviate by extending a positive link to j. Payoffs from the link remain zero,
while payoffs from any negative links with agents k strictly increase since ni(g′) > ni(g)
(by Lemma 1). At least one such agent k exists, since we assumed that g is different from
a Nash equilibrium where n− 1 agents extend a negative link to a singleton agent. �

Lemma 4. In any NE g, if ni(g) = nj(g), then ui(g) = uj(g), and if ni(g) > nj(g), then
ui(g) > uj(g).

22The calculations were executed in Mathematica.
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Proof. If ni(g) = nj(g), then i and j belong to the same clique in g and N−
i (g) = N−

j (g)
by Proposition 1. Since ni(g) = nj(g), payoffs from links with any third agent k are the
same for i and j in g, and therefore ui(g) = uj(g). If ni(g) > nj(g), then i belongs to a
clique of larger size than j. Note first that then payoffs are strictly larger for i than for
agent j from negative links to any agent k with nk(g) 
= ni(g) and nk(g) 
= nj(g). Payoffs
are zero for i’s positive links to all agents k (different from i) with nk(g) = ni(g), while
they are strictly negative for agent j’s negative links with agents k with nk(g) = ni(g).
By Lemma 3 agent i’s payoffs are strictly positive from any negative links to agents k

(different from j) with nk(g) = nj(g), while they are zero for agent j’s positive links with
agents k with nk(g) = nj(g). Finally, i’s payoff from the negative link with j is strictly
positive (by Lemma 3), while the payoff is strictly negative for j. �

Proof of Proposition 5. Note first that the Nash equilibrium g, such that ḡi�j = 1
∀i� j ∈N , is not a strong Nash equilibrium. Since f (n− 1�1) > ε+κ, any subset of agents
J with |J| = n − 1 can strictly increase payoffs for all agents in J by extending negative
links to agent k /∈ J (so that g′

i�k = −1 ∀i ∈ J). Consider next a Nash equilibrium g, which

displays two cliques and the smaller clique, P1(g), consists of more than one agent, i.e.,
|P1(g)| > 1. Consider a deviation of an agent i ∈ P1(g) and |P2(g)| − 1 agents in P2(g).
Denote with k the agent such that k ∈ P2(g) and k /∈ J. The following deviation is prof-
itable: ḡ′

i�j = 1 ∀i� j ∈ J and g′
j�k = −1 ∀j ∈ J \ {i}. To see this, note that after proposed

deviation there are three cliques, with |P1(g′)| = 1, |P2(g′)| = |P1(g)| − 1, and |P3(g′)| =
|P2(g)|. Since f (ni�nj) is decreasing in nj , an agent j ∈ P3(g′) \ {i} obtains strictly larger
payoffs in g′ than agents j ∈ P2(g) in g. Therefore, uj(g′) > uj(g) holds for all agents
j ∈ J \ {i}. Note next that since gk�i = g′

k�i = −1, we also know that ui(g′) = uj(g′) + ε

holds for i ∈ J ∩ P1(g) and ∀j ∈ J \ {i}. Therefore, ui(g′) > uj(g′) > uj(g) > ui(g) holds,
where the last inequality follows from Lemma 4. That is, uj(g′) > uj(g) ∀j ∈ J. Assume
next that there are three or more cliques in g. A profitable deviation exists by the above
argument, where we take J to consist of i ∈ Pm−1(g) and |Pm(g)| − 1 agents in Pm(g). �

Proof of Proposition 6. Define n′ = 2 + 4k, where k = {1�2�3� � � �}. For any n ≥ 4,
pick a k such that |n′ − n| ≤ 2. For n ≥ 4, such a k and corresponding n′ always exists.
To show our result, first partition the set of agents N into two sets P1(g) and P2(g), such
that |P1(g)| = 2k and |P2(g)| = 2k + 2. Partition the set P1(g) further into two subsets,
denoted with P1

1 (g) and P1
2 (g), such that |P1

1 (g)| = |P1
2 (g)| = k. Likewise, partition the

set P2(g) into two subsets such that |P2
1(g)| = |P2

2(g)| = k + 1. Consider the following
network g. Assume that ḡi�j = 1 ∀i� j ∈ P1(g) and ḡi�j = 1 ∀i� j ∈ P2(g). Furthermore,
assume that ḡi�j = 1 ∀i� j such that i ∈ P1

1 (g), j ∈ P2
1 (g), and ḡi�j = 1 ∀i� j such that i ∈ P1

2 (g)
and j ∈ P2

2 (g), while gi�j = −1 and gj�i = 1 ∀i� j such that i ∈ P2
1 (g), j ∈ P1

2 (g), gi�j = −1, and
gj�i = 1 ∀i� j such that i ∈ P2

2 (g) and j ∈ P1
1 (g). To see that g is not structurally balanced,

consider the triplet of agents i, j, and l such that i ∈ P2
1(g), j ∈ P2

2 (g), and l ∈ P1
1 (g). Then

ḡi�j = 1 and ḡi�l = 1, but ḡj�l = −1 and g is therefore not structurally balanced. To see that
g is a Nash equilibrium, note first that ni(g) = 3k+ 2 ∀i ∈ P2(g), while nj(g) = 3k+ 1 ∀j ∈
P1(g). Note also that for any agent i ∈ P1(g), gi�j = 1 ∀j ∈ N and a deviation for an agent
i ∈ P1(g) therefore consists of extending negative links to some subset of N \ {i}. Since
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i ∈ P1(g) cannot extract payoffs from any agent by extending negative links and ε > 0,
no profitable deviation exists. Consider next an agent i ∈ P2(g). Note first that for any
deviation by agent i such that ni(g′) ≥ ni(g), ui(g′) ≤ ui(g) must hold. To see this, note
that agent i’s equilibrium payoffs are given by ui(g) = (n−ni(g)) ·(z−(ε+κ)), where n−
ni(g) is the number of agent i’s negative links in g. Note that the payoff from a negative
link is at most z− (ε+κ). Therefore, if ni(g′)≥ ni(g) holds, ui(g′)≤ ui(g) must also hold
and no deviation with ni(g′) ≥ ni(g) is profitable. Consider next a deviation by agent i
such that ni(g′) < ni(g). We distinguish two cases. Assume first that ni(g′) ≤ ni(g) − 2.
Note that then ni(g′)≤ 3k− 1 holds, while nj(g′) ≥ 3k+ 1 ∀j ∈ P2(g) \ {i} and nj(g′)≥ 3k
∀j ∈ P1(g). That is, after proposed deviation, agent i is the weakest agent in g′. Therefore,
ui(g′) < 0 < ui(g), where the last inequality follows from z > ε + κ. Assume next that
ni(g′) = ni(g)− 1. Consider any deviation g′

i in which g′
i�j = −1 for some agent j ∈ P2(g) \

{i}. Note that payoffs for i from g′
i�j = −1 are negative (since then ni(g′) = nj(g′)) and

a deviation such that g′
i + g+

i�j yields strictly larger payoffs. We therefore only need to
consider deviations in which agent i alters his linking behavior only relative to agents j ∈
P1(g). Furthermore, since ni(g′) = ni(g)− 1, we only need to consider deviations where
agent i extends k − 1 positive and k + 1 negative links to agents j ∈ P1(g). Note next
that since agent i extends k+ 1 negative links in g′ and k negative links in g, there must
be at least one agent j ∈ P1(g) such that gi�j = g′

i�j = −1 and, therefore, ni(g′) = nj(g′).
Payoffs from this link are given by −(ε + κ). Therefore, ui(g′) ≤ k · z − (k + 1)(ε + κ).
Note next that since n− ni(g) = k, we can write the equilibrium payoffs of agent i in g as
ui(g) = k · z − k · (ε + κ). Proposed deviation is therefore not profitable and g is a Nash
equilibrium. �

Before proving Proposition 7, we introduce auxiliary Lemma 5 and denote with cl(g)
the number of maximal cliques in a Nash equilibrium g.

Lemma 5. If there exists a pair of Nash equilibria, g̃ and g, such that ni(g̃) ≥ ni(g) ∀i ∈ N

and there exists an agent j with nj(g̃) > nj(g), then the number of maximal cliques in
g̃, cl(g̃), is strictly smaller than the number of maximal cliques in g, cl(g). Furthermore,
|Pm−(r−1)(g̃)| ≥ |Pm−(r−1)(g)| for all r ∈ {1� � � � � cl(g̃)} and |Pm−(r−1)(g̃)| > |Pm−(r−1)(g)|
for some r ∈ {1� � � � � cl(g̃)}.

Proof. Note that in any equilibrium network, g, the cardinality of a set Px(g) with
i ∈ Px(g), is given by |Px(g)| = ni(g). The second part of the statement therefore fol-
lows directly from ni(g̃) ≥ ni(g) ∀i ∈ N and nj(g̃) > nj(g) for some agent j. For the first
part of the statement, assume to the contrary that ni(g̃) ≥ ni(g) ∀i ∈ N , that there ex-
ists an agent j with nj(g̃) > nj(g), and that the number of cliques in g̃, cl(g̃), is weakly
larger than the number of cliques in g, cl(g). That is, assume cl(g̃) ≥ cl(g). Rank cliques
by their size, with clique 1 being the smallest and cliques cl(g) and cl(g̃) being the
largest cliques in g and g̃, respectively. But then, since cl(g̃) ≥ cl(g) holds, together with
|Pm−(r−1)(g̃)| ≥ |Pm−(r−1)(g)| for all cliques with |Pm−(r−1)(g̃)| > |Pm−(r−1)(g)| for some

clique,
∑cl(g̃)

r=1 |Pm−(r−1)(g̃)| > ∑cl(g)
r=1 |Pm−(r−1)(g)| also holds. We have reached a contra-

diction, since summing up over all cliques yields n in g̃ and in g. �
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Before proving Proposition 3, we formally define Pareto efficiency and isomorphic
networks. Essentially, two networks are isomorphic if they are the same up to a relabel-
ing of agents.

Definition 3. A network g̃ Pareto dominates another network g, written as g̃ � g, if and
only if ui(g̃) ≥ ui(g) ∀i ∈N and ∃i : ui(g̃) > ui(g).

Definition 4. The networks g and g̃ are isomorphic, if there exists a bijection f : N →
Ñ , such that gi�j = 1 if and only if g̃f (i)�f (j) = 1 and gi�j = −1 if and only if g̃f (i)�f (j) = −1.

We introduce some additional notation and definitions that are useful for proving
Proposition 7. When comparing two Nash equilibria, g and g̃, partition the set of agents
as follows: B(g → g̃) = {i ∈ N | ni(g̃) ≥ ni(g)} is the set of agents with weakly more posi-
tive links in g̃ than in g, while S(g → g̃) = {i ∈ N | ni(g̃) < ni(g)} is the set of agents with
strictly fewer positive links in g̃ than in g. For notational simplicity, we sometimes write
B for B(g → g̃) and S for S(g → g̃). Furthermore, denote with S−

i (g̃) = {j ∈ S | ¯̃gi�j = −1}
the set of all agents to which agent i sustains an antagonistic relationship within the
set S in g̃. Correspondingly, define with B−

i (g̃) = {j ∈ B | ¯̃gi�j = −1} the set of all agents
to which agent i sustains an antagonistic relationship within the set B in g̃. The set of
agents to which agent i extends a negative link within the set S in g̃ is denoted with
Se−i (g̃) = {j ∈ S | g̃i�j = −1}. Likewise, define Be−

i (g̃) = {j ∈ B | g̃i�j = −1} as the set of
agents to which agent i extends a negative link within the set B in g̃. Denote the cardi-
nalities cSi (g̃) = |S−

i (g̃)|, eSi (g̃) = |Se−i (g̃)|, cBi (g̃) = |B−
i (g̃)|, and eBi (g̃)= |Be−

i (g̃)|.
Denote with uSS(g̃) the sum of net payoffs that agents i ∈ S incur from other agents

within S in g̃. Note that since
∑

i∈S
∑

j∈S\{i} f (ni(g̃)�nj(g̃)) = 0, we can express uSS(g̃) in

terms of linking cost. Denote with l−S (g̃) = 1
2
∑

i∈S cSi (g̃) the total number of undirected
negative links of agents S within the set S in g̃. Similarly, denote with l−S (g) = 1

2
∑

i∈S cSi (g)
the total number of undirected negative links of agents S within the set S in g. Since
each negative link within S incurs a total cost of ε+2κ, uSS(g̃) can be written as uSS(g̃) =
−(ε + 2κ) · l−S (g̃). Denote with uSB(g̃) the sum of net payoffs that agents i ∈ S incur
from links with agents in B in g̃, which is defined as uSB(g̃)= ∑

i∈S
∑

j∈B f (ni(g̃)�nj(g̃))−∑
i∈S(eBi (g̃)ε + cBi (g̃)κ). Note that

∑
i∈S ui(g̃) = uSS(g̃) + uSB(g̃). We write g̃ � g to indi-

cate that the Nash equilibrium g̃ does not Pareto dominate g.

Proof of Proposition 7. Assume without loss of generality that g̃ � g. That is, ui(g̃)≥
ui(g) ∀i ∈ N and there exists an agent i with ui(g̃) > ui(g). Assume first that g and g̃ are
isomorphic. If ni(g̃) = ni(g) ∀i ∈ N , then ui(g̃) = ui(g) ∀i ∈ N and g̃ � g. If there exists
an agent with ni(g̃) 
= ni(g), then there also exists an agent such that nj(g̃) < nj(g). Then
g̃ � g follows directly from Lemma 4 and the assumption that g and g̃ are isomorphic.
Assume next that g and g̃ are not isomorphic. We distinguish three cases.

Case 1: B(g → g̃) 
= ∅ and S(g → g̃) 
= ∅. We show that
∑

i∈S ui(g̃) <
∑

i∈S ui(g) and,
therefore, there exists an agent i such that ui(g̃) < ui(g) and g̃ � g.

Subcase 1. Assume first that l−S (g̃) ≥ l−S (g), i.e., there are at least as many negative
links among agents in S in g̃ as in g. Note that from l−S (g̃) ≥ l−S (g) it follows immediately
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that uSS(g̃) ≤ uSS(g). Next we show that uSB(g̃) ≤ uSB(g) holds. Recall that agents in
S have strictly fewer positive links in g̃ than in g, while agents in B have weakly more
positive links in g̃ than in g. There are four different constellations between a pair of
agents i ∈ S and j ∈ B to consider. First, ¯̃gi�j = ḡi�j = 1. Payoffs from links with these
agents are zero in both Nash equilibrium networks. Second, ¯̃gi�j = ḡi�j = −1. Payoffs
are strictly lower for agent i from the link to j in g̃ than in g. To see this, note that i

has strictly fewer positive links in g̃, while j has weakly more positive links in g̃ than in
g. Third, ¯̃gi�j = 1 and ḡi�j = −1. Again payoffs from i’s link with j are strictly lower in g̃
than in g. To see this, note that since ¯̃gi�j = 1, i and j are in the same clique in g̃, while
i and j are in different cliques in g. Since i has strictly fewer positive links in g̃ than in
g and since j has weakly more positive links in g̃ than in g, i extracts payoffs from j in
g. In contrast, payoffs of the link between i and j are zero in g̃. That is, payoffs from i’s
link with j are strictly positive in g (by Lemma 3) and zero in g̃. Fourth, ¯̃gi�j = −1 and
ḡi�j = 1. Then i and j are in the same clique in g, while j is in a larger clique than i in g̃.
That is, i’s payoffs from the link with j are zero in g, while they are strictly negative in g̃.
Therefore, uSB(g̃) ≤ uSB(g) holds. Assume first that lS(g̃) > lS(g). Then uSS(g̃) < uSS(g)
holds and, therefore,

∑
i∈S ui(g̃) <

∑
i∈S ui(g) and g̃ � g. Assume next that lS(g̃) = lS(g)

and, therefore, uSS(g̃) = uSS(g) holds. Note that by the construction of S,
∑

i∈S ni(g̃) <∑
i∈S ni(g) must hold. But then, if lS(g̃) = lS(g), for

∑
i∈S ni(g̃) <

∑
i∈S ni(g) to hold, there

must be at least one pair of agents i ∈ S and j ∈ B such that ḡi�j = 1 and ¯̃gi�j = −1. From
the above we know that payoffs for agent i from this link are strictly lower in g̃ than in
g, while payoffs are weakly lower for all remaining links between agents in S and B in g̃.
Therefore, uSB(g̃) < uSB(g) and again

∑
i∈S ui(g̃) <

∑
i∈S ui(g) holds. Therefore, g̃ � g.

Subcase 2. Assume that l−S (g̃) < l−S (g), i.e., there are strictly fewer negative links
among agents in S in g̃ than in g. Denote with k the difference in negative links in g
and g̃ among agents in S, k= l−S (g)− l−S (g̃), and note that uSS(g)+ k · (ε+ 2κ) = uSS(g̃).
For

∑
i∈S ni(g̃) <

∑
i∈S ni(g) to hold, there must be at least 2k + 1 links such that i ∈ S,

j ∈ B, ḡi�j = 1, and ¯̃gi�j = −1. Note also that since i ∈ S, j ∈ B, and ḡi�j = 1, it must be
that g̃j�i = −1. That is, it must be that agents j ∈ B extends the negative link in g̃. From
Lemma 3 we know that what j ∈ B extracts from i ∈ S in g̃i�j = −1 is strictly larger than
ε + κ, while i ∈ S still incurs the cost of κ. Therefore, the at least 2k + 1 links such that
ḡi�j = 1 and ¯̃gi�j = −1 with i ∈ S and j ∈ B more than outweigh k · (ε+ 2κ). Since payoffs
are weakly lower for all remaining links between agents in S and B in g̃ (by the argument
presented in Case 1, Subcase 1),

∑
i∈S ui(g̃) <

∑
i∈S ui(g) holds and, therefore, g̃ � g.

Case 2: B(g → g̃) = ∅ and S(g → g̃) = N . Note that then the number of negative
links is strictly larger in g̃ than in g, and since gross payoffs sum to zero,

∑
i∈N ui(g̃) <∑

i∈N ui(g) and, therefore, g̃ � g.
Case 3: B(g → g̃) = N and S(g → g̃) = ∅. Note first that if ni(g̃) = ni(g) ∀i ∈ N , then

g and g̃ are isomorphic and, therefore, g̃ � g, as shown above. Consider next the case
where ni(g̃) ≥ ni(g) ∀i ∈ N and nj(g̃) > nj(g) for some j. From Lemma 5 we know that
there are then strictly fewer cliques in g̃ than in g. We discern two subcases.

Subcase 1. There exists an agent i such that ni(g̃) = ni(g). Note that then not all links
in g̃ are positive and at least two cliques exist. Consider an agent j with nj(g̃) > nj(g). We
next show that payoffs from i’s link with j are strictly lower in g̃ than in g. We distinguish
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three cases. First, assume j is in the same clique as i in g̃. Then i and j are in different
cliques in g and ni(g) > nj(g). Agent i obtains a payoff of zero from the positive link with
j in g̃, while agent i obtains a strictly negative payoff from the negative link with j in g
(by Lemma 3). That is, i’s payoffs from the link with j are strictly lower in g̃ than in g.
Second, assume agents i and j are in different cliques in both g̃ and g. Then the link
between i and j is negative in g̃ and in g. Since nj(g̃) > nj(g) and ni(g̃) = ni(g), i’s payoffs
from the link with j are strictly lower in g̃ than in g. Third, if agent j is in a different clique
than i in g̃, and i and j are in the same clique in g, then nj(g̃) > ni(g) and i’s payoffs from
the negative link with j are negative in g̃, while the payoffs from the positive link in g are
zero. All remaining agents have weakly more positive links in g̃ than in g and i’s payoffs
from these links are weakly lower in g̃ than in g (by the argument presented in Case 1,
Subcase 1). Therefore, i’s payoffs are strictly lower in g̃ than in g and g̃ � g.

Subcase 2: ni(g̃) > ni(g) ∀i ∈ N . Note first that if g̃ is such that all links are positive,
then agents that are in the largest clique in g obtain strictly lower payoffs in g̃. To see this,
note that by Lemma 3, payoffs from a negative link are strictly positive for the stronger
agent and agents in the largest clique therefore obtain strictly positive payoffs in g (while
payoffs are zero for all agents if all links are positive in g̃). Therefore, g̃ � g.

Next, assume that there are at least two cliques in g̃. Pick the minimum r such that
|P1(g̃)| ≤ |⋃k=r

k=1 P
k(g)|. We distinguish two cases. Assume first that there exists an agent

j such that j ∈ P1(g̃) and j ∈ Pr(g). Consider the deviation strategy of agent j in g, gj +∑
i∈⋃k=r−1

k=1 Pk(g) g
+
j�i, and denote the resulting network after proposed deviation with g′.

Next we show that uj(g′) > uj(g̃). Consider any ranking of agents by their strength in
ascending order in g̃, so that n1(g̃) ≤ n2(g̃) ≤ · · · ≤ nn−1(g̃) ≤ nn(g̃). Likewise, consider
any ranking of agents by their strength in ascending order in g, so that n1(g) ≤ n2(g) ≤
· · · ≤ nn−1(g) ≤ nn(g). Note that from ni(g̃) > ni(g) ∀i ∈ N , we know that nx(g̃) > nx(g)
holds for all x ∈N: 1 ≤ x≤ n. From |P1(g̃)| ≤ |⋃k=r

k=1 P
k(g)|, we know that nj(g′) ≥ nj(g). If

|N−
j (g′)| = ∅, then uj(g′)= 0 > ui(g̃), where the second inequality follows from j ∈ P1(g̃)

and that there are at least two cliques in g̃. If |N−
j (g′)| 
=∅, then note that the n− |P1(g̃)|

strongest agents in g̃ extend negative links to j ∈ P1(g̃) in g̃, while the x strongest agents
in g′ extend negative links to j ∈ Pr(g) in g′, with x ∈ N: 1 ≤ x ≤ n−|P1(g̃)|. Since nx(g̃) >
nx(g) holds for all x ∈ N: 1 ≤ x ≤ n, we know that what agents in N−

j (g̃) extract from j in

g̃ is strictly larger than what agents in N−
j (g′) extract from j in g′ and uj(g′) > uj(g̃). Note

next that, for g to be a Nash equilibrium, it must be that no profitable deviation exists
and, therefore, uj(g) ≥ uj(g′). That is, uj(g) ≥ uj(g′) > uj(g̃) holds and g̃ � g. Assume
next that there does not exists an agent j such that j ∈ P1(g̃) and j ∈ Pr(g). Since we
chose r to be the minimum r such that |P1(g̃)| ≤ |⋃k=r

k=1 P
k(g)| holds, there then exists

an agent l such that l ∈ P1(g̃) and l /∈ ⋃k=r
k=1 P

k(g). Note that l /∈ ⋃k=r
k=1 P

k(g) implies that
nl(g) > nj(g) for any j ∈ Pr(g). From Lemma 4 we know that ul(g) > uj(g) ∀j ∈ Pr(g)
and, therefore, ul(g) > ul(g̃) holds. That is, g̃ � g. �
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