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The work of Diamond and Dybvig (1983) is commonly understood as a theory of
bank runs driven by self-fulfilling prophecies. Their contribution may alterna-
tively be interpreted as a theory for preventing these bank runs. Absent aggre-
gate risk over liquidity demand, they show that a simple scheme that suspends
withdrawls when a target level of bank reserves is reached implements the effi-
cient allocation as the unique equilibrium. Uniqueness implies that there can-
not be a bank-run equilibrium. Unfortunately, this scheme cannot implement
the efficient allocation when there is aggregate uncertainty over every possible
liquidity demand because any realization of liquidity demand may, in this case,
be determined by fundamentals instead of psychology. When there is aggregate
risk, Peck and Shell (2003) demonstrate that the constrained efficient allocation
can be implemented by a direct mechanism as an equilibrium. They show that
the same mechanism can also implement a bank-run equilibrium, which suggests
that Diamond and Dybvig (1983) can be understood as a theory of bank runs. The
use of direct mechanisms, however, imposes a severe restriction on communica-
tions. We propose an indirect mechanism that (i) permits depositors to commu-
nicate their beliefs, not just their types, (ii) incentivizes depositors to communi-
cate “rumors” of an impending bank run, and (iii) threatens to suspend payments
conditional on what is revealed in these communications. We demonstrate that if
commitment is possible, then under some weak parameter restrictions our indi-
rect mechanism uniquely implements an allocation that can be made arbitrarily
close to the the constrained efficient allocation as an equilibrium. In other words,
our mechanism prevents bank runs.
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1. Introduction

Banking is the business of transforming long-maturity illiquid assets into short-maturity
liquid liabilities. The demandable debt issued by commercial banks constitutes the
quintessential example of this type of credit arrangement. The use of short-maturity
debt to finance long-maturity asset holdings is also prevalent in the shadow-banking
sector.1 Short-maturity debt has long been viewed by economists and regulators as an
inherently fragile financial structure—a credit arrangement that is susceptible to runs or
rollover risk. The argument is a familiar one. Suppose that depositors expect a run—a
wave of early redemptions driven by fear, rather than by liquidity needs. Since the long-
maturity assets are illiquid, the value of what can be recouped in a fire sale of these assets
will fall short of existing obligations. Because the bank cannot honor its promises in this
event, it becomes insolvent. In this manner, the fear of a run can become a self-fulfilling
prophecy. If demandable debt is run-prone, then why not tax it or, better yet, legislate it
out of existence?2

Bryant (1980), however, suggests that the demandability property of bank liabilities
is a way to insure against unobservable liquidity risk. In short, banking is an efficient
risk-sharing arrangement when assets are illiquid, depositors are risk averse, and liq-
uidity preference is private information. But if this is the case, then the solution to one
problem—risk-sharing—seems to open the door to another—a bank run. Indeed, the
seminal paper by Diamond and Dybvig (1983) on bank runs demonstrates precisely this
possibility: while demandable debt is an efficient risk-sharing arrangement, it is also a
source of indeterminacy and financial instability.

The paper by Diamond and Dybvig (1983) is most often viewed as a theory of bank
runs. But what is often overlooked is that they also offer a prescription for how to prevent
bank runs when aggregate uncertainty is absent. (There is no aggregate uncertainty if
the fraction of impatient depositors in the economy is known.) The prescription entails
embedding bank liabilities with a suspension clause that is triggered when redemption
exceeds a specified threshold, i.e., the known fraction of impatient depositors. This sim-
ple fix prevents bank runs and implements the efficient outcome.

When aggregate uncertainty is present, Diamond and Dybvig (1983) point out that
a full suspension of convertibility, conditional on a threshold level of redemption activ-
ity being breached, is not optimal.3 (There is aggregate risk if the fraction of impatient
depositors in the economy is unknown.) In the absence of aggregate uncertainty, re-
demptions that exceed a critical threshold constitutes a signal that a run is occurring.
In the presence of aggregate uncertainty, the first-best efficient redemption schedule

1This sector includes, but is not limited to, structured investment vehicles (SIVs), asset-backed commer-
cial paper (ABCP) conduits, money market funds (MMFs), and repurchase agreements (repos).

2This is essentially the recommendation recently put forth by Cochrane (2014).
3Diamond and Dybvig (1983) do not actually characterize the optimal contract for the case in which

aggregate uncertainty is present.
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is contingent on a state—the fraction of impatient depositors—that is not observable.
But the state of the world cannot be learned or inferred in a way to implement the first-
best redemption schedule. As a result, the constrained efficient redemption schedule
depends on how the state of the world is revealed (through the announcements or re-
demption behavior of depositors).4 Notice that it is not possible to confirm whether
heavy redemption is driven by fundamentals, i.e., the fraction of impatient depositors is
high, or by psychology, i.e., a belief-driven bank run.

Our proposed solution to the bank-run problem under aggregate liquidity risk is
based on a simple idea. Consider any model with a bank-run equilibrium. In equi-
librium, depositors are assumed to know that a bank run is occurring. This is absolutely
necessary to generate the phenomenon of self-fulfilling prophecy. But if depositors are
assumed to know what is going on in terms their own collective beliefs, they should be
able to communicate such information to a mechanism, and if depositors could some-
how be incentivized to report what they know about their beliefs, then the threat of
suspension based on such information might prevent the bank run from occurring in
the first place. The idea here is to resurrect the Diamond and Dybvig (1983) suspen-
sion scheme, where suspension is triggered not by redemption activity, but by “credible
rumors of an impending run.”

We provide a reasonable sufficient (but not necessary) condition under which de-
positors are willing to communicate their beliefs and where the threat of suspension
conditional on these communications prevents bank runs. We depart from the direct
mechanism approach typically employed in the literature. In a direct mechanism, a de-
positor in the service queue simply requests to withdraw or not. That is, the depositor
communicates only his type: impatient if he wants to withdraw or patient if he does not.

Our indirect mechanism expands the message space to accommodate additional
communications. In this way, we permit a depositor to communicate his belief that a
run is on. We demonstrate that the threat of suspension conditional on this commu-
nication can eliminate the bank-run equilibrium. Our mechanism rewards the depos-
itor for delivering such a message when a run is on. The reward is such that his payoff
is higher compared to the payoff associated with concealing his belief that a run is on
and making an early withdrawal—that is, misrepresenting his type and running with the
other agents. Upon receiving such a message, the mechanism fully suspends all further
redemption. The design of our mechanism ensures that a patient agent never has an
incentive to run when a run is on or announce that he believes a run is on when it is
not. At the end of the day, we are able to construct an indirect mechanism that, subject
to a sufficient condition,5 implements the constrained-efficient allocation in iterated
elimination of strictly dominated strategies.6

4This property was suggested by Wallace (1988) and later confirmed by Green and Lin (2003).
5The sufficient condition is that returns on investment cannot be too low. This sufficient condition is the

same condition on returns imposed in the Diamond and Dybvig (1983) paper. In their paper it was imposed
to ensure that the incentive-compatibility constraint on the patient agent is slack.

6It is also worth mentioning that the principles we propose here to prevent bank runs can be imple-
mented by the private sector without government subsides, regulations, or implicit guarantees.
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Literature review

A number of papers have studied bank fragility under optimal arrangements in the
Diamond and Dybvig (1983) setting. The standard setting has two important frictions.
The first is private information about the depositor’s type: patient or impatient. The
second concerns the timing and utility of expenditure opportunities for impatient de-
positors. In particular, impatient depositors are assumed to arrive sequentially with re-
demption requests that are valued only if they are satisfied on demand. Implicitly, the
idea is that some opportunities exist for only a short period of time so that delaying re-
demption requests (say) for the purpose of ascertaining aggregate withdrawal demand
is too costly. The implication of this property is to make sequential service an optimal
feature of liquidity providers.7

If sequential service is not needed, then it is possible to uniquely implement the
efficient allocation—which implies there cannot be a bank-run equilibrium—as shown
by Green and Lin (2003). If the private information constraint is relaxed, then it is also
possible to uniquely implement the efficient allocation.

Private information and sequential service are thus necessary to generate bank runs
under optimal arrangements; however, they are not sufficient. In the absence of aggre-
gate risk, Diamond and Dybvig (1983) demonstrate that the first-best allocation can be
uniquely implemented.8 Unique implementation requires that the redemption sched-
ule has a suspension feature: After a certain fraction of depositors make redemptions in
the early period, the bank suspends payments for the remainder of the period. When
aggregate risk is present, Diamond and Dybvig (1983) acknowledge that the first-best
allocation cannot be implemented. They claim, however, that the institution of deposit
insurance can be used to uniquely implement the first-best allocation. Their claim ap-
pears to be correct insofar as that the government has access to resources outside the
banking sector. One merit of the mechanism we propose below is that bank runs can
be prevented even without the use of resources outside of the banking sector. To the
extent that deposit insurance induces inefficiencies owing to moral hazard (Cooper and
Ross (2002)), our mechanism has the added benefit of bypassing these adverse incentive
effects.

Green and Lin (2003) are the first to characterize the constrained efficient deposit
contract under private information, sequential service, and aggregate uncertainty using
a direct mechanism. Green and Lin (2003) depart from Diamond and Dybvig (1983) by
assuming that the number of depositors in the economy is discrete and finite; Diamond
and Dybvig (1983) assume a continuum of depositors of finite measure. This departure
is rather important, as it makes the planner’s allocation problem realistic and nontrivial.
A continuum of depositors allows the planner to essentially “eliminate” the aggregate
risk from the economy. More precisely, if there is a continuum of depositors, then the
equilibrium allocation can be made arbitrarily close to the first-best allocation by offer-
ing the first ε > 0 depositors one contract and remaining depositors another. The first

7We thank Giuseppe Moscarini and an anonymous referee for pointing out that sequential service is
better thought of as a design feature rather than a property of the environment.

8The first-best allocation has the feature that all depositors’ payments depend only on when they re-
deem, so, e.g., all depositors who redeem early receive the same payment.
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contract is designed to elicit truth-telling as a dominant strategy for the ε depositors.
Hence, the first contract allows the planner to learn the truth state of the world (the frac-
tion of impatient depositors) and the planner can use this information, along the with
remaining resources, to implement the first-best allocation for the remaining deposi-
tors.9 Since ε can be made arbitrarily small, the planner can implement an allocation
that is arbitrarily close to the first-best allocation for the given state of the world.

The allocation rule in Green and Lin (2003) allows early withdrawal payments in the
sequential service queue to depend on the history of announcements—“impatient,” i.e.,
“I want to withdraw,” or “patient,” i.e., “I do not want to withdraw”—and aggregate pay-
ments to that point. The maximum withdrawal amount faced by an agent in the service
queue is lower the larger is the number of preceding withdrawals. This partial suspen-
sion scheme is in stark contrast to Diamond and Dybvig (1983), who restrict the max-
imum withdrawal amount to be insensitive to realized withdrawal demand, so that re-
sources are necessarily exhausted in the event of a run.10

 Green and Lin (2003) demon-
strate that the planner can uniquely implement the constrained efficient allocation: The
optimal bank contract does not admit a bank run.

Since Green and Lin (2003) impose a number of restrictions on their environment,
one might wonder if these restrictions are (partly) responsible for their uniqueness re-
sult. To check the robustness of their result, Peck and Shell (2003) and Ennis and Keister
(2009b) modify the Green and Lin (2003) environment. Peck and Shell (2003) modify
the environment in at least two important ways. First, they alter the preferences so that
incentive-compatibility (truth-telling) constraints bind at the constrained efficient allo-
cation. Second, they assume that depositors do not know (or are not told) their position
in the service queue (Green and Lin 2003 assume that depositors know their position
in the queue). If depositors do not know their queue position, then it is not possible
to use the backward induction argument of Green and Lin (2003) to eliminate a bank-
run equilibrium. Peck and Shell (2003) demonstrate, by example, that the optimal direct
mechanism can have a bank-run equilibrium. Ennis and Keister (2009b) modify the
Green–Lin environment by assuming the distribution of depositors types is correlated
(Green and Lin 2003 assume independence). They, too, demonstrate that the optimal
direct mechanism can have a bank-run equilibrium.

Green and Lin’s (2003) direct mechanism uniquely implements the constrained ef-
ficient allocation (it prevents bank-run equilibria) so restricting the mechanism to be
direct is without loss of generality regarding unique implementation. In the case of Peck
and Shell (2003) and Ennis and Keister (2009b) it is not obvious that restricting attention
to direct revelation mechanisms is without loss of generality because their direct mech-
anisms do not deliver uniqueness results. Perhaps an indirect mechanism is “better” in
the sense that it can eliminate the bank-run equilibrium. Indeed, Cavalcanti and Mon-
teiro (2016) examine indirect mechanisms in the Ennis and Keister (2009b) environment

9The initial ε contract, which guarantees truth-telling, cannot be offered to all depositors because it
would not satisfy the feasibility constraint. De Nicolo (1996) uses an ε, 1−ε contracting setup to “eliminate”
aggregate risk in his banking environment.

10Wallace (1990) reports that partial suspensions were prevalent in the banking panic of 1907, and that
in one form or another must have been a feature of other suspension episodes as well.
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and demonstrate that the best allocation can be uniquely implemented in rationalizable
strategies. Unfortunately, the backward induction argument embedded in their unique-
ness proof will not work in the more general Peck and Shell (2003) environment since
depositors do not know their positions in the queue.11 So it is still an open question if
the bank-run equilibrium in Peck and Shell (2003) is a feature of their environment or
if it can be prevented by some (possibly indirect) mechanism. This paper provides an
answer to this question.

There is a mechanism design literature that studies how indirect mechanisms can
help to implement optimal outcomes uniquely. Demski and Sappington (1984) exam-
ine a principal–two-agent setting where agents separately make production decisions
when their costs are private and correlated. The optimal direct mechanism has two
equilibria: a truth-telling equilibrium and a “cheating” equilibrium, where the cheat-
ing equilibrium leaves both agents better off and the principal worse off compared to
the truth-telling equilibrium. Ma et al. (1988) show how an indirect mechanism can
prevent agents from misrepresenting their types—or stop agents from cheating—in the
Demski and Sappington (1984) model. Mookherjee and Reichelstein (1990) generalize
their approach. Postlewaite and Schmeidler (1986) study a pure exchange economy
where agents have private information over endowments and preferences. They pro-
duce an example where an indirect mechanism has a unique equilibrium yielding the
desirable outcome while the corresponding direct mechanism possesses multiple equi-
libria. The indirect mechanism they propose extends the set of messages so agents can
communicate the strategy profile they believe other agents are using. We use a similar
idea in the construction of our indirect mechanism. Unfortunately, none of the afore-
mentioned results can be applied directly to our banking problem because of complica-
tions that arise owing to our assumption of sequential service.

The paper is organized as follows. The next section describes the economic environ-
ment. Section 3 characterizes the best weakly implementable allocation. In Section 4
we construct an indirect mechanism and provide sufficient conditions for unique im-
plementation of an allocation that is arbitrarily close to the best weakly implementable
allocation. In Section 5, we examine numerical examples for which the sufficient condi-
tions are not valid. Some policy remarks are offered in the final section.

2. Environment

There are three dates: 0, 1, and 2. The economy is endowed with Y > 0 units of date-1
goods. A constant returns to scale investment technology transforms y units of date-1
goods into yR > y units of date-2 goods. There are N ex ante identical agents who turn
out to be one of two types: t ∈ T = {1�2}. We label a type t = 1 agent “impatient” and a
type t = 2 agent “patient.” The number of patient agents in the economy is drawn from
the distribution π = (π0� � � � �πN), where πn > 0, n ∈ N ≡ {0�1� � � � �N}, is the probability

11One could consider constructing a mechanism that reveals the queue position to depositors and of-
fers the contract given by Cavalcanti and Monteiro (2016). Such an arrangement, however, is not optimal.
Providing more information to depositors increases the number of incentive-compatibility constraints that
must be satisfied. This reduces the set of implementable allocations, which results in a reduction in welfare.
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that there are n patient agents.12 The probability density function (pdf) π is the sole

source of aggregate uncertainty in the economy. A queue is a vector tN = (t1� � � � � tN) ∈
TN , where tk ∈ T is the type of the agent that occupies the kth position or coordinate

in the queue. Let Pn = {tN ∈ TN | p(tN) = n} and Qn(t
N) = {j | tj = 2 for tN ∈ Pn}, where

p(tN) = ∑
n tn − N denotes the number of patient agents in the queue tN , Pn is the set

of queues with n patient agents, and Qn(t
N) is the set of queue positions of the n pa-

tient agents in queue tN ∈ Pn.13 The probability of a queue tN ∈ Pn is πn/
(N
n

)
, where the

binomial coefficient,
(N
n

)
, is the number of queues tN ∈ Pn. In other words, all queues

with n patient agents are equally likely. Agents are randomly assigned to a queue po-

sition, where the unconditional probability that an agent is assigned to position k is

1/N . We label an agent assigned to position k agent k. The queue realization, tN , is

observed by no one; not by any of the agents or the planner. Agent k does not observe

his queue position, k, but does privately observe his type t ∈ T . The utility function

for an impatient agent is U(c1� c2;1) = u(c1) and the utility function of a patient agent is

U(c1� c2;2) = ρu(c1 +c2), where c1 is date-1 consumption and c2 is date-2 consumption.

The function u is increasing, strictly concave, and twice continuously differentiable, and

ρ > 0 is a parameter.14 Agents maximize expected utility.

The timing of events and actions is as follows. At date 0, the planner constructs a

mechanism that determines how date-1 and date-2 consumption are allocated among

the N agents. A mechanism consists of a set of announcements, M , and an allocation

rule, c = (c1� c2), where c1 = (c1
1� � � � � c

1
N) and c2 = (c2

1� � � � � c
2
N). The planner can commit

to the mechanism.15

Starting in date 1, agents meet the planner sequentially. Each agent k makes an an-

nouncement mk ∈ M .16 Only agent k and the planner can directly observe mk. There is

a sequential service constraint at date 1, which means the planner allocates date-1 con-

sumption to agent k based on the announcements of agents j ≤ k, (mk−1�mk), where

mk−1 = (m1� � � � �mk−1), and each agent k consumes c1
k(m

k−1�mk) at his date-1 meeting

with the planner. Date 1 ends after all agents meet the planner.

12The full support assumption is not crucial to any result. It is imposed only for simplicity.
13We omit the argument of Qn(t

N) throughout the paper to reduce notational burden.
14These preferences are identical to those in Diamond and Dybvig (1983). In addition, they assume that

ρR> 1 and ρ ≤ 1.
15For a discussion of bank fragility in a setting without commitment, see Ennis and Keister (2009a). We

conjecture that in an overlapping generations version of the current environment, where the planner lives
forever and in each period a new generation of depositors is born, the commitment assumption can be
relaxed. Specifically, we conjecture that our main implementation result survives even when the planner
cannot commit, as long as he does not discount the future too heavily.

16One could imagine that the planner makes announcement ak to agent k before k makes his announce-
ment. For example, the planner could tell agent k his queue position, as in Green and Lin (2003), or the set
of all messages sent in the previous k − 1 planner–agent meetings, as in Andolfatto et al. (2007), or “noth-
ing”, ak =∅, as in Peck and Shell (2003). The optimal mechanism, however, will have the planner announc-
ing nothing. To reduce notation, and without loss of generality, we assume that the planner cannot make
announcements to agents, unless otherwise specified. See footnote 19 for a discussion.
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Figure 1. Sequence of actions.

While we model sequential service as a constraint on the mechanism, it is probably
better thought of as part of a solution that is constrained by deeper aspects of the envi-
ronment. So, for example, one could think of date 1 as having a continuum of subperi-
ods. Each agent observes his preference type at a particular subperiod of date 1. This
sequence of subperiods in which agents observe their preference type is summarized
by the queue—those who observe their type first, end up first in the queue. But even
though agents observe types in sequence, this itself does not imply a sequential service
constraint since nothing in principle prevents the bank from collecting all announce-
ments in sequence and only dispersing payments after all information is collected at
the end of date 1. Evidently, an additional assumption is needed to motivate sequential
service.

An assumption that seems plausible is that some consumption (or investment) op-
portunities generate high returns only in a very short window. One must strike while
the iron is hot, so to speak. While delay is possible, it greatly diminishes the value of
the opportunity. The opportunity to purchase an umbrella after the storm has passed
might still have some value, but not as much as before the storm clouds began to gather.
Formally, and for simplicity, we model the consumption opportunity at date 1 as com-
pletely transitory, in which case sequential service is critical for an efficient risk-sharing
arrangement.17

In between dates 1 and 2 the planner’s resources are augmented by a factor of R. At
date 2, the planner allocates the date-2 consumption good to each agent based on the
date-1 announcements, i.e., agent k receives c2

k(m
N), where mN = (m1� � � � �mN) ∈ MN .

Figure 1 depicts the sequence of actions.

3. The best weakly implementable outcome

An allocation is weakly implementable if it is an equilibrium outcome of a mechanism;
it is strongly or uniquely implementable if it is the unique equilibrium outcome of a
mechanism. Among the set of weakly implementable allocations, the best weakly im-
plementable allocation provides agents with the highest expected utility. To character-
ize the best weakly implementable allocation, by the revelation principle, it is without
loss of generality to restrict the planner to use a direct revelation mechanism, where

17We would like to thank Giuseppe Moscarini and a referee for suggesting this interpretation.
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agents only announce mk = tk ∈ T = {1�2}. It is important to emphasize that the revela-

tion principle is silent on unique implementation; it only allows us to conclude that an

equilibrium is weakly implementable.

The welfare—which we measure as the expected utility of an agent before he learns

his type—associated with allocation rule c when agents use strategies mk ∈ T is

N∑
n=0

πn(
N

n

) ∑
tN∈Pn

N∑
k=1

U
[
c1
k

(
mk−1�mk

)
� c2

k

(
mN

); tk]
� (1)

The allocation rule c = (c1� c2) is feasible if for all mN ∈ TN ,

N∑
k=1

[
Rc1

k

(
mk−1�mk

) + c2
k

(
mN

)] ≤RY� (2)

The best weakly implementable allocation has all agents k announcing truthfully,

i.e., mk = tk. Allocation rule c must be incentive compatible in the sense that agent k

has no reason to announce mk �= tk. Since impatient agents k only value date-1 con-

sumption, they always announce mk = 1.18 Patient agent k has no incentive to defect

from the strategy mk = 2, assuming that all other agents announce truthfully, if

N∑
n=1

π̂n

∑
tN∈Pn

1
n

∑
k∈Qn

ρ
{
u
[
c1
k

(
tk−1�2

) + c2
k

(
tN

)]

− u
[
c1
k

(
tk−1�1

) + c2
k

(
tk−1�1� tNk+1

)]} ≥ δ�

(3)

where, for any vector xN = (x1� � � � � xN), xji denotes (xi� � � � � xj), δ≥ 0 is a parameter, and

π̂n =
πn

/(
N

n

)
N∑
n=1

πn

/(
N

n

)

18This anticipates the result that the best weakly implementable allocation provides zero date-1 con-

sumption to agents who announce that they are patient, which implies that the incentive-compatibility

constraint for impatient agents is always slack.
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is the conditional probability that agent k is in a specific queue with n patient agents.19

The 1/n term that appears in (3) reflects that a patient agent has a 1/n chance of occu-
pying each of the patient queue positions in Qn.

The best weakly implementable allocation is given by the solution to

max (1) subject to (2) and (3) with δ= 0� (4)

where mk = tk for all k ∈ N. With some abuse of notation, let c(δ) = (c1(δ)� c2(δ)) denote
the solution to problem (4) and let W (δ) denote its maximum. Hence, the best weakly
implementable allocation is c(0) = (c1(0)� c2(0)) and W (0) is the welfare associated with
the best weakly implementable allocation.20

In our analysis we restrict δ > 0 to guarantee that the incentive compatibility holds
in an open neighborhood of c(δ). The existence of such a neighborhood is necessary
for our uniqueness result, but δ > 0 can be made arbitrarily small. Therefore, we can
apply Berge’s maximum theorem, which says that W (0) is approximated by W (δ) when
δ is close to zero. When δ > 0, we refer to c(δ) as the δ-best weakly implementable
allocation.

The allocation rule c(δ) that solves (4) has the following features: (i) an agent k who
announces mk = 1 consumes only at date 1, that is, c2

k(δ)(m1� � � � �mk−1�1�mk+1� � � � �

mN) = 0 for all k ∈ N; (ii) an agent k who announces mk = 2 consumes only at date 2,
that is, c1

k(δ)(m1� � � � �mk−1�2) = 0 for all k ∈ N; and (iii) all agents j and k announcing
mj = mk = 2 consume identical amounts at date 2, that is, c2

j (δ)(m
N) = c2

k(δ)(m
N) for all

mj = mk = 2.
Define a bank run as an equilibrium of the direct revelation mechanism {T� c(δ)}

where one or more patient agents misrepresent their type. Both Peck and Shell (2003)
and Ennis and Keister (2009b) demonstrate, by way of example, that the direct revela-
tion mechanism {T� c(0)} can have two equilibria: one truth-telling and one bank run.21

In other words, {T� c(0)} weakly implements c(0) but does not strongly implement it.
In contrast, we show that there is an indirect mechanism that strongly implements c(δ)

19To characterize the best weakly implementable allocation, one wants to choose from the largest possi-
ble set of incentive-compatible allocations. This implies the planner should not make any announcements,
as noted in footnote 16. In particular, if the planner does not make any announcements, then there is only
one incentive-compatibility constraint for all patient agents, (3). If, however, the planner did make an an-
nouncement ak to agent k, there will be additional incentive constraints for the agent who received the
announcement. For example, suppose that ak = k for all k, i.e., the planner announces to each agent his
place in the queue. Then there would be N incentive-compatibility constraints for patient agents, one for
each queue position. Since an appropriately weighted average of these distinct incentive constraints im-
plies (3), the set of incentive-compatible allocations when the planner makes announcements is a subset
of the set of incentive-compatible allocations when he does not. By not making any announcements, the
planner is able to choose from a larger set of incentive feasible allocations.

20The best weakly implementable allocation c(0) corresponds to the allocation rule derived in Peck and
Shell (2003), Appendix B.

21The Ennis and Keister (2009b) bank-run example is in Section 4.2 of their paper. There, agents do
not know their position in the queue, as in Peck and Shell (2003), and the utility functions of patient and
impatient agents are the same as in Green and Lin (2003), who assume that ρ = 1. Peck and Shell (2003)
assume that ρ < 1.
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for any δ greater than 0. Because δ can be made arbitrarily small, our indirect mech-
anism can strongly implement an allocation that is arbitrarily close to the best weakly
implementable allocation. In other words, our mechanism prevents bank runs at an
arbitrarily small welfare cost.

4. An indirect mechanism

Consider an indirect mechanism {M̂� ĉ}, where M̂ = {1�2� g} and ĉ is described below.
The basic construction of the allocation rule ĉ uses the δ-best weakly implementable
allocation c(δ), where δ > 0 is arbitrarily small. If agent j announces m̂k = 1, then

ĉ1
k

(
m̂k−1�1

) =
{
c1
k(δ)

(
m̂k−1�1

)
if ∀j < k : m̂j ∈ {1�2}

0 if ∃j < k : m̂j = g
and

ĉ2
k

(
m̂k−1�1� m̂N

k+1
) = 0�

(5)

An agent k announcing m̂k = 1 receives the date-1 consumption payoff under the direct
revelation mechanism {T� c(δ)} only if all earlier agents j < k announce either m̂j = 1 or
m̂j = 2; otherwise he receives zero. The latter implies that there is a suspension of first
period payments after an agent j < k announces m̂j = g. The date-2 consumption payoff
associated with the announcement m̂k = 1 is zero, as in the direct revelation mechanism
{T� c(δ)}. If agent k announces m̂k = g, then

ĉ1
k

(
m̂k−1� g

) = 0 and ĉ2
k

(
m̂k−1� g� m̂N

k+1
) = ĉ1

k

(
m̂k−1�1

) + ε� (6)

where ε > 0 is an arbitrarily small number. To keep the presentation simple, we assume
throughout this paper that ε is taken small enough so all results hold. If agent k an-
nounces m̂k = g, then he receives a zero payoff at date 1. At date 2, he receives a payoff
that is slightly larger than the date-1 payoff he would receive by announcing m̂k = 1; see
(6). Hence, announcing m̂k = g strictly dominates announcing m̂k = 1 for any patient
agent k. Note that this is key to our unique implementation result. The mechanism is
designed so that announcing m̂k = 1 is a dominated strategy for patient agents. Finally,
if agent k announces m̂k = 2, then

ĉ1
k

(
m̂k−1�2

) = 0 and

ĉ2
k

(
m̂k−1�2� m̂N

k+1
) =

R

[
Y −

N∑
j=1

ĉ1
j

(
m̂j

)] −
N∑
j=1

ĉ2
j

(
m̂N

)
1m̂j=g

p̂
(
m̂N

) �

(7)

where p̂(m̂N) represents the number of m̂ = 2 announcements in the vector m̂N and
1m̂j=g is an indicator function. If agent k announces m̂k = 2, then he receives a 1/p̂(m̂N)

share of the total output in date 2 that remains after payments to agents j who an-
nounced either mj = 1 or mj = g are made. Since the allocation rule ĉ, given by (5)–(7),
depends on δ and ε, we denote it as ĉ(δ� ε).
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Generally speaking, a patient agent j who announces mj = 1 adversely affects the
payoffs of truthfully announcing patient agents in two ways. First, the payments to an
agent who announces mj = 1 are made in period 1, which implies that these resources
cannot benefit from the investment opportunity, R, available between dates 1 and 2.
Second, if impatient agents have a relatively high marginal utility of consumption com-
pared to patient agents, i.e., ρ is small, then, due to risk-sharing considerations, pay-
ments to agents who announce mj = 1 can be quite high, leading to less resources avail-
able to the patient agents. Interestingly, the story is a bit different when patient agent
j announces m̂j = g and impatient agents have a relatively low marginal utility of con-
sumption compared to patient agents. Following a g announcement, there is a suspen-
sion of date-1 payments and agents who announce g receive their payments at date 2.
Hence, all suspended payments benefit from the investment opportunity that is avail-
able between dates 1 and 2, and patient agents who announced truthfully will receive a
fraction of the investment return, R. In addition, if ρ is relatively large, then the date-2
payment to agent j (who announced m̂j = g) will be relatively low, which is beneficial
for truth-telling patient agents.

Patient agent k who announces truthfully will benefit from announcement mj = g if
the allocation rule ĉ(δ� ε) has the property

ĉ2
k(δ� ε)

(
m̂k−1�2� m̂N

k+1
) ≥ ĉ2

k(δ� ε)
(
t̂k−1�2� t̂Nk+1

) = c2
k(δ)

(
t̂k−1�2� t̂Nk+1

)
� (P1)

where t̂ i ∈ T i (t̂Ni ∈ TN
i ) is a vector of length i (T − i) such that for each j ≤ i (i ≤ j ≤ N),

t̂j = 1 if m̂j = 1 and t̂j = 2 if either m̂j = 2 or m̂j = g. In words, vector t̂ i (t̂Ni ) is con-
structed from the message vector m̂i (m̂N

i ) by replacing all of the gs with 2s. The first
term in (P1) is the payoff to a truthfully announcing patient agent when some (patient)
agents announce g. The second term is the payoff to patient players when those g an-
nouncements are replaced by 2, which, by construction, also equals the payment from
the δ-best implementable allocation. If the contract ĉ(δ� ε) is characterized by property
(P1), then, clearly, a truthfully announcing patient agent benefits if some other (patient)
agent announces g. In fact, his payoff will exceed that associated with the δ-best weakly
implementable allocation, c(δ).

Under what circumstances does the allocation rule ĉ(δ� ε) have property (P1)? The
earlier discussion suggests that truthfully announcing patient agents benefit from an
mj = g announcement the larger is R and/or the larger is ρ. (Recall that the higher is ρ,
the smaller will be the payments to impatient agents.) Our first proposition verifies this
intuition.

Proposition 1. If ρR> 1, then property (P1) holds.

For the proof, see the Appendix.
Interestingly, Diamond and Dybvig (1983) assume that ρR> 1. In their environment

with no aggregate uncertainty, the condition ρR> 1 ensures that a patient agent has no
incentive to announce that he is impatient when all other agents are announcing truth-
fully. The intuition behind this condition in Diamond and Dybvig (1983) is similar to our
earlier discussion: A higher ρ and/or R increases a patient agent’s payoff relative to an
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impatient agent’s payoff and when ρR > 1, the relative difference between the payoffs
is sufficiently large to ensure that the patient agent has a strict incentive to announce
the truth (when all other agents are announcing the truth). Property (P1) and, hence,
the condition ρR > 1, has a similar incentive-compatibility interpretation for our en-
vironment. Intuitively, property (P1) suggests that patient agent k has no incentive to
announce m̂k = g when other patient agents j are announcing either m̂j = 2 or m̂j = g.
In particular, property (P1), ĉ2

k(δ� ε)(m̂
k−1�2� m̂N

k+1) ≥ c2
k(δ)(t̂

k−1�2� t̂Nk+1), implies that
patient agent k has no incentive to announce m̂j = 1 because the δ-best weakly im-
plementable contract c(δ) is strictly incentive compatible. Since the payoff associated
with announcing m̂k = g is only slightly higher than announcing m̂k = 1, patient agent
k has no incentive to announce m̂k = g. Our main proposition demonstrates that this
intuition is, in fact, correct.

Proposition 2. If property (P1) holds, then the indirect mechanism {M̂� ĉ(δ� ε)} strongly
implements allocation c(δ) in rationalizable strategies.

Proof. The mechanism {M̂� ĉ(δ� ε)} induces a symmetric Bayesian game � = {T�S},
where T = {1�2} is the set of types, st ∈ M̂ is the player’s message contingent on his type
t ∈ T , and S = {(s1� s2) ∈ M̂2} is the set of pure strategies. We solve the game by iterated
elimination of strictly dominated strategies in two rounds.

Round 1. Any strategy (s1� s2) ∈ S with s1 �= 1 is strictly dominated by (1� s2) since,
contingent on being impatient, an agent only derives utility from period 1 consump-
tion. Additionally, any strategy (s1�1) is strictly dominated by (s1� g) since, contingent
on being patient, agents are indifferent between period 1 or period 2 consumption and
announcing g always gives a total payment that is ε higher than announcing 1. Let
S1 = {(1�2)� (1� g)} denote the set of strategies that survive the first round of elimination
of strictly dominated strategies.

Round 2. When strategies are restricted to S1, impatient agents announce 1 and pa-
tient agents announce either 2 or g. From property (P1), the lower bound on the ex-
pected payoff to a patient player who announces 2 is

N∑
n=1

π̂n

∑
tN∈Pn

1
n

∑
k∈Qn

ρu
(
c2∗
k (δ)

(
tk−1�2� tNk+1

))
�

Since the payment to agent k who announces mk = g is either c1∗
k (tk−1�1) + ε or ε,

the expected payoff to a patient player who announces g is bounded above by

N∑
n=1

π̂n

∑
tN∈Pn

1
n

∑
k∈Qn

ρu
(
c1∗
k (δ)

(
tk−1�1

) + ε
)
�

Since u is continuous, there exists an ε > 0 sufficiently small so that

N∑
n=1

π̂n

∑
tN∈Pn

1
n

∑
k∈Qn

{
ρu

(
c1∗
k (δ)

(
tk−1�1

) + ε
) − ρu

(
c1∗
k (δ)

(
tk−1�1

))}
< δ�
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The incentive-compatibility condition (3) can be rewritten as

N∑
n=1

π̂n

∑
tN∈Pn

1
n

∑
k∈Qn

ρu
(
c2∗
k (δ)

(
tk−1�2� tNk+1

))

≥
N∑
n=1

π̂n

∑
tN∈Pn

1
n

∑
k∈Qn

ρu
(
c1∗
k (δ)

(
tk−1�1

)) + δ�

Combining the above two inequalities, we get

N∑
n=1

π̂n

∑
tN∈Pn

1
n

∑
k∈Qn

ρu
(
c2∗
k (δ)

(
tk−1�2� tNk+1

))

>

N∑
n=1

π̂n

∑
tN∈Pn

1
n

∑
k∈Qn

ρu
(
c1∗
k (δ)

(
tk−1�1

) + ε
)
�

Therefore, the strategy (1� g) is strictly dominated by the strategy (1�2) in S1. Let S2 be
the set of strategies that survive the second round of elimination of strictly dominated
strategies. Since S2 = {(1�2)} is a singleton, the game is iterated strict dominance solv-
able. The unique equilibrium strategy is the truth-telling s = (1�2), which implies the
same outcome as the truth-telling equilibrium of the direct mechanism {T� c∗(δ)}. �

If allocation ĉ(δ� ε) has property (P1), then the mechanism {M̂� ĉ(δ� ε)} admits
only one equilibrium characterized by truth-telling for all agents. Hence, mechanism
{M̂� ĉ(δ� ε)} does not allow bank runs. In addition, the allocation delivered by the mech-
anism, ĉ(δ� ε), can be made arbitrarily close to the best weakly implementable alloca-
tion c(0) by choosing δ arbitrarily close to zero. Together, Propositions 1 and 2 imply
that a sufficient condition for unique implementation is ρR > 1. We want to emphasize
that conditions stated in Propositions 1 and 2 are only sufficient conditions. Regard-
ing Proposition 1, one can see from the proof that if incentive-compatibility condition
(3) does not bind, then the condition ρR > 1 is not necessary. This means that con-
tract ĉ(δ� ε) can be consistent with property (P1) even if ρR < 1. In the subsequent sec-
tion, we provide an example of this (even when the incentive-compatibility condition
(3) binds). Regarding Proposition 2, property (P1) allows us to derive a lower bound on
the expected payoff of a patient agent announcing m = 2 and, therefore, to use domi-
nance arguments to demonstrate uniqueness. But neither such a lower bound or domi-
nance arguments are necessary for uniqueness. In the subsequent section we provide an
example where contract allocation ĉ(δ� ε) does not have property (P1) but the indirect
mechanism {M̂� ĉ(δ� ε)} uniquely implements ĉ(δ� ε).

5. Some examples

In this section, we provide some examples that show that the sufficient conditions de-
scribed in Propositions 1 and 2 are not necessary for unique implementation of the al-
location rule c∗(δ). The first example shows that property (P1) can hold when ρR < 1.
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A second example shows that allocation rule c∗(δ) can be uniquely implemented when
property (P1) is violated.

Common to all examples are (i) R = 1�05, (ii) Y = 6, (iii) ρR < 1, (iv) δ = 10−10, and
(v) that the general structure of preferences is given by 22

u(x) = (x+ 1)1−γ − 1
1 − γ

� γ > 1�

In the first example, N = 2, ρ = 0�9, γ = 1�01, and (π0�π1�π2) = (0�005�0�4975�
0�4975). Notice that ρR < 1. The best weakly implementable allocation, c∗(0), which is
obtained by solving (4), has c∗1

1 (1) = 3�1487 and c∗1
2 (2�1) = 3�1481. The other payments

can be derived from the resource constraint (2) holding at equality. It is straight forward
to show that the direct mechanism {T� c∗(0)} admits a bank-run equilibrium for this
example. For ε arbitrarily small, property (P1) holds, even though ρR< 1. Therefore, al-
though ρR> 1 is a sufficient condition for property (P1), it is not a necessary one. Since
property (P1) is satisfied in this example, Proposition 2 implies that {M̂� ĉ(δ� ε)} uniquely
implements allocation c∗(δ) for δ and ε small. In this example, constraint (3) binds.
This implies that incentive constraints in the Green and Lin (2003) environment—where
agents know their queue positions—also bind and that the best implementable alloca-
tion from that environment is not equal to c∗(0).23 Hence, the Green and Lin (2003)
mechanism is unable to even weakly implement the allocation c∗(δ), where δ is arbi-
trarily small.

The second example replicates the Peck and Shell (2003) example in Appendix B.
The only difference between the examples is the specification of preferences. Peck
and Shell (2003) assume that u(x) = c1−γ/(1 − γ), which implies that u(0) = −∞. For
these preferences, our mechanism trivially uniquely implements allocation c∗(δ), since
patient agent k will never announce mk = g if there is a probability, however small,
that some other agent j will announce mj = g. The parameters for our second exam-
ple are N = 2, ρ = 0�1, γ = 2, and (π0�π1�π2) = (0�25�0�5�0�25). Notice that ρR < 1.
The best weakly implementable allocation, c∗(0), is characterized by c∗1

1 (1) = 3�0951
and c∗1

2 (2�1) = 3�1994. Allocation c∗(0) features bank runs and a binding incentive

constraint (3). It is straightforward to demonstrate that the mechanism {M̂� ĉ(δ� ε)}
uniquely implements allocation c∗(δ) for δ and ε arbitrarily close to zero. For this ex-
ample, c∗1

1 (2�1)+ c∗2
2 (2�2) > RY , which implies that property (P1) is not satisfied for all

m̂N ∈ M̂N . Hence, property (P1) is not necessary for unique implementation. We are
not aware of any mechanism in the literature that can implement the best weakly im-
plementable allocations from these two examples. We have experimented with many
combinations of model parameters. We are unable to find a set of parameters for which
the indirect mechanism {M̂� ĉ(δ� ε)} cannot uniquely implement an allocation that is
arbitrarily close to the best weakly implementable allocation. Our search, however, was
restricted to N ∈ {2�3}. It is, of course, possible that the indirect mechanism {M̂� ĉ(δ� ε)}

22Notice that u(0) = 0.
23Our environment can be turned into the Green and Lin (2003) environment by allowing the planner to

tell agent k his queue position, k, before agent k makes his announcement.
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does not uniquely implement the best weakly implementable allocation for some set of
parameters when ρR ≤ 1, but we were unable to construct such an example.

6. Discussion

The most common prescription for enhancing the stability of demandable debt is to
modify the contract to include a partial suspension clause. For example, Cochrane
(2014), suggests that if securities are designed so that debtors have the right to delay
payment, suspend convertibility, or pay in part, then it is much harder for a run to de-
velop. Santos and Neftci (2003) recommend the use of extendable debt—which is a sus-
pension in payments—in the sovereign debt market to help mitigate the frequent debt
crises that have afflicted emerging economies and, recently, more advanced economies
as well. In June 2014, the Securities and Exchange Commission (SEC) announced a set
of proposals to help stabilize money market funds (MMFs). One of the key proposals
recommends that the MMF board of directors have the discretion to impose penalty re-
demption fees and redemption gates—or suspension of payments—in times of heavy
redemption activity.

The effect of such proposals is to render demandable debt more state-contingent.
In this sense, the proposals above are consistent with the properties of the optimal debt
contracts described in Diamond and Dybvig (1983), Green and Lin (2003), and Peck and
Shell (2003). But given that bank-run equilibria remain a possibility in the latter models,
one is led to question whether the use of such measures constitutes only necessary, and
not sufficient conditions, for stability.

The key question concerns the issue of precisely what information is used to condi-
tion the suspension/extension clause. In the Diamond and Dybvig (1983) model without
aggregate risk, suspension is triggered when “reserves” reach a predetermined critical
level. Evidently, this conditioning factor is sufficient to prevent runs in that environ-
ment. Similarly, the partial suspension schedules described in Green and Lin (2003) and
Peck and Shell (2003) are triggered by measures of reserve depletion (more precisely,
the history of reported types). In reality, the volatility of redemption rates varies across
different classes of MMFs. Schmidt et al. (2013), for example, report that MMFs with
volatile flow rates prior to the financial crisis of 2008 were more likely to experience
runs during the crisis. How are directors of these funds to ascertain whether a spike
in redemptions is attributable to fear rather than fundamentals? Our indirect mech-
anism suggests that information beyond some measure of redemption activity or re-
source availability is needed to prevent the possibility of a bank run. We need to know
why depositors are exercising their redemption option. For better or worse, this infor-
mation is private and must therefore be elicited directly—as in our model—or inferred
indirectly—through some other means. Of course, information revelation must be in-
centive compatible.

Just how realistic is this idea? There is, in fact, historical precedence for the practice
of soliciting additional information in periods of heavy redemption activity. For exam-
ple, banks would sometimes permit limited redemptions to occur for depositors who
could demonstrate evidence of impatience, e.g., a need to meet payroll. In footnote
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7, Gorton (1985) reports that 19th century clearinghouses would regularly investigate
rumors pertaining to the financial health of member banks.

As a practical matter, the spirit of our mechanism could be implemented in several
different ways and without any new government regulation. One way would be to per-
mit depositors to pay a small fee for the right to have their funds diverted to a segregated,
priority account.24 Such an action could be interpreted as a communication of an im-
pending run. The priority debt differs from other debt only in the event of failure and
the ratio of priority to nonpriority debt outstanding informs the issuer on the degree to
which depositors expect the bank to fail. In principle, the suspension clause could be
made conditional on this ratio hitting some specified threshold. It does not need to be
official as long as there is a mutual understanding that it will be used. And along the
lines suggested by our mechanism, if one knows that the bank will suspend before any
rumor-induced trouble affects their balance sheet, then depositors know that there will
be no reason, in equilibrium, to actually exercise the option of converting their claims
to priority debt.

To summarize, current proposals designed to prevent, or at least mitigate, bank runs
in demandable debt structures focus on enhancing state contingency, with contingen-
cies dictated by some measure of redemption activity or resource depletion. Our analy-
sis suggests that while state contingency is necessary, it may not be sufficient to prevent
bank runs. Suspension clauses should be conditioned on information relating to de-
positor beliefs about what they perceive to be happening around them. The desired
information could be elicited in an incentive-compatible manner through an appropri-
ate modification of the deposit contract—an example of which we described above. The
inclusion of such a clause may help to prevent bank runs in debt structures that are
presently run-prone.

However, as far as practical application is concerned, policymakers need to under-
stand that, as with other suspension schemes, our proposal requires a high degree of
commitment on the part of the banking system or regulatory authority to suspend pay-
ments under the stated conditions. In our model, depositors are assumed never to make
“mistakes” when reporting what they know to the mechanism. In reality, of course, this
may not be the case. Threatening a bank holiday and then following through on the
threat because of a mistaken report would be highly undesirable, to say the least. As
with any policy conclusion that follows from theory, policymakers must assess the ex-
tent to which the assumptions underlying the policy recommendation are reasonably
well approximated in reality.

It always appealing to use theory for policy analysis, as we did above, but there is
another way to interpret the presented results. Namely, that there is something missing
in the Diamond and Dybvig (1983) theory of bank runs. This point was first made by
Green and Lin (2003). Anyone who wants to use Diamond and Dybvig (1983) to explain
historical episodes of bank runs must provide a consistent theory of why the banks op-
erating during those episodes did not take advantage of contracts capable of preventing
runs (as the one we propose here).

24This is effectively what happens in our mechanism when a depositor reports m= g.
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Appendix: Proving Proposition 1

So as to prove Proposition 1, we first establish the following result.

Lemma 1. If ρR > 1, then c1
k(δ)(t̄

k−1�1) < c2(δ)(t̄k−1�2N−k+1) for all k ∈ N and t̄k−1 ∈
Tk−1, where 2n denotes the n-dimensional vector of 2s.

Proof. From now on we denote c(δ) just by c to keep the notation short. Since c solves
problem (4), it satisfies the implied first-order conditions. Let λtN denote the Lagrange
multiplier of the feasibility constraint (2) for each tN ∈ TN and let μ denotes the La-
grange multiplier of the incentive compatibility (3). By simplicity, λtN is normalized by
πp(tN)/

( N
p(tN)

)
, where p(tN) denotes the number of type 2 players in queue tN , and μ

is normalized by π̄ = ∑N
n=1 πn/

(N
n

)
. Since u′(0) = ∞, the constraints c1 ≥ 0 and c2 ≥ 0

are not binding and the respective Lagrange multipliers can be ignored. The first-order
conditions of the problem are

[
c1
k

(
t̄k

)] :
N∑
n=0

πn(
N

n

) ∑
tN∈Pn
tk=t̄k

{
u′[c1

k

(
t̄k

)] − λtNR
}

−
N∑
n=1

πn(
N

n

) ∑
tN∈Pn

tk=(t̄k−1�2)

μρ

p
(
tN

)u′[c1
k

(
t̄k

)] = 0

(8)

for all k ∈N and t̄k−1 ∈ Tk−1 such that t̄k = 1, and

[
c2(tN)] : πp(tN)(

N

p
(
tN

))
{
ρu′[c2(tN)] − λtN + μρ

p
(
tN

)u′[c2(tN)]} = 0

for all tN ∈ TN such that p(tN) > 0. We can solve the above equations for λtN and obtain

λtN =

⎧⎪⎪⎨
⎪⎪⎩
ρ

(
1 + μ

p
(
tN

))
u′[c2(tN)]

if p
(
t̄N

)
> 0�

1
R
u′[c1

N

(
tN

)]
if p

(
t̄N

) = 0�

Note that c2(tN) is not defined if tN = 1N = (1�1� � � � �1): there is no second period pay-
ments when every depositor announces to be of impatient type in the first period. To
keep the notation short, let us define u′[c1

N(1N)] = ρRu′[c2(1N)] and 1/p(1N) = 0. Then
λtN is given by

λtN = ρ

(
1 + μ

p
(
tN

))
u′[c2(tN)]

� (9)
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After replacing (9) in (8), we obtain that for all k ∈N and t̄k = (t̄k−1�1) ∈ Tk−1,

N∑
n=0

πn(
N

n

) ∑
tN∈Pn
tk=t̄k

u′[c1
k

(
t̄k

)] −
N∑
n=1

πn(
N

n

) ∑
tN∈Pn

tk=(t̄k−1�2)

μρ

p
(
tN

)u′[c1
k

(
t̄k

)]

=
N∑
n=0

πn(
N

n

) ∑
tN∈Pn

tk=(t̄k−1�1)

Rρ

(
1 + μ

p
(
tN

))
u′[c2(tN)]

�

which is equivalent to{
P
[
tk = (

t̄k−1�1
)] −

N∑
n=1

πn(
N

n

) ∑
tN∈Pn

tk=(t̄k−1�2)

μρ

p
(
tN

)
}
u′[c1

k

(
t̄k

)]

=
N∑
n=0

πn(
N

n

) ∑
tN∈Pn

tk=(t̄k−1�1)

Rρ

(
1 + μ

p
(
tN

))
u′[c2(tN)]

�

We can also write the equation in expectations, which yields

[
1 − γ

(
t̄k−1)]u′[c1

k

(
t̄k

)] = EtN |tk=(t̄k−1�1)

{
Rρ

(
1 + μ

p
(
tN

))
u′[c2(tN)]}

� (10)

where γ(t̄k−1) = P[tk = (t̄k−1�2)]EtN |tk=(t̄k−1�2)[μρ/p(tN)]/P[tk = (t̄k−1�1)].
The result is derived from (10). Let us use induction on k ∈ N starting from k = N

and going down until k= 1.
Proof for k= N . Fix any t̄N = (t̄N−1�1). From (10) we have that

[
1 − P

[
tN = (

t̄N−1�2
)]

P
[
tN = (

t̄N−1�1
)] × μρ

p
(
t̄N−1�2

)]
u′[c1

N

(
t̄N−1�1

)]

=Rρ

(
1 + μ

p
(
t̄N−1�1

))
u′[c2(t̄N−1�1

)]
�

which implies that u′[(c1
N(t̄N−1�1)] > u′[c2(t̄N−1�1)]. Thus, c1

N(t̄N−1�1) < c2(t̄N−1�1). We
know that the resources constraint holds at equality because u is strictly increasing.
Therefore,

p
(
t̄N−1�2

)
c2(t̄N−1�2

) = [
p

(
t̄N

) + 1
]
c2(t̄N−1�2

) = p
(
t̄N

)
c2(t̄N−1�1

) +Rc1
N

(
t̄N−1�1

)
�

After reorganize the equation above, we have that

c2(t̄N−1�2
) = p

(
t̄N−1�1

)
p

(
t̄N−1�1

) + 1
c2(t̄N−1�1

) + 1

p
(
t̄N−1�1

) + 1
Rc1

N

(
t̄N−1�1

)
> c1

N

(
t̄N−1�1

)
�

Hence, for the case k= N , we can conclude that c1
k(t̄

k−1�1) < c2(t̄k−1�2N−k+1).
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Proof for k <N . Assume the result holds for all j > k and t̄j = (t̄j−1�1) ∈ T j . That is,

for all j > k, we have c1
j (t̄

j−1�1) < c2(t̄j−1�2N−j). Let us show that it also holds for k. Fix

some t̄k = (t̄k−1�1) ∈ Tk−1. Then (10) is given by

u′[c1
k

(
t̄k

)] = 1

1 − γ
(
t̄k−1)EtN |tk=(t̄k−1�1)

{
Rρ

(
1 + μ

p
(
tN

))
u′[c2(tN)]}

�

Note that, for any function X : TN → R, the conditional expectation can be decomposed

as

E
tN

∣∣tk=t̄k

{
X

(
tN

)} =
N∑

j=k+1

P
[
tj = (

t̄k�2j−k−1�1
) ∣∣ tk = t̄k

]
E
tN

∣∣tj=(t̄k�2j−k−1�1)

{
X

(
tN

)}

+ P
[
tN = (

t̄k�2N−k
) ∣∣ tk = t̄k

]
X

(
t̄k�2N−k

)
�

Applying this decomposition to (10), we obtain

u′[c1
k

(
t̄k

)] =
{

N∑
j=k+1

P
[
tj = (

t̄k�2j−k−1�1
) ∣∣ tk = t̄k

]

×E
tN

∣∣tj=(t̄k�2j−k−1�1)

{
Rρ

(
1 + μ

p
(
tN

))
u′[c2(tN)]}

+ P
[
tN = (

t̄k�2N−k
) ∣∣ tk = t̄k

]
Rρ

(
1 + μ

p
(
t̄k�2N−k

))
u′[c2(t̄k�2N−k

)]}

× 1

1 − γ
(
t̄k−1) �

By (10) we know that

[
1 − γ

(
t̄k�2j−k−1)]u′[c1

j

(
t̄k�2j−k−1�1

)] = E
tN

∣∣tj=(t̄k�2j−k−1�1)

{
Rρ

(
1 + μ

p
(
tN

))
u′[c2(tN)]}

for j = k+ 1� � � � �N . Hence,

u′[c1
k

(
t̄k

)] =
{

N∑
j=k+1

P
[
tj = (

t̄k�2j−k−1�1
) ∣∣ tk = t̄k

][
1 − γ

(
t̄k�2j−k−1)]u′[c1

j

(
t̄k�2j−k−1�1

)]

+ P
[
tN = (

t̄k�2N−k
) ∣∣ tk = t̄k

]
Rρ

(
1 + μ

p
(
t̄k�2N−k

))
u′[c2(t̄k�2N−k

)]}

× 1

1 − γ
(
t̄k−1) �
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By the inductive hypothesis, we know that c1
j (t̄

k�2j−k−1�1) < c2(t̄k�2N−k), which implies

that

u′[c1
k

(
t̄k

)]
>

1

1 − γ
(
t̄k−1)

{
N∑

j=k+1

P
[
tj = (

t̄k�2j−k−1�1
) ∣∣ tk = t̄k

][
1 − γ

(
t̄k�2j−k−1)]

× u′[c2(t̄k�2N−k
)]

+ P
[
tN = (

t̄k�2N−k
) ∣∣ tk = t̄k

]
Rρ

(
1 + μ

p
(
t̄k�2N−k

))
u′[c2(t̄k�2N−k

)]}

= 1

1 − γ
(
t̄k−1)

{
N∑

j=k+1

P
[
tj = (

t̄k�2j−k−1�1
) ∣∣ tk = t̄k

][
1 − γ

(
t̄k�2j−k−1)]

+ P
[
tN = (

t̄k�2N−k
) ∣∣ tk = t̄k

]
Rρ

(
1 + μ

p
(
t̄k�2N−k

))}
u′[c2(t̄k�2N−k

)]

= 1

1 − γ
(
t̄k−1)

{
N∑

j=k+1

P
[
tj = (

t̄k�2j−k−1�1
) ∣∣ tk = t̄k

]

−
N∑

j=k+1

P
[
tj = (

t̄k�2j−k−1�1
) ∣∣ tk = t̄k

] P
[
tj = (

t̄k�2j−k
)]

P
[
tj = (

t̄k�2j−k−1�1
)]EtN |tj=(t̄k�2j−k)

×
[

μρ

p
(
tN

)]

+ P
[
tN = (

t̄k�2N−k
) ∣∣ tk = t̄k

]
Rρ

(
1 + μ

p
(
t̄k�2N−k

))}
u′[c2(t̄k�2N−k

)]
�

After simplifying the above equation, we obtain

u′[c1
k

(
t̄k

)]
>

1

1 − γ
(
t̄k−1)

{
1 − P

[
tN = (

t̄k�2N−k
) ∣∣ tk = t̄k

]

−
N∑

j=k+1

P
[
tj = (

t̄k�2j−k
)]

P
[
tk = t̄k

] EtN |tj=(t̄k�2j−k)

[
μρ

p
(
tN

)]

+ P
[
tN = (

t̄k�2N−k
) ∣∣ tk = t̄k

]
Rρ

(
1 + μ

p
(
t̄k�2N−k

))}
u′[c2(t̄k�2N−k

)]
�

(11)

The fact that the queue position is withdrawn uniformly implies that

P
[
tj = (

t̄k�2j−k
)] = P

[
tj = (

t̄k−1�1�2j−k
)] = P

[
tj = (

t̄k−1�2j−k�1
)]
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and

EtN |tj=(t̄k�2j−k)

[
μρ

p
(
tN

)]
= EtN |tj=(t̄k−1�1�2j−k)

[
μρ

p
(
tN

)]

= EtN |tj=(t̄k−1�2j−k�1)

[
μρ

p
(
tN

)]
�

This implies that

N∑
j=k+1

P
[
tj = (

t̄k�2j−k
)]

P
[
tk = t̄k

] EtN |tj=(t̄k�2j−k)

[
μρ

p
(
tN

)]

=
N∑

j=k+1

P
[
tj = (

t̄k−1�1�2j−k
)]

P
[
tk = (

t̄k−1�1
)] EtN |tj=(t̄k−1�1�2j−k)

[
μρ

p
(
tN

)]

=
N∑

j=k+1

P
[
tj = (

t̄k−1�2j−k�1
)]

P
[
tk = (

t̄k−1�1
)] EtN |tj=(t̄k−1�2j−k�1)

[
μρ

p
(
tN

)]

=
N∑

j=k+1

P
[
tj = (

t̄k−1�2j−k�1
)]

P
[
tk = (

t̄k−1�1
)] EtN |tj=(t̄k−1�2j−k�1)

[
μρ

p
(
tN

)]

+ P
[
tk = (

t̄k−1�2N−k
)]

P
[
tk = (

t̄k−1�1
)] μρ

p
(
t̄k−1�2N−k

)
− P

[
tk = (

t̄k−1�2N−k
)]

P
[
tk = (

t̄k−1�1
)] μρ

p
(
t̄k−1�2N−k

)
= P

[
tk = (

t̄k−1�2
)]

P
[
tk = (

t̄k−1�1
)]EtN |tk=(t̄k−1�2)

[
μρ

p
(
tN

)]

− P
[
tk = (

t̄k−1�2N−k
)]

P
[
tk = (

t̄k−1�1
)] μρ

p
(
t̄k−1�2N−k

)
= γ

(
t̄k−1) − P

[
tk = (

t̄k−1�2N−k
)]

P
[
tk = (

t̄k−1�1
)] μρ

p
(
t̄k−1�2N−k

) �

(12)

Replacing (12) in inequality (11) and reorganizing the terms in the inequality, we obtain

u′[c1
k

(
t̄k

)]
>

1

1 − γ
(
t̄k−1)

{
1 − γ

(
t̄k−1) + P

[
tk = (

t̄k−1�2N−k
)]

P
[
tk = (

t̄k−1�1
)] μρ

p
(
t̄k−1�2N−k

)
+ P

[
tN = (

t̄k�2N−k
) ∣∣ tk = t̄k

]
Rρ

(
1 + μ

p
(
t̄k�2N−k

) − 1
Rρ

)}

× u′[c2(t̄k�2N−k
)]
�

(13)
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Because Rρ> 1, the inequality (13) implies that

u′[c1
k

(
t̄k−1�1

)] = u′[c1
k

(
t̄k

)]
> u′[c2(t̄k�2N−k

)] = u′[c2(t̄k−1�1�2N−k
)]
�

and since u is concave, it implies that c1
k(t̄

k−1�1) < c2(t̄k−1�1�2N−k). The resources con-
straint implies that

[
p

(
t̄k−1�1�2N−k

) + 1
]
c2(t̄k−1�2N−k+1)

= p
(
t̄k−1�1�2N−k

)
c2(t̄k−1�1�2N−k

) +Rc1
k

(
t̄k−1�1

)
�

Finally, we can conclude that

c2(t̄k−1�2N−k+1) = p
(
t̄k−1�1�2N−k

)
c2(t̄k−1�1�2N−k

)
p

(
t̄k−1�1�2N−k

) + 1
+ Rc1

k

(
t̄k−1�1

)
p

(
t̄k−1�1�2N−k

) + 1

> c1
k

(
t̄k−1�1

)
�

We have shown that the result holds for k = N and that if it holds for all j ∈ {k +
1� � � � �N}, it holds for k. Therefore, by induction, we can conclude that the result holds
for all k ∈N. �

Proof of Proposition 1

We know that for any vector of announcements m̂N ∈ M̂N , if either m̂N ∈ TN or m̂k �= 2
for all k, the result is trivial. Consider a realized vector of announcements m̂N ∈ M̂N ,
with m̂N /∈ TN and m̂k = 2, and let j be the queue position of the first agent to an-
nounce g. As before, t̂N ∈ TN denotes the vector m̂N and we replace all gs with 2s.
When agent j announced g in the first period, payments were suspended; hence, the
total resources in the beginning of period 2 are

R

[
Y −

N∑
i=1

ĉ1
i

(
m̂i

)] =R

[
Y −

j∑
i=1

ĉ1
i

(
t̂ i

)]

= p
(
t̂j−1�2N−j+1)c2

k

(
t̂j−1�2N−j+1)�

where p(t̂j−1�2N−j+1) is the number of 2s in the vector (t̂j−1�2N−j+1). Let d(m̂N) de-
note the number of agents who have announced g and let p(m̂N) denote the number
of agents who announced 2. The total payments in the second period to agents who
announced g is given by

N∑
k=1

ĉ2
k

(
m̂N

)
1m̂k=g = c1

j

(
t̂j−1�1

) + d
(
m̂N

)
ε�



1026 Andolfatto, Nosal, and Sultanum Theoretical Economics 12 (2017)

Hence, payment to agent k is

ĉ2
k

(
m̂k−1�2� m̂N

k+1
) =

R

[
Y −

N∑
k=1

ĉ1
k

(
m̂k

)] −
N∑

k=1

ĉ2
k

(
m̂N

)
1m̂k=g

p
(
m̂N

)
= p

(
t̂j−1�2N−j+1)c2

k

(
t̂j−1�2N−j+1) − c1

j

(
t̂j−1�1

) − d
(
m̂N

)
ε

p
(
m̂N

) �

By Lemma 1, we know that c1
j (t̄

j−1�1) < c2
j (t̂

j−1�2N−j+1). Thus, by taking ε > 0 small
enough, we have that

ĉ2
k

(
m̂k−1�2� m̂N

k+1
) ≥

[
p

(
t̂j−1�2N−j+1) − 1

]
c2
k

(
t̂j−1�2N−j+1)

p
(
m̂N

) �

By construction, we have that

ĉ2
k

(
t̂k−1�2� t̂Nk+1

) = c2
k

(
t̂k−1�2� t̂Nk+1

)

=
R

[
Y −

N∑
i=1

ĉ1
i

(
t̂ i

)]

p
(
m̂N

) + d
(
m̂N

) ≤
R

[
Y −

j∑
i=1

ĉ1
i

(
t̂ i

)]

p
(
m̂N

) + 1

= p
(
t̂j−1�2N−j+1)c2

k

(
t̂j−1�2N−j+1)

p
(
m̂N

) + 1
�

Note that

p
(
t̂j−1�2N−j+1) − 1

p
(
m̂N

) ≥ p
(
t̂j−1�2N−j+1)
p

(
m̂N

) + 1

⇐⇒ p
(
t̂j−1�2N−j+1)p(

m̂N
) +p

(
t̂j−1�2N−j+1) −p

(
m̂N

) − 1 ≥ p
(
t̂j−1�2N−j+1)p(

m̂N
)

⇐⇒ p
(
t̂j−1�2N−j+1) ≥ p

(
m̂N

) + 1�

The last inequality holds because p(t̂j−1�2N−j+1) ≥ p(t̂N)= p(m̂N)+ d(m̂N). Hence,

ĉ2
k

(
m̂k−1�2� m̂N

k+1
) ≥

[
p

(
t̂j−1�2N−j+1) − 1

]
c∗2
k

(
t̂j−1�2N−j+1)

p
(
m̂N

)
≥ p

(
t̂j−1�2N−j+1)c∗2

k

(
t̂j−1�2N−j+1)

p
(
m̂N

) + 1

≥ ĉ2
k

(
t̂k−1�2� t̂Nk+1

)
�

This concludes the proof.
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