Hefti, Andreas

Article
Equilibria in symmetric games: Theory and applications

Theoretical Economics

Provided in Cooperation with:
The Econometric Society

This Version is available at:
http://hdl.handle.net/10419/197124

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

https://creativecommons.org/licenses/by-nc/4.0/
Equilibria in symmetric games: Theory and applications

ANDREAS HEFTI
Department of Economics, University of Zurich and School of Management and Law, Zurich University of Applied Sciences

This article presents a new approach to analyze the equilibrium set of symmetric, differentiable games by separating multiple symmetric equilibria and asymmetric equilibria. This separation allows the investigation of, for example, how various parameter constellations affect the scope for multiple symmetric or asymmetric equilibria, or how the equilibrium set depends on the nature of the strategies. The approach is particularly helpful in applications because (i) it allows the complexity of the uniqueness problem to be reduced to a two-player game, (ii) boundary conditions are less critical compared to standard procedures, and (iii) best replies need not be everywhere differentiable. The usefulness of the separation approach is illustrated with several examples, including an application to asymmetric games and to a two-dimensional price-information game.

Keywords. Symmetric games, uniqueness, symmetric equilibrium, oligopoly.

1. Introduction

When does a symmetric game with an arbitrary, finite strategy space have asymmetric equilibria, multiple symmetric equilibria, or a unique (symmetric) equilibrium? As an example, consider an oligopolistic firm that, confronted with \(N - 1\) competitors, must decide on the best way to sell its products. Such a decision may involve several critical aspects, e.g., which price to choose, how much to advertise, or which quality level to produce. While setting up such a situation as an \(N\)-player game with a possibly multidimensional strategy space is fairly simple, solving the model analytically to obtain meaningful predictions about its possible outcomes—the equilibrium set—can be challenging, even in case of symmetric firms. Are there multiple outcomes or is the equilibrium unique? Do identical firms necessarily adopt the same actions in all equilibria or could their behavior deviate from each other in an asymmetric equilibrium? Can specific details of the game influence whether asymmetric equilibria or multiple symmetric equilibria...
equilibria result? In the oligopoly example we could ask if and how certain aspects related to advertising and market demand (such as parameters of the advertising technology or the degree of substitutability) could affect the type of equilibria that emerge. Do all firms necessarily adopt the same advertising and pricing strategies, or could there be asymmetric “specialization” equilibria, where some firms set high prices but advertise only little and others set low prices but advertise a lot?

To analyze such questions, standard approaches such as contraction mappings, univalence, or index theory can be insufficient as their applicability might be limited, particularly in parametric applications. While these methods, if applicable, theoretically allow one to decide whether there is a unique equilibrium, one typically cannot learn much more about the equilibrium set if there are multiple equilibria. Moreover, even if these approaches are applicable, they might be hard to evaluate, especially in the presence of many players and a higher-dimensional strategy space, because they involve, at the very least, the evaluation of a determinant of a potentially very large and abstract matrix.

In this article I address the shortcomings of existing standard approaches by studying separately the possible occurrence of the two types of equilibria—symmetric and asymmetric equilibria—in these games. This approach yields separate conditions that rule out the possibility of asymmetric equilibria and multiple symmetric equilibria, respectively. These conditions are appealing, especially for applications, because of their simplicity (reduction to a two-player problem) and their applicability (e.g., boundary conditions are less problematic or best replies may have nondifferentiabilitys). At a more theoretical level, my separation approach allows investigation of how the scope for multiple symmetric equilibria or asymmetric equilibria depends on the parameter constellations in a game or on the general nature of the best replies.

The usefulness of the separation approach is demonstrated with several applications. For example, I prove that a symmetric game with a two-dimensional strategy space (such as price and quality) can never possess strictly ordered asymmetric equilibria, where one player sets both a higher price and quality, if either price or quality is nondecreasing in the opponents’ actions. Further, I show that sum-aggregative symmetric games with homogeneous revenues (such as contests) naturally have a unique symmetric equilibrium. In the well studied Cournot model, the separation approach reveals that the classical assumption \(c'' - P' > 0 \) is key for uniqueness in the Cournot model because it rules out the possibility of asymmetric equilibria. Moreover, I analyze an oligopolistic model as suggested by this introduction, where firms compete in prices and must decide on their advertising intensities. This game nicely illustrates the shortcomings of index theory—frequently regarded as the most general approach to uniqueness in “nice” games (e.g., Vives 1999)—in applications, First, the index theorem cannot be used due to violations of the respective boundary conditions, which occur naturally.

1See, e.g., Theocharis (1960) for a classical application of the contraction principle to Cournot or see Hefii (2015a) for a modern treatment of the contraction principle. See Gale and Nikaido (1965) for the univalence approach. Vives (1999), e.g., provides a game-theoretic textbook treatment of index theory.

2This is demonstrated for the index theorem in Section S.1 of the Supplement, available as a supplementary file on the journal website, http://econtheory.org/supp/2151/supplement.pdf.
in this example. Second, we could not learn much about the properties of the possible equilibria, even if the index theorem were applicable. The separation approach, alternatively, allows me to derive characteristic properties of equilibria both in the context of a parametrized example and at a more abstract level.

Analyzing the equilibrium set of a symmetric game may not only be interesting in itself, but matters also because we may learn more about the equilibrium set of asymmetric variations of that game. As an example, uniqueness of equilibria in a symmetric game is preserved under sufficiently small asymmetric variations of the symmetric game, provided that the symmetric equilibrium is regular (Section S.4 of the Supplement). Moreover, I find a strong link between the nonexistence of asymmetric equilibria in symmetric one-dimensional games and the equilibrium properties of certain asymmetric variations of those games (Section 4.3).

Related literature

While I am not aware of any contribution that studies existence and uniqueness of equilibria in general symmetric games or of a systematic separation between symmetric and asymmetric equilibria, the literature on globally supermodular games has focused on equilibrium existence and uniqueness in symmetric supermodular games. In particular, it is a known result that in the class of symmetric globally supermodular games, a symmetric equilibrium always exists, and if the symmetric equilibrium is unique, there cannot be any asymmetric equilibria. Moreover, globally supermodular games with a one-dimensional strategy space can never possess asymmetric equilibria. While these are powerful results, they depend on global strategic complementarity, while my approach also applies to games with non-monotonic best replies (such as contests). Amir et al. (2010) study a symmetric one-dimensional two-player submodular game (decreasing best replies). As the authors are interested only in asymmetric equilibria, the (single) symmetric equilibrium that such a game naturally has (see Section 3.1) is deliberately excluded by the assumption of a downward-jumping best reply around the diagonal. The existence of asymmetric equilibria then is a consequence of supermodularity theory, which requires reverting the order of each player’s action space. A known limitation of this trick is that the reversion-of-axis argument does not generalize to the \(N\)-player case (Vives 1999). In contrast, my results on the (in)existence of asymmetric equilibria are not restricted to \(N = 2\) (but allow the study of an \(N\)-player game as a two-player game) and do not presume submodularity. In the special case of \(N = 2\), I provide a characterization of asymmetric equilibria (Section A.5). Finally, there are many articles where the symmetric version of a game is a separate part of the analysis. I discuss some of these contributions in the context of my applications.

The article is structured as follows. After introducing the notation, the separation approach is developed in Section 3; Section 4 applies the approach to several examples.

3Section 4.1 contains further violating examples.
4See Vives (2005) for a survey on supermodular games.
5A result that my approach can easily replicate; see Section 3.2.
6These results hold under weaker conditions than those imposed by this article. For example, strategy spaces need only be compact lattices (Vives 2005).
2. Notation and assumptions

Consider a game of $N \geq 2$ players, indexed by $1, \ldots, N$. Let $x_g \equiv (x_{g1}, \ldots, x_{gk}) \in S(k)$ denote a strategy of player g, where $S \equiv S(k) = \times_{i=1}^k S_i$ with $S_i = [0, \bar{S}_i] \subset \mathbb{R}$, $\bar{S}_i > 0$. The interior of S_i is nonempty and denoted by $\text{Int}(S_i)$. All players have the same strategy space S. I only consider pure strategies. The vector $x_{-g} \in S^{N-1}$ is a strategy profile of player g’s opponents. The payoff of g is represented by a function $\Pi^g(x) = \Pi^g(x_1, \ldots, x_g, \ldots, x_N) \equiv \Pi(x_g, x_{-g})$. Unless stated otherwise, the following properties of $\Pi^g(\cdot)$ are assumed throughout this article.

- Symmetry: Payoff functions are permutation-invariant (Amir et al. 2008), meaning that for any permutation σ of $\{1, \ldots, N\}$ and any $x \in S^N$, payoff functions satisfy
 \[\Pi^g(x_1, \ldots, x_N) = \Pi^{\sigma(g)}(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(N)}). \]

- Payoff functions verify $\Pi(x_g, x_{-g}) \in C^2(O^N, \mathbb{R})$, where $O \supset S$ is open in \mathbb{R}^k and Π is strongly quasiconcave\(^7\) in $x_g \in S$ for any $x_{-g} \in S^{N-1}$.

Let $\nabla \Pi^g(x)$ denote the gradient (a k vector) of $\Pi(x_g, x_{-g})$ with respect to x_g, and let $\nabla F(x) \equiv \left(\nabla \Pi^g(x)\right)_{g=1}^N$ denote the pseudogradient (an NK vector, Rosen 1965). The triple $(N, S(k)^N, \Pi)$ denotes a symmetric, differentiable k-dimensional N-player game, and the formulation “a game” in text refers to this triple.

Player g’s best reply $\varphi^g(x_g, x_{-g})$ solves $\max_{x_g} \Pi(x_g, x_{-g})$. The assumptions made assure that best replies $\varphi(x_g, x_{-g}) = \varphi^g(x_g, x_{-g})$ and the joint best reply $\varphi(x_1, \ldots, x_N) = (\varphi(x_1), \ldots, \varphi(x_N))$ are continuous functions. Moreover, φ^g is differentiable at x_{-g} if $\varphi^g(x_{-g}) \in \text{Int}(S)$. A (Nash) equilibrium is a fixed point (FP) $\varphi(x^* \equiv \varphi^g(x_g, x_{-g})$, and the equilibrium is symmetric if $x^*_i = \cdots = x^*_N$. Any symmetric equilibrium $x^* \in S^N$ can be identified by its first projection $x^*_1 \in S$.

To find symmetric equilibria, a simplified approach, called the symmetric opponents form approach (SOFA) hereafter, is useful.\(^8\) The SOFA takes an arbitrary indicative player ($g = 1$) and restricts all opponents to play the same strategies, i.e., $\tilde{x}_{-g} = (\tilde{x}, \ldots, \tilde{x})$, where $\tilde{x} \in S$. Let $\tilde{\Pi}(x_1, \tilde{x}) \equiv \Pi \left(x_1, \tilde{x}_{-1} \right)$, with corresponding best-reply function $\tilde{\varphi}(\tilde{x}) \equiv \varphi(\tilde{x}, \tilde{x}_{-1})$. In this way, the SOFA reduces an N-player game to the structure of a two-player game. The derivative of $\tilde{\varphi}$ at \tilde{x} is denoted by $\tilde{\varphi}'(\tilde{x})$.\(^9\) The following result, which I include mainly for clarity and completeness, is a consequence of the above assumptions.

Proposition 1. The strategy profile $x^* \in S^N$ is a symmetric equilibrium if and only if $x^*_1 = \tilde{\varphi}(x^*_1)$. A symmetric game has a symmetric equilibrium and the set of symmetric equilibria is compact.

\(^7\) Strong quasiconcavity means that $z \cdot z = 1$ and $z \cdot \frac{\partial \Pi^g(x)}{\partial x} = 0$ imply $z \cdot \frac{\partial^2 \Pi^g(x)}{\partial x^2} z < 0$ (Avriel et al. 1981). The assumption of a strongly quasiconcave payoff function in own strategies is mainly for clarity, because it is a sufficient condition for the existence of a (possibly differentiable) best-reply function. However, many results require only differentiability of best replies (and do not otherwise hinge on quasiconcavity), and some results do not require that best replies are everywhere differentiable.

\(^8\) The SOFA has been applied, e.g., by Salop (1979), Grossman and Shapiro (1984), Dixit (1986), and Hefti (2015b) to find symmetric equilibria in specific games.

\(^9\) Note that $\tilde{\varphi}$ inherits continuity and differentiability at interior solutions from φ^1.
Proof. The first claim is obvious. Continuity and strong quasiconcavity of Π jointly with compactness and convexity of S yield continuity of $\tilde{\varphi}(\tilde{x})$. Existence and compactness then follow from $\tilde{\varphi} \in C(S, S)$ and the Brouwer FP theorem. □

3. The separation approach

Standard approaches to verify uniqueness are (i) the contraction mapping approach, (ii) the univalence approach, and (iii) the index theorem approach. Obviously, these methods can be applied to symmetric games (see, e.g., Vives 1999). Their shortcomings are that they may be restrictive, involve boundary conditions, or require calculating the determinant of possibly large matrices. Furthermore, we cannot use these methods to investigate, for example, what parameter constellations might cause a game to have multiple symmetric equilibria versus asymmetric equilibria. This observation is the starting point of the now proposed separation approach. The main idea is to separate the analysis between the possibilities of symmetric and asymmetric equilibria. In both cases I am able to reduce the dimensionality of the respective problem from an N-player to the structure of a two-player game, albeit by a different set of arguments. Because symmetric equilibria are assured to exist, it is natural to begin with symmetric equilibria. For symmetric equilibria the essential simplification follows from the SOFA, where an application of index theory to SOFA provides a powerful set of tools. With asymmetric equilibria I show, by exploiting and extending the mean value theorem, that the symmetric geometry implied by asymmetric equilibria (they necessarily come in permuted pairs) imposes a slope condition on the best-reply function of the indicative player in a two-player version of the game, where the strategies of all other players are viewed as exogenous parameters. This slope condition provides a simple test to reject the possibility of asymmetric equilibria.

3.1 Multiple symmetric equilibria

To verify whether there are multiple symmetric equilibria, the index theorem, applied to the SOFA, yields a powerful tool, especially because the SOFA version of the index theorem may still be applicable even if the unrestricted version is not. Moreover, the SOFA index results indicate how to deal with cases where index theory cannot be applied, e.g., because boundary conditions fail.10 Finally, the SOFA index results allow for further exploration, e.g., about the relationship between stability and uniqueness of symmetric equilibria (see Hefti 2016a, 2016b).

Let $Cr' = \{x_1 \in S : \nabla \tilde{\Pi}(x_1) = 0\}$ denote the set of critical points, where $\nabla \tilde{\Pi}(x_1)$ is the gradient of $\tilde{\Pi}(x_1, \tilde{x})$ with respect to x_1, evaluated at $\tilde{x} = x_1$. Further, $\nabla \tilde{\Pi}(x_1) : S \rightarrow \mathbb{R}^k$, $x_1 \mapsto \nabla \tilde{\Pi}(x_1)$ is a C^1 vector field with corresponding $k \times k$ Jacobian $\tilde{J}(x_1)$. The index $I(x_1)$ of a zero of $\nabla \tilde{\Pi}$ is defined as $I(x_1) = +1$ if $\det(-\tilde{J}(x_1)) > 0$ and $I(x_1) = -1$ if $\det(-\tilde{J}(x_1)) < 0$. I call a symmetric game an index game if (i) $\nabla \tilde{\Pi}$ has only regular zeroes11 and (ii) $\nabla \tilde{\Pi}$ points inward at the boundary of S.

10See Section 4.1 for a one-dimensional application and Section 4.2 for a two-dimensional application, where the symmetric index theorem boundary conditions naturally fail.

11The inequality $\det(\tilde{J}(x_1)) \neq 0$ exists whenever x_1 is a zero of $\nabla \tilde{\Pi}$.
Theorem 1. There is an odd number of symmetric equilibria in an index game and only interior symmetric equilibria exist. Moreover, the following four statements are equivalent: (i) \(\det(-\tilde{J}(x_1)) > 0 \) if \(x_1 \in C^{s} \), (ii) \(\det(I - \partial \tilde{\varphi}(x_1)) > 0 \) if \(x_1 \in C^{s} \), (iii) \(\prod_{i=1}^{k}(1 - \lambda_i) > 0 \) if \(x_1 \in C^{s} \), where \(\lambda_i \) is an eigenvalue of \(\partial \tilde{\varphi}(x_1) \), and (iv) there is only one symmetric equilibrium.

Proof. Oddness, \(x_1 \in \text{Int}(S) \), and (i) \(\Leftrightarrow \) (iv) follow from the index theorem (see, e.g., Vives 1999). Decompose \(\tilde{J} \) as \(\tilde{J} = A + B \), where

\[
A = \frac{\partial^2 \tilde{\Pi}(x_1, \tilde{x})}{\partial x_1 \partial x_1}, \quad B = \frac{\partial^2 \tilde{\Pi}(x_1, \tilde{x})}{\partial x_1 \partial \tilde{x}},
\]

both evaluated at \(\tilde{x} = x_1 \). The implicit function theorem (IFT) then asserts that \(\partial \tilde{\varphi} = -A^{-1}B \), which shows that \(\det(-\tilde{J}(x_1)) > 0 \Leftrightarrow \det(I - \partial \tilde{\varphi}(x_1)) > 0 \); hence (i) \(\Leftrightarrow \) (ii). Finally, (iii) \(\Leftrightarrow \) (ii) because for any eigenvalue \(\lambda \) of \(\partial \tilde{\varphi}(x_1) \), the number \((1 - \lambda)\) is an eigenvalue of \(I - \partial \tilde{\varphi}(x_1) \). \(\square \)

From the different conditions in Theorem 1, several new conditions asserting that only one symmetric equilibrium exists can be derived (see Section S.2). Note that the dimensionality of the objects involved in Theorem 1 is \(k \) rather than \(Nk \). Moreover, regularity and the symmetric boundary conditions invoked in the definition of a symmetric index game are weaker than the corresponding regularity and boundary conditions of the unrestricted vector field induced by \(\nabla F \). Thus, the index conditions may be satisfied under \(\nabla \tilde{\Pi} \) even if they are violated under \(\nabla F \). For example, the conventional index theorem cannot be applied to the two-player game with first order conditions (FOCs) \(\nabla \Pi^i = -x_i - x_j \) and \(S = [-1, 1] \), as there are no regular points. But as \(\nabla \tilde{\Pi}(x_1) = -2x_1 \) and \(\tilde{J}(x_1) = -2 \), the symmetric index theorem (Theorem 1) immediately tells us that \(x = 0 \) is the only symmetric equilibrium. If \(k = 1 \) then, by (ii) of Theorem 1, there is exactly one symmetric equilibrium if and only if \(\tilde{\varphi}(\tilde{x}) \) crosses the \(45^\circ \) line from above. This simple geometric insight provides a constructive way to show that only one symmetric equilibrium exists even if Theorem 1 cannot be applied (see Sections 4.1 and 4.2 for examples).

3.2 Asymmetric equilibria

If \((x_1, \ldots, x_N)\) is an asymmetric equilibrium, then a permutation \((x_{\sigma(1)}, \ldots, x_{\sigma(N)})\) gives a similar asymmetric equilibrium.\(^{12}\) The main result of this section exploits this symmetry property. I first consider the case of a one-dimensional game, derive a sufficient condition (Theorem 2) for the inexistence of asymmetric equilibria under weak assumptions, and graphically illustrate the main idea behind the theorem. Theorem 3 generalizes this idea to the higher-dimensional case for everywhere differentiable best-reply functions. Theorem 4 further extends the result to best replies with nondifferentiables

\(^{12}\)The set of asymmetric equilibria that are permutations of each other forms an equivalence class within the set of all asymmetric equilibria.
for $k = 2$, and Corollary 2 highlights some central implications of Theorem 4 for the nature of asymmetric equilibria in two-dimensional games.

One-dimensional case Since asymmetric equilibria come in permutations of each other, we can restrict attention to the strategies of two (arbitrary) players and treat the strategies of all other players as an exogenous parameter vector.\footnote{Note that it makes little sense to use the SOFA in the context of asymmetric equilibria because, by its construction, the SOFA could at best exclude asymmetric equilibria of the type where player 1 adopts strategy A and all other players adopt strategy $B \neq A$.} Let $\varphi(x_2; X) \equiv \varphi^1(x_2; X)$, where $X \equiv (x_3, \ldots, x_N) \in S^{N-2}$. The derivative of $\varphi(\cdot; X)$ with respect to x_2 is denoted by $\partial \varphi(x_2; X)$. Given $X \in S^{N-2}$, let

$$T \equiv \{x_2 \in S : \varphi(x_2; X) \in \text{Int}(S), \varphi(x_2; X) \text{ not differentiable in } x_2\}.$$

We concentrate on one-dimensional symmetric games where every $x_2 \in T$ is locally isolated, which trivially includes $T = \emptyset$. Note that if $\varphi(S^{N-1}) \subset \text{Int}(S)$, then $T = \emptyset$.

Theorem 2. Suppose that a one-dimensional symmetric game satisfies $\varphi(x_{-1}) \in C(S^{N-1}, S)$ and every $x_2 \in T$ is locally isolated for any given $X \in S^{N-2}$. This game has no asymmetric equilibria if

$$x_2 \in \text{Int}(S) \setminus T, \varphi(x_2; X) \in \text{Int}(S) \implies \partial \varphi(x_2; X) > -1. \quad (1)$$

All proofs not provided in the text are given in the Appendix.

The geometric intuition behind Theorem 2 can be depicted graphically for the case where $N = 2$ and $\varphi^{-1}(S) \subset \text{Int}(S)$. In its essence, it is an application of the mean value theorem; the idea is illustrated in Figure 1. Suppose that the point $A = (x^A_2, x^A_1)$ corresponds to an asymmetric equilibrium. By symmetry, its reflection, the point $A' = (x^A_1, x^A_2)$, also is an asymmetric equilibrium. Hence the line that connects A and A' must have a slope of -1. As $\varphi(x_2)$ remains in $\text{Int}(S)$, φ is differentiable on $\text{Int}(S)$. According to the mean value theorem, there is a point $\tilde{x}_2 \in (x^A_2, x^A_1)$ with $\partial \varphi(\tilde{x}_2) = -1$. Hence if in such a game $\partial \varphi(\tilde{x}_2) > -1$ for all $x_2 \in \text{Int}(S)$, then there cannot be any asymmetric equilibria.\footnote{The general proof (see the Appendix) is complicated by the fact that $\varphi(x_2)$ is allowed to be on the boundary or not differentiable everywhere, which requires extending the mean value theorem appropriately (see Lemma 1 and 2, Appendix A.1). The “$>$” in (1) (rather than “$
eq$”) comes from the fact that I allow for nondifferentiabilities and boundary equilibria (see the proof of Theorem 2 for details).}
contests; see Section 4.1). Condition (1) is comparably simple because it only needs information about the behavior of the reply function in a two-player game (for various given values of X), while, e.g., the index theorem requires evaluating an $N \times N$ matrix. Finally, it should be mentioned that if additional information about $\phi(x_{-1})$ is available, this can further restrict the relevant x_2 range in Theorem 2. For example, it suffices to verify condition (1) only at points $x_2 \in \text{Int}(S) \cap \phi(S^{N-1})$.

In applications, one typically calculates the slope of a best-reply function using the IFT. In particular, if $\phi(x_2; X) \in \text{Int}(S)$ and $x_2 \in \text{Int}(S) \setminus T$, then

$$
\partial \phi(x_2; X) = -\frac{\Pi_{12}(x_1, x_2; X)}{\Pi_{11}(x_1, x_2; X)}, \quad X \in S^{N-2}.
$$

Therefore, (1) can be expressed in terms of the second partial derivatives of Π.

Corollary 1. In a one-dimensional symmetric game for all $x_1, x_2 \in \text{Int}(S)$ and any given $X \in S^{N-2}$, if the condition

$$
\Pi_1(x_1, x_2; X) = 0, x_2 \notin T \quad \Rightarrow \quad \Pi_{11}(x_1, x_2; X) < \Pi_{12}(x_1, x_2; X)
$$

(2)

is satisfied, then no asymmetric equilibria exist.

Higher-dimensional case I now generalize Theorem 2 to the higher-dimensional case. For $k \geq 1$, the best reply generally is a vector-valued function $\phi(x_2; X) = (\varphi_1(\cdot), \ldots, \varphi_k(\cdot))$.

\[\]
Theorem 3. Let \(k \geq 1 \) and suppose that \(\varphi(x_{-1}) \) is everywhere differentiable. For any \(k \) points \(x_2^1, \ldots, x_2^k \in S \) and any given \(X \in SN^{N-2} \), if the \(k \times k \) matrix

\[
A = \begin{pmatrix}
1 + \frac{\partial \varphi_1(x_2^1; X)}{\partial x_2^1} & \frac{\partial \varphi_1(x_2^1; X)}{\partial x_2^2} & \cdots & \frac{\partial \varphi_1(x_2^1; X)}{\partial x_2^k} \\
\frac{\partial \varphi_2(x_2^2; X)}{\partial x_2^1} & 1 + \frac{\partial \varphi_2(x_2^2; X)}{\partial x_2^2} & \cdots & \frac{\partial \varphi_2(x_2^2; X)}{\partial x_2^k} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \varphi_k(x_2^k; X)}{\partial x_2^1} & \cdots & \cdots & 1 + \frac{\partial \varphi_k(x_2^k; X)}{\partial x_2^k}
\end{pmatrix}
\]

is nonsingular (\(\text{Det}(A) \neq 0 \)), then no asymmetric equilibria exist.

It is easy to see that for \(k = 1 \) and with the differentiability assumption, condition (1) implies the determinant condition (3) in Theorem 3.

To obtain a better understanding of Theorem 3 if \(k > 1 \), I discuss the case \(k = 2 \) in detail. Additionally, I show that the differentiability assumption can be weakened in the spirit of Theorem 2. Let

\[
(\alpha, \beta, \gamma, \delta) \equiv \left(\frac{\partial \varphi_1}{\partial x_2^1}, \frac{\partial \varphi_1}{\partial x_2^2}, \frac{\partial \varphi_2}{\partial x_2^1}, \frac{\partial \varphi_2}{\partial x_2^2} \right),
\]

where all partial derivatives are evaluated at \((x_2; X) \).

Theorem 4. Let \(k = 2 \) and suppose that \(\varphi \in C(S^{N-1}, S) \), \(\varphi(S^{N-1}) \subset \text{Int}(S) \), and \(\varphi(x_{-1}) \) is differentiable, except possibly for a set of isolated points. If, for all \(x_2, x_2' \in S \) and any given \(X \in SN^{N-2} \), the condition

\[
\alpha(x_2) \delta(x_2') > -1, \quad (1 + \alpha(x_2)) (1 + \delta(x_2')) > \beta(x_2) \gamma(x_2')
\]

(4)

holds, then no asymmetric equilibria exist.

Comparing Theorems 3 and 4 one easily sees that the second inequality of (4) implies the determinant condition in Theorem 3. The additional slope conditions (first two inequalities in (4)) follow from the weakening of the differentiability assumption, similar to (1) in the one-dimensional case.

Condition (4) sheds light on the nature of asymmetric equilibria in symmetric two-dimensional games. The first two inequalities in (4) state that \(\varphi_i(x_2; X) \) may not decrease too quickly in the \(i \)th component strategy of player two, which is not surprising in light of (1), so suppose that \(\alpha, \delta > -1 \) everywhere. Then the last inequality in (4) reveals that the cross-partial derivatives \(\beta \) and \(\gamma \) crucially influence whether and what type of asymmetric equilibria may occur in the game. Suppose that \(x^a = (x_1^a, x_2^a, \ldots, x_N^a) \) is an asymmetric equilibrium. I refer to \(x^a \) as a strictly ordered equilibrium if \(x_g^a > x_h^a \), \(g \neq h \), for any pair of strategies in \(x_a \). I call an equilibrium with \(x_g^{a_i} > x_h^{a_i} \) but \(x_g^{a_i} < x_h^{a_i} \), \(i, i' \in \{1, 2\} \) with \(i \neq i' \) strictly unordered.
The following facts are satisfied under the presumptions of Theorem 4:

(i) If \(\beta(x_2) \geq 0, \alpha(x_2) > -1 \) or \(\gamma(x_2) \geq 0, \delta(x_2) > -1 \) for any \(x_2 \in S \) and any \(X \in S^{n-2} \), then there cannot be any strictly ordered equilibria.

(ii) If \(\beta(x_2) \leq 0, \alpha(x_2) > -1 \) or \(\gamma(x_2) \leq 0, \delta(x_2) > -1 \) for any \(x_2 \in S \) and any \(X \in S^{n-2} \), then there cannot be any strictly unordered equilibria.

(iii) Suppose that \(\alpha(x_2), \delta(x_2) > -1 \) for all \(x_2 \in S \) and any \(X \in S^{n-2} \). Additionally, if \(\beta(x_2) \geq 0 \) or \(\gamma(x_2) \geq 0 \) for any \(x_2 \in S \) and any \(X \in S^{n-2} \), then there cannot be any asymmetric equilibria with \(x_{gi}^d \geq x_{hi}^d \). If instead \(\beta(x_2) \leq 0 \) or \(\gamma(x_2) \leq 0 \), there cannot be any asymmetric equilibria with \(x_{gi}^d > x_{hi}^d \) but \(x_{gi}^d \leq x_{hi}^d \).

Corollary 2(iii) implies that two-dimensional games with weakly increasing best replies can only have strictly unordered asymmetric equilibria, while games with weakly decreasing best replies (and \(\alpha, \delta > -1 \)) can only have strictly ordered asymmetric equilibria. Finally, a game with \(\alpha, \delta > -1 \) and both partially increasing and decreasing replies (e.g., \(\beta \geq 0 \) and \(\gamma \leq 0 \)) can never have any asymmetric equilibria.

Theorem 4 is useful for applications because the IFT allows the expression of (4) in terms of the second partial derivatives of \(\Pi \), similarly to Corollary 1 in the one-dimensional case. If \(\varphi(x_2; X) \in \text{Int}(S) \), then \(\partial \varphi(x_2; X) = -H^{-1}B \), where

\[
H = \frac{\partial^2 \Pi(x_1, x_2; X)}{\partial x_1 \partial x_1}, \quad B = \frac{\partial^2 \Pi(x_1, x_2; X)}{\partial x_1 \partial x_2}.
\]

Moreover, it is possible to adapt Theorem 4 to the case where \(\varphi(x_{-1}) \in \partial S \) may occur, which is shown in Section S.3. While the IFT remains the essential tool to calculate the slopes in applications with boundary solutions, it must be applied to an extended system of equations.\(^{15}\)

From condition (4) one can derive further conditions to rule out asymmetric equilibria that may be useful for specific games. A compact way to express (4) is to say that, for any given \(X \in S^{n-2} \), the matrix

\[
\begin{pmatrix}
1 + \alpha(x_2) & \beta(x_2) \\
\gamma(x_2') & 1 + \delta(x_2')
\end{pmatrix} = I + \begin{pmatrix}
\frac{\partial \varphi_1(x_2)}{\partial x_2} \\
\frac{\partial \varphi_2(x_2')}{\partial x_2'}
\end{pmatrix}
\]

has only positive principal minors for \(x_2, x_2' \in S \). If, for any \((x_2, x_2') \), we have \(\alpha(x_2), \delta(x_2') > -1 \) and there is a matrix norm \(\| \cdot \| \) such that \(\| A(x_2, x_2') \| < 1 \) (the spectral radius of \(A(x_2, x_2') \) is less than 1), then there cannot be any asymmetric equilibria. For example, if for any \(x_1, x_2 \in S \) and any given \(X \in S^{n-2} \), the local diagonal dominance condition

\[
\Pi_1(x_1, x_2; X) = 0 \text{ or } \Pi_2(x_1, x_2; X) = 0 \quad \Rightarrow \quad |\Pi_{ii}| > \sum_{j \neq i, j \leq 4} |\Pi_{ij}|, \quad i = 1, 2
\]

holds, then the game cannot have any asymmetric equilibria.

\(^{15}\)Despite this complication, the central insights about the possibility of asymmetric equilibria as conveyed by Theorem 4 and Corollary 2 remain valid.
3.3 Summary

If the conditions of Theorem 1 and of Theorem 2 (for \(k = 1 \)) or Theorem 3 (for \(k \geq 1 \)) are satisfied, then the game has a unique equilibrium: the symmetric equilibrium. Compared to the necessity of evaluating the determinant of an \(Nk \times Nk \) matrix as required by the univalence or index theorem, the separation approach enables us to reduce the dimensionality of the problem from \(Nk \) to \(k \), and allows us to learn more about the nature of equilibria in particular games. This is generally not possible with standard approaches to uniqueness. For example, even if \(\nabla F \) satisfies the index conditions and if critical symmetric points have an algebraic index sum of \(+1\), we may not conclude that there are no asymmetric equilibria, because there still could be an even number of asymmetric equilibria. Similarly, an index sum of \(-1\) from critical symmetric points does not necessarily imply the existence of multiple symmetric equilibria.\(^{16}\) The separation approach provides use with a manageable set of tools that can be applied to non-index games, which is demonstrated by several examples in the next section. In particular, Theorems 2 and 4 can be used in non-index games to rule out asymmetric equilibria, and even if \(\nabla \hat{\Pi} \) does not satisfy the index conditions, we may still use the SOFA to rule out multiple symmetric equilibria.

4. Applications

The main objective of this section is to demonstrate the usefulness of the separation approach in various well known examples. In Section 4.1, I consider the important class of one-dimensional games with sum-aggregative payoffs, such as Cournot competition or contests. Section 4.2 applies the separation approach to a two-dimensional price-information game. Section 4.3 reveals that there is a strong link between the inexistence of asymmetric equilibria in a symmetric game and certain properties of the equilibrium set of asymmetric variations of the symmetric game. This yields an additional reason why having a specific set of tools to analyze the equilibrium set of symmetric games is useful.

4.1 One-dimensional sum-aggregative games

Several interesting games have the property that the strategies enter the payoff functions as a sum.\(^{17}\) Payoff functions of such sum-aggregative games can be represented as \(\Pi(x_g, x_{-g}) = \hat{\Pi}(x_g, Q) \), with \(Q = \sum_{j=1}^{N} x_j. \)^{18}

\[\text{Proposition 2.} \quad \text{Consider a sum-aggregative symmetric one-dimensional game.} \]

\(^{16}\)See Section S.1 for what possibly could be inferred from index theory.

\(^{17}\)See, e.g., Corchon (1994), Cornes and Hartley (2005), or Jensen (2010) and the references therein. Recently, Martimort and Stole (2012) developed a method to study equilibrium aggregates, which also yields a proof of equilibrium existence.

\(^{18}\)Note that, e.g., a game with payoff \(\Pi(x_g, \sum f(x_j)) \), where \(f \in C^2(S, \mathbb{R}) \) is strictly increasing, can be equivalently represented as a sum-aggregative game using the change of variable \(e_j = f(x_j) \).
(i) If, for \((x_1, Q) \in \text{Int}(S) \times (0, \tilde{S}N)\), condition

\[
\hat{\Pi}_1(x_1, Q) + \hat{\Pi}_2(x_1, Q) = 0 \Rightarrow \hat{\Pi}_{11}(x_1, Q) + \hat{\Pi}_{12}(x_1, Q) < 0
\] \hspace{1cm} (5)

is satisfied, then no asymmetric equilibrium exists.

(ii) A sum-aggregative symmetric index game has only one symmetric equilibrium if and only if the following condition holds on \(Crs\):

\[
\hat{\Pi}_{11}(x_1, Nx_1) + (N + 1)\hat{\Pi}_{12}(x_1, Nx_1) + N\hat{\Pi}_{22}(x_1, Nx_1) < 0.
\] \hspace{1cm} (6)

Proof. (i) Use (2) of Corollary 1 to obtain (5).

(ii) Apply (i) of Theorem 1 to obtain (6). \(\square\)

Example 1: Cournot The symmetric Cournot model has \(\hat{\Pi}(x_1, Q) = P(Q)x_1 - c(x_1)\), where \(Q\) is the aggregate quantity supplied, \(P(Q)\) is inverse market demand, and \(c(x_1)\) are quantity costs. Presuming that the symmetric index conditions are satisfied, there is exactly one symmetric Cournot equilibrium if and only if

\[
P(Nx_1) + P'(Nx_1)x_1 - c'(x_1) = 0
\]

\[
\Rightarrow \quad N(P'(Nx_1) + P''(Nx_1)x_1) < c''(x_1) - P'(Nx_1).
\] \hspace{1cm} (7)

Moreover, from (5) we deduce that if \(P' < c''\) is satisfied (whenever \(P(Q) - c'(x_1) + P'(Q)x_1 = 0\), then the Cournot game has no asymmetric equilibria. Kolstad and Mathiesen (1987) derive general conditions of uniqueness for the (nonsymmetric) Cournot game, imposing \(P' < c''\) as an exogenous assumption. We learn from the separation approach that exactly this assumption rules out the possibility of asymmetric equilibria and, therefore, is a natural precondition for uniqueness. It follows that non-uniqueness of equilibria in the symmetric Cournot model mainly arises from the possibility of multiple symmetric equilibria, and not from asymmetric equilibria. Notably, \(P' < c''\) also rules out the possibility of asymmetric equilibria even if \(\varphi(x_{-1}) \in \partial S\) or \(\varphi(x_{-1})\) has kinks,\(^{19}\) which is not unrealistic for a Cournot model with heterogeneous consumers. Similarly, the symmetric index theorem can be applied to rule out multiple symmetric equilibria even if \(\hat{\varphi}\) has kinks, provided that the index conditions are satisfied (i.e., symmetric kinks are not symmetric equilibria). If the uniqueness condition\(^{20}\) of Kolstad and Mathiesen (1987) is evaluated for the symmetric case under the assumption that \(P' < c''\), we obtain exactly condition (7), ruling out multiple symmetric equilibria, which besides the simplicity of obtaining the result, nicely illustrates the generality of the separation approach.

Example 2: Contests Consider a sum-aggregative contest

\[
\Pi = p\left(g(y_1), \sum_{j=1}^{N} g(y_j) \right) V - h(y_1),
\]

\(^{19}\)In such cases, the index theorem obviously is not applicable.

\(^{20}\)Corollary 3.1, p. 687.
where \(V, g' > 0 \) and \(p(\cdot) \in [0, 1] \) is a contest success function \((\text{Konrad 2009})\). Note that, by a change of variables, such a contest may be represented as \(\hat{\Pi} = p(x_1, Q)V - c(x_1) \), where \(c(x_1) = h(g^{-1}(x_1)) \in C^2 \). Using (5) and (6), and assuming that the symmetric index conditions are satisfied, we may conclude that such a contest has a unique symmetric equilibrium if, at corresponding critical points,

\[
\begin{align*}
(p_{11}(x_1, Q) + p_{12}(x_1, Q))V - c''(x_1) &< 0, \quad (5') \\
(p_{11}(x_1, N x_1) + (N + 1)p_{12}(x_1, N x_1) + N p_{22}(x_1, N x_1))V - c''(x_1) &< 0. \quad (6')
\end{align*}
\]

Suppose that \(c(0) = c'(0) = 0 \) and

\[
p(x_1, Q) = \begin{cases}
\frac{1}{N + r}, & x_1 = \cdots = x_N = 0, \\
\frac{1}{1 + r}, & x_1 > 0, x_2 = \cdots = x_N = 0, \\
f\left(\frac{x_1}{Q + r}\right) & \text{else},
\end{cases}
\]

where \(r \geq 0 \) is a noise parameter, \(f \in C^2 \) is strictly increasing, is concave, and \(f'(0) > 0 \). The best reply \(\varphi(x_{-1}) \in (0, \tilde{S}) \) is continuous, and differentiable if \(\varphi(x_{-1}) \in \text{Int}(S) \) whenever \(x_2 > 0 \). It can be verified that (5') is satisfied, meaning that there cannot be any asymmetric contest equilibria. Turning to symmetric equilibria, we note that \(x_1 = 0 \) can never be a best reply to any \(x_{-1} \in S^{N-1} \). While we cannot use the (symmetric) index theorem because \(I \) is not differentiable at the origin, it is straightforward to verify that this example satisfies (6') for respective interior points. As (6') implies that \(\tilde{\varphi}(\bar{x}) \) can cross the 45° line at most once on \((0, \tilde{S})\), we conclude that there is a unique symmetric equilibrium \(\bar{x} \). If \(f(z) = z \), then the previous example collapses to the often invoked Tullock success function. Hence uniqueness of equilibrium in Tullock contests (with noise) is easily and directly established by the separation approach.21

Example 3: Homogeneous revenue The Tullock contest with \(r = 0 \) is an important example, where revenues are homogeneous functions. Applying the separation approach to sum-aggregative games with general homogeneous revenues and strictly convex costs reveals that such games naturally have only one symmetric equilibrium, which also very likely is the unique equilibrium of the game. To see this, consider \(I(x) = \pi(x_1, \sum x_j) - c(x_1) \), where \(\pi(x_1, \sum x_j) \) is homogeneous of degree \(z < 1 \) in \((x_1, \ldots, x_N)\) or, equivalently, \(\pi(x_1, Q) \) is \(z \)-homogeneous in \((x_1, Q)\).

Proposition 3. Suppose that \(\pi(x_1, Q) \) is homogeneous of degree \(z < 1 \) in \((x_1, Q)\) and \(c', c'' > 0 \). Then there is only one symmetric equilibrium. If additionally \(\pi_1 \geq 0 \) and \(\pi_{11} \leq 0 \) for \(x_1 > 0 \), the symmetric equilibrium is unique.

21Cornes and Hartley (2005) prove uniqueness of equilibrium in linear Tullock contests (without noise) with the help of share functions. The separation approach yields the same conclusion, but in a very simple way. Moreover, it follows that uniqueness of equilibrium in such contests is robust to noise or to a "concavivation" of the success function.
Proof. We start with the second claim. As $\pi_1(x_1, Q) \geq 0$ is $z - 1$-homogeneous, the Euler theorem and the sum-aggregative structure imply that $\pi_{11} + \frac{Q}{x_1} \pi_{12} \leq 0$ for $x_1 > 0$, which if $\pi_{11} \leq 0$ necessarily implies that $\pi_{11} + \pi_{12} \leq 0$. As $c''(x_1) > 0$ for $x_1 > 0$, there cannot be any asymmetric equilibria by (5). Turning to symmetric equilibria, as

$$\Pi\left(x_1, \sum_{j\neq i} x_j \right)$$

is $(z - 1)$-homogeneous in x_1, we must have that $\nabla \bar{\Pi}(x_1) = \omega x_1^{z-1} - c'(x_1)$, where $\omega > 0$ is a constant. Hence $\hat{J}(x_1) = \omega (z - 1) x_1^{z-2} - c''(x_1) < 0$ whenever $x_1 > 0$, which implies that $\hat{\varphi}(\bar{x})$ can intersect the 45° line at most once. Thus there cannot be multiple symmetric equilibria.

4.2 A two-dimensional information-pricing game

In this section, I apply the separation approach to the two-dimensional information-pricing game as introduced by Grossman and Shapiro (1984). Each of two firms chooses its price p and the fraction a of consumers to be made aware of its product, taking (\bar{p}, \bar{a}) of its opponent as given. There is a measure of δ consumers who are ex ante unaware of both firms. Information (advertisement) is distributed randomly over the population, firms cannot discriminate between consumers, and products are imperfect substitutes. A firm's demand from consumers not aware of the other firm is $x(p)$, and is $x(p, \bar{p})$ for consumers who receive ads from both firms. Assuming constant unit costs of production, the firm's expected profit is

$$\Pi(p, a) = \bar{a} \left[(1 - \bar{a}) (p - c) x(p) + \bar{a} (p - c) x(p, \bar{p}) \right] \delta - C(a) \equiv a V(p, \bar{p}, \bar{a}) \delta - C(a), \quad (8)$$

where $C(a)$ are information costs. I assume that $x(p) \geq x(p, \bar{p})$, i.e., for given prices p, \bar{p}, firm demand is never lower if a consumer is not aware of the competitor. Similarly, demand reacts more sensitively toward a unilateral price change in the case of perfectly informed consumers ($x_p(p, \bar{p}) \leq x'(p)$), and (marginal) demand never decreases in the opponents price ($x_{\bar{p}}(p, \bar{p}, \bar{p}) \geq 0$). Intuitively, these facts can be justified under free trade, as perfectly informed consumers have two outside options (not to consume or to consume at the competitor's location) whereas unilaterally informed consumers just have one (not to consume).

To be precise, the following formal assumptions are imposed: The function $V(p, \bar{p}, \bar{a}) \in C^2(S^2, \mathbb{R})$, where $S = [c, \bar{p}] \times [0, 1]$, is strongly quasiconcave in p, $V_{\bar{a}}, V_{\bar{p} a} \leq 0$, $V_{\bar{p}}, V_{\bar{p} \bar{p}} \geq 0$, and $\bar{p} > c$ is the monopoly price. The cost function satisfies $C(0) = C'(0) = 0$ and $C''(a) > 0$ for $a > 0$. Moreover, it is assumed that $(p, a) = \varphi(\bar{p}, \bar{a}) \in \text{Int}(S)$ for any $(\bar{p}, \bar{a}) \in [c, \bar{p}] \times (0, 1)$, and that there exists $p \in [c, \bar{p}]$: $V(p, c, 1) > 0$. The last assumption means that even under perfect information and pricing at marginal costs by the opponent, the firm can retain a strictly positive market demand for a price slightly
above marginal costs, which is a typical feature of competition with imperfect substitutes. A simple example for \(V \) is linear demand, e.g., derived from quadratic utility (LaFrance 1985), where \(x(p) = 1 - p \) and

\[
x(p, \bar{p}) = \frac{1 - p + \gamma(\bar{p} - 1)}{1 - \gamma^2}.
\]

The parameter \(\gamma \in [0, 1/2] \) controls the degree of substitutability, and I set \(c = 0 \) for simplicity (hence \(S_p = [0, 1/2] \)). It is easy to see that this example verifies the above assumptions on \(V \).

Because \(V \) is continuous, \(V \) is strongly quasiconcave in \(p \) and \(C'' > 0 \), the best reply \(\varphi = (p, a) \) is a continuous function of \((\bar{p}, \bar{a}) \), and it follows that at least one symmetric equilibrium exists. Despite that (8) may look innocent, investigating the set of equilibria is not trivial. For example, the index theorem cannot be used because the boundary conditions are naturally violated in this model. Moreover, even if it were applicable, we would have to evaluate the determinant of a largely abstract \(4 \times 4 \) matrix.

I now use the separation approach to investigate the equilibrium set of this two-dimensional game. I first analyze the scope of asymmetric equilibria and then turn to the possibility of multiple symmetric equilibria.

Asymmetric equilibria The assumptions made imply that \(p'(\bar{p}) \geq 0 \), \(p'(\bar{a}) \leq 0 \), and \(a'(\bar{p}) \geq 0 \). Hence, by Corollary 2(ii), we conclude that if asymmetric equilibria exist, these equilibria cannot be strictly unordered. Moreover, if additionally \(a'(\bar{a}) > -1 \), it follows from Corollary 2(iii) that there cannot by any asymmetric equilibria, showing that \(a'(\bar{a}) > -1 \) is the crucial requirement to rule out asymmetric equilibria in this model. The condition \(a'(\bar{a}) > -1 \) holds if for \(a, \bar{a} \in (0, 1) \), we have that

\[
\frac{V(p) - V(p, \bar{p})}{(1 - \bar{a})V(p) + \bar{a}V(p, \bar{p})} < \frac{C''(a)}{C'(a)}.
\]

The left-hand side of (9) is maximal (for given \(p \)) if \((\bar{p}, \bar{a}) = (c, 1) \). Hence if \(V(p) / V(p, c) < C''(a)/C'(a) + 1 \), then (9) is satisfied. As illustrated below, we may possibly exploit the FOC pertaining to (8) to obtain a better estimate.

So far, the analysis has revealed two things about the scope of asymmetric equilibria. First, the fact that only (weakly) ordered asymmetric equilibria may exist (if any at all) is independent of scale effects. This can be seen because none of the above derivatives depends on the market size parameter \(\delta \), or on unit production costs \(c \), or on multiplicative information cost parameters (if \(C(a) = \theta c(a) \), then \(\theta > 0 \) plays no role). Second, (9) shows that asymmetric “specialization” equilibria could exist only if marginal costs are highly inelastic or monopoly rents exceed the duopoly rents by a relatively large amount.

22 Because \(V(p, \bar{p}, \bar{a}) > 0 \) for some \(p > c \) is always feasible, \(a = 0 \) cannot be a part of a firm’s best reply.

23 See the proof of Proposition 1.

24 For example, \(\Pi_e(c, 0) = V(c, \bar{p}, \bar{a})\delta - C'(0) = 0 \), i.e., \(\nabla F \) does not point inward at \((c, 0, \bar{p}, \bar{a}) \in \partial S^2 \).

25 These are standard IFT results.

26 Apply the IFT to the FOC pertaining to (8).
(e.g., because products are strong substitutes). In such an equilibrium, one firm could specialize on advertising (high \((p, a)\)), earning quasi-monopoly rents from unilaterally informed consumers but incurring high advertising costs, whereas the other firm specializes in competition (low \((p, a)\)), and thereby wins the fully informed consumers, but faces only little overall demand because of a small advertising campaign.

What is the scope for such asymmetric equilibria in our parametric example? Exploiting the linearity of the problem, it can be shown that

\[
p(p, a) = \frac{1 - \gamma^2 - \gamma(1 - \bar{p} - \gamma)\bar{a}}{2 - 2\gamma^2(1 - \bar{a})} \in \left(1 - \gamma, \frac{1}{2}\right)
\]

for \(\gamma, \bar{p} \in [0, 1/2]\) and \(\bar{a} \in (0, 1]\). Using \(\bar{p} = (1 - \gamma)/2\) and \(\bar{a} = 1\) in the left-hand side of \((9)\) reveals that the left-hand side of \((9)\) is smaller than \(\gamma/(1 - \gamma - \gamma^2) \leq 2\). Hence, if \(C''(a)/C'(a) \geq 2\), we can conclude that no asymmetric equilibrium exists. More specifically, for \(C(a) = \theta a^\eta, \eta \geq 2\), no asymmetric equilibrium exists if competition is not too intense (if \(\gamma \leq \sqrt{2} - 1\)) or if \(\eta \geq 3\). In their analysis, Grossman and Shapiro (1984) use the “constant reach independent readership” (CRIR) advertising technology with \(C(a) = \ln(1 - a)/\ln(1 - r), r \in (0, 1)\). This cost function implies that \(C''(a)/C'(a) = 1/1 - a \geq 1\). Hence if \(\gamma \leq \sqrt{2} - 1\) and advertising technology follows the CRIR technology, there cannot be any asymmetric equilibria.

Symmetric equilibria

Turning to symmetric equilibria, we calculate

\[
\nabla \tilde{\Pi}(p, a) = \begin{pmatrix} aV_1(p, p, a)\delta & V_1(p, p, a)\delta - C'(a) \end{pmatrix}.
\]

Equation \((10)\) shows that the index theorem is not applicable, even if we restrict attention to symmetric equilibria, because \(\nabla \tilde{\Pi}\) vanishes, e.g., at the corner point \((p, a) = (c, 0)\). Whereas \((c, 0)\) is a zero of \((10)\), i.e., an equilibrium candidate, it obviously cannot constitute a symmetric equilibrium. While we cannot rely on the index theorem to discuss the scope of multiple symmetric equilibria, \((10)\) provides us with a guideline to prove uniqueness in a constructive way.

If \(\nabla \tilde{\Pi}(p, a) = 0\) at an interior point \((p, a)\), we have \(\text{Det}(\tilde{J}(p, a)) > 0\) if and only if \(V_1(p, a)\delta - C'(a) > 0\). If the index theorem were applicable, we could now conclude that (i) \(V_1(p, a) < 0\) \(\Rightarrow V_1(p, a)\delta < 0\) and (ii) \(V_1(p, a)\delta - C'(a) > 0\), then there is exactly one symmetric equilibrium \((p, a)\). I now show that these conditions imply this result without invoking the index theorem. To see this, consider the pure symmetric pricing game where each firm solves \(\max_{p_i \in (c, \bar{p})} aV(p_i, p_j, a)\delta\) for given \(a > 0\). Then (i) assures the existence of a single symmetric equilibrium \(p = p(a) \in (c, \bar{p})\), because \(\bar{p}(\bar{p}; a)\) can reach the 45° line just once.\(^{27}\) Moreover, \(p(0) = \bar{p}\), \(p\) is continuous in \(a\) and if \(p(a) \in (c, \bar{p})\), then \(p'(a) = -V_1/aV_1 \leq 0\). Next, consider the pure symmetric information game where each firm solves \(\max_{a_i \in [0, 1]} aV(p, p, a)\delta - C(a)\).

\(^{27}\)This holds because \(p = c\) cannot be an equilibrium by the assumptions made and \(V_{11}(p, \bar{p}, a) = V_{12}(p, \bar{p}, a)\). Hence \(V_{1p} < 0\) implies that \(\bar{p}'(p; a) < 1\) whenever \(\bar{p}(p, a) = p \in (c, \bar{p})\).
Then (ii) implies the existence of a single symmetric equilibrium \(a = a(p) \in [0, 1] \), where \(a(c) = 0 \) and \(a \) is continuous in \(p \). If \(a(p) \in (0, 1) \), then \(a'(p) = V_p \delta / V_a \delta - C'' > 0 \).

A symmetric equilibrium of the original information-pricing game is a FP of the mapping \((p(a), a(p))\), and because \(p'(a) \leq 0 \) but \(a'(p) > 0 \) hold at all respective interior points, the above analysis shows that there is exactly one such FP (see Figure 2).

It is straightforward to check that the parametric example satisfies \(p'(a) \leq 0 \) and \(a'(p) > 0 \) at interior points, and therefore has only one symmetric equilibrium.

Proposition 4. In the information-pricing game with linear demand, there is a single symmetric equilibrium. For \(C(a) = \theta a^\eta \), \(\eta \geq 2 \), the symmetric equilibrium is even unique if information costs are sufficiently elastic \((\eta \geq 3) \) or products are not too strong substitutes \((\gamma \leq \sqrt{2} - 1) \).

4.3 Equilibria in asymmetric games

Let \(c_g \in \mathcal{P} \) denote player \(g \)'s parameter vector, where \(\mathcal{P} \subset \mathbb{R}^m \) is a compact parameter space. Let \(\Gamma(c) \equiv (N, S^N, \{\Pi^g(x, c_g)\}_{g=1}^N), \ c \in \mathcal{P}^N \), be a game\(^{28}\) with parameters \(c_1, \ldots, c_N \). If \(c_1 = c_2 = \cdots = c_N \), the game is symmetric. For now, we concentrate on one-dimensional games where the heterogeneity of the payoff functions is restricted to the distribution of a single parameter. The following proposition shows that, for a game where best-replies are increasing in the parameter \(c \in [\underline{c}, \bar{c}] \), if any underlying two-person symmetric game does not have an asymmetric equilibrium, then the strategies in every equilibrium of the asymmetric game are ordered exactly in the same way as the parameters \(c_1 \).

\(^{28}\)In this section, I assume that \(\Pi^j(x, c) \) is twice continuously differentiable in \((x, c)\) and strongly quasi-concave in \(x_j \) for any \(c \in \mathcal{P} \).
Proposition 5. Suppose that $\varphi(x_{-1}, c)$ is increasing in c on $[\bar{c}, \tilde{c}]$ and $\tilde{c} \geq c_1 > c_2 > \cdots > c_N \geq \bar{c}$. If, for any given $X \in S^{N-2}$ and any $c \in [\bar{c}, \tilde{c}]$, the symmetric two-player game with payoffs $V^j(x_1, x_2; X, c)$, $j = 1, 2$, has no asymmetric equilibria, then every equilibrium of the asymmetric game $\Gamma(c_1, \ldots, c_N)$ satisfies $x_1^* \geq x_2^* \geq \cdots \geq x_N^*$. Moreover, $x_1^* > x_2^* > \cdots > x_N^*$ results if $\varphi(x_{-1}, c)$ is strictly increasing in c on $[\bar{c}, \tilde{c}]$.

The proof builds on a characterization result for asymmetric equilibria in two-player games (see Appendix A.5). If the game is decreasing in c, the inequalities of the equilibrium strategies are reversed. Proposition 5 tells us, e.g., that asymmetric games never possess symmetric equilibria if φ^j is strictly monotonic in c on $[\bar{c}, \tilde{c}]$. Notably, we can use the simple slope condition of Theorem 2 to exclude the possibility of equilibria that do not reflect the order of the parameters in c-monotonic asymmetric games.

As a simple illustration, reconsider the symmetric Cournot or contest model (Examples 1 and 2 in Section 4.1) with a cost function of the form $c(x, \alpha)$, where $\alpha \in [\underline{\alpha}, \bar{\alpha}]$ is a parameter. Suppose that $c_{x\alpha}(x, \alpha) < 0$ for any $x > 0$, such that $\varphi(x_{-1}, \cdot)$ is strictly increasing. Because we know from Section 4.1 that both symmetric games verify condition (5), there cannot be asymmetric equilibria in any symmetric two-player version of these games. Proposition 5 then assures that any asymmetric version of these games with $\bar{\alpha} = \alpha_1 > \cdots > \alpha_N = \underline{\alpha}$ can only have ordered equilibria $x_1^* > \cdots > x_N^*$, where the “cheapest technology does most.”

Proposition 5 extends to the case where c_j is a parameter vector in the natural way. If c_1, \ldots, c_N are parameter vectors such that $\varphi(x_{-1}, c_j) \geq \varphi(x_{-1}, c_j)$ and if the respective symmetric two-player games have no asymmetric equilibria for any of these parameter vectors, then $x_1 \geq x_2 \geq \cdots \geq x_N$ holds in any equilibrium of the asymmetric game.

5. Conclusion

Many strategic choices are of a multidimensional nature, and having a systematic methodology to get an analytical grasp on such problems is very useful. The separation approach developed in this article yields a comparably simple but powerful set of tools to examine the equilibrium set of symmetric games with a potentially higher-dimensional strategy space and many players, that may have eluded an analytical assessment so far, e.g., by the sheer formal complexity of the problem. The practical and theoretical usefulness of these tools was documented with several examples. The separation approach allows the study of how the parameters of a game could possibly influence whether there are asymmetric equilibria or multiple symmetric equilibria. Analyzing the equilibrium set of a symmetric game may also shed light on the equilibria of certain asymmetric versions of the game, which was illustrated by means of a one-dimensional example. All in all, this article can provide valuable guidelines for a thorough equilibrium analysis of complex symmetric games in applied research in game theory, industrial economics, and related fields.

29See Hefti and Grossmann (2015) for a direct application of Proposition 5 in the case of a dynamic contest with heterogeneous participants.
Appendix

A.1 Proving Theorem 2

The proofs of Theorems 2 and 4 build on the following lemmata.

Lemma 1. Let \(\psi \in C([t_0, t_1], [a, b]) \) with \(\psi(t_0) \neq \psi(t_1) \). Suppose that the points in \((t_0, t_1)\), where \(\psi(t) \) is not differentiable, are locally isolated. Then

\[
(i) \text{ if } \psi(t_0) > \psi(t_1) \text{ there exists } t' \in (t_0, t_1) \text{ such that } \\
\psi'(t') \leq \frac{\psi(t_1) - \psi(t_0)}{t_1 - t_0},
\]

\[
(ii) \text{ if } \psi(t_0) < \psi(t_1) \text{ there exists } t'' \in (t_0, t_1) \text{ such that } \\
\psi''(t'') \geq \frac{\psi(t_1) - \psi(t_0)}{t_1 - t_0}.
\]

Proof. Let \(\hat{A} \subset (t_0, t_1) \) be the set of nondifferentiable points of \(\psi \) and \(A = \hat{A} \cup \{t_0, t_1\} \). Let \(\psi(t_0) > \psi(t_1) \). Define

\[
g(t) = \frac{\psi(t_0) - \psi(t_1)}{t_0 - t_1}(t - t_0) + \psi(t_0)
\]

and \(k(t) = \psi(t) - g(t) \) for \(t \in [t_0, t_1] \). Hence \(k(t_0) = k(t_1) = 0 \), \(k \) is continuous on \([t_0, t_1]\), and is differentiable at \(t \) if \(t \notin A \). Suppose that

\[
\psi'(t) > \frac{\psi(t_1) - \psi(t_0)}{t_1 - t_0}
\]

holds whenever \(\psi(t) \) is differentiable. If \(\hat{A} = \emptyset \), then \(k \) is strictly increasing on \([t_0, t_1]\) by the mean value theorem (MVT), which contradicts \(k(t_0) = k(t_1) = 0 \). Hence suppose that \(\hat{A} \neq \emptyset \). Then, by local isolation, \(\forall t \in \hat{A} \) there is an interval \(I_t = (t - \varepsilon_1, t + \varepsilon_2) \) such that \(k \) is differentiable on \(I_t \setminus \{t\} \). One can choose \(\varepsilon_2 > 0 \) such that \(t + \varepsilon_2 \in \hat{A} \). Then the MVT and continuity of \(k \) at \(t \) imply \(k \) to be strictly increasing over \(I_t \). As for any \(t \in \hat{A} \), \(\exists \bar{q}(t) \in q \cap I_t \), the mapping \(\bar{q} : \hat{A} \rightarrow Q \) is well defined and injective, which shows that \(\hat{A} \) is countable. Hence there is a sequence \(\{q_n\} \) with \(q_n \in Q \cap (t_0, t_1) \) such that \(q_n \rightarrow t_1 \) and \(k(q_{n+1}) > k(q_n) \), which implies that \(k(t_1) > k(q_0) \) by the continuity of \(k \). As \(k(t_1) = 0 \), we conclude that \(k(q_0) < 0 \). By the same reasoning there is a strictly decreasing sequence \(\bar{q}_n \), where \(\bar{q}_0 = q_0, \bar{q}_n \rightarrow t_0, \) and \(k(\bar{q}_{n+1}) < k(\bar{q}_n) \). Then continuity and \(k(\bar{q}_0) < 0 \) imply \(k(t_0) < 0 \), a contradiction. This proves (i), and (ii) follows from (i) by setting \(\rho(t) = k(t_0 + t_1 - t) \). □

Lemma 2. Let \(\psi \in C([t_0, t_1], [a, b]) \) with \(\psi(t_0) \neq \psi(t_1) \) and \(\psi \) differentiable on \(\psi^{-1}((a, b)) \) except possibly at a set of isolated points. Then (11) is satisfied.

Proof. By the proof of Lemma 1, it suffices to consider the case \(\psi(t_0) > \psi(t_1) \). Hence \(\psi(t_0) > a \) and \(\psi(t_1) < b \). Let \(T = \psi^{-1}((a, b)) \subset [t_0, t_1] \). If \(T = \emptyset \), then the claim follows from Lemma 1, so suppose that \(T \neq \emptyset \). Note that \(T \) is a compact subset of \(\mathbb{R} \), and let the min and max of \(T \) be denoted by \(\bar{t} \) and \(\tilde{t} \). The proof now is case-by-case.

Case 1: \(\psi(t) = a \). Then \(\psi \) is continuous on \([t_0, \bar{t}] \) and differentiable on \((t_0, \bar{t}) \) except possibly for a set of isolated points. Then, because of Lemma 1, \(\exists \bar{t} \in (t_0, t_1) \) such that

\[
\psi'(\bar{t}) \leq \frac{a - \psi(t_0)}{t_1 - t_0} \leq \frac{\psi(t_1) - \psi(t_0)}{t_1 - t_0}.
\]
Case II: \(\psi(\tilde{t}) = b \). Then \(\psi \) is continuous on \([\tilde{t}, t_1]\) and differentiable on \((\tilde{t}, t_1)\) except possibly for a set of isolated points. Thus, by Lemma 1, \(\exists t \in (\tilde{t}, t_1) \) such that
\[
\psi'(t) \leq \frac{\psi(t_1) - b}{t_1 - t} \leq \frac{\psi(t_1) - \psi(t_0)}{t_1 - t_0}.
\]

Case III: \(\psi(\tilde{t}) = b \) and \(\psi(\tilde{t}) = a \). Define \(A \equiv \psi^{-1}(\{b\}) \), which is a nonempty and compact set. Hence \(\exists \tilde{t} = \max A \) exists. Similarly, \(B \equiv [\tilde{t}, t_1] \cap \psi^{-1}(\{a\}) \) also is nonempty and compact. Let \(\hat{t} = \min B \). Hence \(\psi \) is continuous on \([\tilde{t}, \hat{t}]\) and differentiable on \((\hat{t}, \tilde{t})\) except possibly for a set of isolated points. Thus, by Lemma 1, \(\exists t \in (\hat{t}, \tilde{t}) \) such that
\[
\psi'(t) \leq \frac{a - b}{\hat{t} - t} \leq \frac{\psi(t_1) - \psi(t_0)}{t_1 - t_0}.
\]

Proof of Theorem 2. Step 1: \(N = 2 \). Suppose that \((x_1^a, x_2^a)\) is an asymmetric equilibrium. Then \((x_1^a, x_2^a)\) is differentiable at \((x_1^a, x_2^a)\), which is a nonempty and compact set. Hence \(\exists \tilde{t} = \max A \) exists. Similarly, \(B \equiv [\tilde{t}, t_1] \cap \psi^{-1}(\{a\}) \) also is nonempty and compact. Let \(\hat{t} = \min B \). Hence \(\psi \) is continuous on \([\tilde{t}, \hat{t}]\) and differentiable on \((\hat{t}, \tilde{t})\) except possibly for a set of isolated points. Thus, by Lemma 1, \(\exists t \in (\hat{t}, \tilde{t}) \) such that
\[
\psi'(t) \leq \frac{a - b}{\hat{t} - t} \leq \frac{\psi(t_1) - \psi(t_0)}{t_1 - t_0}.
\]

Step 2: \(N > 2 \). Suppose \((x_1^a, \ldots, x_N^a)\) is an asymmetric equilibrium, where we can assume \(x_1^a \neq x_2^a \) without loss of generality. Take \(X = (x_1^a, \ldots, x_N^a) \in S^{N-2} \) as an exogenously fixed parameter vector and suppose players \(g = 1, 2 \) play a two-player game, treating \(X \) as fixed. Then \((x_1^a, x_2^a)\) as well as \((x_2^a, x_1^a)\) must be asymmetric equilibria of this symmetric, parametrized two-player game. Thus, by Step 1, if the \(N \)-player game has an asymmetric equilibrium, \(\exists X \in S^{N-2} \) and \(x_2 \in \text{Int}(S) \) such that \(\partial \varphi(x_2; X) \leq -1 \), which completes the proof.

A.2 Proof of Theorem 3

I prove the theorem for \(N = 2 \); the extension to \(N > 2 \) follows the same logic as in Step 2 of the proof of Theorem 2. Consider the two asymmetric equilibria \((x_1^a, x_2^a)\) and \((x_2^a, x_1^a)\). By the differentiability assumption made, \(\psi_i(t) \equiv \varphi_i(x_1^a + t(x_1^a - x_2^a)), 1 \leq i \leq k \), is differentiable on \((0, 1)\). Let \(\Delta_i \equiv \varphi_i(x_1^a) - \varphi_i(x_2^a) \) and \(\Delta \equiv (\Delta_1, \ldots, \Delta_k) \). Then the MVT, applied separately to each \(\psi_i \), asserts the existence of \(k \) points \(x_2^1 \in \text{Int}(S), 1 \leq i \leq k \), such that
\[
\ddot{A} \cdot \Delta = -\Delta,
\]
where \(\ddot{A} \) is a \(k \times k \) matrix with entries \(a_{ij} = \frac{\partial \varphi_i(x_1^a)}{\partial x_{2j}}, 1 \leq i, j \leq k \). Equivalently, we get that \((I + \ddot{A}) \cdot \Delta = A \cdot \Delta = 0 \), where \(A \) is the matrix (3). Consequently, if \(\text{Det}(A) \neq 0 \) at any point \(x_1^1, \ldots, x_k^k \in \text{Int}(S) \), we may conclude that there cannot be any asymmetric equilibria.

A.3 Proof of Theorem 4

As before it suffices to let \(N = 2 \). Suppose \((x_1^a, x_2^a)\) is an asymmetric equilibrium. Then \((x_2^a, x_1^a)\) also is an asymmetric equilibrium, and \(\varphi(x_2^a) = x_1^a \) and \(\varphi(x_1^a) = x_2^a \). Define
ψ_1(t_i) \equiv \varphi_i(x_i^2 + t_i(x_i^2 - x_i^1)), where i = 1, 2 and t_i \in [0, 1]. Then ψ_1(0) = \varphi_i(x_i^2) and ψ_1(1) = \varphi_i(x_i^2). Note that ψ_i(0) \neq ψ_i(1) for at least one i. Moreover, ψ_i \in C([0, 1], S_i) and, according to the chain rule, if ψ_i(t_i) \in Int(S_i), the function ψ_i is differentiable except possibly for a set of isolated points by presupposition. Hence if ψ_i(x_i^2 + t_i(x_i^2 - x_i^1)) \in Int(S_i) and ψ_i is differentiable at the point x_i^2 + t_i(x_i^2 - x_i^1), then the chain rule implies

ψ_i'(t_i) = \partial ψ_i(x_i^2 + t_i(x_i^2 - x_i^1)) \cdot \left(\frac{ψ_1(0) - ψ_1(1)}{ψ_2(0) - ψ_2(1)}\right). \quad (12)

The proof of Proposition 5 requires the following lemma.

Lemma A.5 (Characterization of asymmetric equilibria). In a symmetric one-dimensional two-player game with \varphi \in C(S, S), no asymmetric equilibria exist if and only if

φ(φ(x)) < x \quad \forall x \in S : φ(x) < x \quad (13)

or, equivalently,

φ(φ(x)) > x \quad \forall x \in S : φ(x) > x. \quad (13')
Figure 3. Existence of an asymmetric equilibrium.

Proof. I only prove the claim for (13), the claim for (13′) is proved in the same way.

⇒ Suppose that \((x_1, x_2)\) is an asymmetric equilibrium. By symmetry, we can assume that \(x_1 < x_2\), i.e., \(\varphi(x_2) < x_2\), but \(\varphi(\varphi(x_2)) = x_2\), contradicting (13).

⇐ The proof of this direction naturally is more involved. Let \(G_1 \equiv \{(x_1, x_2) \in S^2 : \varphi^1(x_2) = x_1\}\) and \(G_2 \equiv \{(x_1, x_2) \in S^2 : \varphi^2(x_1) = x_2\}\) denote the graphs of the best-response functions of the two players. Further, \(G_1(x_2) \equiv (\varphi^1(x_2), x_2)\) and \(G_2(x_1) \equiv (x_1, \varphi^2(x_1))\) denote specific points on the graphs. The proof is by contraposition. Suppose \(\exists \hat{x}_2\) such that \(\varphi^1(\hat{x}_2) < \hat{x}_2\) but \(\varphi^2(\varphi^1(\hat{x}_2)) \geq \hat{x}_2\). If \(\varphi^2(\varphi^1(\hat{x}_2)) = \hat{x}_2\), then there is nothing to prove as \((\varphi^1(\hat{x}_2), \hat{x}_2)\) obviously is an asymmetric equilibrium, so suppose that \(\varphi^2(\varphi^1(\hat{x}_2)) > \hat{x}_2\). Such a situation is illustrated in Figure 3 with points \(A = G_1(\hat{x}_2) \in G_1\) and \(B = G_2(\varphi^1(\hat{x}_2)) \in G_2\). First note that \(G_2(0) \in [0] \times S\), as indicated by the point \(C\). Next note that, by symmetry, \(G_2\) must pass through a point \(A' = G_2(\hat{x}_2)\). By continuity of the best-response function, there must be at least one symmetric equilibrium in the interval \((\varphi^1(\hat{x}_2), \varphi^2(\varphi^1(\hat{x}_2)))\). Let \(x^t = \min\{x_2 : \varphi^1(\hat{x}_2) \leq x_2 \leq \hat{x}_2, \varphi^1(x_2) = x_2\}\). Consider the rectangle \([0, x^t] \times [x^t, \bar{S}]\). By construction, \((x^t, x^t)\) is the only symmetric equilibrium in this rectangle. Moreover, \(G_2\) partitions this rectangle (because \(G_2\) is continuous) and \(G_1(\hat{x}_2)\) must lie in the lower partition ("beneath" \(G_2\)). But as \(G_1(\bar{S}) \in S \times \{\bar{S}\}\) (indicated with \(D\)) and \(G_1\) is continuous, there must be an \(x^2 \in (\hat{x}_2, \bar{S}]\) such that \(G_1(x_2) \in G_2\). Hence an asymmetric equilibrium exists.

In words, Lemma 3 says that if player 1’s reaction function lies below the graph of player 2’s reaction function and \(\varphi^1(x_2) < x_2\), then an asymmetric equilibrium must necessarily exist.
Proof of Proposition 5. By contradiction, suppose that the asymmetric game has an equilibrium with \(x_j > x_g \), where \(g < j \) (and thus \(c_g > c_j \)). Consequently, there exists \(X \) such that \(\varphi^j(x_g; X, c_j) > x_g \) and \(\varphi^g(\varphi^j(x_g; X, c_j); X, c_g) = x_g \). As best replies are increasing on \([\bar{c}, \bar{c}]\) this implies that

\[
\varphi^g(\varphi^j(x_g; X, c_j); X, c_g) \geq \varphi^g(\varphi^j(x_g; X, c_j); X, c_j).
\]

Hence there exists \(x_g \) such that \(\varphi^j(x_g; X, c_j) > x_g \) but \(x_g \geq \varphi^g(\varphi^j(x_g; X, c_j); X, c_j) \), which in turn by (13) of Lemma 3 implies that the asymmetric two-player game with best-reply function \(\varphi(x; X, c) \) must have an asymmetric equilibrium, a contradiction. Hence \(x_g \geq x_j \) and the result follows by induction. To prove the version for strictly increasing replies, suppose that the asymmetric game has an equilibrium with \(x_g = x_j = x \). Thus there exists \(X \) such that \(\varphi^g(x; X, c_g) = \varphi^j(x; X, c_j) = \varphi^g(x; X, c_g) \), contradicting \(\varphi^g(x; X, c_g) > \varphi^g(x; X, c_j) \) as implied by strict monotonicity.

□

References

Co-editor Johannes Hörner handled this manuscript.

Manuscript received 10 April, 2015; final version accepted 25 July, 2016; available online 8 August, 2016.