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Abstract:

This paper discusses methods to quantify risk and uncertainty in 
macroeconomic forecasts. Both, parametric and non-parametric procedures are 
developed. The former are based on a class of asymmetrically weighted normal 
distributions whereas the latter employ asymmetric bootstrap simulations. Both 
procedures are closely related. The bootstrap is applied to the structural 
macroeconometric model of the Bundesbank for Germany. Forecast intervals 
that integrate judgement on risk and uncertainty are obtained. 

Keywords: Macroeconomic forecasts, stochastic forecast intervals, risk, 
uncertainty, asymmetrically weighted normal distribution, asymmetric bootstrap. 
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Non-technical summary 

 In this paper, procedures for the quantification of risk and uncertainty in 

macroeconomic forecasts are developed. The focus is on the integration of 

information about asymmetric developments, upward or downward risks, in the 

input factors of forecast variables. Parametric as well as non-parametric 

procedures are discussed. 

 The parametric approach is based on asymmetrically weighted normal 

distributions, using a logistic function to obtain a continuous density. This allows 

to integrate asymmetric information about the distribution of input factors, which 

may be correlated, and to aggregate them consistently. To generate 

asymmetry, this procedure requires weaker modifications of the underlying 

normal distribution than other widely used methods.

 More complex forecast models do not allow to determine forecast 

uncertainty analytically. In these cases stochastic simulation techniques can be 

applied. This paper uses non-parametric bootstrap procedures as they 

circumvent the need to make artificial assumption about the distribution of the 

stochastic shock terms in the model. To generate forecast intervals for the 

endogenous variables, the bootstrap recurs to the same asymmetric weighting 

scheme as in the parametric approach.

 Finally, the asymmetric bootstrap is applied to the econometric model of 

the Bundesbank. The Bundesbank model is an empirically estimated, dynamic 

and non-linear macroeconometric model for Germany with about 180 variables. 

If the estimated residuals of the model are used asymmetrically in the bootstrap, 

asymmetric forecast intervals of the endogenous variables are obtained. 

However, the asymmetry of the shocks is partly absorbed within the model 

structure such that the endogenous variables of interest, like real growth and 

inflation, exhibit markedly less skewness than the shocks. 



Nicht-technische Zusammenfassung 

 In der vorliegenden Arbeit werden Methoden zur Quantifizierung von 

Risiko und Unsicherheit bei der Prognose makroökonomischer Variablen 

entwickelt. Insbesondere wird untersucht, wie sich Informationen über 

asymmetrische Entwicklungen, d.h. auf- oder abwärts gerichtete 

Prognoserisiken, bei den Bestimmungsfaktoren von Prognosevariablen 

berücksichtigen lassen. Dabei werden sowohl parametrische als auch nicht-

parametrische Verfahren diskutiert.

 Die parametrischen Verfahren beruhen auf einer asymmetrisch 

gewichteten Normalverteilung, wobei eine logistische Funktion verwendet wird, 

um eine stetige Dichtefunktion zu erhalten. Damit lassen sich asymmetrische 

Informationen über die Verteilung von Bestimmungsfaktoren, die untereinander 

auch korreliert sein dürfen, abbilden und konsistent aggregieren. Das Verfahren 

erzeugt Asymmetrie mit einer deutlich schwächeren Modifikation der zugrunde 

liegenden Normalverteilung als andere verbreitete Methoden.

 Komplexere Prognosemodelle lassen eine analytische Bestimmung von 

Prognoseunsicherheit und Prognoserisiken nicht mehr zu. In diesen Fällen 

können stochastische Simulationen eingesetzt werden. In dieser Arbeit werden 

nicht-parametrische Bootstrap-Verfahren verwendet, die keine willkürlichen 

Annahmen über die Verteilung der stochastischen Schocks des Modells 

erfordern. Bei den Bootstrap-Ziehungen wird das gleiche asymmetrische 

Gewichtungsschema wie bei den parametrischen Verfahren benutzt, um 

Prognoseintervalle für die endogenen Variablen zu schätzen.

 Das asymmetrische Bootstrap-Verfahren wird auf das ökonometrische 

Bundesbankmodell angewandt. Das Bundesbankmodell ist ein empirisch 

geschätztes, nichtlineares und dynamisches strukturelles Makromodel für 

Deutschland mit etwa 180 Variablen. Werden die stochastischen Störterme 

beim Bootstrap asymmetrisch verwendet, so ergeben sich asymmetrische 

Prognoseintervalle für die endogenen Variablen. Wie sich jedoch zeigt, werden 



asymmetrische Schocks im Modellzusammenhang teilweise absorbiert, so dass 

die interessierenden endogenen Variablen wie reales Wachstum und Inflation 

eine deutlich geringere Schiefe aufweisen. 
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1

Quantifying Risk and Uncertainty in Macroeconomic 
Forecasts

1. Introduction 

 Monetary policy decisions are based on forecasts of inflation, output 

growth and many other macroeconomic variables. Central banks often rely on 

deterministic point forecasts, usually supplemented by verbal qualifications. 

Frequently, baseline forecasts are complemented by alternative scenarios, 

singled out as likely alternatives to the baseline. The obtained range of point 

forecasts, however, is not a forecast interval which covers a well-defined 

probability of outcomes. 

Deterministic forecasts do not allow to quantify the associated uncertainty 

(dispersion of the distribution) and risk (degree of asymmetry) properly. Wallis 

(2007, 54) points out that “it is now widely recognised that a point forecast is 

seldom sufficient for well-informed decision-making in the face of an uncertain 

future, and that it needs to be supplemented with an indication of the degree of 

uncertainty.” Uncertainty intervals underline the inherently uncertain nature of 

forecasts, they enhance the transparency of a central bank in its communication 

with the public, and they facilitate the internal discussion by focussing it on the 

sources of uncertainty and their quantitative importance (Blix and Sellin, 1999). 

The shape of the uncertainty intervals provides the public with information about 

the forecast risks. Depending on the loss functions of the public, information 

about forecast risks can be as important as information about forecast 

uncertainty. As an example, consider large losses only in case of deflation, and 

a positive inflation forecast with low uncertainty but a large downward risk. 

Central banks do not rely on a single econometric model to generate their 

forecasts. Usually a suite of models is applied and subjective judgements play 

an important role. The quantification of forecast risk and uncertainty in such an 

environment is not a straightforward task. Resulting in the well-known “fan 

charts”, the Bank of England (Britton, Fisher, and Whitley, 1998) pioneered a 

parametric procedure to determine the distribution of a linear combination of 



skewed, yet independent, random input variables. The two-piece normal 

distribution is utilised to introduce skewness into the forecast input variables. 

Recently, at the Bank of Portugal a parametric method was developed that 

achieves skewness by a combination of normal and exponential variates and 

allows for correlated input variables (Novo and Pinheiro, 2005).

In this paper, we discuss a parametric and a non-parametric procedure for 

quantification of risk and uncertainty in macroeconomic forecasts, mainly 

focussing on risk. Whereas the former procedure is based on a generalisation 

of the normal distribution, the latter relies on bootstrap simulations. Skewness is 

introduced by an asymmetric weighting scheme.

Section 2 introduces a parametric class of asymmetrically weighted normal 

(AWN) distributions for constructing forecast intervals. In section 3 a non-

parametric asymmetric bootstrap procedure to calculate forecast intervals that 

take risk into account is discussed. This procedure is closely related to the AWN 

distributions investigated in section 2. The methods presented in both sections 

allow to handle skewness without affecting the mean and the variance of the 

input variables. In section 4 the asymmetric bootstrap is applied to generate 

forecasts with the structural macroeconometric model of the Bundesbank. 

Section 5 concludes. 

2. Forecast intervals based on AWN distributions 

 To quantify forecast risks, according to Azzalini (1985, 171): “it would be 

ideal to have at hand a class of densities with the following properties: “strict 

inclusion” of the normal density, mathematical tractability, wide range of the 

indices of skewness and kurtosis.” Based on the Gaussian normal distribution, 

we introduce a class of asymmetrically weighted normal (AWN) distributions 

which comes close to these requirements. AWN distributions include the normal 

as a special case, they allow to quantify asymmetric risk by a single, easily 

interpretable parameter, the density of a linear combination of correlated AWN 

variables can be obtained by standard numerical integration techniques, and for 

one of the AWN distributions, there is no lower or upper bound for its skewness 

and no upper bound for its kurtosis.
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2.1. Forecasts as linear combinations of input factors 

 Assume that the deterministic point forecast for a macroeconomic variable 

(W) , i.e. inflation or output growth, is a linear combination of input variables 

k(X )

(1) h 1,h 1,h K,h K,hw x ... x , h T 1, ... ,T H

where the k,h are (estimated or calibrated) interim multipliers or elasticities and 

h denotes the forecast horizon.1 The forecasts may be the output of an 

econometric forecasting model, they may be based on expert judgement, or on 

a combination of both.  

We assume that the forecast errors of the input variables, denoted as 

k,t k,t k,tZ X X , are normal, with zero mean (unbiasedness) and variance 2 >

0:

(2)
21 z

2

2

1(z; ) e
2

We are interested in the density of a linear combination of forecast errors 

h h hY W W :

(3) h 1,h 1,h K,h K,hy z ... z

The error variables Zk may be correlated with covariance matrix . The density 

of their linear combination (3) can be obtained by standard procedures (Fisz, 

1976). The resulting density would be symmetric, however. 

2.2. The asymmetrically weighted normal (AWN) 
distribution

 Often, in a specific forecasting round, the forecaster may have information 

which leads him to judge the forecast risks to be asymmetric, tilted upward or 

1 We adopt the common convention to use uppercase letters for random variables and 
lowercase letters for their realizations. 



downward. Hence, led by subjective judgement, he may wish to deviate from 

the normal distribution by rendering the forecasts asymmetric.

Despite the importance of risk in macroeconomic forecasts, there is no 

established procedure for quantification of these risks. According to Machina 

and Rothschild (1987), there are two basic requirements for a measure of risk. 

First, the measure of risk must be related to the probability distribution of the 

underlying random variable, e.g. inflation or output growth. Second, the risk 

measure should be linked to preferences of the forecasting agent. Often, 

quadratic loss functions are used in order to represent such preferences, as 

pointed out by Woodford (2003, ch. 6). However, loss functions can take many 

functional forms. Kilian and Manganelli (2007), for example, proposed an 

asymmetric loss function for the risk of deflation and excessive inflation.  

Because there is no generally accepted specification of a loss function, in this 

paper we express the risk assessment of the forecaster simply as a probability. 

An upward (downward) risk in the forecast of an input factor is measured by the 

probability of a positive (negative) forecast error.

Assume that for the forecast period an upward forecast risk with probability  is 

expected. To take this into account, the random variable Z is transformed 

according to Z J( ) Z (1 J( )) Z , where J( ) is an indicator variable which 

takes the value 1 with probability  and the value 0 with probability 1 – . The 

density function of the variable Z is defined as 

(4)
2(1 ) (z; ) if z 0

f(z; , )
2 (z; ) if z 0

with 0 1 denoting the probability of an upward risk.2 The (risk–adjusted) 

random variable Z has an asymmetrically weighted normal (AWN) distribution 

with density f(z; , ) : Z AWN( , ) .

The transformation shifts probability mass from the left hand side of the 

underlying normal distribution to the right hand side (or vice versa) by 

2 The asymmetric weighting scheme can be applied to any parametric density function. In 
section 3 we apply the asymmetric weighting scheme non–parametrically in stochastic model 
simulations.
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proportionally scaling the density up or down, respectively. The AWN 

distribution has two parameters,  as a measure of uncertainty and  as a 

measure of risk (asymmetry). For  = 0.5 the normal distribution with zero mean 

is obtained as a special case. For 1 ( 0)  the so called half-normal 

distribution results, which may be regarded as extreme asymmetry. The mode 

of the AWN is zero. The AWN density jumps at z = 0, the absolute size of the 

jump being 2 12 (0) . For the interval [a,b] , with a b , we obtain: 

(5) P(z 0) P(a z b)
P(z 0) 1 P( b z a)

Hence, the asymmetric weighting scheme does not distort the relative 

probabilities of the underlying normal distribution (z). This is a desirable 

feature because no a priori knowledge with regard to more or less likely sub-

intervals for upward or downward risks is implied. The mean of the AWN is 

(6)
22m (2 1) 0.798(2 1)

and its higher (central) moments turn out as: 

(7)

2 2

2 2

4 4 2 2

V m
S m[2 m ]
W 3[ m ] 2m

where V denotes the second, S the third and W the fourth central moment. For 

 = 0.5 the moments of the normal distribution are obtained: m = 0, V = 2, S = 

0, W = 3 4.

The forecaster may not wish that the risk assessment changes the mean and 

variance of an input variable. In this case the following modification of the 

density function (4) can be applied: 

(4’)  1

2

2(1 ) (z; ) if z 0
f(z; , )

2 (z; ) if z 0

with  1 2
1,

1



Similar to the two-piece normal distribution (John, 1982), the underlying normal 

distribution has variance 1 ( 2) for negative (positive) values of Z. The 

probability for positive outcomes for the variable Z is 

20
P(z 0) 2 (z, )dz 2 / 2 , as desired. Moreover, its mean and 

variance are zero and 2, respectively: 

(7’)  

0

1 20

2 2
1 2

E(z) 2(1 )z (z, )dz 2 z (z, )dz

1 12(1 )[ 2 / ] 2 [ 2 / ] 0
2 2

(7’’)  

0 2 2
1 20

2 2
21 2

V(z) 2(1 ) z (z, )dz 2 z (z, )dz

2(1 )[ ] 2 [ ]
2 2

Hence, despite skewness, the mean and the variance of the distribution remain 

unchanged. Also note that no new parameter was introduced to get this 

property. The skewness s(z) and the kurtosis w(z) are given by  

(7’’’)   2 1 2 3s(z) 2    and   w(z) 9
11

.

Obviously, there is no upper or lower limit for skewness and no upper limit for 

kurtosis. The lowest kurtosis equals 3 and is obtained with  = 0.5, i.e. in the 

case where Z is normally distributed. 

2.3. The logistic asymmetrically weighted normal 
(LAWN) distribution 

In principle, the density of the linear combination (3) of several AWN–random 

variables could be calculated. However, due to the discontinuity, this exercise is 

burdensome because a rapidly increasing number of cases has to be treated 

separately. For this reason we apply a continuous approximation of the AWN.

Consider the logistic function 
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(8)
z

z

eH(z) , z ; 0 H(z) 1
1 e

Its derivative H’(z) is a density, which is symmetric about zero. The logistic 

asymmetric weight function is now defined as 

(9) G( z; ) (1 )(1 H( z )) H( z)  

where 0 1, and  > 0 is a technical coefficient that controls the closeness 

of the approximation to the step function (4). Chart 1 shows the logistic weight 

function (9) for upward risks [ = 0.75, = (1, 10)], and downward risk: 

[ = 0.35, = 10]. 

With increasing  the approximation to the weighting scheme of the AWN 

becomes closer. In the limit we get: 

(10)  
, z 0

lim G( z; )
1 , z 0

We define the logistic asymmetrically weighted normal (LAWN) distribution for 

the random Variable Z as: 

(11)  f(z; , , ) 2G( z; ) (z; )

where (z; )  is the density of a normal random variable Z with zero mean and 

variance 2: Z LAWN( , , ) .



It has yet to be shown that (11) is indeed a density. Azzalini (1985, 172) proved 

the following

Lemma: Let  be a density function symmetric about zero, and  an 

absolute continuous distribution function such that ’ is symmetric about 

0. Then 2 ( z) (z) ( z )  is a density function for any real .

From this lemma we deduce the 

Corollary: If 2 ( z) (z)  is a density, and G( z) is the logistic weighting 

function (9) then 2G( z) (z)  is a density function as well. 

Proof: The logistic function H in (8) satisfies the requirements of  in the 

lemma. Since G( z) in (9) can be written as (2 1)H( z) 1 , the 

following holds: 

2G( z) (z)dz

(2 1) 2H( z) (z)dz 2(1 ) (z)dz

(2 1) 2(1 ) 1

Since, in addition, all other conditions for density functions are fulfilled by 

(11), f(z; , , ) 2G( z; ) (z; ) is a density function. 

If the forecaster wants to preserve the mean and variance of the risk-adjusted 

forecast, a modification similar to (4’) can be applied 

(11’) 1 2f(z; , , ) 2(1 )(1 H( z)) (z; ) 2 H( z) (z; )

where 1, 2 are defined in (4’).  

Chart 2a shows the density function (11) for [ 1, = 0.5, = 0] (standard 

normal density), [ 1, = 0.75, = 3] and [ 1, = 0.75, = 100]. Chart 2b 

shows the same distributions with mean and variance preserved according to 

(11’).
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Table 1 provides numerical moments of the LAWN–distribution. For  = 0.5 

(any ) or for  = 0 (any ) the normal distribution is obtained as a special case. 

With increasing  the moments of the LAWN distribution rapidly approach to 

those of the AWN distribution.

Table 1: Moments of LAWN - distributions 

P(z > 0) m s V w 

0.50 any 0.50 0 0 1 3 
any 0 0.50 0 0 1 3 

0.75 5 0.70
(0.64)

0.38
(-0.04)

-0.29
 (-1.73) 

0.86
 (1.00) 

3.52
 (6.72) 

0.75 10 0.72
(0.69)

0.39
 (-0.01) 

-0.33
 (-1.80) 

0.85
 (1.00) 

3.64
 (6.90) 

0.75 100 0.75
(0.74)

0.40
 (-0.00) 

-0.35
 (-1.84) 

0.84
 (1.00) 

3.68
 (7.00) 

0.75 0.75
(0.75)

0.40
 (-0.00) 

-0.35
 (-1.84) 

0.84
 (1.00) 

3.69
 (7.00) 

 = 1 ; mean = m = E(Z), variance = V = E(Z-m)2, skewness = s = E(Z-m)3/V3/2 ,                 
kurtosis = w = E(Z-m)4/V2; mean and variance preserved values in brackets

As the figures in brackets of Table 1 show, applying the mean- and variance-

preserving modification effectively fixes the mean and the variance of the LAWN 

distribution at 0 and 1, respectively. However, skewness as well as kurtosis 

increase sharply, indicating a stronger deviation from the underlying normal.  



2.4. Comparison to other skewed distributions 

 In this section we briefly discuss three alternative skewed distributions, all 

based on the normal, and compare them to the LAWN. 

Azzalini (1985) defines the “skew-normal distribution“ (SN) as3

(12)  f(z; , ) 2 ( z) (z; )

where
21 z

z21(z; ) e , ( z) (t)dt
2

are the density and the distribution function of the normal, respectively. The 

shape parameter  generates skewness. For  the SN distribution 

converges to the half-normal. The normal is included as a special case for  = 

0.

At the Bank of England, Britton, Fisher and Whitley (1998) use the “two-piece

normal distribution“ (TPN) with density 

(13)  

1
1

1 2
1 2

2
2

1 2

2 (z; ), z 0
f(z; , )

2 (z; ), z 0

Here, j(z; ) , j=1,2, denotes the density of the normal distribution with zero 

mean and variance 2
j . The TPN distribution is also discussed by Blix and Sellin 

(1998, 1999). As noted by Wallis (2007, 23) “… the asymmetric distribution has 

no convenient multivariate generalisation“.

At the Bank of Portugal, Novo and Pinheiro (2005) developed the “skewed 

generalized normal distribution“ (SGN) as a linear combination of two 

independent random variables 1 2 1 3 2Z Z Z , where 1 3 2, , 0 .

Here, Z1 is a standard normal variable and Z2 follows an exponential 

distribution. The density is 

3  See also: A. Azzalini (2005-11-23) : http://azzalini.stat.unipd.it/SN/index.html

10 
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(14)  

21

2

1/ 3

3

2

z1( )
2

3
2

1 2 3 21/ 3
3

, 3
3 3

1 e 0
2

f(z; , , )
2e e z 0

where 1/ 3 1/ 3 2
1 3 2 31 2 / 2 ( / )  and 1/ 3 1/ 3 2

3 2 32 ( 2 / )  are 

constants. The function 
2, (.)  represents the distribution function of a normal 

variable.

Chart 3.1 shows the LAWN(1, 0.388, 10) and the LAWN(1, 0.4, 100) 

distribution. Charts 3.2 to 3.4 show the SN(1, -0.325), the TPN(1.5, 1), and the 

SGN(0, 1, 3) distribution, all parameterised such that P(z 0) 0.4 .

Table 2 provides the moments of the asymmetric distributions shown in Charts 

3. The final column gives the Jarque-Bera (JB)–statistic for testing normality: 



(15)   
2

2n w 3JB s
6 2

where the sample size was arbitrarily set to n = 100. The widely used JB–

statistic, which is independent of 2, tests whether a linear combination of 

skewness and kurtosis deviates from the values implied by the normal 

distribution (s = 0, w = 3).4 Measured by the JB–statistic, the LAWN distribution 

yields the smallest distortion of the underlying normal distribution, closely 

followed by Azzalini’s SN distribution. Achieving the same upside risk of  = 

0.40 with the TPN distribution results in a somewhat bigger distortion of the 

normal. However, in all three cases the deviation from the normal would not be 

statistically significant at the 5 % level. 

Table 2: Moments of asymmetric distributions 

Distribution P(z > 0) m s V w JB 

LAWN(1, 0.39, 10) 0.40 -0.18 0.17 0.97 3.12 0.53
LAWN(1, 0.4, 100) 0.40 -0.16 0.16 0.97 3.10 0.46

SN(1, -0.325) 0.40 -0.25 -0.01 0.94 3.45 0.85
TPN(1, 3) 0.40 -0.40 -0.31 1.59 3.07 1.64
SGN(0, 1, 3) 0.40 0.00 1.57 6.67 7.34 119.28

LAWN(1, 0.37, 10) *) 0.40 0.01 0.83 1.00 3.82 14.18
LAWN(1, 0.4, 100) *) 0.40 0.00 0.65 1.00 3.50 8.12
Mean = m = E(Z), variance = V = E(Z-m)2, skewness = s = E(Z-m)3/V3/2 , kurtosis = w = E(Z-
m)4/V2; The critical values of the JB–statistic at the 5 % significance level for n = [50, 100, 200] 
are [5,00,  5,45,  5,73].  *) Mean and variance preserved.

In contrast, using the SGN distribution to introduce asymmetry yields a huge 

distortion of the normal. Partly this may be due to the fact that the SGN fixes the 

mean at zero. The final two rows of Table 2 display the moments of the LAWN 

distribution calculated under the condition that asymmetry does not change the 

4 Asymptotically the JB – statistic has a 2 – distribution with 2 degrees of freedom and a critical 
5 % value of 5.99; see Thadewald and Büning (2007).
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mean and variance. In this case the JB–test rejects normality. However, 

compared to the SGN distribution, the same degree of asymmetry is obtained 

with a much smaller deviation from normality.

2.5. The multivariate asymmetrically weighted normal 
distribution (MLAWN) 

 To calculate the distribution of a linear combination of several LAWN–

distributed input factors, which may or may not be correlated, we generalise the 

logistic weight function (9) in the following way: 

(16)  K
i i ii 1

G(z; , ) G (z ; , )

where   
i

i i

x

i i ix x
e 1G (1 )

1 e 1 e

1 2 kz (z ,z , ...,z )    and 1 2 k( , , ..., )

With 1 20.75, 0.75 , charts 4.1 and 4.2 show the bivariate logistic weight 

function for (3,10) .

Increasing  yields a more pronounced step function. The following limits apply: 

(17)  

1 2 k 1 2 k

1 2 k 1 2 k

1 2 k 1 2 k

... z ,z , ...,z 0
(1 ) ... z 0,z , ...,z 0

lim G(z; , )
...
(1 )(1 )...(1 ) z ,z , ...,z 0



Chart 4.3 shows the weight function for combined risks (upward risk in Z1 and 

downward risk in Z2): 1 2[ 0.75, 0.35, 5] .

The density of a multivariate logistic asymmetrically weighted normal (MLAWN) 

distribution is defined as: 

(18)  f(z; , , ) G(z; , ) ( );z

where (.) is the density of the multivariate normal and  is a normalising 

constant. Charts 5.1 to 5.3 show the MLAWN for the parameters 

1 2 1 2[ 0.75, 0.75, 5, 1]  and (0, 0.8, 0.8) :
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In Table 3 it is shown how the weighting scheme influences the probabilities for 

certain outcomes under the MLAWN compared to the MLAWU uniform 

distribution in the first row. 

Table 3: Probabilities under the MLAWN distribution 

 P(z1>0,

z2>0)

P(z1>0,

z2<0)

P(z1<0,

z2>0)

P(z1<0,

z2<0)

MLAWU *) 0.55 0.19 0.19 0.07 

MLAWN (  = 0) +) 0.55 0.19 0.19 0.07 

MLAWN(  = 0,8) +) 0.76 0.07 0.07 0.10 

MLAWN(  = -0,8) +) 0.24 0.36 0.36 0.04 
*) Multivariate logistic asymmetrically weighted uniform distribution                                           
with f(zi) = 1 for –0.5 < zi < 0.5 and 0 else; 1 = 0,75, 2 = 0,75,  = 20 

+) Multivariate logistic asymmetrically weighted normal distribution; 1 = 0,75, 2 = 0,75,  = 20 

We now turn to the distribution of a linear combination of MLAWN–distributed – 

possibly dependent – random variables, i.e. we want to calculate the aggregate 

density of Y in (3). Consider the following transformations: 

(19)  

1 1

K 1 K 1

K 1 1 2 2 k K

Y Z
...
Y Z
Y Z Z ... Z

Assuming existence of the inverse functions we may write 

(19’)

1 1

K 1 K 1

1 K 1
K K 2 K 1

K K K

Z Y
...
Z Y

1Z Z Z ... Z

The partial derivatives of (19’) are 



(20)  i

j K
1 2

K K K

1 0 ... 0
0 1 ... 0

z 1D [ ] det(D)... ... ... ...
y

1...

Hence, the joint density is: 

(21) K 1 1 K 1 K 1
s 1 K 1 K 1

K K

y y ... y 1h (y ,...,y ; , ) h y ,...,y , ;, , , ,,

The marginal density of the linear combination (YK) can be obtained by 

integrating out the variables Y1 … YK-1:

(22)  s 1 K 1 K 1h(y) ... h (y ,...,y )dy ...dy

As an example, the density of 1 1 2 2y z z  with 1 1, 2 0.5  and 

1 2 1 2[ 0.75, 0.75, 1, 20]  is shown, where both input variables 

are correlated with  = (0, 0.8) (chart 6a) and with  = (0, -0.8) (chart 6b). 

The probabilities for upward and downward risks are given in Table 4. Strong 

upward risks of 75 % in both input factors are to some extent moderated 

(amplified) in the aggregate if the input factors are negatively (positively) 

correlated.
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Table 4: Aggregate upward and downward risks 

P(y < 0) P(y > 0) 

- 0.8 0.38 0.62 

0 0.25 0.75 

+ 0.8 0.16 0.84 

1 = 2 = 0.75; 1 = 2 = 1; 1 = 1, 2 = 0.5;  = 20 

3. Forecast intervals based on asymmetric bootstrap 
simulations

 Many economic models do not allow for an analytical investigation of 

forecast risk and uncertainty. This can for example be due to the size of the 

model or due to non-linearities. In this case, stochastic simulations can be used 

to obtain estimates of forecast uncertainty. Stochastic simulations require 

random draws from the model’s shocks. While this can be achieved using 

distributional assumptions, it is also possible to use the distribution-free 

bootstrap-approach. In the following it is discussed how the bootstrap approach 

can be modified to incorporate risk and uncertainty assessments into the 

stochastic simulations. The approach chosen generates shocks which have an 

AWN distribution, if the residuals of the model are normally distributed. 

3.1. Stochastic simulations

 Consider the reduced form of a dynamic economic model consisting of g 

equations given by 

(23)   t t 1 t t ty F(y , y ,x ,u ; ) t 1...T.  

F denotes a g-vector of functions, yt (yt-1) denotes a g-vector of endogenous 

(lagged endogenous) variables, xt denotes a k-vector of exogenous variables, ut

denotes a g-vector of shocks,  is a vector of coefficients, and t = 1…T denotes 

the estimation sample of the model. Estimation yields ˆ  and tû  for t = 1…T. 



The model is simulated M times, using random shocks m
hû  in every forecast 

period h. Starting with m
T Tŷ y , in simulation m the forecast 

(24)   m m m
h h 1 h h ˆˆ ˆ ˆ ˆy F(y ,x ,u ; ) h T 1,...,T H; m 1,...,M  

emerges.5 The stochastic simulation thus gives samples 1 2 M
h h hˆ ˆ ˆy ,y ,...,y  for 

every forecast horizon h. From these samples, the statistics of interest like 

mean, variance, skewness or confidence bounds can be computed. 

3.2. Bootstrap simulations

 For stochastic simulations, random shocks m
hû  are needed for every 

forecast period h and every run m. One way of generating these shocks is 

drawing random variables from an appropriate distribution. However, often it is 

unclear what the appropriate distribution is. In this case, it can be convenient to 

resort to the bootstrap method. The bootstrap method uses the set of the 

estimated residual vectors 1 2 Tˆ ˆ ˆu ,u ,...,u  from which shocks are drawn with 

replacement.6 So for every forecast period h and every run m, a number  from 

the set 1,2,...,T  is chosen randomly, and the vector û  is used as the vector 

of shocks m
hû . The bootstrap method preserves all moments of the empirical 

residuals like for example variance, skewness and correlations. 

3.3. Asymmetric bootstrap

 In certain situations, as discussed above, it might be preferable to adjust 

the moments of the empirical residuals in the stochastic simulations in a certain 

way. Information beyond those contained in the model might point to important 

changes in moments. For instance, rising political tensions in major OPEC 

countries or the expectation of a very active hurricane season in the Gulf of 

5 In principle one could also draw random values for ˆ . However, we abstract from parameter 
uncertainty in this work. 

6 If the residuals have non-zero means, they are recentered prior to resampling as suggested 
by Berkowitz and Kilian (2000). 
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Mexico can be expected to increase the level and the volatility of the oil price. It 

can also be appropriate to model asymmetric shocks, for example due to 

upcoming elections which will be won by a liberal party with high probability or 

by a socialist party with low probability. In these cases the standard bootstrap 

method can be modified in order to incorporate judgement about future shocks.

Suppose that the forecaster wants to add judgement about mean and volatility 

of the shock z, where z denotes the i-th element of m
hû  ( m

i,hˆz u ), i.e. the shock 

to equation i for the forecast horizon h in the run m. This can of course be 

achieved by simply transforming the shock z according to 

(25)   z a bz            b 0  

where a is the judgemental mean, b is the judgemental volatility factor for shock 

z , and z denotes the original shock. Note that these transformations do not 

change the correlations with other shocks. Of course, a and b can differ for 

each forecast horizon h and each equation i, but they are constant for every run 

m.

If the forecaster wants to incorporate judgement about asymmetric risk, this can 

be achieved by applying the transformation

(26)   z J z 1 J z                     with J J q

where J(q < ) is the indicator function that takes the value 1 if the condition q < 

 is satisfied and 0 else; q is the realisation of a random variable which is 

uniformly distributed over the interval [0,1] and  denotes the judgemental 

probability that the shock will be larger than zero.7 So J(q < ) equals 1 in 

approximately 100  percent of the runs.

If the empirical residuals i,tû  from which the z’s are drawn are normally 

distributed, equation (26) implies that z  has an AWN distribution, i.e. its density 

is given by (4). Note that with  = 0.5, z  is symmetrically distributed regardless 

of the symmetry properties of z.

7  can differ for each forecast horizon h and each equation i, but it is constant for every run 
m.



If one intends to preserve the zero-mean property and the variance of the 

shocks, the formula

(27)   1z  J z  1 J z
1

can be used, which in the case of normally distributed residuals yields the 

density (4’) for z . However, in contrast to (4’), one does not have to assume a 

specific distribution for z. The mean of z  equals zero regardless of the 

distribution of the empirical residuals i,tû , since the expectation of z  is given by

(28)   

1E z E  J z  1 J z
1

1       E z  1 z
1

       0

In order to investigate the variance of z , it is helpful to note that  

(29)   22E J ,   E J 1 J 0,   E 1 J 1  

hold. The variance of z  is given by 

(30)   

2
2

2 2 22

2 2

2

1E z E  J z  1 J z
1

1         E  J z 2 J 1 J  1 J z
1

1         E  z  1 z
1

         E z

If z is symmetric, i.e. if f(z) = f(–z) where f(.) denotes the density function of z, 

then the variance of z equals the variance of z . This means that the variance 

of z  equals the variance of the empirical residuals if the empirical residuals are 

symmetrically distributed. 
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Of course, (26) and (27) can be combined with (25) to generate shocks with 

judgemental mean, volatility and asymmetry. In this case, one first uses (26) or 

(27) to obtain an asymmetric shock z  and then applies (25) to this shock in 

order to obtain an asymmetric shock with mean a and standard deviation b ,

where  is the standard deviation of z .

The correlation of z  with all other shocks equals zero. Therefore, the proposed 

method for generating asymmetries is useful especially if empirical correlations 

are low in absolute value.8 In principle, it is possible to modify the approach 

presented so that correlations can be preserved in many cases. In the 

Appendix, we show how one can generate z  according to (26) and impose 

correlations with another possibly asymmetric shock. However, this modification 

becomes very complicated if many shocks are involved. Furthermore, not all 

asymmetries can be reconciled with all correlations. For example, if two 

variables are supposed to be greater than zero in a large number of cases, i.e. 

if both variables have a high , this can be incompatible with a negative 

correlation between these variables.

If the model’s residuals have a normal distribution, are independent, and the 

model F(.) is linear, the bootstrap approach yields uncertainty and risk 

assessments for the endogenous variables which are identical to those 

obtained analytically in the previous section with the class of AWN distributions.

4. Stochastic forecasts with the Bundesbank model 

 The Bundesbank model is a dynamic non-linear structural 

macroeconometric model for Germany containing about 180 variables of which 

about 40 are exogenous. The model has 50 behavioural equations. In order to 

use this model for stochastic forecasts, it is transformed in two ways. First, the 

exogenous variables are endogenized by specifying equations in which they 

depend on their own past values and possibly other formerly exogenous 

variables. The only variables remaining exogenous are dummies, trends and 

8 This is the case for the Bundesbank model used in Section 4. In this model, more than 90 
percent of the correlations between the residuals do not differ significantly from zero at a 
significance level of 5%. 



tax rates. Second, autoregressive equations are specified for the residuals of all 

model equations, so that these original residuals become endogenous variables 

of the model, and the new residuals of the autoregressive equations are the 

model’s residuals. This last step is convenient in order to obtain residuals which 

are free from autocorrelation.9

4.1. Forecast intervals 

 The stochastic simulations of the Bundesbank model are performed for the 

period from the first quarter of 2006 (henceforth written as 2006q1) to 2008q4. 

The residuals are drawn from the period 1992q1 to 2005q4. We conduct 10,000 

simulations. Since the results will be compared to those of an asymmetric 

bootstrap simulation, we use symmetric residuals here. This is achieved by 

multiplying all residuals of a given run m with a constant  determined by 

2 J q 0.5 1, where again J(q < 0.5) is the indicator function that takes 

the value 1 if the condition q < 0.5 is satisfied and 0 else, and q is the realisation 

of a uniformly distributed random variable in the interval [0,1]. 

Chart 7 shows the resulting forecasts for the four-quarter growth rates of GDP 

and the consumption deflator. Confidence bands centred on the median and 

covering 90% of the forecast distributions are displayed. Each confidence band 

corresponds to a probability mass of 5%. The dotted line indicates the mean. 

As one can see for both variables, the mean is almost indistinguishable from the 

median. This implies that there is at least no apparent sign of asymmetry for the 

variables under study.10 The upward shift in the forecast for the consumption 

deflator in 2007 is caused by the increase in the VAT rate. This tax rate 

increase also leads to a downward shift of GDP growth in 2007. 

9 One of the reasons why the original residuals can be autocorrelated is the fact that the 
estimation samples can differ from the sample used for bootstrapping. Since every equation of 
the Bundesbank model is estimated separately, estimation samples can differ from each other. 
The sample used for bootstrapping is the largest common estimation sample.  
10 The results would be different for example for the growth rate of the energy component of the 
HICP which is strongly asymmetric due to large excise taxes on fuels.
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Chart 7: Fan charts for growth rates of real GDP and consumption deflator 
– symmetric shocks 
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four-quarter growth rate of the consumption deflator 
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Table 5 shows moments of the stochastic GDP and consumption deflator 

forecasts. Skewness is presented for three different types of growth rates: four-

quarter growth rates, quarterly growth rates and annual growth rates. For none 

of these growth rates, the coefficient of skewness exceeds 0.1 in absolute 

value. Thus, there are no indications of asymmetry for the growth rates of both 

variables under study. 

Table 5: Moments of stochastic forecast with symmetric shocks

growth rates moment 2006 2007 2008
four-quarter mean 2.6 3.0 3.2
four-quarter standard deviation 1.0 1.6 1.8
four-quarter skewness 0.0 0.1 0.1
quarterly skewness 0.0 0.0 0.1
annual skewness 0.0 0.1 0.1

growth rates moment 2006 2007 2008
four-quarter mean 1.6 2.9 2.2
four-quarter standard deviation 0.6 1.1 1.4
four-quarter skewness 0.0 0.1 0.1
quarterly skewness 0.0 0.0 0.0
annual skewness 0.0 0.1 0.1

GDP

Consumption Deflator

For four-quarter and quarterly growth rates, the value for a specific year is 
calculated as the average quarterly moment observed in that year 



4.2. Asymmetric bootstrap forecasts 

 In order to investigate the results of asymmetric shocks, we choose to 

assume strongly asymmetric shocks for almost all model equations, aiming at 

creating strongly positively skewed growth rates of GDP.

Using formula (27), we set  to 0.3 for all equations of the expenditure 

components of GDP. Moreover, we set  to 0.7 for all price equations. In almost 

all other equations,  is set either to 0.3 or to 0.7, depending on the equation’s 

initial impact on GDP. If a positive shock in the equation under study is 

supposed to increase GDP growth in the short-run,  is set to 0.3. If such a 

shock decreases GDP growth in the short-run,  is set to 0.7. Due to the 

structure of the model, where higher prices dampen demand, this approach can 

also be expected to generate negatively skewed growth rates of the 

consumption deflator.11 The number of asymmetric shocks amounts to about 80. 

Chart 8 shows the forecasts resulting from the asymmetric shocks. The mean 

now lies above the median for the GDP forecast and below the median for the 

consumer price inflation forecast. However, the differences between mean and 

median are very small. Asymmetries of the confidence bands are not too 

evident either. Only the outer two confidence bands appear to differ in size. 

While the lowest confidence band for GDP seems to be slightly smaller than the 

highest one, the lowest confidence band for the consumption deflator appears 

somewhat wider than the highest one. 

11 Of course, there are several equations where a shock with a positive impact on GDP growth 
also has a positive impact on inflation. The wage equation is an example, where a positive 
shock temporarily leads to higher GDP growth via higher demand, but also to higher prices 
via the production cost channel. With the approach chosen, such an equation would cause 
positively skewed inflation. However, one can expect the shocks to the price equations to 
dominate the skewness of inflation.
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Chart 8: Fan charts for growth rates of real GDP and consumption deflator 
– asymmetric shocks 
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Table 6 displays moments of the stochastic forecasts with asymmetric shocks. 

Again, we consider three types of growth rates. It turns out that the means of 

the forecasts are not affected by the asymmetry of the shocks. Since the 

asymmetry of the shocks does not change their means, this result can be 

interpreted as another indication for the almost linear behaviour of real GDP 

and consumption deflator growth in the Bundesbank model. The standard 

deviations of consumer price inflation also remain unchanged with respect to 

the simulation with symmetric shocks. Those of GDP growth, however, increase 

by 20 to 40 %. The increase is strongest in the first year and weakest in the 

third. While the method used for generating asymmetric shocks leaves their 

standard deviations unchanged, the asymmetric shocks are assumed to be 

independent. In the case of real GDP growth, ignoring the interdependencies 

between the shocks apparently leads to higher volatility. 



Table 6: Moments of stochastic forecast with asymmetric shocks

growth rates moment 2006 2007 2008
four-quarter mean 2.6 3.0 3.2
four-quarter standard deviation 1.4 2.0 2.2
four-quarter skewness 0.5 0.3 0.2
quarterly skewness 0.5 0.4 0.4
annual skewness 0.4 0.2 0.2

growth rates moment 2006 2007 2008
four-quarter mean 1.6 2.9 2.2
four-quarter standard deviation 0.6 1.1 1.4
four-quarter skewness -0.6 -0.2 -0.1
quarterly skewness -0.7 -0.5 -0.4
annual skewness -0.5 -0.2 -0.1

Real GDP

Consumption Deflator

For four-quarter and quarterly growth rates, the value for a specific year is 
calculated as the average quarterly moment observed in that year  

The skewness of the variables under study clearly differs from zero. While the 

skewness of real GDP growth is positive, consumer price inflation is negatively 

skewed. Evidently, the coefficients of skewness depend on the growth rates 

used. Annual and four-quarter growth rates exhibit less skewness in absolute 

value than quarterly growth rates. The reason is that the former growth rates 

strongly depend on the sum of four quarterly shocks, whereas quarterly growth 

rates are rather determined by the shocks of a specific quarter.12 For the same 

reason, the degree of asymmetry decreases over time. In the third year, due to 

the dynamics of the model, shocks from all three years affect the simulation 

results, whereas in the first year, only the shocks of the first year matter. 

In general, the skewness of aggregates in large interdependent models can 

always expected to be considerably smaller than the skewness of the shocks. 

This is related to the following property of skewness 

12 The sum of several independent equally asymmetric shocks is less asymmetric than the 
individual shocks, because the sum approaches normality as stated by the central limit 
theorem. 

 
 
 
 26

 



27

(31)   
n

i i
i 1

ss z          with s s z  for i 1,2,...,n
n

where the zi’s are i.i.d. random variables. For the purpose of illustration, it might 

be helpful to consider an aggregate that is affected by the sum of 80 i.i.d. 

shocks which is the number of asymmetric shocks used in the stochastic 

simulation. The skewness of this aggregate would be about 9 times smaller in 

absolute value than the skewness of the shocks. 

While the skewness of shocks with  set to 0.3 equals 1.4, the skewness of 

GDP growth only equals 0.5 in the first year. Similarly, while the skewness of 

shocks with  set to 0.7 equals –1.4, the skewness of consumer price inflation 

attains only –0.7 in the first year. These results indicate that a considerable 

amount of asymmetry is indeed absorbed in the aggregation and propagation of 

the shocks. However, given that the absolute skewness of the TPN distribution 

and of the SGN distribution, for example, cannot exceed 1 and 2, respectively,13

the coefficients of skewness observed in the first year can still be regarded as 

pronounced at least in absolute terms.

For four-quarter and annual growth rates in the second and third year, the 

absolute values of skewness appear relatively small given the large asymmetry 

of the shocks.

In order to inspect the nature of the asymmetries in detail, it is interesting to look 

at the distribution for a single forecast horizon. Consider the four-quarter growth 

rates of real GDP and consumer price inflation in 2007q1. With the asymmetric 

stochastic simulations, the former has a skewness of 0.24, and the latter of  

–0.24. One would thus expect the densities of both variables to look broadly like 

mirror images of each other in this case. With the symmetric simulations, both 

coefficients of skewness equal 0.05. 

In Chart 9, histograms containing the mentioned growth rates of 2007q1 in their 

standardized form, i.e. after mean subtractions and division by their standard 

deviations, are displayed. The upper panels contain one histogram for the 

13 For a proof, see Novo and Pinheiro (2005). 



simulation with asymmetric shocks and one histogram for the simulation with 

symmetric shocks. The lower panels contain the same data as the upper 

panels, but here one histogram contains only the growth rates of GDP and the 

other only the growth rates of the consumption deflator. 

The histogram for the simulation with asymmetric shocks, shown in the upper 

left panel, shows that the upward skewed growth rate of GDP has relatively few 

moderately positive and extremely negative observations, but relatively many 

moderately negative and extremely positive observations. For the consumption 

deflator, indeed a mirror image emerges. The histogram in the upper right 

panel, displaying the results of the simulation with symmetric shocks, does not 

reveal obvious differences between both variables. 

Chart 9: Histograms of 2007q1
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Turning to the lower left panel for the comparison of the real GDP growth rates 

in the symmetric and asymmetric case, it is striking that differences between 

both cases seem to be very small. In the asymmetric case, slightly more
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extremely positive and moderately negative values and slightly less extremely 

negative and moderately positive values appear to be observed. In contrast to 

that, for consumer price inflation the differences between the asymmetric and 

the symmetric case are much larger, especially for moderately positive or 

negative observations. This might be explained by the fact that the skewness of 

real GDP growth in the asymmetric case increases only by about 0.2 with 

respect to the symmetric case, whereas the skewness of consumer price 

inflation decreases by about 0.3. 

In any case, it seems fair to say that the strong asymmetries of the shocks do 

not yield strongly asymmetric four-quarter growth rates in the fifth quarter after 

the beginning of the forecast. Since in subsequent periods, asymmetries of the 

four-quarter growth rates are generally even less pronounced, it can be 

concluded that when focusing on four-quarter growth rates of real GDP and the 

consumption deflator, asymmetries are of minor importance in the medium to 

long term, even if shocks are strongly asymmetric. The interdependent structure 

and transmission mechanisms of the model appear to level out asymmetries to 

a large extent. 

5. Conclusions 

 In this work, we have discussed a parametric and a non-parametric 

method to quantify risk and uncertainty in macroeconomic forecasts, mainly 

focussing on risk quantification. Both methods can be applied such that the 

incorporation of asymmetric risk does not affect the mean and variance of the 

input variables.

The parametric method is based on a class of asymmetrically weighted normal 

distributions. It was shown how this class relates to other asymmetric 

distributions and how to consistently aggregate the risks and uncertainty of 

input factors with asymmetrically weighted normal distributions in a linear 

model. The non-parametric method presented also relies on asymmetric 

weights but uses the bootstrap procedure to generate forecast intervals. Both 

approaches are closely related and give identical input factors if the model’s 

residuals are normally distributed. If, in addition, the model’s residuals are 



independent and the model is linear, both approaches yield identical uncertainty 

and risk assessments. 

The asymmetric bootstrap is used to generate stochastic forecasts with the 

structural macroeconometric model of the Bundesbank for Germany. It turns out 

that asymmetries matter for real GDP growth and consumer price inflation 

mainly in the short run. In the short run or with quarterly growth rates, 

asymmetries of real GDP growth and consumer price inflation can be rather 

pronounced if shocks are strongly asymmetric. However, the propagation 

mechanisms of the model absorb a substantial share of the shocks’ 

asymmetries, so that the endogenous variables considered are far less 

asymmetric than the shocks. In the medium to long run, asymmetries tend to be 

smoothed out at least if four-quarter and annual growth rates are considered.  
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Appendix

Asymmetric shocks generated according to (27), i.e. according to  

1z J z 1 J z                  with J J q
1

can be correlated by using the same uniformly distributed random variable q for 

their construction. 

Suppose that we have two asymmetric shocks 

1 1
1 1 1 1 1 1 1 1 1 2

1 1

2 2
2 2 2 2 2 2 2 2 1 2

2 2

1z J z 1 J z         with J J q, ,Cov z ,z
1

1z J z 1 J z     with J J q, ,Cov z ,z
1

where Cov(z1,z2) denotes the covariance of z1 and z2. The question now is how 

to construct J1 and J2, so that 1z  and 2z  also have a covariance equal to 

Cov(z1,z2).

In order to achieve this, consider the following table containing joint probabilities 

and the unconditional probabilities of the indicator functions J1 and J2.

 J1 = 1 J1 = 0 uncond. prob. 

J2 = 1 1 2 +  (1– 1) 2 – 2

J2 = 0 1 (1– 2) –  (1– 1) (1– 2) + 1– 2

uncond. prob. 1 1– 1

For example, the joint probability of J1 = 1 and J2 = 1 equals 1 2 + . The 

unconditional probabilities are independent of the parameter .

From this setup, it follows that the covariance of 1z  and 2z , denoted as 

Cov( 1z , 2z ) is given by  



(A.1) 1 2
1 2

1 1 2 2

E z z
Cov z ,z

1 1
.

Given a joint distribution of z1 and z2 and probabilities 1 and 2, one can thus 

try to set  in such a way that Cov( 1z , 2z ) equals Cov(z1,z2).

In order to inspect under which conditions this approach works, it is helpful to 

set 1 equal to 2 and to use a bivariate standard normal distribution with 

correlation coefficient  for z1 and z2. Since the standard deviations of z1 and z2

equal 1, the correlation is equal to the covariance. Chart A shows the joint 

probabilities of J1 = 1 and J2 = 1, J1 = 0 and J2 = 0, and J1 = 1 and J2 = 0. The 

latter is identical to the joint probability of J1 = 0 and J2 = 2, because of 1 = 2.

The chart also displays the value of  following from (A.1). Values are shown for 

 = 0.5 in the left chart and for  = –0.5 in the right chart;  denotes the value of 

1 and 2.

Chart A: Joint probabilities and 

Evidently, there is no problem to replicate the correlation of z1 and z2 if  equals 

0.5.  must simply be set to values between 0 and 0.2, depending on the value 

of . However, if z1 and z2 are negatively correlated, only for certain values of 

the correlation of z1 and z2 can be replicated for 1z  and 2z . For  smaller than
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0.4 or larger than 0.6, the joint probabilities of J1 = 1 and J2 = 1, and J1 = 0 and 

J2 = 0 implied by the value of  become negative. Experimenting with other 

values of  leads to the conclusion that the more negatively z1 and z2 are 

correlated, the closer  has to be to 0.5 in order to be able to replicate this 

negative correlation with 1z  and 2z . If 1 and 2 are allowed to differ from each 

other and z1 and z2 are positively correlated, this can lead to the same problem, 

especially if the correlation of z1 and z2 as well as the difference between 1

and 2 are large. 
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