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1 Introduction

The spatial concentration of economic activities in cities generates agglomeration economies
arising from labour market pooling, input sharing, and knowledge spillovers (Marshall, 1920).
The principle of relatedness (Hidalgo et al., 2018; Vicente et al., 2018) suggests that the advan-
tages of proximity may also accrue to interacting activities that are similar in ways other than
spatially. Such interactions support the growth of complex activities, which rely on specialised
combinations of complementary knowledge and skills (Hidalgo and Hausmann, 2009; Balland
et al., 2018b). Relatedness and complexity capture “the risks and rewards of competing diver-
sification strategies” (Balland et al., 2018a), making their connection with employment growth
important to understand for regional development and innovation policy-making.

In this paper, we derive a measure of the pairwise relatedness between economic activi-
ties based on weighted correlations of local employment shares, and use this measure to esti-
mate activity and city complexity. Our approach extends discrete measures used in previous
studies (Hidalgo et al., 2007; Hidalgo and Hausmann, 2009; Balland and Rigby, 2017; Farinha
Fernandes et al., 2018; Balland et al., 2018a) by recognising the extent of activities’ local over-
representation and by adjusting for differences in signal quality between geographic areas with
different sizes. These attributes make our measure more suitable than previous measures for
studying relatedness and complexity in small geographic areas, in which measurement errors
and random fluctuations are proportionally large.

We examine the contribution of relatedness and complexity to urban employment growth,
using 1981–2013 census data from New Zealand. These data cover a range of urban areas that
are smaller than, but contain similar activities to, previously studied regions. This property al-
lows us to investigate whether the mechanisms through which relatedness drives employment
growth operate only in sufficiently large cities.

Complex activities experienced faster employment growth during our period of study, es-
pecially in complex cities. However, this growth was not significantly stronger in cities more
dense with related activities. Relatedness and complexity appear to be relevant for analysing
how large, complex cities grow, but offer little information about local growth trajectories in
small areas. This result is consistent with the idea propagated throughout the urban economics
literature that cities are dense networks of interacting activities; in our data, the benefits of such
interaction are more apparent in larger cities, in which activity networks are more dense and
in which people with complementary skills interact more frequently.

This paper is structured as follows. Section 2 discusses the links between related activities’
interaction and employment growth. Section 3 presents our approach to estimating relatedness
and complexity, and compares it with the approach used in previous studies. Sections 4 and 5
summarise our empirical findings from applying our methods to employment data from New
Zealand. Section 6 concludes. Appendix A offers a brief primer on networks and graph theory,
ideas from which we use throughout the paper.
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2 Relatedness-driven growth

The principle of relatedness is applied extensively in studies of regional and urban growth and
innovation (Hidalgo et al., 2018; Vicente et al., 2018). A dominant focus within the existing lit-
erature is on the relevance of relatedness for processes of innovation (Feldman and Audretsch,
1999; Boschma, 2005), entrepreneurship (Neffke et al., 2018) and industrial diversification (Nef-
fke and Henning, 2013). This focus reflects the microfoundations of the relatedness literature,
which emphasise knowledge spillovers and the consequent knowledge creation occurring be-
tween related knowledge bases (Asheim and Gertler, 2005).

The principle of relatedness influences current European regional policy. It provides a ra-
tionale for spatially differentiated policy approaches. Local policies are designed to be context-
specific, in light of the relatedness patterns among local economic activities as well as the local
institutional context (Barca et al., 2012; Boschma, 2014). The policy emphasis, as with the relat-
edness literature, is on innovation, entrepreneurial, and research and development processes,
and the support of innovation-led growth. Such processes are the focus of smart specialisation
policies (Foray et al., 2009, 2011), which encourage regions to upgrade their economic structure
“by building on their existing capabilities” (Balland et al., 2018a) and which are a core compo-
nent of the reformed EU Cohesion policy (Barca, 2009; McCann and Ortega-Argilés, 2015).

Balland et al. (2018a) appeal to the principle of relatedness in their framework for analysing
smart specialisation. Cities more dense with related activities are more able to sustain employ-
ment growth through labour market shocks because workers can reallocate into activities that
require similar knowledge and skills (Neffke and Henning, 2013; Morkutė et al., 2016). This
capacity for reallocation reduces the growth risk of investing in activities related to cities’ ex-
isting knowledge base vis-à-vis activities that are less locally related. The expected return on
such investment is greatest when cities expand into complex activities, which “form the basis
for long-run competitive advantage” (Balland et al., 2018a). Based on these arguments, Balland
et al.’s (2018a) framework suggests that cities’ optimal diversification strategy is to encourage
employment growth within complex activities that are related to existing local competencies.

Relatedness-driven innovation processes also encourage employment growth. Innovation
involves combining existing knowledge bases to produce new ideas (Schumpeter, 1934; Weitz-
man, 1998). Clusters of related activities promote innovation (Delgado et al., 2014) by bringing
together complementary ideas (Jacobs, 1969; Feldman and Audretsch, 1999). To the extent that
such innovation produces long-term economic growth, competitive forces drive employment
growth in local clusters of related activities in order to capitalise on their potential to facilitate
knowledge creation and spillovers (Asheim and Gertler, 2005).

Hendy and Callaghan (2013) discuss the potential benefits of relatedness-driven innovation
for New Zealand. New Zealand’s small size and geographic isolation mean that its labour mar-
ket has less access to agglomeration economies than such markets in other developed coun-
tries (McCann, 2009). Hendy and Callaghan (2013) argue that these features of New Zealand’s
economic geography can be overcome by “establishing collaborative networks of researchers
in areas where New Zealand could be internationally competitive,” and by “encouraging the
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mobility of researchers between organisations and firms in the innovation ecosystem.” Such
efforts promote innovation by connecting researchers with complementary ideas and by facil-
itating knowledge flows between firms, raising New Zealand’s potential to produce complex
products in the “densely connected core” of Hidalgo et al.’s (2007) product space.

Hendy and Callaghan (2013) highlight the tension between building on existing strengths
and expanding into more complex activities. This tension permeates current regional develop-
ment and innovation policy debates in New Zealand, which discuss the merits of expanding
the primary sector relative to diversifying into more knowledge-intense products and services.
Our analysis informs these debates by evaluating whether historical employment dynamics in
New Zealand provide ex-post evidence of relatedness-driven growth, thereby indicating the
capacity for such growth in the future.

3 Measuring relatedness and complexity

3.1 Activity relatedness

Two activities are related if they require similar knowledge or inputs (Hidalgo et al., 2018). We
infer such similarities from employee colocation patterns, which reveal firms’ shared prefer-
ences for using knowledge and other spatially heterogeneous resources. Previous studies infer
activity relatedness from worker flows (Neffke and Henning, 2013; Jara-Figueroa et al., 2018),
input-output linkages and shared labour pools (Delgado et al., 2016), and patent applications
(Boschma et al., 2015; Balland et al., 2018a).

We estimate activity relatedness as follows. Consider an economy that comprises a set C of
cities and a set A of activities. Let Ea

c denote the number of people employed in city c 2 C and
activity a 2 A. Then total city c employment is given by the sum

Ec = Â
a2A

Ea
c ,

while national activity a employment is equal to

Ea = Â
c2C

Ea
c .

Summing over all cities and activities yields national employment:

E = Â
c2C

Â
a2A

Ea
c .

Comparing the local share

LSa
c =

Ea
c

Ec

of activity a in city c with its share Ea/E of national employment reveals whether the activity
is relatively over-represented in city c. Such over-representation reflects local specialisation in
activity a relative to the national economy.
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We estimate the relatedness of activities a1 and a2 using the correlation between the corre-
sponding vectors (LSa1

1 , LSa1
2 , . . . , LSa1

|C|
) and (LSa2

1 , LSa2
2 , . . . , LSa2

|C|
) of local employment shares.

This correlation is high when a1 and a2 are relatively over-represented in similar cities, reveal-
ing firms’ tendency to colocate in pursuit of agglomeration economies (Marshall, 1920). First,
we compute the weighted covariance

Wa1a2 = Â
c2C

Ec

E

 
LSa1

c � Â
c2C

Ec

E
LSa1

c

! 
LSa2

c � Â
c2C

Ec

E
LSa2

c

!

= Â
c2C

Ec

E

✓
Ea1

c
Ec

�
Ea1

E

◆✓
Ea2

c
Ec

�
Ea2

E

◆
(3.1)

in local shares for activities a1 and a2, where the weighting factor Ec/E is equal to city c’s share
of national employment. Second, we normalise Wa1a2 by the city-share weighted standard de-
viations of (LSa1

1 , LSa1
2 , . . . , LSa1

|C|
) and (LSa2

1 , LSa2
2 , . . . , LSa2

|C|
), yielding the weighted correlation

between the local shares of activities a1 and a2. Finally, we map this correlation to the closed
unit interval [0, 1] using the linear transformation x 7! (x + 1)/2. Hence, our estimate of the
relatedness between activities a1 and a2 is given by

Ra1a2 =
1
2

 
Wa1a2p

Wa1a1 Wa2a2

+ 1

!
. (3.2)

This estimate is largest when activities a1 and a2 have equal local shares in each city c 2 C,
and is smallest when the percentage point difference between activity a1’s local and national
shares has equal magnitude but opposite sign to that difference for a2 in all cities. We assume
that there is variation among the components of each local share vector (LSa

1, LSa
2, . . . , LSa

|C|
),

so that Waa > 0 for each a 2 A and hence that (3.2) is well-defined.

3.1.1 Comparison with previously used relatedness measures

The bracketed terms in the summand of (3.1) are equal to the percentage point difference be-
tween activities’ local and national employment shares, and thus measure the extent to which
activities are locally over-represented. An alternative measure of local over-representation is
the location quotient

LQa
c =

Ea
c /Ec

Ea/E
, (3.3)

which exceeds unity if and only if activity a comprises a larger share of city c employment than
of national employment. Following Balassa (1965), Hidalgo et al. (2007) use an analogous met-
ric to identify the commodities in which different countries exhibit revealed comparative ad-
vantage (RCA) and infer commodities’ similarity from RCA co-occurrence patterns. Boschma
et al. (2015) and Balland et al. (2018a) use this RCA approach to estimate the similarity between
different technologies using patent data from US cities and European regions, respectively.

Inferring activity relatedness from RCA co-occurrence patterns is problematic for at least
three reasons. First, if activity a represents a small share of national employment then measure-
ment errors in the numerator of (3.3) are exacerbated by the denominator being close to zero.
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Our measure (3.2) of activity relatedness prevents this exacerbation by comparing percentage
point differences in local and national shares rather than ratios of such shares.

Second, RCA co-occurrence patterns ignore the extent to which activities are locally over-
represented and are sensitive to small pertubations in employment in cities with location quo-
tients near unity. To see why, consider the indicator variable

RCAa
c =

8
<

:
1 if LQa

c � 1

0 otherwise
(3.4)

for the event in which city c has revealed comparative advantage in activity a. This variable is
constant with respect to LQa

c on the intervals [0, 1) and (1, •), and is discontinuous at LQa
c = 1

and, therefore, in Ea
c . In contrast, our relatedness measure (3.2) recognises different extents of

local over-representation and varies continuously with local activity employment.
Third, the RCA approach is sensitive to external influence and noise in employment counts

within small cities. If an activity exits a small city then all other activities in that city are likely
to become over-represented relative to the national average because the increase in their local
shares will be proportionally larger than any change in national shares. Thus, the identification
of activities in which small cities appear to be specialised is sensitive to internal migration and
to fluctuations in local employment in other activities. Activity specialisations in large cities are
less noisy because local shares are less sensitive to absolute fluctuations in local employment.
The RCA approach does not recongise differences in signal quality between cities of different
size. In contrast, our relatedness measure (3.2) is more robust to noise induced by small cities
because it gives such cities less weight than large cities, where the relationship between local
specialisations and local activity employment is more stable.

3.1.2 Mean local relatedness and relatedness density

Observe from (3.2) that Raa = 1 for all activities a 2 A. Therefore, the local share-weighted
mean relatedness of activity a with the activities in city c can be written as

Â
a02A

Ea0
c

Ec
Raa0 = LSa

c + RDa
c , (3.5)

where we define

RDa
c = Â

a02A\{a}

Ea0
c

Ec
Raa0

as the relatedness density of activity a in city c. Boschma et al. (2015) and Balland et al. (2018a)
suggest an alternative measure

Âa02A\{a} RCAa0
c Raa0

Âa02A\{a} Raa0

of relatedness density, which estimates the share of activity a’s relatedness with all other activ-
ities that is contributed by locally over-represented activities. However, this measure suffers
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the same problems as measuring relatedness using RCA co-occurrences: amplified measure-
ment errors, disregard for the extent of local over-representation, discontinuity at unit location
quotients, and fragility in small cities.

3.2 Activity complexity

Complexity captures the knowledge intensity of economic activities (Balland et al., 2018b) by
encoding the extent to which they rely on specialised combinations of knowledge. We define
activity complexity using the second eigenvector of the row-standardised activity relatedness
matrix. Our approach extends Caldarelli et al.’s (2012) Markov chain interpretation of Hidalgo
and Hausmann’s (2009) Method of Reflections.

It is instructive to first apply Hidalgo and Hausmann’s approach to estimating complexity
before decribing how we extend that approach. Recall the indicator variable (3.4) for the event
in which city c has revealed comparative advantage in activity a. The diversity of city c,

f(0)
c = Â

a2A
RCAa

c ,

counts the activities in A in which city c has RCA. Similarly, the ubiquity of activity a,

y(0)
a = Â

c2C
RCAa

c ,

counts the cities in C that have RCA in activity a. Following Hidalgo and Hausmann (2009),
we define the sequences (f(k)

c )k�0 and (y(k)
a )k�0 recursively by the system

f(k)
c =

1

f(0)
c

Â
a2A

RCAa
c y(k�1)

a (3.6)

y(k)
a =

1

y(0)
a

Â
c2C

RCAa
c f(k�1)

c (3.7)

of difference equations to obtain generalised measures of diversity and ubiquity. Table 1 inter-
prets f(k)

c and y(k)
a for small k. Hidalgo and Hausmann argue that the limit point of (y(k)

a )k�0

measures the complexity of activity a because it captures “the complexity that emerges from
the interactions between the increasing number of individual activities that conform an econ-
omy.”

Let y(k) = (y(k)
1 , y(k)

2 , . . . , y(k)
|A|

) be the vector of generalised ubiquities obtained on the kth

iteration of the Method of Reflections. Substituting (3.6) into (3.7) and letting k ! • yields the
linear system

Py(•) = y(•),

where
y(•) = lim

k!•
y(k)

is the limiting vector of generalised ubiquities and where P = (paiaj) is the matrix with

paiaj = Â
c2C

RCAai
c

y(0)
ai

RCAaj
c

f(0)
c

(3.8)
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as the entry in row ai and column aj. Then P is the transition matrix for a Markov chain on the
set A of activities. We explain this interpretation in Appendix B.

Activity complexity can be captured from the spectral properties of P as follows. Consider
the standardised vector

ŷ(k) =
y(k) � y(k)1

sd(y(k))
, (3.9)

where y(k) denotes the arithmetic mean of the components of y(k) and sd(y(k)) denotes the
standard deviation of those components, and where 1 is the |A|⇥ 1 vector of ones. According
to Hidalgo and Hausmann (2009), the vector of activity complexities is given by the limit

ŷ(•) = lim
k!•

ŷ(k).

Caldarelli et al. (2012) show that if the matrix P has eigenvectors e1, e2, . . . , en and correspond-
ing eigenvalues of decreasing absolute value then y(k) becomes proportional to e2 as k ! •.1

As shown in Appendix C, it follows from (3.9) that

ŷ(•) =
e2 � e21
sd(e2)

. (3.10)

The Markov transition matrix P is derived from RCA co-occurrence patterns that can pro-
duce unreliable relatedness estimates for reasons identified in Section 3.1.1. Consequently, the
spectral properties of P are not robust to, for example, small city and activity sizes, or pertuba-
tions in local employment near unit location quotients. We overcome this weakness by replac-
ing P with a row-standardised copy of the activity relatedness matrix R = (Raiaj), where Raiaj

is the relatedness between activities ai and aj defined in (3.2). In the resulting Markov chain on
the activity set A, transitions from node ai to node aj occur with probability

Raiaj

Âa2A Raia
. (3.11)

Using our relatedness measure, rather than RCA co-occurrences, to define the stochastic struc-
ture of the inter-activity Markov chain retains potentially important information about activi-
ties’ spatial distribution. Our approach thus improves upon the Method of Reflections, which
discards such information by discretising the extent of activities’ local over-representation.

We define the complexity Ca of activity a as the ath component of the standardised second
eigenvector of the row-standardised relatedness matrix R. Thus, our procedure is consistent
with the eigenvector approximation suggested by Caldarelli et al. (2012) except that we replace
the transition probability pa1a2 with (3.11). The resulting vector (C1, C2, . . . , C|A|) partitions the
set A into two subsets according to the sign of each component. Such a partition is invariant
to reversing the sign of each component Ca. In order to overcome this ambiguity, we choose

1Mealy et al. (2019) show that Caldarelli et al.’s (2012) approach is equivalent to a spectral clustering solution
to the problem of partitioning a weighted graph into two components of similar order (Shi and Malik, 2000). Each
activity a is assigned to one of two clusters according to the sign of e2’s ath component; the absolute value of that
component encodes the “distance” between activity a and the two clusters’ shared boundary.
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the sign of C1 such that Ca is positively correlated with the weighted mean size

Â
c2C

Ea
c

Ea Ec

of cities that contain activity a. This choice recongises that large cities facilitate a deeper divi-
sion of labour than do small areas (Jacobs, 1969), and that such division is needed for complex
knowledge to develop (Hidalgo and Hausmann, 2009; Balland et al., 2018b).

3.3 City complexity

We estimate city complexity symmetrically to activity complexity. For each pair c1, c2 2 C, we
compute the activity size-weighted covariance

Â
a2A

Ea

E

 
Ea

c1

Ea � Â
a2A

Ea

E
Ea

c1

Ea

! 
Ea

c2

Ea � Â
a2A

Ea

E
Ea

c2

Ea

!
= Â

a2A

Ea

E

✓Ea
c1

Ea �
Ec1

E

◆✓Ea
c2

Ea �
Ec2

E

◆

in city shares of activity employment, from which we derive the relatedness between city c1

and c2 by converting to a weighted correlation and mapping the result linearly to [0, 1]. Hence,
our city relatedness index measures the extent to which cities have more similar local activity
portfolios than would be expected if employees were spatially distributed in proportion to
city size. We define the complexity Cc of city c as the cth component of the standardised second
eigenvector of the row-standardised city relatedness matrix, consistent with our definition of
activity complexity. We choose the sign of C1 such that Cc is positively correlated with the local
share-weighted mean complexity

Â
a2A

Ea
c

Ec
Ca

of activities in city c. Thus, by construction, complex activities tend to concentrate in complex
cities.

4 Data

We apply our methods for estimating relatedness and complexity to historical New Zealand
census data aligned to current industry, occupation and urban area codes. These data provide
usual resident employment counts in each census from 1981 to 2013. We capture cities by 2013
urban area code and identify activities using industry-occupation pairs. We capture industries
by a manual grouping of New Zealand Standard Industry Output Category codes and identify
occupations by one-digit 1999 New Zealand Standard Classification of Occupations code.

We study urban areas and industry-occupation pairs with persistently high employment.
We identify 50 urban areas with at least 1,400 employed usual residents in census years 1981
through 2013. Tables 8–10 present local employment counts in these areas. We identify 199
industry-occupation pairs with at least 800 usually resident employees in each census year.2

2We filter industry-occupation pairs with minimum employment below 800 and then filter urban areas with
minimum employment below 1400. Our data contains four activities with minimum employment counts below
800 due to some filtered urban areas containing employees within unfiltered industry-occupation pairs.
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These pairs span 61 industries and nine occupations. We pool all remaining pairs into a single
residual activity that represents about 18% of national employment across census years 1981–
2013. Tables 11 and 12 show national employment by industry class and occupation in each
census year, while Table 13 identifies the industry-occupation pairs included in our selection.

We restrict our analysis to persistently large urban areas and activities in order to mitigate
the impact of two confidentiality requirements imposed by Statistics New Zealand, the agency
that provides our data. First, the employment count in each cell—that is, each combination of
urban area, industry, occupation, and census year—is randomly rounded to base three. Sec-
ond, cells with unrounded employment counts below six are suppressed.3 Table 14 provides
suppression rates by census year in our data, both for our selected 50 urban areas and for the
New Zealand economy as a whole. Employment in our selected areas is suppressed at a rate
at least 50% lower than national employment in each census year. Our data represent 91.6% of
unsuppressed national employment across all available census years.

We use our relatedness measure (3.2) to estimate local shares, relatedness densities, and ac-
tivity and city complexities for each census year. By definition, both activity and city complex-
ity have zero mean and unit variance in each year.4 We exclude all observations corresponding
to the residual activity after generating our estimates. We also exclude all observations corre-
sponding to census years 1986, 1996 and 2006. Thus, our data comprises a panel of the selected
50 urban areas and the 199 non-residual activities in census years 1981, 1991, 2001 and 2013.5

Observations correspond to city-activity pairs in a given census year.

5 Empirical analysis

5.1 Activity space

We first define an “activity space” that captures the network structure of economic activities
based on our activity relatedness estimates. Our construction echoes the “product space” of
traded commodities defined by Hidalgo et al. (2007). We describe activity space by a weighted
network N = (A, E), where A is the set of 199 non-residual activities in our data and where
each inter-activity edge {ai, aj} 2 E has weight equal to the pairwise relatedness Raiaj between
activities ai and aj.

Figure 1 presents two network maps of activity space based on 2013 census employment
data; one coloured by sector and one by occupation.6 Each node in Figure 1 has size propor-

3See http://archive.stats.govt.nz/Census/2013-census/methodology/confidentiality-how-applied (retrieved
August 29, 2018) for further information about these two confidentiality rules.

4We use Bessel’s correction to normalise our complexity estimates within each year.
5We analyse decade-separated censuses, rather than consecutive censuses, in order to balance the anticipated

trade-off between predicting local employment growth using out-of-date relatedness and complexity estimates,
and allowing too little time for local conditions to affect employment dynamics.

6We assign industry classes to sectors as follows. The primary sector includes agriculture, forestry and fishing
(AA), and mining (BB). The goods-producing sector includes manufacturing (CC), electricity, gas, water and waste
services (DD), and construction (EE). The distributive services sector includes wholesale trade (FF), retail trade
and accomodation (GH), and transport, postal and warehousing (II). The person-centred services sector includes
rental, hiring and real estate services (LL), professional, scientific, technical, administrative and support services
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tional to the corresponding activity’s share of national employment. We use Fruchterman and
Reingold’s (1991) force-directed algorithm to position nodes in the plane based on the edge
weights of N. In order to reveal the strongest inter-activity connections, we show only those
edges and nodes contained within the subnetwork of N induced by the 500 edges of largest
weight.7 This subnetwork contains 155 nodes with mean degree 6.45.

At the centre of our maps is a tightly connected, nest-shaped cluster of low-skill occupa-
tions in the manufacturing, road transport, and postal, courier and warehousing industries.
To the right of this cluster is a group of medium- to low-skill occupations in the construction
sector, which provide links to service industries such as healthcare, supermarkets and grocery
stores, and motor vehicle and parts retailing. Further to the right is a branch of low-skill occu-
pations within the forestry and logging, wood product manufacturing, and meat and seafood
processing industries. The close proximity of these industries in Figure 1 reflects their mutual
tendency to be relatively over-represented in small urban areas. Below the nest of manufac-
turing activities is a collection of high-skill occupations within various wholesaling industries.
These occupations provide links to activities within the professional, support and financial ser-
vice industries, which are connected to activities in the public sector through civil, professional
and other interest groups.

Traversing activity space counter-clockwise, from its branch of primary industries through
to its public sector tail, is analogous to traversing the urban-rural continuum from small towns
to large cities. Activities in professional services and public administration rely on more di-
verse skills and a deeper division of labour than do activities in primary industries. Therefore,
the former industries tend to cluster together in large cities, where thick labour markets facil-
itate knowledge specialisation and skill complementarities, while the latter are comparatively
concentrated in small, rural areas where such markets are relatively thin and natural resources
are more abundant. Our network map reveals the concentration among high-skill employees
in the person-centred and information services sectors, and among low-skill employees in the
goods-producing and distributed services sectors.

On average, activity complexity rises as we traverse activity space counter-clockwise from
low-skill occupations in primary and retail industries to high-skill occupations in professional
services and public administration. Figure 2 plots activity complexity against the annualised
percentage point growth rate

Ga = 100

 ✓
Ea

L.Ea

◆1/n
� 1

!
(5.1)

(MN), public administration and safety (OO), health care and social assistance (QQ), and arts, recreation and other
services (RS). Finally, the information services sector includes information media and telecommunications (JJ),
financial and insurance services (KK), and education and training (PP). These assignments reflect those used by the
New Zealand Productivity Commission (2014).

7Our approach differs from that adopted by Hidalgo et al. (2007), who construct a maximum-weight spanning
tree (MST) of product space and reintroduce the edges of largest weight until a desirable mean node degree (about
four) is achieved. However, the resulting network map may fail to encode the strongest connections if, for example,
the underlying network comprises a small cluster of nodes with heavy internal edges that are ignored in order to
connect relatively unrelated nodes to the MST.
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in national activity employment, where n is the number of years between consecutive obser-
vations in our data and where “L.” is the lag operator. On average, high-skill occupations are
more complex and experienced faster growth during our period of study than low-skill oc-
cupations. Standardising lagged activity complexity L.Ca to have zero pooled mean and unit
pooled variance across census years 1991, 2001 and 2013, and estimating the linear model

Ga = b0 + b1 L.Ca + error

using ordinary least squares (OLS) provides the coefficient estimate b̂1 = 1.038 and associated
standard error se(b̂1) = 0.158. Thus, on average, a one standard deviation increase in activity
complexity is associated with a one percentage point increase in overall activity employment
growth in our data. This relationship reflects the concentration of complex activities in large
cities (Balland et al., 2018b), which experienced faster employment growth than small areas
during our period of study (New Zealand Productivity Commission, 2017).

5.2 Smart specialisation opportunities

We embed our relatedness and complexity estimates within Balland et al.’s (2018a) framework
for analysing smart specialisation.8 They characterise smart specialisation as a way to “lever-
age existing strengths” and “generate novel platforms on which regions can build competitive
advantage in high value-added activities,” arguing that such activities are precisely those with
high complexity. Balland et al.’s (2018a) framework aims to highlight “the potential risks and
rewards of adopting alternative diversification strategies.” On the one hand, expanding into
locally related activities carries low risk because local workers already possess the knowledge
and skills necessary to carry out those activities. On the other hand, the highest expected re-
turns are obtained through expanding into complex activities because they “form the basis for
long-run competitive advantage.” Balland et al.’s (2018a) framework identifies low-risk, high-
return development opportunities as those locally under-represented activities that have both
high mean local relatedness and high complexity.

For example, Figure 3 plots mean local relatedness against complexity for activities that
are locally under-represented in the Central Auckland Zone; the urban area with the greatest
usual resident working population as at the 2013 New Zealand census. The zone is relatively
specialised in complex activities, such as professionals in the telecommunications, finance and
insurance, and administration and support service industries. Such complex activities are facil-
itated by the large and diverse local labour market (Blackie and Lynch, 2012). Figure 3 confirms
that there is limited scope for the Central Auckland Zone to develop new low-risk, high-return
specialisations because it is already specialised in such activities.9

8The “feasibility charts” at http://atlas.cid.harvard.edu/explore/feasibility/ (retrieved September 11,
2018) use a similar framework to identify export diversification opportunities.

9Two of Central Auckland’s highest-Sharpe-ratio development options are legislators and professionals in cen-
tral government administration and justice. However, expanding into these activities is unnecessary because New
Zealand’s central government and justice system are already established in Wellington, the nation’s capital and
second most populous city.
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We also observe a positive relationship between mean local relatedness and activity com-
plexity in Queenstown, a lakeside town in New Zealand’s South Island with about 6,700 em-
ployed usual residents according to the 2013 census. Queenstown is a hub for New Zealand’s
largest export industry: tourism. As a result, Queenstown boasts many activities often found
in areas with large populations. However, because its population comprises transient tourist
flows, Queenstown is relatively specialised in few of the complex activities derived through
deep divisions of labour. Thus, as shown in Figure 3, Queenstown appears poised for employ-
ment growth in activities typically reserved for large cities because such activities are locally
under-represented but also highly related to Queenstown’s existing activity portfolio.

Smaller areas in our data tend to have worse opportunities for smart specialisation. As an
example, Figure 3 plots the mean local relatedness and complexity of locally under-represented
activities in Huntly, a small coal mining town in New Zealand’s North Island with about 1,600
employed usual residents as at the 2013 census. The negative relationship between mean local
relatedness and complexity suggests that Huntly’s local activity portfolio does not contain the
knowledge and skills necessary for sustainable expansion into complex activities.

Huntly’s small size makes it appear relatively specialised in all but the nationally largest ac-
tivities because few local employees are needed to obtain location quotients that exceed unity.
For example, only 876 of the 1,503,018 usual residents employed nationally at the date of the
2013 census were employed as trades workers in the specialised food retailing industry. Thus,
a single employee in that activity provides Huntly with a location quotient of about 1.07. This
exemplifies the instability of RCA-based relatedness measures for small cities and activities.

5.3 Do relatedness and complexity predict employment growth?

Finally, we use Balland et al.’s (2018a) characterisation of the smart specialisation framework
to estimate whether relatedness and complexity promote employment growth. We define the
growth rate in city c, activity a employment as the annualised percentage point change

Ga
c = 100

 ✓
Ea

c
L.Ea

c

◆1/n
� 1

!
,

where n is the number of years between consecutive observations in our data and where “L.”
is the lag operator. We omit year subscripts throughout our analysis for symbolic clarity.

We test for predictive power by regressing Ga
c on lagged values of local share, relatedness

density, activity complexity, and city complexity. We perform our analysis using the 21,352 ob-
servations for which Ga

c is computable10 and weight observations by the corresponding lagged
share L.Ea

c / L.E of total employment.
10We lose observations for two suppression-induced reasons. First, there are 9,143 observations for which the

unrounded value of Ea
c is below the suppression threshold, preventing us from computing the local share LSa

c , re-
latedness density RDa

c , and growth rate Ga
c . Second, there are another 9,305 observations for which the unrounded

value of L.Ea
c falls below the suppression threshold, preventing us from computing Ga

c . We account for suppressed
values of LSa

c by computing relatedness indices based on pairwise complete observations.
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We transform our local share estimates by subtracting their weighted mean and multiply-
ing the result by 100 to obtain percentage point demeaned shares. We also standardise our es-
timates of relatedness density, activity complexity and city complexity to have zero weighted
mean and unit weighted variance.

Table 2 reports descriptive statistics for our transformed data before and after weighting by
lagged employment shares. Comparing the weighted and unweighted means reveals that, on
average, observations with larger city-activity employment counts are associated with greater
local shares, lower relatedness density, higher activity complexity and higher city complexity.
Annualised city-activity growth ranges from -32.9% to 34.7% per year.11 The largest local share
of 23.6% is attained by service and sales workers in Queenstown’s accommodation and food
services industry as at the 1981 census.

Table 3 presents our regression results. Consistent with the positive relationship between
activity complexity and employment growth displayed in Figure 2, columns (1) and (2) show
that more complex activities grew faster during our period of study. On average, and holding
both local share and relatedness density constant at their weighted mean value, a one standard
deviation increase in activity complexity is associated with a 0.89 percentage point increase in
local employment growth per year. This effect increases to 0.98 percentage points when we
control for city complexity, and its interaction with local share and relatedness density. More
locally related activities experienced slower growth, especially in complex cities.

The coefficient estimates in columns (1) and (2) of Table 3 may be biased by unobservable,
time-varying activity and city factors that are correlated with our covariates of interest. We
control for these factors in column (3) by introducing activity-year and city-year fixed effects.
This allows us to identify the effects of cross-sectional variation in local growth rates, control-
ling both for the period-specific growth experienced by the activity across New Zealand and
for the period-specific growth experienced by the city as a whole. However, we lose the ability
to separately identify coefficients on activity and city complexity. Our estimates in column (3)
suggest that cities diversified their local activity portfolios during our period of study, and that
this diversification was faster into more complex activities and within more complex cities.

Balland et al.’s (2018a) framework characterises high relatedness density as an indicator of
low-risk local investment options, and activity complexity as an indicator of high reward op-
tions. Their framework thus suggests that complex activities with high local relatedness offer
the strongest prospects for future growth. If this were true then we would expect a strong posi-
tive coefficient on the interaction of relatedness density and activity complexity. Our estimates
in columns (1)–(3) of Table 3 show only a weak and insignificant interaction.

5.3.1 Are the effects of relatedness and complexity context dependent?

Estimating regression coefficients by averaging across all observations in our data may mask
effects that are only relevant for particular activities or local contexts. We analyse subsamples

11These limit rates correspond to city-activity employment counts that fell from 489 to 9 and rose from 9 to 177
between consecutive observations. Our regression results do not significantly change when we restrict our analysis
to activities a 2 A with min{Ea

c , L.Ea
c} > 100 across all cities c 2 C.
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of our data in order to investigate the variation in attributes of the activities and cities to which
the growth benefits of relatedness and complexity accrue. Our subsamples isolate groups of
locally over- and under-represented activities, groups of complex activities and cities, and lev-
els of city urbanisation. Table 4 reports weighted means and standard deviations within each
subsample. We transform our data so that, within each subsample, local share has zero within-
subsample weighted mean, and relatedness density, activity complexity and city complexity
have zero within-subsample weighted mean and unit within-subsample weighted variance.
We use the model specification in column (3) of Table 3 throughout our analyses.

Balland et al. (2018a) argue that the benefits of relatedness and complexity are most impor-
tant for locally under-represented activities. Such activities have RCAa

c = 0, where RCAa
c is the

indicator variable for the event in which city c has revealed comparative advantage in activ-
ity a. Table 5 reports results from estimating our preferred model specification after partition-
ing our data into two subsamples: activities with L.RCAa

c = 1 and activities with L.RCAa
c = 0.

This partitioning allows us to identify the potential benefits of relatedness and complexity for
new specialisations, which are the focus of the smart specialisation framework. The interaction
of relatedness density and activity complexity was negative and significant in our subsample
of locally under-represented activities. This suggests that smart specialisation, as captured by
Balland et al. (2018a), does not explain employment dynamics within our data.

We next partition our data by levels of complexity in order to identify differences in the ef-
fect of relatedness and complexity for different types of activities and within different types of
cities. We define subsamples of complex activities—comprising all activities with above-mean
complexity in each of the census years 1981, 1991, 2001 and 2013—and “simple” activities—
comprising activities with below-mean complexity in each of those years. We pool all activities
that meet neither of these criteria into an “other activities” subsample. We define subsamples
of complex, “simple” and other cities using analogous criteria for city complexity. Figures 5
and 6 present the activity and city complexity series, respectively, within each subsample.

Table 6 reports results from our activity and city complexity subsample analyses. Activi-
ties with large local shares experienced significantly slower growth in all of our subsamples.
Relatedness density had an insignificant positive direct effect overall but a significant negative
effect in each activity subsample, suggesting that the positive overall effect is due to between-
group variation. The interaction of relatedness density and activity complexity was small and
insignificant in all six subsamples. Relatedness density and city complexity appear to be com-
plementary in complex cities, suggesting that being relatedness dense promotes growth only
for activities in the most complex cities.

The mechanisms underlying relatedness and complexity may operate only at certain city
scales. For example, knowledge spillovers may be relevant only in cities with sufficiently thick
labour markets, which facilitate such spillovers. We examine the scale-dependence of related-
ness and complexity by partitioning our data into four subsamples according to cities’ urban
area type as classified in Tables 8–10. Main urban areas represent the most urbanised areas in
New Zealand, while secondary and minor urban areas tend to be smaller and less urbanised.
We distinguish the four Auckland zones from other main urban areas due to Auckland’s rela-

14



tively large size and unique labour market conditions. Table 4 shows that, on average, larger
urban areas experienced greater employment growth during our period of study. Such areas
also had more diverse local labour markets, as shown by the weighted means of local share
and relatedness density, and tended to contain more complex activities.

Table 7 summarises our analysis of our urban area type subsamples. Auckland diversified
faster than other areas—as shown by the large, negative coefficient on local share—although
this diversification was slower for more complex activities. Comparing the interaction of city
complexity and relatedness density across subsamples supports our result from Table 6 that
relatedness density appears to promote growth only in the most complex cities. A one stan-
dard deviation rise in relatedness density has an insignificant effect on employment growth
overall, but a significant effect in the most complex part of Auckland—the Western Auckland
Zone—in which the rise is associated with a 0.544 percentage point increase in annualised em-
ployment growth based on our 2013 complexity estimates. Finally, the continued lack of joint
effect that relatedness density and activity complexity have on local employment growth sug-
gests that relatedness and complexity provide information about the way that large, complex
cities grow, rather than information about how activity complementarities foster local growth.
This result reflects cities being dense networks of interacting activities: the benefits of activi-
ties’ interaction are more apparent in larger cities, within which networks are more dense and
where people engaged in related activities interact more frequently.

6 Conclusion

This paper analyses the relatedness and complexity of economic activities using employment
data on geographic areas with small populations. We develop a measure of activity relatedness
based on weighted correlations of local employment shares. Our approach extends previously
used measures by allowing for continuous variation in activities’ local over-representation and
by accounting for differences in signal quality across geographies of different size. We use our
measure to estimate city and activity complexity, and to define an “activity space” that encodes
the network structure of related activities. Our network map reveals clusters of activities as-
sociated with high-skill occupations in the person-centred and information services sectors,
and of activities associated with low-skill occupations in the goods-producing and distributed
services sectors. These clusters respectively reflect strong colocation patterns among activities
with high and low levels of complexity.

We apply our estimates within Balland et al.’s (2018a) framework for analysing smart spe-
cialisation, and investigate the mechanisms underlying that framework by evaluating the ex-
post ability of relatedness and complexity to predict subsequent growth in local activity em-
ployment within a selection of New Zealand urban areas. Complex activities in our selection
experienced faster growth between 1981 and 2013, especially in complex cities. However, this
growth was not significantly stronger in cities more dense with related activities. Relatedness
and complexity appear to be most relevant for analysing how large, complex cities grow, and
provide less information about growth trajectories for small cities.
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Overall, we do not identify strong effects of relatedness and complexity on growth in local
activity employment. It is an open question whether this absence means that these effects do
not operate or that New Zealand cities lack the scale for such operation. Our results may reflect
the limited capacity for knowledge specialisation within New Zealand’s local labour markets,
which are smaller than those in previously studied geographic areas. Alternatively, our failure
to identify strong effects may reflect how, within New Zealand and during our period of study,
policies were not explicitly designed to encourage or support relatedness and complexity. The
absence of such targeted policies may have prevented any potential employment growth ben-
efits of smart specialisation policies from being realised.
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Figure 2: Activity complexity and activity employment growth

Notes: The plotted data are derived from 1981, 1991, 2001 and 2013 census usual resident employment counts, with
random rounding to base three and with all cells with true counts below six suppressed. Plotted points correspond
to activities in census years 1991, 2001 and 2013, and are scaled by lagged total activity employment in our data
and coloured by occupation as in Figure 1. The fitted line is given by Ga = b̂0 + b̂1 L.Ca, where Ga is the growth
rate in total activity employment defined in (5.1), where L.Ca is lagged activity complexity, and where b̂0 and b̂1
are OLS estimates.
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Table 1: Interpretation of f(k)
c and y(k)

a for k 2 {0, 1, 2}

Variable Description

f
(0)
c Diversity of city c (i.e., number of activities in which city c has RCA)

f
(1)
c Mean ubiquity of activities in which city c has RCA

f
(2)
c Mean diversity of cities that have RCA in similar activities to city c

y
(0)
a Ubiquity of activity a (i.e., number of cities that have RCA in activity a)

y
(1)
a Mean diversity of cities that have RCA in activity a

y
(2)
a Mean ubiquity of activities in which cities with RCA in activity a also have RCA

Table 2: Descriptive statistics

Unweighted Weighted

Variable Mean Std. Dev. Mean Std. Dev. Min Max

City-activity growth rate (Ga
c ) 0.627 5.012 0.190 4.420 -32.935 34.702

Local share (L.LSa
c ) -0.818 0.921 0.000 1.709 -1.391 22.244

Relatedness density (L.RDa
c ) 0.211 1.066 0.000 1.000 -4.301 4.809

Activity complexity (L.Ca) -0.197 0.975 0.000 1.000 -1.699 1.890
City complexity (L.Cc) -0.729 0.955 0.000 1.000 -2.136 1.384

Notes: Our data includes 21,352 observations of each variable. These observations correspond to city-activity pairs
in a given census year. We exclude observations corresponding to the residual activity. “L.” is the lag operator.

21



Table 3: Main regression results

City-activity growth rate (Ga
c )

(1) (2) (3)

Local share (L.LSa
c ) -0.060 -0.079 -0.266***

(0.038) (0.048) (0.044)
Relatedness density (L.RDa

c ) -0.209*** -0.131* 0.059
(0.063) (0.059) (0.032)

Activity complexity (L.Ca) 0.887*** 0.975***
(0.062) (0.068)

Activity complexity ⇥ local share 0.189*** 0.204*** -0.137*
(0.043) (0.043) (0.060)

Activity complexity ⇥ relatedness density 0.076 0.035 0.030
(0.053) (0.057) (0.040)

City complexity (L.Cc) 0.288***
(0.058)

City complexity ⇥ local share -0.085* -0.084***
(0.041) (0.023)

City complexity ⇥ relatedness density -0.362*** -0.142***
(0.053) (0.026)

Activity-year and city-year fixed effects Yes

Observations 21,352 21,352 21,352
R2 0.047 0.057 0.719

Notes: This table reports OLS estimates with analytic weights equal to lagged shares of total employment in our
data and with heteroskedasticity-robust standard errors provided in parentheses. One, two and three asterisks
indicate significance at the 5%, 1% and 0.1% levels, respectively. Observations correspond to city-activity pairs in
a given census year. We omit year subscripts for symbolic clarity. Each model specification includes the vector of
ones as a covariate, the estimated coefficient and standard error of which we omit from the table.
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Table 5: Local over-representation subsample regression results

City-activity growth rate (Ga
c )

Local over-representation

All data L.RCAa
c = 1 L.RCAa

c = 0

Local share (L.LSa
c ) -0.266*** -0.326*** -1.851***

(0.044) (0.050) (0.524)
Relatedness density (L.RDa

c ) 0.059 0.236*** 0.258***
(0.032) (0.057) (0.066)

Activity complexity ⇥ local share -0.137* -0.144* 0.289
(0.060) (0.060) (0.565)

Activity complexity ⇥ relatedness density 0.030 0.052 -0.268***
(0.040) (0.057) (0.072)

City complexity ⇥ local share -0.084*** -0.149*** -0.068
(0.023) (0.026) (0.041)

City complexity ⇥ relatedness density -0.142*** -0.208*** -0.242***
(0.026) (0.047) (0.035)

Observations 21,352 10,963 10,389
R2 0.719 0.755 0.774

Notes: This table reports OLS estimates with analytic weights equal to lagged shares of total within-subsample em-
ployment and with heteroskedasticity-robust standard errors shown in parentheses. One, two and three asterisks
indicate significance at the 5%, 1% and 0.1% levels, respectively. Observations correspond to city-activity pairs in
a given census year. We omit year subscripts for symbolic clarity. Each model specification includes the vector
of ones as a covariate, the estimated coefficient and standard error of which we omit from the table. We include
activity-year and city-year fixed effects in all models.
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Table 7: Urban area type subsample regression results

City-activity growth rate (Ga
c )

Urban area type

All data Auckland Main (exc. Secondary Minor
Auckland)

Local share (L.LSa
c ) -0.266*** -0.816** -0.343*** -0.208* -0.411***

(0.044) (0.256) (0.084) (0.094) (0.105)
Relatedness density (L.RDa

c ) 0.059 0.127 0.074 0.154 0.405
(0.032) (0.081) (0.043) (0.128) (0.325)

Activity complexity ⇥ local share -0.137* 0.377* -0.068 0.012 -0.074
(0.060) (0.147) (0.087) (0.139) (0.160)

Activity complexity ⇥ relatedness density 0.030 -0.127 0.082 0.009 -0.314
(0.040) (0.095) (0.054) (0.128) (0.310)

City complexity ⇥ local share -0.084*** 0.008 -0.026 -0.022 -0.023
(0.023) (0.053) (0.031) (0.045) (0.039)

City complexity ⇥ relatedness density -0.142*** 0.178*** 0.011 -0.036 -0.232*
(0.026) (0.036) (0.044) (0.056) (0.107)

Observations 21,352 2,388 11,901 5,128 1,935
R2 0.719 0.921 0.732 0.592 0.618

Notes: This table reports OLS estimates with analytic weights equal to lagged shares of total within-subsample em-
ployment and with heteroskedasticity-robust standard errors shown in parentheses. One, two and three asterisks
indicate significance at the 5%, 1% and 0.1% levels, respectively. Observations correspond to city-activity pairs in
a given census year. We omit year subscripts for symbolic clarity. Each model includes the vector of ones as a
covariate, the estimated coefficient and standard error of which we omit from this table. We include activity-year
and city-year fixed effects in all models.
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A Primer on networks and graph theory

A graph is an order pair G = (V , E) comprising a vertex set V and an edge set E of two-element
subsets of V . The elements of V are called vertices while the elements of E are called edges. A
network is a graph in which vertices represent named entities and are called nodes. We introduce
several properties of networks below using the language of graph theory.

Let G = (V , E) be a graph. Two vertices u 2 V and v 2 V are adjacent if {u, v} 2 E , while
the edge {u, v} is incident with u and v. The degree of v, denoted deg(v), is equal to the number
of vertices with which v is adjacent. Since every edge is incident with two vertices, we have

Â
v2V

deg(v) = 2|E |.

Thus, the vertices in V have mean degree 2|E |/|V|.
A walk in a graph G is an alternating sequence v1e1v2e2 · · · of vertices v1, v2, . . . 2 V and

edges e1, e2, . . . 2 E . A path is a walk in which each edge (and therefore each vertex) is unique.
Two vertices are connected if there is a path between them. We say that G is connected if every
pair of vertices is connected; otherwise, we say that G is disconnected.

It is often useful to denote the vertex set of a graph G by V(G) and its edge set by E(G).
We call |V(G)| the order of G and |E(G)| the size of G. A graph G0 is called a subgraph of G if
both V(G0) ✓ V(G) and E(G0) ✓ E(G). A component of G is a connected subgraph of maximal
size. A subgraph G0 of G is induced by a set of edges X ✓ E(G) if E(G0) = X and

V(G0) = {v 2 V(G) : v is incident with e for some edge e 2 X}.

A cycle in a graph is a path with equal first and last vertices. A tree is a connected graph with
no cycles, while a forest is a graph in which all components are trees. A spanning tree (forest) of a
connected graph G is a subgraph G0 of G that is a tree (forest) and has vertex set V(G0) = V(G).

Finally, a weighted graph is a graph G within which a numerical weight is assigned to each
edge by a function w : E(G) ! R. Thus, an unweighted graph can be intepreted as a weighted
graph for which w has range w(E(G)) = {1}. A maximum-weight spanning tree (forest) of G is a
spanning tree (forest) G⇤ that obtains the maximum value of the sum

Â
e2E(G⇤)

w(e).

B Interpreting P as a Markov transition matrix

Consider the city-activity network shown in Figure 4, in which city c 2 {c1, c2, c3, c4} is adja-
cent to activity a 2 {a1, a2, a3, a4} if RCAa

c = 1. Suppose that a random walker traverses this
network by transitioning across edges with uniform probability. For example, if the walker
starts at activity node a1 then it transitions to city nodes c1, c2 and c3 with probability 1/3 each,
whereas if the walker starts at city node c1 then it transitions to activity nodes a1 and a2 with
probability 1/2 each. Then the probability that a walker initially positioned at activity node ai
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c1

a1

c2

a2

c3

a3

c4

a4

Figure 4: Example RCA network with four cities and four activities

transitions to activity node aj after two steps is equal to (3.8). For example, the network shown
in Figure 4 is associated with the Markov transition matrix

P4 =

2

66664

4/9 1/6 5/18 1/9
1/2 1/2 0 0
5/12 0 5/12 1/6
1/6 0 1/6 2/3

3

77775
(B.1)

between the activities a1, a2, a3 and a4. The only city with RCA in activity a2 is c1, which has
RCA in activities a1 and a2. Thus, if a random walker starts at activity node a2 then its position
after two steps is either a1 or a2 with equal probability as confirmed by the second row of P4.

The intuitive meaning of paiaj is as follows. Suppose that a specialist in activity ai relocates
to another city specialising in that activity and that, on arrival, they change jobs to one of the
local specialisations in the new city. If all possible outcomes of the relocation and job-change
decision are equally likely, then paiaj is the probability that the specialist shifts to activity aj.

C Proof that ŷ(•) = (e2 � e2 1)/sd(e2)

First let l1, l2, . . . , ln be the eigenvalues of P and define y(0) = a1l1e1 + a2l2e2 + · · ·+ anlnen,
where a1, a2, . . . , an are the coordinates of y(0) with respect to the eigenbasis e1, e2, . . . , en. Then

y(k) = a1e1 + a2lk
2e2 +O(lk

3)

by linearity and the Perron-Frobenius theorem. It follows that

y(k)
� y(k)1 = a2lk

2(e2 � e21) +O(lk
3)

and that
sd(y(k)) = |a2lk

2|sd(e2) +O(lk
3)

as k ! •. These limits yield (3.10) because the sign of e2 is arbitrary.
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D Additional figures and tables
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Figure 5: Activity complexity series by subsample membership

Notes: The plotted data are derived from 1981, 1991, 2001 and 2013 census usual resident employment counts, with
random rounding to base three and with all cells with true counts below six suppressed. Each activity is assigned to
the “complex,” “simple” or “other” subsample according to whether its complexity is greater than zero, is smaller
than zero, or has variable sign across the four census years included in our data. We omit the complexity series for
the residual activity.
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Figure 6: City complexity series by subsample membership

Notes: The plotted data are derived from 1981, 1991, 2001 and 2013 census usual resident employment counts, with
random rounding to base three and with all cells with true counts below six suppressed. Each city is assigned to
the “complex,” “simple” or “other” subsample according to whether its complexity is greater than zero, is smaller
than zero, or has variable sign across the four census years included in our data.
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Table 8: Employment in main urban areas

Urban area Local employment by census year

1981 1986 1991 1996 2001 2006 2013

Central Auckland Zone 129,429 136,896 124,854 144,315 160,935 187,641 198,603
Christchurch 126,714 133,062 124,662 143,397 152,742 176,325 173,631
Southern Auckland Zone 91,974 108,609 99,825 113,184 125,328 149,748 154,890
Northern Auckland Zone 68,439 80,313 81,636 94,956 104,640 123,930 131,112
Wellington Zone 77,145 79,944 74,526 81,063 86,853 98,268 102,024
Western Auckland Zone 52,749 62,295 61,254 69,789 75,237 85,851 88,545
Hamilton Zone 48,621 52,968 49,734 56,967 61,671 72,207 76,125
Tauranga 21,426 26,118 25,488 31,905 38,481 48,666 51,288
Dunedin 46,683 46,164 40,833 45,099 46,125 51,267 49,746
Lower Hutt Zone 43,899 45,264 40,356 41,421 43,080 46,386 44,664
Palmerston North 29,886 30,207 28,413 31,773 32,271 36,375 34,977
Nelson 17,481 19,536 18,933 22,200 23,934 27,393 28,137
Hastings Zone 23,091 24,453 21,912 22,911 23,622 26,802 26,259
Napier Zone 21,138 22,764 19,809 22,143 23,004 26,013 25,197
New Plymouth 18,339 20,892 18,408 19,962 19,440 22,812 24,234
Invercargill 24,030 23,475 20,283 21,054 19,986 22,140 22,323
Porirua Zone 17,244 19,551 17,259 16,935 19,224 20,748 21,834
Rotorua 19,581 22,263 18,429 20,670 21,072 22,722 20,943
Whangarei 15,573 19,218 15,195 16,266 17,067 19,398 18,012
Upper Hutt Zone 16,539 17,010 15,411 15,342 15,510 17,217 17,322
Kapiti 7,071 8,601 9,681 10,821 12,855 15,174 15,966
Wanganui 15,675 16,215 13,677 14,160 14,487 15,438 14,406
Blenheim 8,736 9,696 9,249 11,037 12,069 14,010 13,644
Gisborne 12,810 13,275 10,449 11,313 11,595 12,765 12,477
Cambridge Zone 3,639 4,584 4,653 5,220 5,835 6,933 8,028
Te Awamutu Zone 4,467 4,803 4,266 4,914 5,277 6,186 6,123

Notes: The data shown are based on 1981–2013 census usual resident employment counts in urban area-industry-
occupation cells. Such counts are randomly rounded to base three. Cells with true counts below six are suppressed
and do not contribute to local employment.

Table 9: Employment in secondary urban areas

Urban area Local employment by census year

1981 1986 1991 1996 2001 2006 2013

Timaru 11,676 11,991 10,101 10,770 10,884 12,096 12,267
Pukekohe 5,034 5,820 5,700 6,294 7,476 9,687 10,953
Taupo 5,982 7,221 6,789 8,046 8,616 9,939 9,783
Ashburton 5,844 6,210 5,784 6,432 6,951 7,863 8,652
Masterton 7,881 7,914 6,672 7,197 7,470 8,208 8,262
Whakatane 5,466 6,042 5,475 6,087 6,771 7,248 6,954
Queenstown 1,434 2,178 2,589 4,188 4,848 6,159 6,705
Rangiora 2,544 3,018 2,997 3,906 4,413 5,022 6,555
Levin 6,585 7,146 6,489 6,360 6,441 6,732 6,363
Feilding 4,584 4,926 4,791 5,355 5,160 5,790 6,042
Oamaru 5,319 5,226 4,575 4,749 4,644 5,094 5,040
Hawera 4,395 4,389 4,062 4,467 4,446 4,428 4,647
Greymouth 4,524 4,650 3,672 3,876 3,834 4,431 4,071
Tokoroa 7,680 7,551 5,559 4,758 4,644 4,218 3,696

Notes: The data shown are based on 1981–2013 census usual resident employment counts in urban area-industry-
occupation cells. Such counts are randomly rounded to base three. Cells with true counts below six are suppressed
and do not contribute to local employment.
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Table 10: Employment in minor urban areas

Urban area Local employment by census year

1981 1986 1991 1996 2001 2006 2013

Gore 4,878 4,566 3,909 4,248 4,140 4,182 3,933
Motueka 1,953 2,169 2,034 2,223 2,583 2,778 2,694
Morrinsville 1,740 1,989 1,833 1,965 2,145 2,421 2,571
Matamata 1,674 1,971 1,818 1,953 2,145 2,202 2,436
Te Puke Community 1,773 2,106 1,623 1,686 1,968 2,409 2,334
Thames 2,316 2,289 2,175 2,346 2,253 2,316 2,094
Stratford 1,884 1,905 1,443 1,653 1,569 1,677 1,857
Huntly 2,253 2,541 1,551 1,419 1,644 1,746 1,611
Dannevirke 1,878 2,025 1,770 1,656 1,689 1,845 1,515
Balclutha 1,830 1,716 1,467 1,521 1,563 1,542 1,473

Notes: The data shown are based on 1981–2013 census usual resident employment counts in urban area-industry-
occupation cells. Such counts are randomly rounded to base three. Cells with true counts below six are suppressed
and do not contribute to local employment.
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Table 14: Suppression rates by census year

Year Total employment in our selection National employment

Suppressed Unsuppressed Suppression Suppressed Unsuppressed Suppression
data data rate (%) data data rate (%)

1981 1,063,506 1,079,712 1.501 1,129,548 1,169,256 3.396
1986 1,155,735 1,171,155 1.317 1,225,755 1,266,735 3.235
1991 1,064,073 1,083,381 1.782 1,119,981 1,166,229 3.966
1996 1,191,972 1,209,462 1.446 1,251,270 1,299,777 3.732
2001 1,280,637 1,298,052 1.342 1,344,216 1,393,902 3.565
2006 1,472,448 1,489,365 1.136 1,548,099 1,599,579 3.218
2013 1,503,018 1,519,932 1.113 1,581,534 1,632,342 3.113

Notes: The data shown are based on 1981–2013 census usual resident employment counts in urban area-industry-
occupation cells. Such counts are randomly rounded to base three. Cells with true counts below six are declared as
missing in the suppressed data and so do not contribute to total employment.
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