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Non-technical summary

Research Question

Whether and how changes in expected inflation affect expectations concerning the real

economy has always been an intensely debated question. In this paper, we provide a new

perspective on this issue by embedding inflation in one of the workhorse models of real

equilibrium asset pricing, namely the long-run risk framework. This class of models has

been widely applied in the literature, but has rarely been extended towards the pricing of

nominal assets.

Results

We find that, when the long-run risk model is augmented by inflation, time variation in

expected consumption growth can explain time variation in the stock-bond return corre-

lation. Key to this finding is the empirical observation that extreme expected inflation –

both very high and very low – is linked to low average consumption growth. Depending on

the state of the economy, an increase in expected inflation can be either a good or a bad

signal for real expected consumption growth, and this signalling channel drives changes

in the return correlation between real and nominal assets. As a validation of our channel,

we also find that the long-run risk variable that we extract exclusively from macro data

via the estimation of our model is highly correlated with long-run risk proxies suggested

in the literature, with the important difference that those are usually extracted from asset

price data.

Contribution

We show that one of the workhorse real equilibrium asset pricing models can explain

the stock-bond return correlation when we properly condition on inflation as a signal for

expected consumption growth. The probability of being in a low expected consumption

growth state is closely linked to implicit long-run risk variables in the literature that

have been extracted from asset prices. All the aforementioned results are derived from

macro data only. This is key for our analysis, since asset price data have the potential to

severely confound a macro estimation by imposing the strong parametric structure of an

asset pricing model.



Nichttechnische Zusammenfassung

Fragestellung

Ob und wie sich Änderungen der erwarteten Inflation auf realwirtschaftliche Erwartun-

gen auswirken, ist nach wie vor eine umstrittene Frage. In diesem Papier beleuchten

wir dieses Thema aus einer neuen Perspektive, indem wir Inflation in ein Asset-Pricing-

Gleichgewichtsmodell mit langfristigen Konsumrisiken einbetten. Diese Klasse von Asset-

Pricing-Modellen gehört inzwischen zum Standard in der Literatur, ist aber bislang kaum

auf die Bewertung von nominalen Wertpapieren angewendet worden.

Ergebnisse

Wir zeigen, dass die zeitliche Variation im erwarteten Konsumwachstum die zeitliche Va-

riation in der Korrelation zwischen Aktien- und Anleihenrenditen erklären kann, sofern

das reale Standard-Modell um Inflation erweitert wird. Der entscheidende Schritt ist hier-

bei die empirische Beobachtung, dass extreme erwartete Inflation - sowohl sehr hohe als

auch sehr niedrige - mit einem niedrigen durchschnittlichen Konsumwachstum einhergeht.

Abhängig vom Zustand der Volkswirtschaft kann ein Anstieg der erwarteten Inflation da-

mit entweder als positives oder als negatives Signal für das reale erwartete Konsumwachs-

tum interpretiert werden. Dies führt zu Zeitvariation in der Korrelation der Renditen von

realen und nominalen Wertpapieren. Um diesen Mechanismus zu validieren, zeigen wir,

dass die Variable für langfristiges Konsumrisiko, die wir ausschließlich aus Makrodaten

durch die Schätzung unseres Modells extrahieren, in hohem Maße mit ähnlichen in der

Literatur vorgeschlagenen Variablen korreliert, mit dem wichtigen Unterschied, dass jene

normalerweise aus Wertpapierpreisdaten extrahiert werden.

Beitrag

Wir zeigen, dass eines der wichtigsten realen Asset-Pricing-Gleichgewichtsmodelle zeitli-

che Variation in der Korrelation von Aktien- und Anleiherenditen erklären kann, wenn

wir Inflation als Signal für erwartetes Konsumwachstum angemessen berücksichtigen.

Die Wahrscheinlichkeit eines niedrigen erwarteten Konsumwachstums ist eng mit im-

pliziten Variablen für langfristiges Konsumrisiko verknüpft, die in der Literatur bisher

zumeist aus Wertpapierpreisen extrahiert wurden. Unsere Schätzung basiert ausschließ-

lich auf makroökonomischen Daten. Dies ist für unsere Analyse von zentraler Bedeutung,

da Asset-Preisdaten das Potenzial haben, die makroökonomischen Implikationen eines

Asset-Pricing-Modells stark zu beeinträchtigen, wenn zu strenge parametrische Annah-

men getroffen werden.
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1 Introduction

Whether and how changes in expected inflation affect expectations concerning the real
economy has always been an intensely debated question. In this paper, we provide a
new perspective on this issue by embedding inflation in one of the workhorse models of
equilibrium asset pricing, namely the long-run risk framework. We find that, when a
regime-switching model featuring long-run risk is augmented by inflation, time variation
in expected consumption growth can explain time variation in the stock-bond return
correlation and in aggregate stock market volatility.

Key to this finding is the empirical observation that extreme expected inflation –
both very high and very low – is linked to low average consumption growth. Including
inflation in a parsimonious regime switching model thus significantly affects the estimated
dynamics of the conditional mean of consumption growth relative to a model based on
consumption only. We embed the estimated regime-switching dynamics in an otherwise
standard equilibrium asset pricing model with learning, thereby extending the long-run
risk framework towards explaining the joint dynamics of real and nominal assets. This
very stylized model allows us to match, among other things, the empirically observed
time-varying nature of the return correlation between stocks and nominal bonds. As a
further validation of our channel, we also find that the long-run risk variable that we
extract (exclusively) from macro data via the estimation of the regime-switching model is
highly correlated with long-run risk proxies suggested in the literature, with the important
difference that those are usually reverse-engineered from asset price data.

Long-run risk asset pricing models rest on the key assumption that the conditional
distribution of consumption growth, in particular its mean, is time-varying. Following
the seminal publication of Bansal and Yaron (2004), a lot of papers dealt with the issue
of detecting such time variation.1 In this paper, we take a step back and document the
existence of long-run risk by fitting a parsimonious regime-switching model for consump-
tion growth to standard quarterly NIPA aggregate consumption data. We show that the
hypothesis of constant expected consumption growth can be rejected at any conventional
significance level.

Based on this, our paper then makes the following four key contributions. First,
augmenting the time series model by inflation as a second variable, we detect two states
in which expected consumption growth is low, one with very high expected inflation (so-
called “stagflation”) and one with negative expected inflation (“deflation”). The fact that
there are two very different states with low expected consumption growth turns out to be
important for asset pricing.

Second, by embedding the estimated dynamics in a standard general equilibrium asset
pricing model with recursive preferences and learning, we show that imperfect informa-
tion about expected consumption growth drives time variation in aggregate stock market
volatility and in the stock-bond correlation when we properly condition on inflation as a
signal.

Third, the probability of being in a low expected consumption growth state that we

1A nice synopsis of arguments against or in favor of long-run risk is given by the two competing papers
of Beeler and Campbell (2012) and Bansal, Kiku, and Yaron (2012), respectively. Recent advances were
made by Schorfheide, Song, and Yaron (2018), who document and analyze the persistent component in
expected consumption growth employing sophisticated Bayesian mixed frequency techniques.
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obtain from our macro estimation with consumption and inflation data tracks the histori-
cal price-earnings ratio of US equity well. It is therefore closely linked to implicit long-run
risk variables that have been obtained through reverse engineering from asset prices in
the literature. As an example, we provide an alternative derivation and interpretation of
the “time-varying disaster risk” presented in Wachter (2013), which is one prime example
of such a variable.

Finally, we wish to emphasize that we produce all the aforementioned results within
an rather simple setup, where no asset price data are used in the estimation. This is key
for our analysis, since asset price data have the potential to severely confound a macro
estimation, e.g., via certain moment conditions to represent the parametric structure of
an asset pricing model included in an application of GMM.

We now give some more details on our contributions. The Markov regime switching
model is a simple and convenient representation of the case of time-varying expected
consumption growth. The estimation gives two states for the conditional mean, and a
Wald test rejects the hypothesis of the conditional means being equal at any conventional
significance level. We then add inflation as a second variable, and in this extended model,
expected inflation and expected consumption growth are related in a nonlinear way: both
extremely high and extremely low expected inflation are coupled to low expected con-
sumption growth, and in particular the possibility of negative inflation is an important
driver of many of our results.

The recent literature on long-run risk in asset pricing, e.g. Wachter (2013), puts an
emphasis on the link between time variation in the conditional distribution of consumption
growth and time variation in second moments of returns. Motivated by the time series re-
sults above, we embed the fundamental dynamics into a state-of-the-art equilibrium asset
pricing model, where the representative investor is equipped with recursive preferences.
Given the usual values for risk aversion and the elasticity of intertemporal substitution,
the substitution effect dominates, so that prices are decreasing in the amount of aggregate
risk.

In line with papers like Detemple (1986), or Croce, Lettau, and Ludvigson (2012), we
make the assumption that the representative investor knows the structural parameters of
the model, but cannot observe the true state and thus can only filter the respective proba-
bilities from the data. Given our estimation, extreme (high or low) inflation observations
serve as a useful signal, which allows to better infer the time-varying probability of very
low or even negative consumption growth. The fact that low real growth can be linked
to high or low expected inflation is key to producing a time-varying stock-bond return
correlation. When very high expected inflation occurs together with low expected real
growth, both bonds and stocks will tend to have negative returns, resulting in a positive
correlation. On the other hand, low growth expectations in periods with low expected
inflation will lead to negative equity returns, but positive bond returns, implying a nega-
tive correlation. Stated differently, the long-run risk paradigm can be extended towards
the time-varying nature of the stock-bond return correlation when the signaling role of
inflation is taken into account properly.

We test the asset pricing implications of our model by feeding it with the empirical
time series of observed consumption growth and inflation and then pricing stocks and
bonds using our model-implied pricing kernel. We then compare the dependence of stock
return volatilities and stock-bond correlations on the filtered probabilities in the model
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and the data. In both model and real data the stock-bond return correlation is positively
and significantly linked to the probability of being in the high-inflation state, while for the
deflationary state we find exactly the opposite. The model also qualitatively matches two
key results in Wachter (2013). First, stock market volatility is increasing in the (filtered)
probability of being in a bad consumption growth state. Second, the relation between
stock market volatility and this probability is nonlinear both in the model and in the
data.

Finally, our approach using only macroeconomic data also offers a nice alternative
derivation of the state variable “time-varying disaster probability” that Wachter (2013)
has produced in her paper. The correlation between her variable and our filtered probabil-
ity of being in a bad consumption growth state is 0.88, and this co-movement is mirrored
in the close co-movement between the dividend-price ratio in the data and in our model.
Although there is no explicit role for disaster risk in our model, we choose this time series
for comparison because its interpretation as a “probability” is much closer to the basic
state variables in our model than, for instance, estimated time series of mean consump-
tion growth. We draw the tentative conclusion that the “implied disaster probability” in
Wachter (2013), which is obtained through a transformation of the historical dividend-
price ratio of the S&P 500, is closely linked to time variation in expected consumption
growth, which we estimate from consumption and inflation data alone. This interpre-
tation also reinforces the findings of Branger, Kraft, and Meinerding (2016) who argue
that disaster risk and long-run risk are intertwined in historical data. The episodes of
high marginal utility which Wachter (2013) labels as episodes of elevated disaster risk
are characterized by low expected consumption growth according to our Markov chain
estimation.

We close the paper with a number of robustness checks concerning both the estima-
tion and the asset pricing model. First, we show that a Markov switching model for
consumption growth only (i.e., without inflation) cannot replicate the time series of the
dividend-price ratio. Second, our results do not depend on expected consumption growth
being particularly low (high) in one of the two bad (good) states. A model where expected
growth is constrained to be the same in the two good and in the two bad states, respec-
tively, delivers qualitatively the same results. Third, additional analyses with subsamples,
with GDP growth instead of consumption growth, or with monthly consumption data also
largely confirm our findings.2 Fourth, on the asset pricing side, we document that our two
major assumptions – recursive preferences and learning from inflation observations – are
both key to generating our main results. In a nested model with CRRA preferences, the
regression of correlations on state variables delivers coefficients whose signs are opposite
to the data. A nested model in which the state of the economy is perfectly observable has
problems to generate the recently observed negative correlation in the first place.

2We also estimate the Markov chain model on a long sample of annual data and identify a deflationary
state there as well. As is clear from the discussion above, the identification of a deflationary state is
crucial to match the asset price data. In our benchmark estimation, this identification largely rests
on the deflation observations during the Financial Crisis in 2008. However, there are also deflationary
episodes in pre-war data, which are not contained in our benchmark sample of quarterly data starting in
1947.
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2 Related Literature

Our paper contributes to and links two major strands of literature, namely the asset
pricing literature about inflation as a priced risk factor and the asset pricing literature
featuring long-run risk and its empirical estimation. We do not aim at giving a full review
of the numerous papers in the latter field. Contributions there have been made by Bansal
and Yaron (2004), Bansal, Kiku, and Yaron (2016) Beeler and Campbell (2012), Bansal
et al. (2012), Constantinides and Ghosh (2011), Ortu, Tamoni, and Tebaldi (2013), and
Schorfheide et al. (2018), among many others.

Concerning equilibrium asset pricing with inflation risk, we mostly build on the follow-
ing papers. Bansal and Shaliastovich (2013) propose a long-run risk model with expected
inflation and expected growth as risk factors and use it to explain the empirically observed
predictability patters in bond and foreign exchange returns. Eraker (2008) proposes an
affine jump-diffusion model with jumps in consumption volatility. Eraker, Shaliastovich,
and Wang (2016) discuss a long-run risk model with inflation as a risk factor, but their
focus is on differences between durable and non-durable consumption and their implica-
tions for equity and bond prices in these sectors. Ehling, Gallmeyer, Heyerdahl-Larsen,
and Illeditsch (2018) consider heterogeneous agents who disagree about inflation, and the
authors show that this disagreement increases yields and yield volatilities at all maturi-
ties. Burkhardt and Hasseltoft (2012) propose a model with recursive utility, inflation
and long-run risk similar to ours, but, given the way in which the authors introduce in-
flation risk premia, the asset pricing results seem to a certain degree hardwired into the
model. We consider our approach less restrictive in terms of the specification of inflation
and consumption growth. Piazzesi and Schneider (2006) discuss the role of inflation as a
signal about future consumption growth, but they focus on the term structure of (nominal
and real) interest rates and do not address time variation in the stock-bond correlation.

Song (2017) studies an endowment economy model with recursive preferences, a regime-
switching Taylor rule, and a time-varying inflation target. Campbell, Pflueger, and Viceira
(2018) analyze the stock-bond correlation in a New Keynesian production economy with
habit formation preferences and monetary policy regimes. Complementary to our paper,
Constantinides and Ghosh (2017) assess the ability of several macroeconomic predic-
tor variables to improve the performance of consumption-based equilibrium asset pricing
models, and they find that inflation data helps to generate the (non-)predictability of
price-dividend ratios by cash flow growth rates. In all these papers, however, asset price
data is used to calibrate or estimate the model. Ermolov (2018) estimates an external
habit model with macroeconomic data only, but his explanation of time variation in the
stock-bond correlation is very different from ours. He assumes that consumption and
inflation can be hit by two different shocks labeled as supply and demand shocks, whereas
we rely on different regimes for expected growth rates.

David and Veronesi (2013) propose Markov switching dynamics for fundamentals, but
they assume a model featuring a representative agent with time-additive CRRA prefer-
ences who suffers from bounded rationality in the form of money illusion in the spirit of
Basak and Yan (2010). Since their GMM estimation relies on asset price data, it delivers
quite different dynamics for the fundamentals compared to our estimation, most impor-
tantly state-independent expected consumption growth. This is because the estimation
targets empirical dividend-price ratios and thus has to shut down the intertemporal sub-
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stitution channel, i.e. there is no role for long-run risk in their estimated model. We show
in our empirical results that the hypothesis of constant expected consumption growth can
be rejected at any conventional significance level if the estimation is based on macro data
only.

Boons, de Roon, Duarte, and Szymanowska (2017) provide empirical evidence for in-
flation risk being priced in the cross-section of stock returns. Their paper can be viewed
as complementary to ours, since the market price of inflation risk estimated from the
cross-section of stock returns switches sign and is linked to the stock-bond correlation
in the data. It can be considered a stylized fact that the correlation between inflation
and other variables can change the sign of the stock-bond correlation, and we provide a
model-theoretic explanation for this result. Other papers in this area include Schmeling
and Schrimpf (2011), Balduzzi and Lan (2016), Campbell, Sunderam, and Viceira (2017),
Hasseltoft (2012), Ang and Ulrich (2012), and Marfe (2015), to name just a few. Baele,
Bekaert, and Inghelbrecht (2010) empirically analyze the determinants of the stock-bond
return comovement. Fleckenstein, Longstaff, and Lustig (2016) study the pricing of de-
flation risk using market prices of inflation-linked derivatives.

Through the re-interpretation of our state variables as measuring time-varying disaster
risk, our paper is also related to this area of research. Rietz (1988) and Barro (2006, 2009)
rationalize a high equity premium in the disaster risk framework. Extensions of their basic
model have been studied by Chen, Joslin, and Tran (2012) and Julliard and Ghosh (2012),
among others. Constantinides (2008) criticizes that historically consumption disasters
rather unfold over several years instead of just one point in time. Similarly to the critique
of Constantinides (2008), the assumption of extreme jumps is also questioned by Backus,
Chernov, and Martin (2011). As a response, Branger et al. (2016) combine disaster risk
and long-run risk and show that the equity premium puzzle can still be solved with
multi-period disasters. Similarly, Gabaix (2012), Wachter (2013), and Tsai and Wachter
(2015) analyze models with time-varying jump intensities and recursive preferences. Our
results imply that the disaster risk paradigm may be extended towards an explanation of
the time-varying stock-bond return correlation, when the effect of inflation on real asset
prices is captured properly. Finally, in this regard, our paper may also contribute to the
discussion about “dark matter” in asset prices started by Chen, Dou, and Kogan (2017)
in the sense that a large fraction of this dark matter may be attributed to uncertainty
about extreme inflation.

3 Fundamental Dynamics

3.1 Consumption and inflation

The two fundamental sources of risk in our model are aggregate consumption and inflation.
In the baseline version without inflation, we assume that log aggregate real consumption,
lnC, follows the process

d lnCt = µC(St)dt+ σCdWC
t . (1)

WC is a standard Wiener process, the volatility σC is constant. The conditional drift rate
µC(St) is stochastic and follows a continuous-time Markov chain whose current state is
denoted by St. There are n states (indexed by i = 1, . . . , n), with state-dependent drifts
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µCi . The Markov chain transitions are governed by counting processes whose intensities
are collected in the (n× n)-matrix Λ = (λij)i,j=1,...,n. Following the usual convention, we
define the diagonal elements λii := −

∑
j 6=i λij so that the rows of Λ sum to 0. In our

benchmark empirical case, we will have n = 2.
In the full model, the joint dynamics of log aggregate real consumption and of the log

price level π are given as

d lnCt = µC(St)dt+ σC
(√

1− ρ2dWC
t + ρdW π

t

)
dπt = µπ(St)dt+ σπdW π

t .
(2)

Here WC and W π are the (independent) components of a standard bivariate Wiener
process. The dynamics in (2) imply that the increments to lnC and to π are correlated
with correlation parameter ρ. The volatilities σC and σπ are assumed constant. The
conditional drift rates µC(St) and µπ(St) now follow a bivariate continuous-time Markov
chain whose current state is again denoted by St. Keeping the rest of the notation as
above, the number of states in the full model will later turn out to be n = 4.

We will often use the vector representation of the above dynamics, which can be
written as (

d lnCt
dπt

)
= µ(St) dt+ Σ dWt

with

µ(St) =

(
µC(St)
µπ(St)

)
, Σ =

(
σC
√

1− ρ2 σCρ
0 σπ

)
, dWt =

(
dWC

t

dW π
t

)
.

3.2 Markov chain estimation

To estimate the dynamics of the fundamentals we use quarterly real consumption growth
rates from NIPA and quarterly inflation rates constructed according to the Piazzesi and
Schneider (2006) mechanism.3 Our sample period ranges from 1947Q1 to 2014Q1 and
represents the longest period for which quarterly data are available.4 The upper graph in
Figure 1 shows time series plots of the data.

Based on these data for consumption and inflation we estimate the two models (1) and
(2) using maximum likelihood.5 We assume a constant variance-covariance matrix and
only allow for time-varying drifts. Instead of the transition intensities Λ, the estimation
gives us an (n × n)-matrix Q = (qij)i,j=1...,n of transition probabilities, which are linked
to the intensities via λij = − log(1 − qij) for j 6= i. The diagonal elements qii of the
transition probability matrix are set such that the rows sum to 1. Standard errors for the

3The choice of this inflation time series is in line with the literature on consumption-based asset pricing
with a focus on inflation risk, e.g. Song (2017), David and Veronesi (2013), Burkhardt and Hasseltoft
(2012). For a detailed discussion of this issue, we refer the reader to Piazzesi and Schneider (2006).

4We have performed the estimation also with alternative samples to compare our findings to those
stated in other papers. These results are discussed in Section 6.4. Besides, we have also estimated various
constraint versions of the models in which the number of parameters is reduced. This does not change
any of our results qualitatively. Details on these constraint models are presented in Section 6.5.

5For details about the estimation procedure, see Online Appendix A.
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p̂1 p̂2

p̂3 p̂4

Figure 1: Fundamental data and filtered probabilities

The upper graph shows time series plots of the data for consumption growth and inflation

over our sample period from 1947 to 2014. The lower graphs present the real-time filtered

probabilities for each of the four states estimated for our Markov switching models with

parameters shown in Table 2. Shaded areas indicate NBER recessions.
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Panel A: Consumption and inflation parameters

µC1 µC2 (σC)2

Consumption growth 2.340 -1.800 0.708
(0.188) (0.615) (0.085)

Panel B: Markov chain transition probabilities
to state 1 to state 2

from state 1 0.939 0.061
(0.092) (0.092)

from state 2 0.467 0.533
(0.217) (0.217)

Panel C: Optimal number of states

2 states 3 states
Log likelihood -195.44 -184.14
Penalty term 39.14 72.68
Bayes Information Criterion 430.02 440.96
(= −2 · logL+ penalty term)

Table 1: Markov chain estimation

This table reports the results from our univariate Markov chain estimation for consumption

growth only. Growth rates are given in percentage points and annualized. The data span the

period from 1947 to 2014 at the quarterly frequency. Numbers in parantheses are standard

errors obtained from a standard block bootstrap with block length of 10 quarters.

parameter estimates are computed via a standard block bootstrap with a block length of
ten quarters6 with potentially overlapping blocks and 5,000 repetitions.

The results are presented in Tables 1 and 2. The first important finding is that
in the univariate case, based on the Bayes Information Criterion (BIC), the algorithm
clearly identifies two regimes with values for expected consumption growth of 2.34 and
−1.80 percentage points, respectively. Moreover, a Wald test based on the bootstrapped
standard errors clearly rejects the hypothesis that these two values are equal (p-value
0.002). We regard this test as clear evidence that the conditional mean of consumption
growth is varying over time, which is the first key contribution of our paper.

Adding inflation to the model, the estimation results change significantly. For the bi-
variate model the algorithm identifies four regimes: high growth–medium inflation (state
1), medium growth–low inflation (state 2), low growth–high inflation (state 3), and nega-
tive growth–negative inflation (state 4). The estimated transition probabilities imply that

6Varying the block length does not affect the results.
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Panel A: Consumption and inflation parameters

µi1 µi2 µi3 µi4 (σi)2 ρσCσπ ρ
Consumption growth 2.365 1.898 0.444 -0.997 1.016 -0.136 -0.218

(0.487) (0.155) (0.315) (0.631) (0.099) (0.030) (0.103)
Inflation 4.704 2.161 9.514 -2.917 0.382

(0.975) (0.846) (1.668) (2.438) (0.035)

Panel B: Markov chain transition probabilities
to state 1 to state 2 to state 3 to state 4

from state 1 0.909 0.027 0.039 0.025
(0.202) (0.087) (0.160) (0.049)

from state 2 0.022 0.970 0.008 0
(0.029) (0.056) (0.027) (0.024)

from state 3 0.135 0.037 0.828 0
(0.064) (0.077) (0.088) (0.028)

from state 4 0 0.337 0 0.663
(0.065) (0.253) (0.152) (0.203)

Panel C: Optimal number of states

3 states 4 states 5 states 6 states
Log likelihood -357.80 -317.65 -307.60 -287.75
Penalty term 119.40 169.70 238.80 320.50
Bayes Information Criterion 835.00 805.00 854.00 896.00
(= −2 · logL+ penalty term)

Table 2: Markov chain estimation

This table reports the results from our bivariate Markov chain estimation for consumption

growth and inflation. Growth rates are given in percentage points and annualized. The data

span the period from 1947 to 2014 at the quarterly frequency. Numbers in parantheses are

standard errors obtained from a standard block bootstrap with block length of 10 quarters.
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Data Model
Cons. growth Inflation Cons. growth Inflation

Mean 1.826 3.471 1.825 3.283
[1.640, 2.036] [2.822, 3.526]

Volatility 1.064 1.363 1.023 1.264
[1.006, 1.095] [1.125, 1.339]

Correlation -0.138 -0.113
[-0.282, 0.078]

AC(1) 0.261 0.756 0.0637 0.637
[-0.049, 0.169] [0.430, 0.779]

AC(2) 0.237 0.631 0.044 0.533
[-0.063, 0.147] [0.297, 0.700]

AC(3) 0.208 0.578 0.029 0.450
[-0.082, 0.131] [0.221, 0.631]

Table 3: Unconditional moments of consumption growth and inflation

The table reports unconditional moments of consumption growth and inflation. The

columns labeled “Data” are based on quarterly data from 1947 to 2014. The columns

labeled “Model” have been obtained by Monte Carlo simulation using the parameters given

in Table 2 (5,000 paths of 68 years each). The numbers in parentheses give 90% confidence

bounds around the point estimates.

state 1 lasts for around 11 quarters on average, while the average time spent in state 2 is
33 quarters. The other two states are not very persistent with an average occupation time
of around 6 and 3 quarters, respectively. So most of the time, the economy is in state 1
or 2, but it is the rare states 3 and 4 which are very important in the context of asset
pricing, since they feature low (or even negative) expected consumption growth. State
3 is a high-inflation state with low growth (sometimes labeled ’stagflation’), whereas in
state 4 the expected change in the price level is negative, i.e., there is deflation on average.

Table 3 reports unconditional moments of consumption and inflation in the data and
in the estimated time series model (2). Note that the maximum likelihood estimation
does not explicitly target these moments. Still, the general fit of the time series model is
good. Only the autocorrelations of consumption growth in the model are a little too low,
due to the rather simple Markov chain structure.

Since the focus of our paper is on asset pricing, we do not want to go too much
into detail about macroeconomic interpretations of our time series model. However, our
estimation results may also challenge our understanding of basic macroeconomics. In
traditional New-Keynesian models, for instance, inflation and consumption growth are
typically positively correlated, whereas finance researchers like Wachter (2006) argue that
a negative correlation is necessary to match asset prices. Admittedly, our model does
not involve a time-varying correlation of shocks. But our estimation with time-varying
expected growth rates may be interpreted in such a way that there are times in which
inflation and consumption growth comove positively (e.g. around the deflation episodes)
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and other times in which they comove negatively (e.g. around the stagflation episodes).
Moreover, our estimation is also in line with policy debates which document that negative
inflation (i.e., deflation) has re-entered the mindset of policymakers during the recent zero
lower bound episode.

4 Asset Pricing Model

Long-run risk models in which expected consumption growth is time-varying are supposed
to explain the time series behavior of asset prices and returns. In the following we will
therefore embed the dynamics estimated in the previous section into a state-of-the-art
asset pricing model with recursive preferences and learning. Having inflation in the model
allows us to analyze the returns of stocks and nominal bonds jointly. The quantitative
results presented in Section 5 are based on the parameter estimates from the benchmark
specification in Table 2.7

4.1 Preferences

The economy is populated by an infinitely-lived representative investor with stochastic
differential utility as introduced by Duffie and Epstein (1992b). The investor has the
indirect utility function

J(Ct, p̂1t, . . . , p̂nt) = Et

[∫ ∞
t

f(Cs, J(Cs, p̂1s, . . . , p̂ns))ds

]
,

where the aggregator f is given by

f(C, J) =
βC1− 1

ψ(
1− 1

ψ

) [
(1− γ)J

] 1
θ
−1
− βθJ with γ 6= 1 and ψ 6= 1

γ, ψ, and β denote the degree of relative risk aversion, the elasticity of intertemporal
substitution (EIS), and the subjective time preference rate, respectively. We define θ =
1−γ
1− 1

ψ

. The special case of time-separable CRRA preferences is represented by θ = 1, i.e.,

by γ = ψ−1. Throughout the paper, we assume γ = 10, ψ = 1.7, and β = 0.02.8 With
this parameter choice, the agent has a preference for early resolution of uncertainty, since
γ > ψ−1.

4.2 Filtering

We assume that the representative agent cannot observe St (and thus µC(St) and µπ(St))
and has to filter her estimates from the data.9 We add learning first and foremost because
a full information economy does not generate reasonable time variation in price-dividend

7Alternative parameterizations are discussed in Section 6.
8A nested version of our model with CRRA preferences (θ = 1) is discussed in Section 6.2.
9As pointed out in the introduction and as it is standard in the literature, we assume that the

representative agent knows the structural parameters of the model, but does not know the current state
of the economy.
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ratios. Incomplete information generates an additional layer of uncertainty that is key for
our results. Besides the risk to switch to a bad state next period, which would also be
present in a full information model, we add the uncertainty about the current regime and
thus about the probability of switching to a bad regime.10

Mathematically, there are two filtrations, F and G, where F is generated by the
processes (Ct)t, (πt)t and (St)t, whereas G ⊂ F is generated by the processes (Ct)t and
(πt)t only. The conditional expectations of the drifts given the investor’s information, µ̂Ct
and µ̂πt , are given as

µ̂Ct = E
[
µC(St)|Gt

]
=

n∑
i=1

p̂itµ
C
i

and

µ̂πt = E [µπ(St)|Gt] =
n∑
i=1

p̂itµ
π
i .

Here p̂it = E
[
1{St=i}|Gt

]
denotes the subjective conditional probability of being in state i

at time t, and these conditional probabilities will serve as state variables in our economy.
Since probabilities always sum up to 1, we will have n − 1 state variables p̂1, . . . , p̂n−1,
whose support is the standard simplex in Rn−1.

Consumption growth and inflation realizations are observable and serve as a signal for
the aggregate state. The dynamics of p̂it follow from the so-called Wonham filter and are
given by

dp̂it =

(
λiip̂it +

∑
j 6=i

λjip̂jt

)
dt+ p̂it

[(
µCi
µπi

)
−

n∑
j=1

p̂jt

(
µCj
µπj

)]′
(Σ′)−1

(
dŴC

t

dŴ π
t

)
. (3)

with the “subjective” Brownian motions(
dŴC

t

dŴ π
t

)
= Σ−1

[(
µCi
µπi

)
−

n∑
j=1

p̂jt

(
µCj
µπj

)]
dt+

(
dWC

t

dW π
t

)
.

A proof of the filtering equation based on Theorem 9.1 of Liptser and Shiryaev (2001)
and a discussion of its properties are provided in Online Appendix B.

In the context of our analysis it is essential to note that the update in the estimated
probability p̂i depends on both signals, i.e., on both realized consumption growth and
realized inflation. Inflation observations have an impact on the perceived probability of
being in state i and thus on the conditional expected consumption growth rate. This will
be the key driver for our asset pricing results described below.

The lower graphs in Figure 1 show the filtered estimates for the probabilities of the
four states, i.e., the estimates the investor would have computed based on information up
to and including time t. These estimates are the key quantities analyzed in the following
subsection. They will also serve as the explanatory variables in our regression analyses in
Section 5. First of all, there is considerable variation in each of the four time series, i.e.,
the probability of being in state i changes substantially over time. State 1 with the highest

10In Section 6.3 we compare our results to those from a nested model with full information, in which
the agent can observe the economic state at any point in time.
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expected real growth rate, but also above-average inflation is considered most likely by
the investor during the 1960s and much of the 1970s. The investor furthermore perceives
a high probability to be in the regime 2 with low inflation and stable growth for extended
periods during the 1950s and much of the 1990s, but this probability is very low during
the 1970s. Not surprisingly, there is a very high probability for the high inflation state 3
during the latter period. The deflation state 4 is seen as very likely in the beginning of
the sample right after the war and as well towards the end during the Great Recession.

4.3 Real Pricing Kernel and Wealth-Consumption Ratio

As shown in Duffie and Epstein (1992a), the real pricing kernel depends on the log wealth-
consumption ratio v and is given by

ξt = C−γt e
−βθt+(θ−1)

(
t∫
0

e−vudu+vt

)
.

The wealth-consumption ratio I ≡ ev depends on the estimated expected consumption
growth µ̂C , and therefore in particular on the estimated probabilities p̂i. It solves a
nonlinear partial differential equation given in Online Appendix C.1. A proof and details
concerning the numerical solution using a Chebyshev polynomial approximation are also
presented in Online Appendix C.1.

Given a solution for I, the pricing kernel has dynamics

dξt
ξt

= −βθdt− (1− θ)I−1 dt− γ dCt
Ct

+
1

2
γ2(σC)2dt− (1− θ)

n−1∑
i=1

Ip̂i
I
dp̂it

+
1

2

n−1∑
i=1

n−1∑
j=1

(θ − 1)

[
Ip̂ip̂j
I

+ (θ − 2)

(
Ip̂iIp̂j
I2

)]
σp̂iσ

′
p̂j
dt− γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂i dt.

with the dynamics of dp̂it given in Equation (3). Importantly, shocks to the state variables
p̂i affect the pricing kernel. Since these shocks are themselves driven by both consumption
and inflation observations, realized inflation indirectly enters the pricing kernel through
the learning mechanism.

4.4 Pricing the Assets in the Economy

We are mainly interested in two types of assets, equity and nominal bonds. Equity is
defined as a claim to real dividends. When defining dividends, one has to be careful
not to alter the informational setup of the model. Dividends are observable, and if they
provided a non-redundant signal about the state of the economy, this would affect the
initial filtering problem. Technically, this requires the two systems of equations(

dŴC
t

dŴ π
t

)
= Σ−1

[(
µCi
µπi

)
−

n∑
j=1

p̂jt

(
µCj
µπj

)]
dt+

(
dWC

t

dW π
t

)
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and dŴC
t

dŴ π
t

dŴD
t

 = Σ−1∗

µCiµπi
µDi

− n∑
j=1

p̂jt

µCjµπj
µDj

 dt+

dWC
t

dW π
t

dWD
t


to yield the same solution for dŴC

t and dŴ π
t . Here the superscript D denotes terms

related to dividend dynamics and Σ∗Σ
′
∗ is the covariance matrix of innovations to lnC, π

and lnD.
The above condition for the redundance of dividends is satisfied by assuming

d lnDt = µ̄dt+ φ

(
n∑
i=1

(µCi − µ̄)p̂it

)
dt+ φσC

(√
1− ρ2dŴC

t + ρdŴ π
t

)
.

Similar to Bansal and Yaron (2004), the deviation of the drift from its long-term average
µ̄ is levered by a factor of φ, and like Bansal and Yaron (2004) we assume φ = 3.

Let ω denote the log price-dividend ratio. Starting from the Euler equation for the
price of the dividend claim, we can apply the Feynman-Kac formula to g(ξ,D, ω) ≡ ξDeω.
This yields

Ag(ξ,D, ω)

g(ξ,D, ω)
+ e−ω = 0,

where A denotes the infinitesimal generator. Using Ito’s Lemma, we can translate this
equation into a PDE for ω(p̂). This PDE, together with details regarding its derivation, is
given in Online Appendix C.3. We solve this PDE again numerically using a Chebyshev
approximation.

A nominal bond pays off one unit of money at maturity T , which, in real terms, is

equal to exp
(
−
∫ T
t
dπsds

)
= exp(πt− πT ). The price of a nominal bond at time t is thus

equal to

B$,T
t = Et

[
ξT
ξt

exp(πt − πT )

]
.

Equivalently, one can define the nominal pricing kernel as
ξ$T
ξt$
≡ ξT

ξt
exp(πt − πT ) and

rewrite the pricing formula as

B$,T
t = Et

[
ξ$T
ξt$

]
.

The dynamics of the nominal pricing kernel then follow from Ito’s lemma:

dξ$t
ξ$t

=
dξt
ξt
− dπt +

1

2
d[π]t −

d[ξ, π]t
ξt

.

Importantly, the nominal risk-free short rate, i.e., the negative of the drift of ξ$, is not
just the sum of the real short rate and expected inflation, but involves the covariation
between the real pricing kernel and inflation, d[ξ, π] (and the quadratic variation of π).
The covariation is nonzero if inflation shocks affect the real pricing kernel, as they do in
our model, and can be interpreted as an equilibrium inflation risk premium.
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Figure 2: Dividend-price ratio

The figure depicts quarterly time series of dividend-price ratios. The blue solid line is the

dividend-price ratio of the S&P 500 index. The red dashed line is obtained by plugging

the historical paths of consumption, inflation, and our state variables p̂i into the numerical

solution of the model. The model parameters are estimated using macroeconomic data since

1947. The correlation between the data and the model-implied time series is 0.43.

The Euler equation and the Feynman-Kac formula applied to H(ξ$t , b
T,$
t ) = ξ$t e

bT,$t

yield a partial differential equation for the (log) price bT,$t ≡ lnBT,$
t of a nominal zero

coupon bond. Details on this partial differential equation and its solution are given in
Online Appendix C.5.

5 Results

5.1 Dividend-price ratios

In order to see how inflation risk influences real asset prices through the long-run risk
channel that we have established via the Markov chain estimation, it is instructive to
start by comparing the dividend-price ratios generated by our model with those observed
in the data. To this end, we plug the historical quarterly consumption and inflation time
series and our estimated state variables p̂i into the numerical solution of the model.

Figure 2 shows the model-implied dividend-price ratio together with the historical
dividend-price ratio of the S&P 500 index. The correlation between the two time series
is 0.43 and the two time series share all major upward and downward trends. Given that
we have not used any asset price data in the estimation, this finding is remarkable. We
take this as a first piece of evidence that our proposed state variables p̂i, embedded into
an otherwise standard asset pricing model featuring recursive Epstein-Zin preferences,
indeed capture the time variation in valuation ratios well.
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Figure 3: Time-varying disaster probabilities

The solid (blue) line depicts the time-varying disaster intensity, which Wachter (2013) ex-

tracts from asset price data. The dashed (red) line shows 20-quarter moving averages of

the sum of estimated probabilities p̂3 + p̂4 from our Markov switching model using con-

sumption and inflation data for the period from 1947 to 2014. To obtain p̂3 and p̂4 we plug

realized consumption growth and inflation data into our filtering equations and compute

the probabilities, which a Bayesian learner would have assumed at each point in time. The

correlation between the two time series is 0.88.

5.2 Extreme inflation as a signal about disaster risk

Based on the similarity between model-implied and empirical dividend-price ratios, we
first turn towards a deeper analysis of the time series pattern of the state variables in
our model. The main result of this section is depicted in Figure 3. The solid blue line
is the implied disaster intensity shown in Figure 8 (p. 1017) in the paper of Wachter
(2013).11 She reverse-engineers this quantity from asset prices based on her model, where
the intensity of rare consumption disasters follows a mean-reverting process and serves as
a state variable. Given the parameters of her model, she recovers monthly implied values
for this state variable from a smoothed time series of historical S&P 500 price-earnings
ratios. Although our model does not explicitly feature “disaster risk”, we choose this
particular time series for our comparison because its interpretation as a “probability” (of
very low consumption growth) is more in line with the state variables p̂i in our model than,
for instance, time-varying conditional means of consumption growth, which are typically
presented in long-run risk papers. To make her series comparable to our estimates we
take averages of the monthly implied disaster intensities over each quarter.

11We thank Jessica Wachter for sharing her data with us.
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Figure 4: Disaster probabilities estimated from consumption growth only

The solid (blue) line depicts the time-varying disaster intensity, which Wachter (2013) ex-

tracts from asset price data. The dashed (red) line shows 20-quarter moving averages of the

estimated probability for the state with low expected consumption growth from a Markov

switching model using only consumption data for the period from 1947 to 2014. To obtain

this probability we plug realized consumption growth into our filtering equations and com-

pute the probabilities, which a Bayesian learner would have assumed at each point in time.

The correlation between the two time series is 0.33.

The dashed red line is the sum of the filtered probabilities p̂3 + p̂4 from our model.
To obtain these estimates we plug realized consumption growth and inflation data into
our filtering equations and compute the probabilities, which a Bayesian learner would
have assumed at each point in time. The plot shows 5-year moving averages of these
probabilities.12

The two series have a correlation of 0.88 over our sample period covering almost 70
years. This is particularly remarkable, given that they are computed from very different
data and using rather different approaches. Furthermore, they share all important trends,
peaks, and troughs. There is a pronounced downturn during the 1950s, followed by rather
low values in the 1960s, a sharp increase during the 1970s up to around 1982, and then,
basically following the same kind of cycle, we observe the sharp decline and low level
during the Great Moderation, followed by the recent spike at the beginning of the Great
Recession. In particular, both the high inflation regime and the deflation regime and their
respective probabilities are relevant. For instance, a look at the time series plots of the
filtered probabilities in Figure 1 shows that the peak of the two series in the early 1980’s
can be traced back to the high probability of the high inflation regime (state 3) over that
period, and the deflation regime prevails towards both the beginning and the end of the
sample period. This result strongly supports the notion that inflation can serve as a signal
for expected real consumption growth in that it allows to quantify the probability of large
negative future consumption shocks.

To check whether it is indeed inflation that is important here, and not just certain
special characteristics of the consumption time series, we redo the analysis based on

12We use moving averages in order to account for the smoothing in Wachter (2013). More precisely,
for her reverse engineering exercise, she uses the ratio of prices to the previous 10 years of earnings. The
two time series depicted in Figure 3 both have an autocorrelation of 0.99.
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only consumption data, i.e. the univariate baseline model presented in the beginning.
Figure 4 presents the time series of the estimated probability for the state with low
expected growth. Already from a first rough inspection it becomes clear that the disaster
intensity is matched much less precisely than before. The correlation between the series
based on Wachter (2013) and the filtered probability of being in a bad state derived from
the consumption-only series goes down to roughly 0.33, but more importantly, the times
series of estimated probabilities for low consumption growth is substantially off during
basically all periods when the risk of the economy being in a bad state is actually high,
e.g., during most of the 1970’s and 1980’s and also to a certain degree towards the end of
the sample period. These findings are a clear indication that information about inflation
in necessary to obtain reliable estimates for the probability of low real growth.

5.3 Conditional stock return volatilities

Given that Wachter (2013) documents the important role of time-varying disaster inten-
sities for the dynamics of second moments of returns, we continue the discussion of our
asset pricing results by analyzing second moments.

We proceed in the following way. We take the time series of filtered probabilities as
shown in Figure 1, plug them into our model solution and compute model-implied real
prices for equity and for nominal bonds with five years to maturity. From these time
series of real prices we compute model-implied quarterly real log returns for these two
assets. More precisely, with St and Bt(20) denoting the price of the equity claim and the
20-quarter (five-year) nominal zero coupon bond in quarter t, the returns from quarter t to
quarter t+1 are computed as ln(St+1 +Dt+1)− lnSt and lnBt+1(19)− lnBt(20). We then
add log realized inflation to the real returns to obtain nominal returns. The corresponding
quantities in the data are quarterly returns of the CRSP value-weighted index and log
bond returns computed from the US Treasury yield curve data provided by Gürkaynak,
Sack, and Wright (2007)13 from 1962 on. As the final input to our analyses we compute
20-quarter rolling window return volatilities and correlations and regress them on (the
logarithm of) 20-quarter moving averages of the relevant state probabilities p̂. Note that
these right-hand variables are the same for model and data in all the regressions reported
below.

For the regressions in the model and in the data we state Newey-West adjusted t-
statistics with 20 lags, but in addition we also provide confidence intervals derived from
a Monte Carlo simulation of the model (shown in square brackets below the respective
coefficient). Here we first simulate the model given the dynamics for the fundamentals and
the filtered probabilities in Equations (1) to (3) with monthly time increments over a time
span of 68 years, corresponding to the length of our sample period for the macroeconomic
variables. These monthly data are then aggregated to quarterly and used in the regressions
in the same way as described before, i.e., we only use the later 50 years of each sample
path, corresponding to the period over which financial market data are available. We
repeat this exercise 5,000 times to obtain the 90% confidence intervals.14

13The data are available for download at http://www.federalreserve.gov/pubs/feds/2006/

200628/200628abs.html.
14Due to the discretization error in the simulation it sometimes happens that the sum of the filtered

probabilities exceeds 1 by a very small amount. In that case we rescale the filtered probabilities such
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Data Model

Figure 5: Stock return volatilities and probability of low expected growth

The figure depicts scatter plots for the regressions presented in Table 4. The dependent

variables in each regression are volatilities of quarterly stock returns computed over rolling

windows of 20 quarters. The independent variable is the logarithm of the averages of p̂3+ p̂4

over the same 20 quarters periods. The left figure labeled “Data” is based on the estimated

time series of the p̂i depicted in Figure 1 as well as the CRSP value-weighted index and the

interpolated yield curve data from the Federal Reserve (see Gürkaynak et al. (2007)). The

right figure labeled “Model” is based on the same time series of the p̂i, but uses the returns

which our model would have implied given this path of consumption, inflation, and the state

variables. The financial data for these regressions starts in 1965. The model parameters

are estimated using macroeconomic data since 1947.

A look at Figure 5 shows that our model nicely reproduces the patterns of state-
dependent stock return volatilities in the data along two important dimensions. First,
the estimated probabilities for the states with low consumption growth, p̂3 + p̂4, exhibit
a positive covariation with stock return volatilities. Second, this relationship is nonlinear
and concave, both in the model and in the data. It is worth noting that the second result
confirms another prediction from the model of Wachter (2013), namely that stock market
volatility is a concave function of time-varying disaster risk.15 Figure 6 shows the time
series of volatilities in the data and in the model.

Motivated by these scatter plots, we regress stock return volatilities on the logarithm
of the moving averages of the relevant state probabilities p̂. Table 4 reports the results.
The regression coefficients are positive and significant in both model and data, the R2

is high both in the model and in the data, and almost all of the regression coefficients
from the data are within the simulated confidence bounds for the model. The only ex-
ception with respect to this last point is the low constant in our model regressions, which
indicates that the model-implied unconditional stock return volatility is somewhat on the
low side.16 Overall, we conclude that the relation between the conditional probability of

that they exactly sum to 1.
15See, for instance, Figure 4 (p. 1002) in Wachter (2013).
16We discuss this issue in detail in Section 6.6.
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Figure 6: Conditional stock return volatilities

The figure depicts conditional 20-quarter rolling window stock return volatilities. The red

dashed line is based on the CRSP value-weighted index. The blue solid line is based on

the returns which our model would have implied given the historical paths of consumption,

inflation, and state variables (this series is multiplied by 3). The model parameters are

estimated using macroeconomic data since 1947. The correlation between the data and the

model-implied time series is 0.41.

low consumption growth (given by the sum p̂3 + p̂4) and stock market volatility is indeed
nonlinear, and our model reproduces this stylized fact. Finally, given that our estimation
is based on two macro time series only, the goodness of fit in Figure 6 is also remarkable.
The correlation between the data and the model-implied time series is 0.41.

To see how our model generates these results, a look at the filtering equation (3)
is instructive. p̂3 and p̂4 fluctuate a lot more when they are at intermediate levels as
compared to when they are close to 0 or 1. Moreover, the unconditional averages of both
p̂3 and p̂4 are rather low, so that higher values for p̂3 and p̂4 more or less automatically go
together with high fluctuations in these quantities. States 3 and 4 are the least persistent
in our estimation, so that when the agent currently has a high estimate for the probability
of being in one of these two states, this probability is likely to decrease again quickly.

Altogether, there is thus more movement in state variables when the likelihood of low
consumption growth is large. This in turn means that a high likelihood of low consumption
growth coincides with a high volatility of the price-dividend ratio, which is a function of
these state variables. In sum, the higher the likelihood of low consumption growth, the
higher the equity return volatility. Note that our model of course also reproduces the
relevance of the probability of being in a good state, i.e., of log(p̂1 + p̂2), for stock return
volatilities. The coefficients in the data and in the model (not reported here for brevity)
are both significantly negative which follows from the simple fact that p̂1+p̂2 = 1−p̂3−p̂4.

Finally, Table 5 presents the results from additional regressions to investigate the
notion of a signaling role of inflation for second moments of stock returns. Here we
regress the same left-hand side variable as before on rolling averages of what we call the
extreme entropy of the state distribution (defined as p̂3 ln p̂3 + p̂4 ln p̂4). We propose this
quantity as another proxy for uncertainty about low consumption growth. We also show
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Panel A: Model
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

0.114 0.009 0.012 0.733
(12.627) (10.833) (4.724)

[0.085, 0.174] [0.004, 0.020] [0.000, 0.023] [0.220, 0.785]

0.079 0.015 0.615
(12.143) (5.997)

[0.071, 0.129] [0.007, 0.029] [0.104, 0.763]

Panel B: Data
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

0.278 0.012 0.023 0.304
(12.679) (1.416) (4.475)

0.214 0.022 0.214
(9.056) (1.976)

Table 4: Regressions of stock return volatilities on state variables

The table reports results from time series regressions. The dependent variables in each

regression are volatilities of quarterly stock returns computed over rolling windows of 20

quarters. The independent variables are logarithms of the averages of the p̂i over the same

20 quarters periods. The regressions labeled “Data” are based on the estimated time series

of the p̂i depicted in Figure 1 as well as the CRSP value-weighted index and the interpolated

yield curve data from the Federal Reserve (see Gürkaynak et al. (2007)). The regressions

labeled “Model” are based on the same time series of the p̂i, but use the returns which our

model would have implied given this path of consumption, inflation, and state variables.

The financial data for these regressions starts in 1965. The model parameters are estimated

using macroeconomic data since 1947. The numbers in parentheses are t-statistics adjusted

following Newey and West (1987) (20 lags). The numbers in brackets denote 90% confidence

bounds around the regression coefficients and are obtained from a Monte Carlo simulation

of the model (5,000 paths of 68 years each, with the last 50 years of each path used in the

regressions).
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Panel A: Model
const. extreme entropy expected inflation realized inflation Adj. R2

0.001 0.269 0.538
(0.106) (5.859)

[−0.038, 0.053] [0.041, 0.618] [0.002, 0.609]
0.032 0.004 0.159

(2.504) (1.930)
[0.009, 0.064] [-0.001, 0.015] [-0.007, 0.584]

0.036 0.003 0.147
(3.130) (1.801)

[0.018, 0.063] [-0.001, 0.012] [-0.007, 0.578]
Panel B: Data

const. extreme entropy expected inflation realized inflation Adj. R2

0.097 0.399 0.187
(2.607) (2.320)
0.147 0.006 0.036

(4.814) (0.855)
0.153 0.004 0.040

(6.010) (0.781)

Table 5: Regressions on alternative explanatory variables

The table reports results from time series regressions. The dependent variables in each

regression are volatilities of quarterly stock returns computed over rolling windows of 20

quarters. The independent variables are the average of the extreme entropy (p̂3 ln p̂3 +

p̂4 ln p̂4), the average expected inflation and the average realized inflation, always taken

over the same 20 quarter periods. “Data” and “Model” have the same meaning as in

Table 4.

results for expected inflation (defined as
∑4

i=1 µ
π
i p̂i) and realized inflation as explanatory

variables.
The results for extreme entropy can be interpreted in the way that uncertainty about

extreme inflation and low consumption growth is a main driver of stock return volatilities,
and our model provides an economic equilibrium mechanism to explain this stylized fact.
On the other hand, expected and realized inflation as the right-hand side variables do
not have explanatory power in the data and are only marginally significant in the model
as well. This provides additional support for our model. Inflation itself cannot explain
stock return volatilities, unless it is decomposed into components capturing the risk of
very high inflation (represented by p̂3) and of a deflationary regime (represented by p̂4),
respectively. Our Markov chain estimation implies that inflation is positively correlated
with p̂3, but negatively correlated with p̂4. Depending on the amount of observations from
the deflation regime along a given sample path, the coefficient from a regression of equity
return volatility on inflation in model-generated data can thus be positive or negative.

Recursive preferences are a key ingredient of our model. With respect to this feature,
our paper is closely related to recent studies like Benzoni, Collin-Dufresne, and Goldstein
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Figure 7: Conditional stock-bond return correlation

The figure depicts conditional 20-quarter rolling window correlations of stock returns and

returns of 5-year nominal bonds. The red dashed line is based on the CRSP value-weighted

index and the interpolated yield curve data from the Federal Reserve. The blue solid line

is based on the returns which our model would have implied given the historical paths of

consumption, inflation, and state variables. The model parameters are estimated using

macroeconomic data since 1947. The correlation between the data and the model-implied

time series is 0.54.

(2011) and Drechsler (2013), where it has been shown that models featuring recursive pref-
erences, coupled with learning about fundamentals, are very well able to match stylized
facts about stock return volatility, in particular in terms of its dynamics (i.e., capturing
the predictive power of implied volatilities, variance risk premia, and other related condi-
tional quantities). The impact of the preferences will also be analyzed in more detail in
Section 6.2.

5.4 Conditional stock-bond return correlations

The results concerning stock market volatility are related to the total estimated proba-
bility of being in a bad state for expected consumption growth, given by the sum p̂3 + p̂4.
When we now look at the stock-bond return correlation, the distinction between the two
bad consumption states with respect to expected inflation becomes relevant. Figure 7
shows the time series of correlation in the data and in the model. Tables 6 and 7 contain
the results of our regression analyses, Figure 8 presents the corresponding scatter plots.17

The most important result here is that both in the model and in the data the estimated
coefficient for log(p̂3) is positive (and highly significant), while the coefficient for log(p̂4) is
negative (and also highly significant). Given that we do not use any asset price informa-
tion to estimate the fundamental dynamics in our model, the similarity between model

17Note that we regress ’raw’ correlation ρ on the state variables. Since correlation is bounded between
−1 and 1, transformations like ρ̃ = ln( 1+ρ

1−ρ ) might seem warranted to guarantee that the regressions are
well specified. Rerunning all our regressions using this transformation leaves the results qualitatively
unchanged.
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Data Model
correlation vs. p̂3 correlation vs. p̂3

Data Model
correlation vs. p̂4 correlation vs. p̂4

Figure 8: Stock-bond correlations and probabilities for high or low inflation

The figure depicts scatter plots for the regressions presented in Table 6. The dependent

variables in each regression are correlations of quarterly holding-period returns of stocks

and 5-year nominal bonds computed over rolling windows of 20 quarters. The independent

variables are the logarithms of the averages of p̂3 and p̂4, respectively, over the same 20-

quarter periods. The left figures labeled “Data” are based on the estimated time series of

the p̂i depicted in Figure 1 as well as the CRSP value-weighted index and the interpolated

yield curve data from the Federal Reserve (see Gürkaynak et al. (2007)). The right figures

labeled “Model” are based on the same time series of the p̂i, but use the returns which our

model would have implied given this path of consumption, inflation, and the state variables.

The financial data for these regressions starts in 1965. The model parameters are estimated

using macroeconomic data since 1947.
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Panel A: Model
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

-0.837 0.290 -0.449 0.788
(-4.825) (6.776) (-5.108)

[−1.833, 0.556] [0.065, 0.453] [-0.702, -0.089] [0.172, 0.751]

0.325 0.161 0.087
(0.881) (0.903)

[−0.867, 0.962] [-0.275, 0.473] [-0.009, 0.481]

Panel B: Data
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

-0.512 0.182 -0.294 0.363
(-1.61) (2.731) (-3.608)

0.239 0.091 0.041
(0.923) (0.774)

Table 6: Regressions of stock-bond return correlations on state variables

The table reports results from time series regressions. The dependent variables in each

regression are correlations of quarterly holding-period returns of stocks and 5-year nominal

bonds computed over rolling windows of 20 quarters. The independent variables are loga-

rithms of the averages of the p̂i over the same 20 quarters periods. “Data” and “Model”

have the same meaning as in Table 4. Numbers in parentheses are t-statistics adjusted

following Newey and West (1987) (20 lags), numbers in brackets are 90% confidence bounds

around the regression coefficients and have been obtained from a Monte Carlo simulation

of the model (5,000 paths of 68 years each, with the last 50 years of each path used in the

regressions).

and data appears remarkable. Moreover, the scatter plots again reveal a pronounced
nonlinearity in the relation between correlation and the filtered probabilities, both in the
model and in the data. Finally, the goodness of fit in Figure 7 is again remarkable. The
correlation between the data and the model-implied time series is 0.54.

What is the mechanism inside the model responsible for these patterns? First, an
increase in p̂3 makes it subjectively more likely for the investor that the economy is in the
high inflation state. In this case the bond return over the next quarter is composed of a
positive ’carry’ component (which is, if nothing changes, equal to the yield of the bond)
and a negative component due to an upward shift in the nominal yield curve. In general
the second effect dominates the first, so that bond prices tend to go down. Note that the
upward shift in the nominal yield curve itself is the composite of two effects: an increase
in expected inflation and a slight decrease in the level of the real yield curve. The second
of these two effects is typically negligible with recursive preferences, and therefore, the
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Panel A: Model
const. extreme entropy expected inflation realized inflation Adj. R2

0.294 -1.613 0.020
(0.720) (-0.696)

[−1.301, 1.390] [-8.620, 7.868] [-0.010, 0.248]
-0.776 0.195 0.40

(-2.617) (3.523)
[−1.186, 0.167] [-0.066, 0.322] [-0.007, 0.533]

-0.645 0.160 0.410
(-2.630) (3.750)

[−1.015, 0.104] [-0.036, 0.276] [-0.007, 0.547]
Panel B: Data

const. extreme entropy expected inflation realized inflation Adj. R2

-0.047 0.560 0.012
(-0.096) (0.220)
-0.613 0.167 0.334

(-2.028) (3.172)
-0.488 0.135 0.328

(-1.904) (3.324)

Table 7: Regressions on alternative explanatory variables

The table reports results from time series regressions. The dependent variables in each

regression are correlations of quarterly holding-period returns of stocks and 5-year nominal

bonds computed over rolling windows of 20 quarters. The independent variables are the

average of the extreme entropy (p̂3 ln p̂3 + p̂4 ln p̂4), the average expected inflation and the

average realized inflation, always taken over the same 20 quarter periods. “Data” and

“Model” have the same meaning as in Table 4. Numbers in parentheses are t-statistics

adjusted following Newey and West (1987) (20 lags), numbers in brackets are 90% confidence

bounds around the regression coefficients and have been obtained from a Monte Carlo

simulation of the model (5,000 paths of 68 years each, with the last 50 years of each path

used in the regressions).

26



nominal yield curve shifts upwards in response to an increase in p̂3. The stock return
upon a positive shock to p̂3 depends on real quantities only. A high p̂3 implies that the
economy is more likely to be in a low consumption growth regime, and stock prices tend
to be low in such an environment. Taken together, the reactions of bond and stock prices
to an increase in p̂3 go in the same direction, implying a positive correlation.

State 4 is a low inflation state with low growth, so the response of bond prices to a
high p̂4 is different. Again, there is the positive carry return. But now there is also an
additional positive return because the nominal yield curve shifts downwards in response
to a higher probability for deflation. When deflation becomes more likely, the level of
the nominal yield curve must decrease. Altogether, the impact of a high probability p̂4
on bond returns is large and positive. At the same time, such a high p̂4 signals a high
likelihood of low (even negative) expected consumption growth, which depresses equity
prices. In sum, the impact of a high likelihood for the deflationary regime is strong on
both stock and bond prices, but it is of opposite signs, implying a negative correlation
between the two types of assets.

The above findings concerning the role of p̂3 and p̂4 for the conditional stock-bond
correlation are well in line with the literature. In a purely empirical paper, Baele et al.
(2010) try to fit the correlations of daily stock and bond returns with a multi-factor
model. They find that macro factors (in particular output gap and inflation) do not add
much explanatory power when the loadings of stock and bond returns are assumed to
be constant over time. But the performance of the macro factors improves in a regime
switching estimation when the loadings are allowed to switch sign. Our findings are
potentially related to theirs in the sense that we show that the overall risk of low expected
consumption growth, proxied by the sum p̂3 + p̂4, does not predict correlation, neither in
the model nor in the data. The coefficients on realized and expected inflation are positive,
but the simulated confidence bounds always include zero.

For both model and data, the regressions with extreme entropy generate the expected
result with insignificant coefficient estimates. The reason is again that this measure
captures general uncertainty about bad consumption growth states. Uncertainty about
being in the deflation state, however, decreases correlation, whereas uncertainty about
the high inflation state increases it. An aggregate measure of uncertainty cannot capture
these two opposing effects adequately.

6 Robustness

6.1 Overview

In the previous sections, we have shown that long-run risk and time-varying disaster risk
can be linked to time variation in the stock-bond return correlation if one accounts for the
signaling role of inflation. Since these results have been obtained within the framework
of a particular asset pricing model, we are going to discuss why the major modeling
assumptions are necessary to obtain this result and how our findings would change in
simplified versions of our model. Finally, we will also present evidence from additional
data samples to verify that our findings are not due to a specific choice of these samples.
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Figure 9: Conditional stock-bond return correlation with CRRA preferences

The figure depicts conditional 20-quarter rolling window correlations of stock returns and

returns of 5-year nominal bonds. The red dashed line is based on the CRSP value-weighted

index and the interpolated yield curve data from the Federal Reserve. The blue solid line is

based on the returns which a constrained version of our model with CRRA preferences (i.e.

γ = 1
ψ would have implied given the historical paths of consumption, inflation, and state

variables. The model parameters are estimated using macroeconomic data since 1947. The

correlation between the data and the model-implied time series is -0.34.

6.2 Recursive Preferences, Money Illusion, CRRA preferences

Recursive preferences are essential to match the time-varying stock-bond correlation in
our model. We have also solved a version of our model with constant relative risk aversion
preferences, where we set the elasticity of intertemporal substitution to ψ = 1

10
so that θ =

1, but leave the parameters that we obtain from the Markov chain estimation unchanged.
Figure 9 depicts the time series of model-implied return correlations. The constrained

model does not match the historical time series at all, the correlation between the historical
time series and the model-implied time series is even negative at -0.34. Table 8 presents
results from regressions analogous to those presented in Table 6. The constrained model
generates an insignificant (and slightly negative) regression coefficient for p̂3 and a large
and significantly positive coefficient for p̂4. To get the intuition behind this result, look
again at the three components of the holding period bond return as described in Section 5.

Both the carry component and the change in expected inflation are independent of the
representative agent’s preferences, but the change in the real yield curve is clearly not,
since real bond prices are determined in equilibrium. A slightly higher current value of p̂3
or p̂4 results in a reduced estimate of conditionally expected consumption growth, which
leads to a massive decline in the overall level of the real yield curve in a CRRA economy.
It is well known that CRRA models have a hard time matching the empirically observed
smoothness of the real risk-free rate. Altogether, in a CRRA economy bond returns are
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Panel A: Model with CRRA preferences
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

1.034 -0.004 0.043 0.341
(38.33) (-0.58) (5.42)

[0.922, 2.070] [-0.011, 0.169] [0.008, 0.278] [0.237, 0.803]

0.912 0.009 0.016
(25.874) (0.54)

[0.874, 1.849] [0.002, 0.170] [0.004, 0.509]

Panel B: Data
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

-0.512 0.182 -0.294 0.363
(-1.61) (2.731) (-3.608)

0.239 0.091 0.041
(0.923) (0.774)

Table 8: Regressions of return correlations with CRRA preferences

The table reports results from time series regressions. The dependent variables in each

regression are correlations of quarterly holding-period returns of stocks and 5-year nominal

bonds computed over rolling windows of 20 quarters. The independent variables are loga-

rithms of the averages of the p̂i over the same 20 quarters periods. “Data” and “Model”

have the same meaning as in Table 4. Numbers in parentheses are t-statistics adjusted fol-

lowing Newey and West (1987) (20 lags). The numbers in brackets denote 90% confidence

bounds around the regression coefficients and are obtained from a Monte Carlo simulation

of the model (5,000 paths of 68 years each, with the last 50 years of each path used in the

regressions).
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Figure 10: Dividend-price ratio with CRRA preferences

The figure depicts quarterly time series of dividend-price ratios. The blue solid line is the

dividend-price ratio of the S&P 500 index. The red dashed line is obtained by plugging

the historical paths of consumption, inflation, and our state variables p̂i into the numerical

solution of the constrained model with CRRA preferences. The model parameters are

estimated using macroeconomic data since 1947. The correlation between the data and the

model-implied time series is -0.45.

thus slightly negatively related to p̂3, the probability of being in a stagflation regime, and
strongly positively related to p̂4, the probability of being in a deflationary regime.

Concerning stock returns, high values for p̂3 or p̂4 signal low expected consumption
growth, while consumption volatility is not affected. With the usual popular CRRA
parameterization of γ > 1 and, consequently, ψ = γ−1 < 1, the income effect dominates
the substitution effect, and a lower expected consumption growth rate actually implies
a higher stock price. This means that stock returns will be positively related to both p̂3
and p̂4 in a CRRA economy (and the effect is stronger for p̂4, since state 4 has the lowest
expected consumption growth rate). This can also be seen from Figure 10, which plots
the model-implied dividend-price ratio in the constrained CRRA model together with the
historical dividend-price ratio in the data. The two time series are actually negatively
correlated. Altogether, we can conclude that with CRRA preferences the stock-bond
return correlation reacts slightly negatively to an increase in p̂3 and strongly positively to
an increase in p̂4, which is at odds with the empirical data.

So to obtain results similar to ours, but in a CRRA model, one has to include a
feature like money illusion to make inflation enter the pricing kernel, and one has to
keep the variation in the expected consumption growth rate small enough to mitigate
the consequences of the typical counterintuitive CRRA result that prices are lower in
higher growth states. This is exactly the path taken by David and Veronesi (2013). They
assume that the agent (in their setup irrationally) bases real decisions partly on nominal
variables. Basak and Yan (2010) show that, with CRRA utility, this assumption results in
a pricing kernel which is composed of the original real pricing kernel and an adjustment
for inflation. Since the estimation in David and Veronesi (2013) relies on both asset
pricing and macroeconomic data, they find that expected consumption growth is hardly
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varying across states, so they constrain it to be equal across states in their following
numerical evaluation (p. 703). This clearly contradicts our estimation results presented
above. Relying on recursive utility, we do not have to restrict the fundamental dynamics
in such a way, and we also do not need to assume any sort of bounded rationality on the
part of the representative investor.

6.3 Full Information

In our model we make the assumption that the current state of the economy is unobserv-
able and has to be filtered from macro data. To see why this assumption is necessary, we
have also solved a version of our model with full information. The theoretical solution is
presented in Appendix D, the proof is a slight modification of the proof in Appendix A of
Branger et al. (2016). In an economy with four states, we obtain four possible values for
the wealth-consumption ratio, for the price-dividend ratio and for the price of a nominal
bond with a given maturity.

To evaluate the model with full information, we perform the following exercise, which is
similar to the exercise in Section 5. Our Markov chain estimation above gives time series
of ex-post probabilities that the economy was in one of the four states at a particular
historical point in time. We round these probabilities (which are already close to 0 or 1)
to exactly 0 or 1, respectively, so that we get a “clean” historical time series of economic
states. Combining this time series with the model solution gives us historical time series of
wealth-consumption ratios, price-dividend ratios and bond prices under the assumption of
full information. From these time series and historical consumption and inflation shocks,
we then again compute time series of model-implied returns, and from these model-implied
returns we compute rolling-window correlations and volatilities as before.

For brevity, we discuss the stock-bond return correlation results only because the
failure of a full information model becomes most evident here. Figure 11 shows the
respective time series from model-generated and empirical data. The two time series differ
substantially throughout the sample. Most importantly, the model with full information
has problems to generate the negative correlation between stock and bond returns that
we see in the data in the most recent years.

The reason for this failure can be traced back to the estimated Markov chain transition
probabilities (Table 2). According to the estimation, there is a zero probability to enter
the deflationary state 4 from state 2 or 3. In an economy with full information, this implies
that the threat of entering the worst possible economic state in the next quarter is shut
down completely for about 70% of the time. In an economy with partial information,
on the other hand, there is always a nonzero subjective probability assigned to being
in a state from which the economy can slide into state 4. Consequently, the average
level of disaster risk is much lower in the full information economy, and moreover the
pricing effect of the fear of deflation, as described in Section 5, is reduced substantially.
For instance, in the full information economy the price-dividend ratio of the stock is the
largest in states 2 and 3 (155.5 and 148.1, respectively) and the smallest in states 1 and
4 (145.6 and 143.0). Since this fear of deflation is the key mechanism that generates
negative comovement between stock and bond returns, the full information model cannot
reproduce the negative stock-bond return correlation.
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Figure 11: Conditional stock-bond return correlation with full information

The figure depicts conditional 20-quarter rolling window correlations of stock returns and

returns of 5-year nominal bonds. The red dashed line is based on the CRSP value-weighted

index and the interpolated yield curve data from the Federal Reserve. The blue solid line

is based on the returns which a version of our model with full information would have

implied given the historical paths of consumption, inflation, and state variables. The model

parameters are estimated using macroeconomic data since 1947. The correlation between

the data and the model-implied time series is -0.05.

6.4 Different samples

The finding that extreme inflation provides information about low expected real consump-
tion growth is, up to now, based on a single Markov chain estimation. It may thus hinge
on the data sample. In order to alleviate this concern, we repeat the estimation with four
alternative data samples. The first two are subsamples of our quarterly consumption and
inflation data starting in 1962 and 1965, respectively, which have been used by David and
Veronesi (2013) and Burkhardt and Hasseltoft (2012). Moreover, we analyze monthly US
consumption and inflation data, which are available from 1959 onwards. Finally, we re-
estimate our model with GDP growth rates instead of consumption growth rates, which
are available on a quarterly basis starting in 1947.

Figure 12 shows the proxies for the time-varying disaster intensity obtained by applying
exactly the same methodology as before to the alternative samples. More precisely, we
proceed as follows. For every sample, we estimate the time series model as defined in
Equations (1) and (2). The number of states identified by the Bayes Information Criterion
is four for all samples. As in the benchmark estimation, we label the states in which the
conditional expected consumption growth rate µCi is below the unconditional average
consumption growth rate as “bad states”. This refers to two of the four states in every
case. We then compute the filtered probabilities p̂i for these two bad states and add
them. In the upper pictures in Figure 12, the red dashed line shows the sum of these two
probabilities p̂i. The blue solid line is the same as in Figure 3. Finally, we also repeat
the estimation without inflation data, i.e., with only consumption or GDP data. In these
cases we have only two states, and we treat the state with the lower expected consumption
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Estimation with inflation data
quarterly gdp growth monthly cons growth quarterly cons growth quarterly cons growth

(1947-2014) (1959-2014) (1962-2014) (1965-2014)

Estimation without inflation data
quarterly gdp growth monthly cons growth quarterly cons growth quarterly cons growth

(1947-2014) (1959-2014) (1962-2014) (1965-2014)

Figure 12: Time-varying disaster probabilities (robustness for different samples)

The figure depicts the results from applying the estimation methodology described in Section 3.2 to different samples. The upper graphs show the time

series for the filtered probabilities for states with low expected consumption growth obtained using both consumption (or GDP) and inflation data. For

the lower graphs we use consumption (or GDP) data only. The two pictures on the left hand side are based on quarterly GDP growth rates (1947Q1

to 2014Q1) instead of consumption growth rates. The next two pictures are based on an estimation using monthly consumption growth rates instead

of quarterly consumption growth rates, which are available from 1959 onwards. The final four pictures are obtained from the subsamples of quarterly

consumption growth rates starting in 1962 and 1965, respectively.

33



growth rate as the bad state. The filtered probability of this state is depicted in the lower
row of pictures.

We can draw two conclusions from this exercise. First, recovering the time series of
implied disaster probabilities from Wachter (2013) is to a very large degree independent
of the specific sample that we use. In each of the graphs in Panel A, the red dashed
line tracks the blue line very closely, the correlations between the two time series are in
fact even higher than for the benchmark sample (0.88, 0.90, 0.89, and 0.89, respectively).
Second, the result that the replication fails with consumption (or GDP) data only is also
confirmed. The best fit is obtained in the case with GDP instead of consumption data,
but the correlation between the two time series is 0.51 only. The monthly consumption
data is too noisy to replicate the time-varying disaster probability.

6.5 Constrained model specifications

Besides analyzing alternative samples, one might also consider imposing more structure on
the Markov chain model. The benchmark specification has 27 free parameters to estimate,
so there may be constrained versions of the model in which the number of parameters
can be reduced without losing too much explanatory power. One may even allow for
more states, but, e.g., restrict expected consumption growth rates or expected inflation
to be the same across some of these states. Generally, the number of possible constrained
models is infinitely large, and we think that an unconstrained estimation provides the
cleanest setup. Nevertheless, given our interpretation of states 3 and 4 as the two bad
states, an obvious candidate constrained model is one in which expected consumption
growth is equal across the two good states and across the two bad states, i.e. µC1 = µC2
and µC3 = µC4 . This constraint is also justified by the fact that our estimates of the
expected consumption growth rates in the two good states and in the two bad states are
relatively close together. For instance, using the bootstrapped sample paths, an F -test
yields that the joint hypothesis µC1 = µC2 and µC3 = µC4 cannot be rejected at the 10%-
level. Moreover, among the many different constrained models we have estimated, this
particular one exhibits the lowest BIC value and should thus be preferred.

Figure 13 presents the proxy for time-varying disaster risk that we obtain in the
constrained model. This time series is very similar to those that were generated using the
benchmark unconstrained model. Moreover, in additional tests, we have also solved the
asset pricing model with the parameters from this constrained model. None of our asset
pricing findings change when we use this specification.

To sum up, the finding that extreme inflation helps to recover the time-varying prob-
ability of consumption disasters is robust across different samples and robust to the con-
straint of equal expected real growth rates in the two bad states. If anything, the bench-
mark specification, on which we rely throughout the paper, yields conservative estimates
with respect to the correlation between our and Wachter’s measure for the probability
of being in a bad real growth state. Nevertheless we stick to this specification, since it
uses the longest quarterly sample available, and it does not impose any constraints on the
identified consumption and inflation states.
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Figure 13: Time-varying disaster probabilities for constrained model

The blue solid line depicts the time-varying disaster intensity which Wachter (2013) extracts

from asset price data. The red dashed line shows the 20-quarter moving average of the

estimated p̂3 + p̂4 from the constrained model with equal expected consumption growth in

states 1 and 2 and in states 3 and 4, respectively, for the period from 1947 to 2014. The

correlation between the two time series is 0.88.

6.6 Unconditional asset pricing moments

The unconditional asset pricing moments generated by our model are computed via the
same Monte Carlo simulation as described in Section 5. The results are shown in Table 9.
When interpreting the numbers, one has to keep in mind that our model is estimated only
on the basis of fundamental data for consumption and inflation, i.e., it is not calibrated
to match unconditional return moments, and that there are no additional risk factors like
disaster risk or stochastic volatility. So it should not come as a surprise that the model
does not match the data perfectly with respect to unconditional risk premia or volatilities.
The equity premium generated by our model, for instance, is roughly 1 percentage point
and the equity return volatility is 6.7 percentage points, which reflects the fact that there
is relatively little variation in the market prices of risk. The average spread between bonds
with a maturity of 5 years and those with 3 months is small on average in the data and
in the model (where it is basically equal to zero). Finally, the unconditional stock-bond
correlation is matched pretty well by the model.

We can improve the unconditional asset pricing moments considerably with a few
very slight modifications of the parametrization. Besides the unconditional moments
from our benchmark parametrization, Table 9 presents unconditional moments from three
such modifications. Parametrization 2 is the same as the benchmark parametrization
except that we lower the expected consumption growth in states 3 and 4 by one standard
error, i.e. we set µC3 = 0.129 and µC4 = −1.628. Such a parametrization reflects results
from an estimation with GDP growth instead of consumption growth data (details not
shown here for brevity). Parametrization 3 is the same as the benchmark parametrization
except that we increase the probability of the Markov chain to remain in state 3 or 4
by one respective standard error compared to the benchmark estimate. The new third
and fourth row of the transition matrix are then given as (0.057, 0.027, 0.916, 0.000) and
(0.000, 0.137, 0.000, 0.863), respectively. This parametrization reflects the fact that the
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Data Benchmark Param. 2 Param. 3 Param. 4
Avg. nominal equity return 0.116 0.070 0.104 0.087 0.080

(0.005) (0.006) (0.006) (0.009)
Vol. of nominal equity returns 0.148 0.067 0.174 0.099 0.149

(0.005) (0.013) (0.007) (0.012)
Avg. nominal 3m rate 0.043 0.060 0.076 0.071 0.060

(0.005) (0.004) (0.007) (0.005)
Vol. of nominal rate 0.050 0.006 0.007 0.011 0.006

(0.001) (0.001) (0.002) (0.001)
Avg. yield spread (5y - 3m) 0.010 -0.005 -0.005 -0.025 -0.005

(0.003) (0.002) (0.019) (0.003)
Stock-bond correlation 0.114 -0.027 0.43 -0.017 -0.027

(0.158) (0.114) (0.172) (0.158)

Table 9: Unconditional asset pricing moments

The table shows unconditional asset pricing moments. “Data” refers to the CRSP value-

weighted index for stocks and to the data set provided by Gürkaynak et al. (2007) for

bonds. The model-implied values are computed via Monte Carlo simulation. All numbers

are computed based on monthly observations and then annualized. In the data the average

yield spread (5y - 3m) is available from 1952 onwards. The correlation between nominal

stock and 5y-bond returns is based on five-year rolling window estimates with data from 1962

onwards. The column labeled Benchmark presents results for the model with the estimated

parameters from Table 2. Parametrization 2 is the same as the benchmark parametrization

except that we lower the expected consumption growth in states 3 and 4 by one standard

error, i.e. we set µC3 = 0.129 and µC4 = −1.628. Parametrization 3 is the same as the

benchmark parametrization except that we increase the transition probabilities from states

3 and 4 to the other states by one standard error, i.e. we set the third and fourth row of the

transition matrix to (0.057 0.027 0.916 0.000) and (0.000 0.137 0.000 0.863), respectively.

Parametrization 4 is the same as the benchmark parametrization except for a leverage

parameter φ = 7.

bad states (in particular state 4) are relatively rare and their persistence is thus estimated
relatively imprecisely (see Table 2). Parametrization 4 is the same as the benchmark
parametrization except for a leverage parameter φ = 7.

In all three modifications, the equity premium is about 1-2 percentage points higher
than in the benchmark cases. The equity return volatility increases considerably and
matches the volatility in the data. The largest overall effect on unconditional moments
can be seen in Parametrization 2. This is in line with existing research on asset pricing
models with disaster risk, in which parameters governing the severeness of disasters (i.e.
the size of potential losses in consumption growth upon a disaster) have the largest effect
on the equity premium (see, e.g., the discussion in Barro (2006)). Calibrating such a
model to post-war consumption data only, one may considerably underestimate the true
macroeconomic volatility.
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Figure 14: Conditional stock-bond return correlation

The figure depicts conditional 20-quarter rolling window correlations of stock returns and

returns of long-term Treasury bonds. The red dashed line is based on the CRSP value-

weighted index and the Ibbotson U.S. Long-Term Government Bond Index from 1947 till

2014. The blue solid line is based on the returns which our model would have implied given

the historical paths of consumption, inflation, and state variables. The model parameters

are estimated using macroeconomic data since 1947. The correlation between the data and

the model-implied time series is 0.54.

6.7 Bond return data

Finally, we provide another robustness check with regard to the bond return data. Our
benchmark data is the sample of interpolated term structures of U.S. Treasury bonds
analyzed by Gürkaynak et al. (2007). This sample is shorter than our macroeconomic
data sample. Given that our macro sample starts in 1947, we can in principle compute
model-implied asset returns for the whole time period from 1947 to 2014. As a robustness
check, we therefore determine the stock-bond correlation in the data from an alternative
sample, namely the holding period return of the Ibbotson U.S. Long-Term Government
Bond Index which measures the performance of 20-year maturity U.S. Treasury bonds.
These index returns are available from 1926 onwards, but since our macro estimation uses
quarterly data after 1947, we constrain ourselves to the sample from 1947 until 2014.

We repeat the whole asset pricing analysis from above using this bond index, and
Figure 14 shows the resulting time series of rolling window correlations. As one can see
from the figure, the model-implied correlation tracks the correlation in the data closely.
The two time series have a correlation of 0.54, i.e., they exhibit the same correlation over
this longer sample as over our shorter benchmark sample. Interestingly, in the data we
now see another period with negative correlation in the very early part of the sample, and
our model captures this negative correlation as well. We thus conclude that our results
are not specific to the time series of bond prices chosen for the analysis.
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7 Conclusion

Long-run risk models for asset pricing rest on the key assumption that the conditional
distribution of consumption growth is time-varying. We provide evidence in favor of this
assumption using a very stylized Markov regime switching model for expected consump-
tion growth. While already interesting by itself, this reduced-form approach turns out
to be very fruitful when it comes to explaining the joint dynamics of real and nominal
asset prices. Augmenting the time series model by inflation as a second macro variable
significantly alters the estimated regimes. In particular, we find two states in which ex-
pected consumption growth is low, one with high expected inflation and one with negative
expected inflation. Embedding the estimated dynamics in a standard general equilibrium
asset pricing model with recursive preferences and learning allows us to match time series
of aggregate stock return volatility and the stock-bond return correlation.

The basic intuition underlying our results is that low consumption growth tends to
occur together with either very high or very low inflation. In contrast to the volatility
of stock returns, where mainly the overall probability of the two bad states for expected
consumption growth matters, it is the distinction between the two with respect to expected
inflation which is relevant for the stock-bond return correlation. In the high expected
inflation state, stocks and bonds will both tend to have negative returns, so that their
correlation will be positive, while in the deflationary state, stocks will still do poorly, but
nominal bonds will exhibit positive returns, resulting in a negative correlation between
the two types of assets.

Our research design differs substantially from other approaches to calibrate dynamic
asset pricing models, where often both asset pricing moments and macroeconomic mo-
ments are used to identify the deep parameters of the model. This often leads to a
parametrization where macro dynamics are not matched very well. Given the parsi-
mony of the research design, in particular the fact that the model is estimated from
two macro time series only, we regard our results as evidence that the long-run risk or
disaster risk paradigm in asset pricing can be extended towards an explanation of the
time-varying stock-bond return correlation when the signaling role of inflation is properly
accounted for. In particular, we also document that our filtered probability of being in
a bad consumption growth regime closely tracks the evolution of state variables like the
“time-varying disaster risk” which Wachter (2013) obtains through reverse-engineering
from asset prices.

In summary, our paper shows that a large part of the variation in asset prices may
actually be attributable to inflation risk, and that the long-run risk model class provides
a promising framework to study the link between inflation, consumption growth and both
real and nominal asset returns.
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APPENDIX

A. Maximum Likelihood Estimation

The maximum likelihood estimation is based on Hamilton (1994). The parameters of the model
and the transitions probabilities pij are collected in the vector Θ. This vector Θ is estimated
based on the data YT that is observed until time T . This data forms a T × 2 matrix. Let
P (st = j|Θ, Yt) define the probability of state st conditional on all data until t and conditional
on the knowledge of the parameters Θ. The econometrician assigns P (st = j|Θ, Yt) to the
possibility that the observation at time t is generated by state j. These conditional probabilities
are collected in the n × 1 vector ξ̂t|t, where n denotes the number of states, which is fixed
throughout the entire estimation. We have

ξ̂t|t =
ξ̂t|t−1 � ηt

1′ · (ξ̂t|t−1 � ηt)

ξ̂t+1|t = Q · ξ̂t|t.

Here ηt is the conditional density, whose jth element is

f(yt|st = j; Θ) =
1√

2π|Ω|
exp

{
0.5 · (yt − µj)′Ω−1(yt − µj)

}
,

where yt is an n× 1 vector, µj = (µCj , µ
π
j )′ and Ω = ΣΣ′ where

Σ =

(
σC
√

1− ρ2 σCρ
0 σπ

)
Q is the transition probability matrix

Q =

 q11 . . . q1n
...

. . .
...

qn1 . . . qnn

 ,

� denotes element-by-element multiplication, and 1 denotes a vector of ones. The jth element
of the product ξ̂t|t−1 � ηt is interpreted as the conditional joint density of yt and st

P (st = j|Θ)× f(yt|st = j; Θ) = p(yt, st = j|Θ).

The density of the observed vector yt is the sum

f(yt|Θ) = 1′ · (ξ̂t|t−1 � ηt)

The objective is to find a maximum of the log likelihood function

L(Θ) =

T∑
t=1

log f(yt|Θ).

The starting value for the maximization, ξ̂1|0, is set to 1
n · 1.
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B. Filtering

B.1. Dynamics of the state variables

The dynamics of consumption and the log prive level can be rewritten as

d lnCt =

(
n∑
i=1

µCi 1{St=i}

)
dt+ σC

(√
1− ρ2dWC

t + ρdW π
t

)
dπt =

n∑
i=1

µπi 1{St=i} + σπdW π
t ,

where 1{St=i} is the indicator function equal to one, if the economy is in state i at time t,
(i = 1, . . . , n), and equal to zero otherwise. In matrix form, this becomes(

d lnCt
dπt

)
=

( ∑n
i=1 µ

C
i 1{St=i}∑n

i=1 µ
π
i 1{St=i}

)
dt+ Σ

(
dWC

t

dW π
t

)
,

with

Σ =

(
σC
√

1− ρ2 σCρ
0 σπ

)
and d[WC ,W π] = 0.
The inverse of the of the volatility matrix Σ is

Σ−1 =
1

σCσπ
√

1− ρ2

(
σπ −σCρ
0 σC

√
1− ρ2

)
.

We assume that the drift rates are unobservable and need to be filtered by the investor.
Mathematically, there are two filtrations, F and G, where F is generated by the processes (Ct)t,
(πt)t and (St)t, whereas G ⊂ F is generated by the processes (Ct)t and (πt)t only. The equilibrium
in the economy is based on the dynamics of (Ct)t and (πt)t under the investor filtration G, i.e. on
the projections µ̂Ct = E

[
µC(St)|Gt

]
=
∑n

i=1 p̂itµ
C
i and µ̂πt = E [µπ(St)|Gt] =

∑n
i=1 p̂itµ

π
i , where

p̂it = E
[
1{St=i}|Gt

]
.

An application of Theorem 9.1 on p. 355 of Liptser and Shiryaev (2001) yields dynamics for
the projected (henceforth also called “subjective”) probabilities:

dp̂it =

p̂itλii +
∑
j 6=i

p̂jtλji

 dt + p̂it

(µCi
µπi

)
−

n∑
j=1

p̂jt

(
µCj
µπj

)′ × Σ′−1

(
dŴC

t

dŴ π
t

)
,

where (
dŴC

t

dŴ π
t

)
= Σ−1

(µCi
µπi

)
−

n∑
j=1

p̂jt

(
µCj
µπj

) dt+

(
dWC

t

dW π
t

)
.

In particular, d[ŴC , Ŵ π] = 0. Under the investor’s filtration, log consumption dynamics are
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given as

d lnCt =
n∑
i=1

µCi p̂itdt+ σC
(√

1− ρ2dŴC + ρdŴ π
)

For notational convenience, we define

σp̂idŴt ≡ p̂it

(µCi
µπi

)
−

n∑
j=1

p̂jt

(
µCj
µπj

)′ × Σ′−1 ×

(
dŴC

t

dŴ π
t

)

and

σc,p̂i ≡
(
ρσC ,

√
1− ρ2σC

)
× σ′p̂i

σπ,p̂i ≡ (0, σπ)× σ′p̂i .

B.2. Discussion

In order to understand the dynamics of p̂it, it is instructive to analyze the drift and the diffusion
component separately. The drift in (3) is a linear function of the transition intensities λ and the
current estimates of the probabilities p̂. Since the states (and consequently also switches between
states) are unobservable, the subjective probability of being in state i changes deterministically
over time, depending on the conditional probabilities to enter or exit state i. The drift therefore
comprises two terms. The first term, p̂itλii = −p̂it

∑
j 6=i λij , involves the intensities for a switch

from state i to some other state j 6= i. Loosely speaking, the more time goes by, the higher
the chance that an unobserved switch from state i to some other state j has occurred in the
meantime. This effect induces a negative drift for p̂it, i.e., the estimated probability of still being
in state i decreases in expectation. The second term,

∑
j 6=i p̂jtλji, captures the probabilities of

entering state i, given that the economy is currently in a state j different from i. Suppose one
of the p̂jt (j 6= i) is currently large. Then, as time passes and if no other conflicting signals
arrive, it becomes more and more likely that an unobserved switch to state i has occurred in
the meantime. This effect induces a positive drift in p̂it. The overall sign of the drift of p̂it thus
depends on the current estimate of all state probabilities. In particular, the drift terms ensure
that the probabilities p̂ will always be between zero and one.

The volatility of the change in p̂i is a quadratic function of all probabilities p̂j (j = 1, . . . , n).
The probability update is largest when the investor is rather uncertain about the current state
of the economy, i.e., for intermediate values of p̂i. When the investor is almost sure about the
current state of the economy (i.e., when one of the p̂j is close to one and the others are close
to zero), the estimated probability will change in a basically deterministic fashion. To see this,
note that when the respective estimate p̂i is close to zero, the diffusion term in (3) is obviously
also close to zero, since p̂i is one factor of the product in front of the Wiener innovations. When
p̂i is in turn close to one, the term in square brackets in (3) will be very close to zero, since in
the sum only the term involving p̂i will remain, whereas all the others will vanish.

The volatility of the innovation in the filtered probability also depends on the precision of
the signals. When the signals are very imprecise, i.e., when the volatilities σC and σπ are large,
an observed innovation in (log) consumption growth or inflation delivers less information about
the true state, and the investor will put less weight on them when computing the new estimate
for pi.

The sign of the diffusion term depends on the sign of the ‘observed’ Brownian shocks dŴ .
These are defined via the restriction that lnC and π are observable, so technically speaking they
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have to be adapted to both F and G, which implies µ(St)dt+ ΣdWt = µ̂tdt+ ΣdŴt.

C. Solution of the Model with Partial Information

C.1. Wealth-consumption ratio

The indirect utility function of the investor is given by

J(Ct, p̂1t, . . . , p̂nt) = Et

[∫ ∞
t

f(Cs, J(Cs, p̂1s, . . . , p̂ns)) ds

]
.

J (Ct, p̂1t, . . . , p̂nt) +
∫ t
0 f (Cs, J(Cs, p̂1s, . . . , p̂ns)) ds is a martingale, therefore we have the Bell-

man equation

E[dJ(Ct, p̂1t, . . . , p̂nt) + f(Ct, J(Ct, p̂1t, . . . , p̂nt)) dt] = 0,

or, equivalently,

AJ(Ct, p̂1t, . . . , p̂nt)

J(Ct, p̂1t, . . . , p̂nt)
+
f(Ct, J(Ct, p̂1t, . . . , p̂nt))

J(Ct, p̂1t, . . . , p̂nt)
= 0, (C.1)

where A is the infinitesimal generator. The aggregator function is given by

f(C, J) =
βC

1− 1
ψ(

1− 1
ψ

) [
(1− γ)J

] 1
θ
−1
− βθJ.

We conjecture a functional form for J :

J(Ct, p̂1t, . . . , p̂nt) =
C1−γ
t

1− γ

(
βev(p̂1t,...,p̂nt)

)θ
where in the end v will turn out to be the log wealth-consumption ratio. This functional form
together with the definition of f(C, J) implies

f(C, J)

J
= θe−v − θβ.

With I ≡ ev the partial derivatives of J (denoted by subscripts) are

Jc = C−γ (βev)θ

Jcc = −γC−γ−1 (βev)θ

Jp̂i =
C1−γ

1− γ
βθθIθ−1Ip̂i

Jp̂ip̂j =
C1−γ

1− γ
βθθ

[
(θ − 1)Iθ−2I2p̂i + Ip̂ip̂jI

θ−1
]

Jcp̂i = C−γβθθIθ−1Ip̂i ,
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resulting in

Jc
J
dCt = (1− γ)

n∑
i=1

µCi p̂itdt+
1

2
(σC)2(1− γ)dt+ (1− γ)σC

(√
1− ρ2dŴC

t + ρdŴ π
t

)
Jccd[C,C]t

J
= (σC)2(−γ)(1− γ)dt

Jcp̂id[C, p̂i]t

J
= θ(1− γ)

Ip̂i
I
σc,p̂idt

Jp̂idp̂it

J
= θ

Ip̂i
I
dp̂it

Jp̂ip̂jd[p̂i, p̂j ]t

J
=

1

2
θd[p̂i, p̂j ]t

[
(θ − 1)

(
Ip̂i
I

)2

+
Ip̂ip̂j
I

]
.

Plugging everything into (C.1) results in the following partial differential equation for I:

0 =

[
(1− γ)

n∑
i=1

µCi p̂it +
1

2
(1− γ)2(σC)2 − βθ

]
+ θI−1 (C.2)

+

n−1∑
i=1

θ
Ip̂it
I

p̂iλii +

n∑
j=1
j 6=i

p̂jtλji

 +

n−1∑
i=1

θ(1− γ)
Ip̂i
I
σc,p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

θ

[
(θ − 1)

(
Ip̂iIp̂j
I

)
+
Ip̂ip̂j
I

]
σp̂iσ

′
p̂j
,

There are n − 1 state variables due to the restriction
∑n

i=1 p̂it = 1. We solve the PDE with a
Chebyshev approximation similar to Benzoni et al. (2011). We guess the following functional
form for I as a function of the vector p̂ = (p̂1, p̂2, ..., p̂n−1) with:

I(p̂) = exp(B(p̂)) (C.3)

B(p̂) =

d∑
j=0

αjTj(p̂),

where the Tj(p̂) are multivariate Chebyshev polynomials. For the interval [−1, 1], the univariate
Chebyshev polynomials are defined recursively via

T0(x) = 1

T1(x) = x

Td+1(x) = 2xTd(x)− Td−1(x).

Univariate Chebyshev polynomials for the general interval [a, b] are given by transformations

Td

(
2x− b− a
b− a

)
.

Multivariate versions of the Chebyshev polynomials are defined as sums of products of the
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univariate ones. The derivatives of the guess in (C.3) are

Ip̂i = eB(p̂)Bp̂i = eB(p̂)
d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

Ip̂ip̂j = eB(p̂)
[
(Bp̂i)

2 +Bp̂ip̂j
]

= eB(p̂)

 d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

2

+

 d∑
j=2

αj
∂2Tj
∂p̂i∂p̂j

(p̂)

 .
Plugging the partial derivatives into (C.2) gives

0 =

[
(1− γ)

n∑
i=1

µCi p̂i +
1

2
(1− γ)2(σC)2 − βθ

]
+ e−

∑d
j=0 αjTj(p̂)θ

+
n−1∑
i=1

θ

 d∑
j=1

αj
∂Tj
∂p̂i

(p̂)


p̂itλii +

n∑
j=1
j 6=i

p̂jtλji

 +
n−1∑
i=1

θ(1− γ)

 d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

σc,p̂i

+
1

2

n−1∑
i=1

n−1∑
k=1

θ

(θ − 1)

d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

d∑
j=1

αj
∂Tj
∂p̂k

(p̂) +
d∑
j=2

αj
∂2Tj
∂p̂i∂p̂k

(p̂)

σp̂iσ′p̂k .
This equation is defined on the simplex ∆n−1. We partition this simplex by choosing grid points
according to the Chebyshev methodology. Evaluating the equation on every grid point leaves
us with a number of algebraic equations, whose solution gives the Chebyshev coefficients αj .
For the multivariate Chebyshev polynomials we choose the order of d = 4. We have also tried
higher values for d but the solution remained unchanged.

C.2. Pricing kernel

The pricing kernel is given by

ξt = exp

(∫ t

0
−βθ − (1− θ)I−1(p̂s)ds

)
C−γt (I(p̂t))

θ−1

with dynamics

dξt
ξt

= −βθdt− (1− θ)I−1 dt− γ dCt
Ct

+
1

2
γ2(σC)2dt

− (1− θ)
n−1∑
i=1

Ip̂i
I
dp̂it +

1

2

n−1∑
i=1

n−1∑
j=1

(θ − 1)

[
Ip̂ip̂j
I

+ (θ − 2)

(
Ip̂iIp̂j
I2

)]
σp̂iσ

′
p̂j
dt

− γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂idt,
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where p̂ = (p̂1, p̂2, ..., p̂n). For later use, we abbreviate the drift term as

µξ,t ≡ −βθ − (1− θ)I−1(p̂t) − γ
n∑
i=1

µCi p̂it +
1

2
γ2(σC)2 −

n−1∑
i=1

(1− θ)
Ip̂i
I

p̂itλii +

n∑
j=1
j 6=i

p̂jtλji


+

1

2

n−1∑
i=1

n−1∑
j=1

(θ − 1)
[Ip̂ip̂j
I

+ (θ − 2)

(
Ip̂iIp̂j
I2

)]
σp̂iσ

′
p̂j

− γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂i .

C.3. Price-dividend ratio

We want to price a claim on levered consumption. Under the investor’s filtration, dividends
follow the process

d lnDt = µ̄dt+ φ

(
n∑
i=1

(µCi − µ̄)p̂it

)
dt+ φσC

(√
1− ρ2dŴC

t + ρdŴ π
t

)
.

Let ω denote the log price-dividend ratio. For g(ξ,D, ω) ≡ ξDeω, the Feynman-Kac formula
yields

Ag(ξ,D, ω)

g(ξ,D, ω)
+ e−ω = 0. (C.4)

Itô’s Lemma gives

Agt
gt

= µξ,t + µD,t + µω,t +
1

2

d[ω]t
dt

+
d [ξ,D]t
ξDdt

+
d [ω,D]t
Ddt

+
d [ω, ξ]t
ξdt

.

Another application of Itô’s Lemma leads to

dωt =
n−1∑
i=1

ωp̂idp̂it +
1

2

n−1∑
i=1

n−1∑
j=1

ωp̂ip̂jσp̂iσ
′
p̂j
dt

where the subscripts denote partial derivatives with respect to the state variables p̂i. We can
rewrite the drift of ω as a function of the derivatives ωp̂i and ωp̂i,p̂j and the state variables p̂i:

µω,t =

n−1∑
i=1

ωp̂i

p̂itλii +

n∑
j=1
j 6=i

p̂jtλji

 +
1

2

n−1∑
i=1

n−1∑
j=1

ωp̂ip̂jσp̂iσ
′
p̂j
.
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The quadratic variation terms are:

d[ω]t =

n−1∑
i=1

n−1∑
j=1

ωp̂iωp̂jσp̂iσ
′
p̂j
dt

d[ξ, ω]t
ξt

= −(1− θ)
n−1∑
i=1

Ip̂i
I
ωp̂iσp̂iσ

′
p̂i
dt+

n−1∑
i=1

n−1∑
j=1

Ip̂i
I
ωp̂jσp̂iσ

′
p̂j
dt− γ

n−1∑
i=1

ωp̂iσc,p̂idt

d[ξ,D]t
ξtDt

= −γφ(σC)2 − (1− θ)
n−1∑
i=1

Ip̂i
I
φσc,p̂idt

d[ω,D]t
Dt

=

n−1∑
i=1

ωp̂iφσc,p̂idt.

Plugging everything into (C.4) gives the following PDE for ω:

0 = −βθ − (1− θ)I−1 + e−ω − γ
n∑
i=1

µCi p̂it + µ̄+ φ

(
n∑
i=1

(µCi − µ̄)p̂it

)
+

1

2
(φ− γ)2(σC)2

+

n−1∑
i=1

(
(θ − 1)

Ip̂i
I

+ ωp̂i

)p̂itλii +
n∑
j=1
j 6=i

p̂jtλji

 +
n−1∑
i=1

(
(φ− γ)(θ − 1)

Ip̂i
I

+ (φ− γ)ωp̂i

)
σc,p̂i

+

n−1∑
i=1

(
1

2
(θ − 1)(θ − 2)

(
Ip̂i
I

)2

+ (θ − 1)
Ip̂i
I
ωp̂i +

1

2
ω2
p̂i

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)(θ − 2)

Ip̂iIp̂j
I2

+ ωp̂iωp̂j

)
σp̂iσ

′
p̂j

+
1

2

n−1∑
i=1

(
(θ − 1)

(
Ip̂ip̂i
I

)
+ ωp̂ip̂i +

1

2
ω2
p̂i

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)

Ip̂ip̂j
I

+ ωp̂ip̂j

)
σp̂iσ

′
p̂j
.

Similar to the wealth-consumption ratio, we approximate the price-dividend ratio U ≡ eω via a
multivariate Chebyshev polynomial expansion, i.e., we approximate the function U(p̂) as

U(p̂) = exp


d∑
j=0

βjTj(p̂)

 ,

and solve the PDE numerically.

C.4. Pricing real bonds

Let the price of a real bond expiring at time T be denoted by BT
t = Et[

ξT
ξt

] with the real pricing
kernel

ξT
ξt

= βθ
(
CT
Ct

)−γ
exp

{
−βθ(T − t) + (θ − 1)

(∫ T

t
I−1(p̂s)ds

)}
(I(p̂t))

θ−1

Let bt ≡ lnBT
t be the log real bond price (we will omit the superscript T in the following). The
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Feynman-Kac formula applied to H(ξt, bt) = ξte
bt yields the partial differential equation:

0 = AH = µξ,t + µb,t +
1

2

d[b]t
dt

+
d[ξ, b]t
ξtdt

, (C.5)

where µξ and µb are the drifts of the processes ξt and bt respectively. The dynamics of bt are

dbt =
∂bt
∂t
dt+

n−1∑
i=1

bp̂idp̂it +
1

2

n−1∑
i=1

n−1∑
j=1

bp̂ip̂jσp̂iσ
′
p̂j
dt.

Plugging everything into (C.5) gives the following PDE for bt:

0 = −βθ − (1− θ)I−1 − γ
n∑
i=1

µCi p̂it +
1

2
γ2(σC)2 +

∂bt
∂t

+

n−1∑
i=1

(
(θ − 1)

Ip̂i
I

+ bp̂i

)p̂itλii +

n∑
j=1
j 6=i

p̂jtλji

 − γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂i − γ

n−1∑
i=1

ωp̂iσc,p̂i

+

n−1∑
i=1

(
1

2
(θ − 1)(θ − 2)

(
Ip̂i
I

)2

+ (θ − 1)
Ip̂i
I
bp̂i +

1

2
b2p̂i

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)(θ − 2)

Ip̂iIp̂j
I

+ bp̂ibp̂j

)
σp̂iσ

′
p̂j

+
n−1∑
i=1

1

2

(
(θ − 1)

(
Ip̂ip̂i
I

)
+ bp̂ip̂i +

1

2
b2p̂i

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)

Ip̂ip̂j
I

+ bp̂ip̂j

)
σp̂iσ

′
p̂j
.

We approximate the bond price ebt at each time point t by a multivariate Chebyshev polynomial,
i.e.,

bt =
n∑
j=0

α
(T )
j,t Tj(p̂).

Note that the PDE for the bond price involves a time derivative. We use an explicit Euler
discretization for this time derivative and solve the PDE recursively backwards in time, starting

from the boundary condition bT = 0, i.e. α
(T )
j,T = 0 for j = 0, . . . , n.

C.5. Pricing nominal bonds

Let the price of the nominal bond maturing at time T be denoted by BT,$
t with

BT,$
t = Et

[
ξ$T
ξ$t

]

= Et

[
ξT
ξt

eπt

eπT

]
,

where ξ$t ≡ ξte
−πt is the nominal pricing kernel. Define b$t ≡ lnBT,$

t (we again omit the

superscript T in the following). Then the Feynman-Kac formula applied to H(ξ$t , b
$
t ) = ξ$t e

b$t
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yields the partial differential equation

0 = AH = µξ$,t + µb$,t +
1

2

d[b$t ]

dt
+
d[ξ$, b$]t

ξ$t dt
, (C.6)

where µξ$ and µb$ are drifts of the processes ξ$t and b$t respectively. Notice that

dξ$t
ξ$t

=
dξt
ξt
− dπt +

1

2
d[π]t −

d[ξ, π]t
ξt

.

The dynamics of b$t are

db$t =
∂b$t
∂t

dt+
n−1∑
i=1

b$p̂idp̂it +
1

2

n−1∑
i=1

n−1∑
j=1

b$p̂ip̂jσp̂iσ
′
p̂j
dt.

Plugging everything into (C.6) yields the following PDE for b$t :

0 = −βθ − (1− θ)I−1 − γ
n∑
i=1

µCi p̂it +
1

2
γ2(σC)2 +

∂b$t
∂t
−

n∑
i=1

µπi p̂it +
1

2
(σπ)2 + γρσCσπ

+

n−1∑
i=1

(
(θ − 1)

Ip̂i
I

+ bp̂$i

)p̂itλii +
n∑
j=1
j 6=i

p̂jtλji


− γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂i − γ

n−1∑
i=1

b$p̂iσc,p̂i − (θ − 1)

n−1∑
i=1

Ip̂i
I
σπ,p̂i −

n−1∑
i=1

b$p̂iσπ,p̂i

+

n−1∑
i=1

(
1

2
(θ − 1)(θ − 2)

(
Ip̂i
I

)2

+ (θ − 1)
Ip̂i
I
b$p̂i +

1

2
(b$p̂i)

2

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)(θ − 2)

Ip̂iIp̂j
I

+ b$p̂ib
$
p̂j

)
σp̂iσ

′
p̂j

+
1

2

n−1∑
i=1

(
(θ − 1)

(
Ip̂ip̂i
I

)
+ b$p̂ip̂i +

1

2
(b$p̂i)

2

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)

Ip̂ip̂j
I

+ b$p̂ip̂j

)
σp̂iσ

′
p̂j
.

Again, this PDE involves a time derivative. As for the prices of real bonds, we approximate

eb
$
t at each time point t by multivariate Chebyshev polynomials, use an explicit Euler discretiza-

tion for this time derivative and solve the PDE recursively backwards in time, starting from the
boundary condition b$T = 0.
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D. Solution of the Model with Full Information

The dynamics of consumption and the log prive level are

d lnCt =

(
n∑
i=1

µCi 1{St=i}

)
dt+ σC

(√
1− ρ2dWC

t + ρdW π
t

)
dπt =

n∑
i=1

µπi 1{St=i} + σπdW π
t ,

For ease of notation, we relabel the indicator variable as pi,t = 1{St=i}. These are the state
variables in a model in which the representative agent perfectly knows the state of the economy
at every point in time. The dynamics of these state variables are

dpi,t = −pi,tdNi,i + (1− pi,t)
∑
j 6=i

dNj,i

where the counting process Nj,i counts transitions from state j to state i and has the intensity
λj,i. The counting process Ni,i counts the transitions from state i to any other state j 6= i and
has the intensity

∑
j 6=i λi,j . These dynamics imply that the state variables almost surely only

take the values 0 and 1.
The indirect utility function of the investor is given by

J(Ct, p1t, . . . , pnt) = Et

[∫ ∞
t

f(Cs, J(Cs, p1s, . . . , pns)) ds

]
.

With the same reasoning as in the incomplete information economy (i.e. defining the indirect
utility function, setting up the Bellman equation, conjecturing the same functional form for
the indirect utility function) and after some simplifications, we arrive at the following algebraic
equations (one equation for each state i) for the four unknowns vi (the log wealth-consumption
ratios in each state i):

0 =

[
(1− γ)µCi +

1

2
(1− γ)2(σC)2 − βθ

]
+ θe−vi +

∑
j 6=i

λij ·
(
eθ(vj−vi) − 1

)
.

The proof is only a very slight modification of the proof in Appendix A of Branger et al. (2016).
Similarly, for the log price-dividend ratio ωi of the equity claim, we get the equations (one for
each state i):

0 = −βθ − (1− θ)e−vi + e−ωi − γµCi + µ̄+ φ
(
µCi − µ̄

)
+

1

2
(φ− γ)2(σC)2

+
∑
j 6=i

λij ·
(
e(θ−1)(vj−vi) · eωj−ωi − 1

)
.

For the prices of nominal bonds b$i we get the four ordinary differential equations

0 = −βθ − (1− θ)e−vi − γµCi +
1

2
γ2(σC)2 +

∂b$i
∂t
− µπi +

1

2
(σπ)2 + γρσCσπ

+
∑
j 6=i

λij ·
(
e(θ−1)(vj−vi) · eb

$
j−b

$
i − 1

)
.
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