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Abstract 
A  hedge  fund’s  capital  structure  is  fragile  because  uninformed  fund  investors  are 
highly loss sensitive and easily withdraw capital in response to bad news. Hedge fund 
managers, sharing common investors and interacting with each other through market price, 
sensitively react to other funds’ investment decisions. In this environment, panic-based 
market runs can arise not because of systematic risk but because of the fear of runs. The 
authors find that when the market regime changes from a normal state to a “bad” state 
(in which runs are possible), hedge funds reduce investment prior to runs. In addition, the 
market runs are more likely to occur in a market where hedge funds hold greater market 
exposure and uninformed traders have greater sensitivity to past price movement. 

 

JEL G01   G23 
Keywords Market sustainability; market runs; hedge funds; limits of arbitrage; 
financial crises; synchronization risk 

 

Authors 
Sangwook Sung, Samsung Economic Research Institute (SERI), Samsung Group, Seoul, 
Korea 
Hoon Cho, College of Business, Korea Advanced Institute of Science and Technology 
(KAIST), Seoul, Korea 
Doojin Ryu, College of Economics, Sungkyunkwan University (SKKU), Seoul, Korea, 
sharpjin@skku.edu 

 
Citation Sangwook Sung, Hoon Cho, and Doojin Ryu (2019). Market runs of 
hedge funds during financial crises. Economics Discussion Papers, No 2019-31, Kiel 
Institute for the World Economy.  
http://www.economics-ejournal.org/economics/discussionpapers/2019-31  

 
 
 
 
 
 
 
 

Received March 10, 2019  Accepted as Economics Discussion Paper April 29, 2019 
Published April 30, 2019 
© Author(s) 2019. Licensed under the Creative Commons License - Attribution 4.0 International (CC BY 4.0) 

http://www.economics-ejournal.org/economics/discussionpapers/2019-31
mailto:sharpjin@skku.edu
mailto:sharpjin@skku.edu
http://www.economics-ejournal.org/economics/discussionpapers/2019-31
http://creativecommons.org/licenses/by/4.0/


2 

1. Introduction 
Around the global financial crisis of 2007–2009, hedge funds, characterized as informed and 

sophisticated arbitrageurs, simultaneously exited the market after the financial sector experienced an 

exceptionally large shock.1 Ben-David et al. (2011, p.2), extensively examining research on hedge 

funds around the global financial crisis, state that “hedge funds exited the U.S. stock market en masse 

as the financial crisis evolved, primarily in response to the tightening of funding by investors and 

lenders.” According to their empirical evidence, hedge funds reduced equity holdings by 6% each 

quarter during the Quant Meltdown of 2007 and by 15% on average (29% with compounding) during 

Lehman Brothers’ bankruptcy of 2008 (see Figure 1).2 He et al. (2010) find a similar result, that 

during the crisis (2007:Q4–2009:Q1) the amount of securitized assets owned by hedge funds was 

reduced by $800 billion. Moreover, Ang et al. (2011), investigating the leverage of hedge funds from 

December 2004 to October 2009, document that hedge funds decreased their leverage even before the 

financial crisis started in mid-2007. As major motivation for this massive asset liquidation, Ben-David 

et al. (2011) point out fund withdrawals that explain half of the decline in the equity holdings of hedge 

funds. In addition, by analyzing the types of stocks hedge funds sold off during the crisis, the authors 

show that high-volatility stocks were more likely to experience fire sales than low-volatility stocks 

were. 

 

[Insert Figure 1 about here] 

 

Regarding these issues, a large body of literature on the limits of arbitrage proposes 

theoretical explanations for the price divergence caused by the asset fire sales of constrained 

arbitrageurs. In pioneering work, Shleifer and Vishny (1997) argue that arbitrageurs could abandon an 

arbitrage strategy due to a performance-based compensation structure. If uninformed investors reward 

and punish in accordance with short-term fund performance, fund managers become myopic, leaving 

arbitrage opportunities in the market unexploited. Gromb and Vanyanos (2002), Liu and Longstaff 

(2004), and Brunnermeier and Pedersen (2009) provide a model in which arbitrageurs cannot pursue 

arbitrage profits because of margin constraints on collateralized assets. When arbitrageurs face 

constraints on collateral, they are limited in their arbitrage positions. Liu and Mello (2011) link the 

limits of arbitrage to liquidity risk. They conclude that fund managers who are subject to liquidity risk 

reduce their portion of risky assets in preparation of fund runs. 

                                                      
1 According to Hedge Fund Research Inc., 1,471 of hedge funds were liquidated in 2008, a historical high, and 
the next year, 1,023 hedge funds closed, a second historical high. 
2 Ben-David et al. (2011) report that a quarter of hedge funds sold off over 40% of their equity holdings during 
2008:Q3–Q4. 



3 

We develop a market model that explains synchronized market runs by informed and rational 

fund managers. The market is subject to negative price shocks and funding liquidity shocks and 

uninformed fund investors who invest in funds prudently can request early withdrawal based on their 

own market views, created by aggregate numbers of managers who gave up their market investment. 

In this respect, these investors can be viewed as similar to the types of investors described by Shleifer 

and Vishny (1997), who determine investment decisions depending on past information about funds. 

In this model framework, we show that low levels of noise in a private signal about liquidity shock 

can lead to panic-based market runs, not because of liquidity risk per se but because of the fear of runs. 

The possibility of synchronized runs in various financial sectors has historically been of 

great concern to market participants, policy makers, and researchers3 and recent studies (Morris and 

Shin (2004), Goldstein and Pauzner (2005), Liu and Mello (2011), and Allen et al. (2014)) attempt to 

derive a unique equilibrium threshold of panic-based runs using a global game method. This approach 

allows for a unique threshold strategy in which runs may or may not occur, depending on economic 

conditions, and therefore calculates the probability of synchronized runs. However, most of the 

studies assume fixed short-term asset returns that are unrelated to agents’ investment decisions,4 so 

they fail to explain market crashes caused by investors who collectively liquidate risky assets in fear 

of price drops due to the liquidation of other investors. 

In our model, short- and long-run market returns are endogenously determined by the 

optimal investment strategies of fund managers, who need to make two optimal decisions: asset 

allocation and whether to stay. The optimal decision rules of fund managers are simple: At 𝑡1, 

managers decide the optimal asset allocation to maximize final investment returns and, at 𝑡2, they 

optimally choose whether to stay in the market, depending on observed private signals. Fund 

managers interact with market returns so that, as they invest more capital, the market return rises and 

all managers can benefit and vice versa. When a market is in a “bad” state (in which runs are possible), 

fund managers can also interact with each other by deciding whether to stay, because investors 

request capital withdrawals in proportion to the number of exiting funds. Therefore, the investment 

decision of each fund affects the others’ investment returns and obviously affects optimal decisions. 

Fund managers should then take into account not only market conditions but also runs by 

other managers in deciding their own optimal strategy. As more fund managers decide to exit the 

market, the expected investment returns of the remaining funds diminish faster than their exit 
                                                      
3 Diamond and Dybvig (1983), Postlewaite and Vives (1987), Green and Lin (2003), Peck and Shell (2003), 
Goldstein and Pauzner (2005), Ennis and Keister (2009a, 2009b), and Allen et al. (2014) discuss bank runs, 
Bernardo and Welch (2004) and Morris and Shin (2004) study market runs, and Liu and Mello (2011) 
investigate fund runs. 
4 Morris and Shin (2004) provide a model in which investors’ decisions on whether to stay can affect the market 
price. However, those investors are not subject to early withdrawals, which is the core driver of market runs in 
our model; instead, they are constrained by loss limits. 
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investment returns, which could encourage these funds to run. We consider the situation in which all 

funds decide to exit due to the fear of runs, even if economic conditions are not that bad, that is, a 

panic-based market run. Using a global game method, we show that a unique threshold strategy exists 

in which, if the liquidity shock is below the threshold, no managers run but, otherwise, all managers 

run. Having established a unique threshold strategy, we compare the optimal levels of market 

exposure in two states, state I, in which runs are impossible, and state II, in which runs are possible. 

By comparing the two states, we find that when fund managers consider the possibility of runs, they 

optimally hold less market exposure. In addition, we calculate the ex ante probability of market runs, 

which is related to the distribution of funding liquidity shocks, by summing the probabilities over the 

possible ranges of market runs. Through this analysis, we discover that the likelihood of runs rises as 

both the market exposure of funds and the price sensitivity of trend followers increase. 

Our findings help to explain some stylized facts on the behaviors of fund managers that were 

observed around the global financial crisis. Hedge funds, whose investors are highly sensitive to 

losses, are vulnerable to funding liquidity risk and thus fund managers are cautious, holding more 

cash prior to crises. Nevertheless, if an exceptionally devastating liquidity shock sweeps the market, 

fund investors may start to request capital withdrawals from their funds in response to the initial loss. 

Even if some fund managers know that the liquidity shock is not strong enough to make them exit the 

market, the fear of capital withdrawals and price deterioration due to runs by other funds induces them 

to run as well. In the worst case, hedge funds collectively exit the market, not because of risk itself, 

but because of fear, which explains the stock market exodus of hedge funds during the Quant 

Meltdown of 2007 and Lehman Brothers’ bankruptcy of 2008. In the meantime, high-volatility stocks 

are more likely to experience greater fire sales by hedge funds than low-volatility stocks are, because 

high-volatility stocks respond sensitively to price movement and during a market downturn are more 

likely to experience price drops. In this sense, high-volatility shocks are riskier and are more likely to 

deteriorate fund asset values than low-volatility stocks are. Hence, high-volatility stocks have a high 

chance of suffering from synchronized runs by hedge funds. 

Our study is related to the literature on panic-based crises using the global game technique 

developed by Carlsson and van Damme (1993). Goldstein and Pauzner (2004, p.152) define panic-

based crises as “crises that occur just because agents believe they are going to occur,” which is the 

common feature of most crises in several parts of the financial sector. Global game methods are useful 

in resolving many of the equilibrium problems of panic-based crises. In recent decades, several 

attempts using a global game method have been made to explain panic-based crises in financial 

sectors. Morris and Shin (1998) were among the first and describe the currency protection of the 

government against the currency attacks of speculators. Goldstein and Pauzner (2005) modify the 

bank run model of Diamond and Dybvig (1983) to show the existence of a unique bank run 
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equilibrium and then calculate the probability of bank runs. Extending Goldstein and Pauzner’s model, 

Allen et al. (2014) investigate the financial effects of government guarantees on the banking system. 

Abreu and Brunnermeier (2002, 2003) reveal long-lasting unexploited arbitrage opportunities in asset 

markets due to the synchronization failure of arbitrageurs. Goldstein and Pauzner (2004) explain crisis 

contagion between two financial markets with common investors as being due to the fear of a crisis, 

which can make investors withdraw capital from both markets. 

The study of Liu and Mello (2011), who highlight withdrawal synchronization as the major 

driver of the massive asset liquidation by hedge funds during the global financial crisis, is closely 

related to ours. However, there are critical differences. First, Liu and Mello assume informed and 

sophisticated fund investors; however, according to the empirical evidence of Ben-David et al. (2011), 

during the global financial crisis, hedge fund investors very actively withdrew their capital from 

poorly performing funds, which implies that investors determine their investment decisions depending 

on the past information of funds rather than information regarding their future. Accordingly, our 

model assumes fund investors make investment decisions after observing the aggregate investment 

decisions of fund managers. Second, Liu and Mello consider an isolated fund that cannot interact with 

the market or other funds and focus on fund-specific rather than economy-wide characteristics. 

Therefore, the linkage between fund runs and price deterioration is weak and the influence of fund 

managers’ decisions on the financial market is inferred indirectly. In contrast, we develop a market 

model in which fund managers interact with other funds through the market price. This approach 

allows us to identify a direct linkage between price deterioration and its impact on the decisions of 

fund managers. 

The remainder of this article is organized as follows. Section 2 describes the model and 

Section 3 finds the equilibrium for state I (in which runs are impossible) and state II (in which runs 

are possible). Section 4 explores the effect of environmental changes on the decisions of fund 

managers. Section 5 summarizes and concludes the article. 

 

2. Model 
We consider a model with two assets, a risky asset and cash, during four periods 

(𝑡0, 𝑡1, 𝑡2, 𝑡3). The risky asset market is subject to a negative price shock and three types of agents 

participate in the market: fund managers, trend followers, and fund investors. 

Agents of the first type, or fund managers, are homogeneous and fully rational, with risk-

neutral utility, and know the fundamental value, which is higher than the current price. Fund 

managers trade the risky asset to exploit arbitrage opportunities but funding liquidity risk prevents 
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them from making maximum arbitrage profits. Since there exist infinitely many fund managers5 and 

they compete with each other in the market, individual fund managers, in equilibrium, optimally 

allocate their own capital to the risky asset and to cash to maximize their final asset value in response 

to competitors’ investment strategies. 

Trend followers, the second type of agent, have unlimited capital but have no information on 

the fundamental values of risky assets, so they just follow market trends and their aggregate demand 

is therefore positively related to past market returns. 

Fund investors, the last type of agent, are also uninformed but, unlike trend followers, do not 

directly invest in risky assets because these markets are highly specialized and they are too prudent to 

invest by themselves. Instead, fund investors give their capital to fund managers, distributing the 

capital among all funds equally to reduce risk, and observe the aggregate funds’ investment decisions. 

Based on ex post aggregate information about funds’ decisions, fund investors then decide the amount 

of capital withdrawal in proportion to the aggregate portion of exiting funds. 

The brief time schedule of our model is as follows. At 𝑡0, the market price is at the 

fundamental value and then diverges due to a negative price shock at 𝑡1. At 𝑡1, fund managers also 

receive capital from investors and determine their investment strategy based on market conditions. A 

funding shock occurs between 𝑡1 and 𝑡2 and, at 𝑡2, each fund manager decides whether to stay in 

the market. Then, fund investors withdraw some of their capital from the remaining funds after they 

observe the aggregate portion of exiting funds. At 𝑡3, trend followers finally realize the fundamental 

value and the market price converges to it. We provide more details below. 

At 𝑡1, fund investors provide aggregate capital 𝑓 distributed equally among all funds. Fund 

𝑖 then allocates a portion 𝑥𝑖 of capital to the risky asset and the remaining portion 𝑐𝑖 to cash, where 

𝑥𝑖 ∈ [0, 1]. Cash pays a return of one unit, but the payoff of the risky asset is uncertain, in that a 

funding liquidity shock could deteriorate short-term market returns. After fund managers execute their 

investment strategies, the market price rises by the amount of aggregate capital they provided, which 

is 𝑓
𝑛
∑ 𝑥𝑖𝑛
𝑖=1 . For convenience, we normalize the market supply of 𝑡1 to unity and express exogenous 

market factors such as market value, capital amounts, and price shocks relative to the price at 𝑡1. In 

addition, without loss of generality, we assume that the market price at 𝑡1 is one. Then, the market 

clearing condition at 𝑡1 is 

1 = 𝑅 − 𝑠 + 𝑓
𝑛
∑ 𝑥𝑖𝑛
𝑖=1   (1)  

                                                      
5 We assume a perfectly competitive market, that is, one with infinitely many funds. However, for ease of 
presentation, in this section, we describe our model as if there were 𝑛 funds in the market. Later, 𝑛 goes to 
infinity. 
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where 𝑠 is the impact of the negative market shock on the market price. The market shock drops the 

market return by 𝑠 below the fundamental return 𝑅, which is greater than one. The fundamental 

return is then determined to be  

𝑅 = 1 + 𝑠 − 𝑓
𝑛
∑ 𝑥𝑖𝑛
𝑖=1   (2)  

As we can see from Equation (2), an individual fund manager’s investment decision affects 

everyone else’s investment returns through the market return. 

Between 𝑡1 and 𝑡2, trend followers trade in response to past market returns; that is, since 

the market return of the risky asset changes from 𝑅 to one between 𝑡0 and 𝑡1, the market return 

between 𝑡1 and 𝑡2 again declines to 1
𝑅

/𝜏 due to the aggregate trading of trend followers, where 

𝜏 ∈ [1/𝑅, 1). The constant 𝜏 captures trend followers’ sensitivity to past market trends and the 

boundaries on 𝜏 restrict the impact of trend followers on the market such that 1
𝑅

< 1
𝑅

/𝜏 ≤ 1. The 

first inequality, 1
𝑅

< 1
𝑅

/𝜏, means that the effect of trend followers’ trading does not dominate the 

market so that the short-term market return does not fall below 1/𝑅. The second inequality, 
1
𝑅

/𝜏 ≤ 1, limits the short-term return as one, to focus on only a distressed market. 

In the meanwhile, a funding liquidity shock occurs so that a portion 𝜃 of funds are forced 

to go bankrupt, where 𝜃 is uniformly distributed on [0,1]. Fund managers who receive this shock 

should go bankrupt and they make no profits. Surviving fund managers, however, do not know the 

exact value of 𝜃 because fund managers cannot observe the status of other funds but, instead, 

receive noisy signals, such that the signal of a surviving manager of fund 𝑖 is 𝜃𝑖 = 𝜃 + 𝜀𝑖, where 

𝜀𝑖  is an independent and identically uniform distribution on the interval [−𝜀, 𝜀] and 𝜀 is an 

arbitrarily small real number. Based on this signal, the manager of fund 𝑖 forecasts the strategies 

of other managers and decides whether to stay in the market. 

In the meantime, fund investors do not receive any signals. The only thing they can 

observe is the ex post aggregate portion 𝜆 of funds that exit the market, including both bankrupt 

funds and leaving funds among survivors, but they do not know which funds exit or stay. Therefore, 

they create their own market view based on only this portion 𝜆 and then request the withdrawal of 

a portion 𝜆 of capital from the remaining funds in the market because they conjecture that a higher 

𝜆 means a riskier market situation. In the extreme case, if all fund managers exit the market and are 

just holding cash until 𝑡3, investors forfeit all capital from funds at 𝑡2 because holding cash 

requires no expertise. In this extreme case, fund managers make no profits. 

Note that fund investors’ cautious reaction to fund exits due to information asymmetry 

between fund managers and investors can stimulate runs of the remaining funds. Even a fund 

manager who knows that the funding liquidity shock is at a safe level can choose not to stay if he or 
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she thinks that other managers will leave the market, because the exit of other funds not only 

induces withdrawals but also lowers market prices, deteriorating the investment return of the 

remaining funds. If the return deterioration seems severe enough, fund managers will decide to 

leave the market. After all, regardless of market fundamentals, market runs can be triggered by the 

fear of runs, which we call panic-based market runs. 

Then, at 𝑡2, the short-term market return 𝑟 is determined as a function of the aggregate 

portion of exiting funds, as follows: 

𝑟(𝜆) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧
1
𝑅𝑅
− 𝑓

𝑛
∑ 𝑥𝑘𝑛
𝑘=𝑛−𝑚+1 + 𝐿𝐿(𝜆) 0 ≤ 𝜆 ≤ 𝑐1

1
𝑅𝑅
− 𝑓

𝑛
�(𝜆 − 𝑐1) + ∑ 𝑥𝑘𝑛

𝑘=𝑛−𝑚+1 � + 𝐿𝐿(𝜆) 𝑐1 ≤ 𝜆 ≤ 𝑐2
⋮
1
𝑅𝑅
− 𝑓

𝑛
�∑ (𝜆 − 𝑐𝑘)𝑖

𝑘=1 + ∑ 𝑥𝑘𝑛
𝑘=𝑛−𝑚+1 � + 𝐿𝐿(𝜆) 𝑐𝑖 ≤ 𝜆 ≤ 𝑐𝑖+1

⋮
1
𝑅𝑅
− 𝑓

𝑛
(∑ (𝜆 − 𝑐𝑘)𝑛−𝑚

𝑘=1 + ∑ 𝑥𝑘𝑛
𝑘=𝑛−𝑚+1 ) + 𝐿𝐿(𝜆) 𝑐𝑛−𝑚 ≤ 𝜆 ≤ 𝜋1

1
𝑅𝑅
− 𝑓

𝑛
(∑ (𝜆 − 𝑐𝑘)𝑛−𝑚

𝑘=2 + 𝑟𝑥1 + ∑ 𝑥𝑘𝑛
𝑘=𝑛−𝑚+1 ) + 𝐿𝐿(𝜆) 𝜋1 ≤ 𝜆 ≤ 𝜋2

⋮
1
𝑅𝑅
− 𝑓

𝑛
�∑ (𝜆 − 𝑐𝑘)𝑛−𝑚

𝑘=𝑖+1 + 𝑟 ∑ 𝑥𝑘𝑖
𝑘=1 + ∑ 𝑥𝑘𝑛

𝑘=𝑛−𝑚+1 � + 𝐿𝐿(𝜆) 𝜋𝑖 ≤ 𝜆 ≤ 𝜋𝑖+1
⋮
1
𝑅𝑅
− 𝑓

𝑛
(𝑟 ∑ 𝑥𝑘𝑛−𝑚

𝑘=1 +∑ 𝑥𝑘𝑛
𝑘=𝑛−𝑚+1 ) + 𝐿𝐿(𝜆) 𝜋𝑛−𝑚 ≤ 𝜆 ≤ 1

  
(3)  

and 𝜋𝑖 is the minimum value of fund 𝑖’s short-term investment return before capital outflows. 

For the sake of convenience, we index 𝑛 funds such that the 𝑚 highest are exiting funds, 

that is, 𝜆 = 𝑚
𝑛

, and the remaining 𝑛 −𝑚 lower-indexed funds are the remaining funds.6 We also 

index the remaining funds in order of risky asset holdings, such that 𝑐1 ≤ ⋯ ≤ 𝑐𝑛−𝑚 ≤ 𝜋1 ≤ ⋯ ≤

𝜋𝑛−𝑚.7 The term 𝐿𝐿(𝜆) represents new liquidity inflow into the risky asset market at 𝑡2. To solve 

the model analytically, we assume that 𝐿𝐿(𝜆) = 𝑓
𝑛
∑ 𝑥𝑘𝑛
𝑘=𝑛−𝑚+1 ; however, this assumption does not 

change the implications of the model because the negative relation between liquidity outflow and 

market return is maintained. The short-term investment return before the capital outflow of fund 𝑖 is 

𝜋𝑖(𝜆) = 𝑥𝑖𝑟(𝜆) + 𝑐𝑖 and, if 𝜋𝑖(𝜆) < 𝜆, fund 𝑖 should declare default. Therefore, 𝜋𝑖 is the upper 

bound of 𝜃 at which fund 𝑖 need not declare default and also the minimum value of 𝜋𝑖(𝜆), defined 

as 𝜋𝑖 ≔ 𝜋𝑖(𝜋𝑖) = 𝑥𝑖𝑟(𝜋𝑖) + 𝑐𝑖. Then, 𝜋𝑖 =
𝑐𝑖�1+

𝑓
𝑛∑ 𝑥𝑘𝑖

𝑘=1 �+𝑥𝑖�
1
𝑅𝑅+

𝑓
𝑛∑ 𝑐𝑘𝑛−𝑚

𝑘=𝑖+1 �

1+𝑓𝑛∑ 𝑥𝑘𝑖
𝑘=1 +𝑓𝑥𝑖𝑛 (𝑛−𝑚−𝑖)

. 

                                                      
6 It seems that 𝜆 is a discrete variable, but it is continuous because 𝑛 later goes to infinity. 
7 We assume that 𝑐𝑛−𝑚 ≤ 𝜋1, because, in a non-cooperative game, all homogeneous agents optimally choose 
an identical strategy in equilibrium and a fund’s cash holdings are always less than the investment return before 
capital outflows. 
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If 𝜆 is in the interval [𝑐𝑖 , 𝑐𝑖+1] of Equation (3), capital outflows are greater than fund 𝑖’s 

cash holdings, so the first 𝑖 funds whose cash holdings are less than or equal to those of funds 𝑖 are 

forced to liquidate some of their risky assets. Due to their liquidation, the short-term market return 

drops by 𝑓
𝑛
∑ (𝜆 − 𝑐𝑘)𝑖
𝑘=1 . When 𝜆 is in the interval [𝜋𝑖,𝜋𝑖+1], all remaining funds liquidate at least 

some of their risky assets and the first 𝑖 funds liquidate all assets and declare default. 

 At 𝑡3, trend followers realize the fundamental value and the market converges to it. All 

funds completely liquidate their risky asset and realize profits. 

 When the manager of fund 𝑖 decides to exit the market, the fund can achieve an exit 

investment return 𝛱𝑖𝐸 such that 

𝛱𝑖𝐸(𝑥𝑖, 𝜆) = �𝑥𝑖𝑟
(𝜆) + 𝑐𝑖 0 ≤ 𝜆 < 𝜋𝑖

0 𝜋𝑖 ≤ 𝜆 ≤ 1  (4)  

In Equation (4), 𝛱𝑖𝐸 is the short-term investment return before capital outflows 𝜋𝑖(𝜆) if capital 

outflows are less than 𝜋𝑖. In the other range, even if the manager of fund 𝑖 decides to liquidate early, 

the manager gains nothing. 

When the manager of fund 𝑖 decides to stay in the market, the investment return 𝛱𝑖𝑆 of 

staying for fund 𝑖 is 

𝛱𝑖𝑆(𝑥𝑖 , 𝜆) = �
𝑥𝑖𝑅 + 𝑐𝑖 − 𝜆 0 ≤ 𝜆 ≤ 𝑐𝑖
𝑥𝑖𝑅 − (𝜆 − 𝑐𝑖)

𝑅
𝑟(𝜆) 𝑐𝑖 ≤ 𝜆 ≤ 𝜋𝑖

0 𝜋𝑖 ≤ 𝜆 ≤ 1
  (5)  

In Equation (5), if 𝜆 is less than 𝑐𝑖, fund 𝑖 can cover all fund outflows with cash at 𝑡2 and obtain 

an investment yield 𝑥𝑖𝑅 in the risky asset at 𝑡3. If 𝜆 is greater than 𝑐𝑖, the fund should liquidate as 

much risky asset as the shortfall amount at 𝑡2 and thus suffer a loss of (𝜆 − 𝑐𝑖)
𝑅
 𝑟

 at 𝑡3. If 𝜆 is 

large enough to exceed 𝜋𝑖, fund 𝑖 declares default at 𝑡2. 

 

3. Equilibrium 
The optimal strategy of risk-neutral fund managers is to maximize their expected final return 

and, since homogeneous fund managers, who know the optimal strategies of their peers, compete with 

each other in the market, all managers select the identical asset allocation strategy at equilibrium.8 

Using this identity condition, we can simplify the derivation of the optimal strategy. 

In equilibrium, it is possible to assume that 𝑥 ≔ 𝑥1 = 𝑥2 = ⋯ and then the long- and short-

term market returns and the investment returns of exiting and remaining funds in Equations (2) to (5), 

respectively, can be rewritten as 

                                                      
8 This is a Nash equilibrium. 
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𝑅� ≔ lim𝑛→∞[𝑅]𝑥=𝑥1=⋯=𝑥𝑛 = 1 + 𝑠 − 𝑓𝑓  (6)  

𝑟̅(𝜆) ≔ lim𝑛→∞[𝑟]𝑥=𝑥1=⋯=𝑥𝑛 =

⎩
⎪
⎨

⎪
⎧

1
𝑅�𝜏

0 ≤ 𝜆 ≤ 𝑐
1
𝑅�𝜏
− 𝑓(𝜆 − 𝑐) 𝑐 ≤ 𝜆 ≤ 𝜋
1

𝑅�𝜏(1+𝑓𝑓) 𝜋 ≤ 𝜆 ≤ 1

   (7)  

𝛱𝐸����(𝑥, 𝜆) ≔ limn→∞�𝛱𝑖𝐸�𝑥=𝑥1=⋯=𝑥𝑛 = �

𝑥
𝑅�𝜏

+ 𝑐 0 ≤ 𝜆 ≤ 𝑐
𝑥
𝑅�𝜏
− 𝑓𝑓(𝜆 − 𝑐) + 𝑐 𝑐 ≤ 𝜆 < 𝜋

0 𝜋 ≤ 𝜆 ≤ 1

  (8)  

𝛱𝑆����(𝑥, 𝜆) ≔ lim𝑛→∞�𝛱𝑖𝑆�𝑥=𝑥1=⋯=𝑥𝑛 = �
𝑥𝑅� + 𝑐 − 𝜆 0 ≤ 𝜆 ≤ 𝑐
𝑥𝑅� − (𝜆 − 𝑐)𝑅�/ � 1

𝑅�𝜏
− 𝑓(𝜆 − 𝑐)� 𝑐 ≤ 𝜆 ≤ 𝜋

0 𝜋 ≤ 𝜆 ≤ 1

  (9)  

where 𝜋 = 𝑥
𝑅�𝜏(1+𝑓𝑓)

+ 𝑐. In addition, by differentiating 𝛱𝑖𝐸 and 𝛱𝑖𝑆 with respect to 𝑥𝑖, we obtain 

the following equations: 

𝜕𝛱𝐸����

𝜕𝜕
(𝑥, 𝜆) ≔ lim𝑛→∞ �

𝜕𝛱𝑖
𝐸

𝜕𝑥𝑖
�
𝑥=𝑥1=⋯=𝑥𝑛

= �

1
𝑅�𝜏
− 1 0 ≤ 𝜆 ≤ 𝑐

1
𝑅�𝜏
− 𝑓(𝜆 − 𝑐) − 1 𝑐 ≤ 𝜆 < 𝜋

0 𝜋 ≤ 𝜆 ≤ 1

   (10)  

𝜕𝛱𝑆����

𝜕𝜕
(𝑥, 𝜆) ≔ lim𝑛→∞ �

𝜕𝛱𝑖
𝑆

𝜕𝑥𝑖
�
𝑥=𝑥1=⋯=𝑥𝑛

= �
𝑅� − 1 0 ≤ 𝜆 ≤ 𝑐
𝑅� − 𝑅�/ � 1

𝑅�𝜏
− 𝑓(𝜆 − 𝑐)� 𝑐 ≤ 𝜆 ≤ 𝜋

0 𝜋 ≤ 𝜆 ≤ 1

   (11)  

 

3.1. State I: Runs are impossible 

As in the benchmark case, we first consider an equilibrium when surviving fund managers 

cannot exit the market. Then, the only funds that exit the market are those that receive a liquidity 

shock. Therefore, 𝜆 equals 𝜃 . Under this condition, panic-based market runs are not possible 

because no surviving fund manager fears the runs of the other survivors. Therefore, the investment 

return of the surviving funds is the investment return 𝛱𝑖𝑆 of staying, while bankrupt funds gain 

nothing. Therefore, at 𝑡1, the expected final return of fund 𝑖, denoted 𝐸�𝛱𝑖𝐼�, is  

𝐸�𝛱𝑖𝐼� = ∫ �(1 − 𝜃)𝐸�𝛱𝑖𝑆�� 𝑑𝑑
1
0 = 𝐸�𝛱𝑖𝑆� ∫ (1 − 𝜃)𝑑𝑑1

0 = 1
2
𝐸�𝛱𝑖𝑆� = 1

2 ∫ 𝛱𝑖𝑆 𝑑𝑑
𝜋𝑖(𝑥𝑖)
0     (12)  

and the manager of fund 𝑖 chooses optimal market exposure to maximize 𝐸�𝛱𝑖𝐼�, that is, 

max𝑥𝑖 𝐸�𝛱𝑖
𝐼�    (13)  

under the boundary conditions 

0 ≤ 𝑥𝑖 ≤ 1, 1/𝜏 ≤ 𝑅, 𝑓 < 𝑠    (14)  
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The first boundary condition indicates short-selling and borrowing constraints on the 

investment. The second one is imposed by the restriction on 𝜏 and guarantees the existence of an 

arbitrage opportunity, because 1 < 1/𝜏 ≤ 𝑅 is a sufficient condition for 1 < 𝑅. The third boundary 

condition excludes the possibility that a market shock can be canceled out only by a fund’s own 

investment. 

At equilibrium, all fund managers choose the same optimal point, which should satisfy the 

equation 

𝜕𝜕�𝛱𝐼�
𝜕𝜕

≔ lim𝑛→∞ �
𝜕𝜕�𝛱𝑖

𝐼�
𝜕𝑥𝑖

�
𝑥=𝑥1=⋯=𝑥𝑛

= 1
2

lim𝑛→∞ �
𝜕
𝜕𝑥𝑖

�∫ 𝛱𝑖𝑆(𝑥𝑖,𝜃)𝑑𝑑𝜋𝑖(𝑥𝑖)
0 ��

𝑥=𝑥1=⋯=𝑥𝑛
= 0    (15)  

Since 𝛱𝑖𝑆(𝑥𝑖,𝜃) is continuous over [0,1] × [0,1] and its partial derivative 𝜕
𝜕𝑥𝑖

𝛱𝑖𝑆(𝑥𝑖 ,𝜃) is 

continuous over [0,1] × [0, 𝑐𝑖]  and [0,1] × [𝑐𝑖,𝜋𝑖] , by the Leibniz integral rule, 9 
𝜕
𝜕𝑥𝑖

�∫ 𝛱𝑖𝑆(𝑥𝑖,𝜃)𝑑𝑑𝜋𝑖(𝑥𝑖)
0 � in Equation (15) can be expressed as 

𝜕
𝜕𝑥𝑖

�∫ 𝛱𝑖𝑆(𝑥𝑖,𝜃)𝑑𝑑𝜋𝑖(𝑥𝑖)
0 � = 𝜕

𝜕𝑥𝑖
�∫ 𝛱𝑖𝑆(𝑥𝑖,𝜃)𝑑𝑑𝑐𝑖(𝑥𝑖)
0 �+ 𝜕

𝜕𝑥𝑖
�∫ 𝛱𝑖𝑆(𝑥𝑖,𝜃)𝑑𝑑𝜋𝑖(𝑥𝑖)
𝑐𝑖(𝑥𝑖)

� =

�∫ 𝜕
𝜕𝑥𝑖

𝛱𝑖𝑆(𝑥𝑖,𝜃)𝑑𝑑𝑐𝑖(𝑥𝑖)
0 +𝛱𝑖𝑆�𝑥𝑖, 𝑐𝑖(𝑥𝑖)�

𝜕𝑐𝑖
𝜕𝑥𝑖

− 𝛱𝑖𝑆(𝑥𝑖, 0) 𝜕0
𝜕𝑥𝑖
� + �∫ 𝜕

𝜕𝑥𝑖
𝛱𝑖𝑆(𝑥𝑖,𝜃)𝑑𝑑𝜋𝑖(𝑥𝑖)

𝑐𝑖(𝑥𝑖)
+

𝛱𝑖𝑆�𝑥𝑖 ,𝜋𝑖(𝑥𝑖)�
𝜕𝜋𝑖
𝜕𝑥𝑖

− 𝛱𝑖𝑆�𝑥𝑖, 𝑐𝑖(𝑥𝑖)�
𝜕𝑐𝑖
𝜕𝑥𝑖
�    

(16)  

Then, 

lim
𝑛→∞

�
𝜕
𝜕𝑥𝑖

�� 𝛱𝑖𝑆(𝑥𝑖,𝜃)𝑑𝑑
𝜋𝑖(𝑥𝑖)

0
��

𝑥=𝑥1=⋯=𝑥𝑛

 

= �
∫ 𝜕𝛱𝑆����

𝜕𝜕
(𝑥,𝜃)𝑑𝑑𝑐

0

+𝛱𝑆����(𝑥, 𝑐) 𝜕𝜕
𝜕𝜕
− 𝛱𝑆����(𝑥, 0) 𝜕0

𝜕𝜕

� + �
∫ 𝜕𝛱𝑆����

𝜕𝜕
(𝑥,𝜃)𝑑𝑑𝜋

𝑐

+𝛱𝑆����(𝑥,𝜋) 𝜕𝜕
𝜕𝜕
− 𝛱𝑆����(𝑥, 𝑐) 𝜕𝜕

𝜕𝜕

� = ∫ 𝜕𝛱𝑆����

𝜕𝜕
(𝑥,𝜃)𝑑𝑑𝜋

0     

(17)  

  

Therefore, 𝜕𝜕�𝛱
𝐼�

𝜕𝜕
 in Equation (15) can be easily calculated by integrating 𝜕𝛱

𝑆

𝜕𝜕

�����
 with respect 

to 𝜃 and the optimal solution 𝑥𝐼∗ can be found with the equation 

𝜕𝜕�𝛱𝐼�
𝜕𝜕

= 1
2 ∫

𝜕𝛱𝑆����

𝜕𝜕
𝑑𝑑𝜋

0 = 1
2
�∫ (𝑅� − 1)𝑑𝑑𝑐
0 + ∫ �𝑅� − 𝑅�

1
𝑅�𝜏−𝑓(𝜃−𝑐)

�𝑑𝑑𝜋
𝑐 �  

= 1
2
�𝑓𝑥2 − (𝑓 + 𝑠)𝑥 + 𝑠 + 𝑥

(1+𝑓𝑓)𝜏
− 𝑅

𝑓
ln(1 + 𝑓𝑓)� = 0    

(18)  

 

                                                      

9 If a function 𝑔(𝑦, 𝑧) and its partial derivative 𝑔𝑦(𝑦, 𝑧) are both continuous over [𝑦0 ,𝑦1] × [𝑧0, 𝑧1], then 
𝜕
𝜕𝜕
�∫ 𝑔(𝑦, 𝑧) 𝑑𝑑𝑧1

𝑧0
� = ∫ 𝑔𝑦(𝑦, 𝑧)𝑑𝑑𝑧1

𝑧0
+ 𝑔(𝑦, 𝑧1) 𝜕𝑧1

𝜕𝜕
− 𝑔(𝑦, 𝑧0) 𝜕𝑧0

𝜕𝜕
. 
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PROPOSITION 1. If surviving fund managers cannot exit the market, a panic-based market run 

cannot occur and, in equilibrium, fund managers select the optimal market exposure 𝑥𝐼∗  that 

satisfies 1
2
�𝑓𝑥𝐼∗2 − (𝑓 + 𝑠)𝑥𝐼∗ + 𝑠 + 𝑥𝐼∗

(1+𝑓𝑥𝐼∗)𝜏
− 1+𝑠−𝑓𝑥𝐼∗

𝑓
ln(1 + 𝑓𝑥𝐼∗)� = 0. 

Following Proposition 1, at 𝑡1, all fund managers decide to invest a portion 𝑥𝐼∗ of their 

capital in the market and to hold the remaining portion 𝑐𝐼∗(= 1 − 𝑥𝐼∗) in cash. Then, the aggregate 

liquidity inflows from funds to the market are 𝑓𝑥𝐼∗ and, accordingly, the long-run market return is 

determined to be 𝑅𝐼∗ = 1 + 𝑠 − 𝑓𝑥𝐼∗. 

At 𝑡2, after a portion 𝜃 (= 𝜆) of funds exit the market due to the liquidity shock, the short-

term market return becomes 

𝑟𝐼∗(𝜃) =

⎩
⎪
⎨

⎪
⎧

1
𝑅𝐼∗𝜏

0 ≤ 𝜃 ≤ 𝑐𝐼∗
1

𝑅𝐼∗𝜏
− 𝑓(𝜃 − 𝑐) 𝑐𝐼∗ ≤ 𝜃 ≤ 𝜋𝐼∗

1
𝑅𝐼∗𝜏

− 𝑓𝑟̅𝑥 𝜋𝐼∗ ≤ 𝜃 ≤ 1

    (19)  

where 𝜋𝐼∗ = 𝑥𝐼∗

𝑅𝐼∗𝜏(1+𝑓𝑥𝐼∗)
+ 𝑐𝐼∗. In addition, the surviving funds can achieve an investment return 𝛱𝐼∗ 

at 𝑡3: 

𝛱𝐼∗(𝑥𝐼∗,𝜃) = �
𝑥𝐼∗𝑅𝐼∗ + 𝑐𝐼∗ − 𝜃 0 ≤ 𝜃 ≤ 𝑐𝐼∗

𝑥𝐼∗𝑅𝐼∗ − (𝜃 − 𝑐𝐼∗) 𝑅
𝐼∗

𝑟𝐼∗
𝑐𝐼∗ ≤ 𝜃 < 𝜋𝐼∗

0 𝜋𝐼∗ ≤ 𝜃 ≤ 1

    (20)  

 

3.2. State II: Run are possible 

We now consider the case in which surviving funds can exit if it seems that the investment 

return of exiting the market is greater than the investment return of staying. In this case, the portion of 

exiting funds equals or is greater than the portion of bankrupt funds, so that 𝜆 ≥ 𝜃. 

In this section, we show how panic-based market runs can occur in a financial market as a 

result of the optimal decisions of rational fund managers. For this, we use a global game method. 

For technical reasons, assume two dominance regions, where fund managers who believe 𝜃 

is in one of these regions follow a dominance strategy, regardless of what other managers do. In detail, 

managers who believe that 𝜃 is lower than 𝜃 choose to stay in the market. Here, 𝜃 > 2𝜀 and 

[0,𝜃) is the lower dominance region. To guarantee the existence of this region, the fund manager’s 

payoff structure requires a little adjustment. Suppose that, if fund managers stay when 𝜃 is in [0,𝜃), 

they can obtain a investment return 𝑥𝑅� + 𝑐 instead of 𝛱𝑆����. Then, whatever the others choose, these 

managers, who believe that 𝜃 is in [0,𝜃), would decide to stay, because their investment return, 

𝑥𝑅� + 𝑐, is independent of 𝜆 and greater than 𝛱𝐸����. This result implies that when the liquidity shock is 
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extremely weak, fund managers can be sure to obtain higher investment profits by maintaining their 

current market position, regardless of the behavior of other managers. 

At the other extreme, if fund managers believe that 𝜃 is greater than 𝜃, they will decide to 

exit the market, with 𝜃 < 𝜋 − 2𝜀. Then, (𝜃, 1] is the upper dominance region. First consider the 

clear case in which 𝜃 is in [𝜋, 1]. Then, all funds should definitely exit the market because funds 

that stay will be in default. As in the second case, when 𝜃 is in the other region, (𝜃,𝜋), surviving 

funds decide whether to stay, depending on the situation. Here, fund managers compare investment 

returns 𝛱𝐸���� and 𝛱𝑆���� for each decision and the existence of a unique value 𝜆 in [𝑐,𝜋] needs to be 

demonstrated for 𝛱𝐸���� and 𝛱𝑆���� to be equal. From Equations (8) and (9), we know 𝛱𝐸����(𝑥, 𝑐) <

𝛱𝑆����(𝑥, 𝑐), lim𝜆→𝜋−0 𝛱𝐸����(𝑥, 𝜆) > 𝛱𝑆����(𝑥,𝜋) = 0, and 𝛱𝐸���� and 𝛱𝑆���� decrease monotonically on 𝜆. Then, 

by the intermediate value theorem, a unique 𝜆 that satisfies 𝛱𝐸���� = 𝛱𝑆���� exists. If 𝜃 is defined as this 

value of 𝜆, fund managers know that, in the region (𝜃,𝜋), exiting the market is more profitable than 

staying, regardless of what other managers do. 

Now, to determine a unique equilibrium strategy in the lower dominance region, consider a 

manager of fund 𝑖 who receives a signal 𝜃𝑖 that is below 𝜃 − 𝜀. This manager knows that 𝜃 is in 

the lower dominance region and decides to stay in the market. From this, we are assured that if 𝜃 is 

below 𝜃 − 2𝜀, all surviving fund managers receive signals in [0,𝜃 − 𝜀); then no surviving manager 

will choose to exit. Therefore, 𝜆 = 𝜃 when 𝜃 < 𝜃 − 2𝜀, which means that in this region there is 

only one equilibrium strategy. In region [𝜃 − 2𝜀,𝜃], as 𝜃 approaches 𝜃, the portion of managers 

who receive signals below 𝜃 − 𝜀 diminishes monotonically and becomes zero at 𝜃 = 𝜃. 

Similarly, we can also demonstrate the existence of a unique equilibrium strategy in the 

upper dominance region; that is, fund manager 𝑖 chooses to exit if 𝜃𝑖 > 𝜃 + 𝜀, so 𝜆 = 1 when 

𝜃 > 𝜃 + 2𝜀. 

What would happen in the intermediate region, between the two dominance regions? A fund 

manager who receives a signal that is slightly higher than 𝜃 − 𝜀 thinks that 𝜃 is more likely to be in 

the lower dominance region and could decide to stay. However, as the private signal approaches 𝜃, 

the probability that 𝜃 is in [0,𝜃) decreases to zero. At 𝜃𝑖 = 𝜃, the manager of fund 𝑖 knows that 

no manager receives a signal below 𝜃 − 𝜀  and no managers can be sure that 𝜃  is in [0,𝜃). 

Nevertheless, the manager of fund 𝑖 might decide to stay because he or she believes that other 

managers whose signals are lower than 𝜃 might choose to stay. The next manager, whose signal is 

slightly higher than that of the manager of fund 𝑖, also believes that other managers may choose to 

stay and decides to stay as well. By applying this logic repeatedly to the next managers, we can 

extend the region in which fund managers decide to stay to far above 𝜃. Similarly, the opposite 
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situation, in which fund managers choose to exit because of their belief in the exit of other managers, 

can apply to the upper dominance region and the region in which fund managers decide to exit can 

thus be extended to far below 𝜃. Then, the two regions can meet at a point 𝜃∗ in the middle of the 

intermediate region, where every fund manager follows the same strategy of staying if his or her 

signal is lower than 𝜃∗ and exiting otherwise. Therefore, for a given private signal 𝜃𝑖, the threshold 

strategy of a manager of fund 𝑖 at 𝑡2 is  

(𝜃𝑖, 𝑥) → �
𝑠𝑠𝑠𝑠 𝜃𝑖 < 𝜃∗(𝑥)
𝑒𝑒𝑒𝑒 𝜃∗(𝑥) ≤ 𝜃𝑖

    (21)  

where the threshold 𝜃∗(𝑥) depends on the market exposure 𝑥 the fund managers selected. 

We now show that the threshold strategy in Equation (21) has a unique equilibrium. The 

approach is similar with that of Goldstein and Pauzner (2005). As a first step, assume that all 

surviving fund managers follow the threshold strategy. Then, for a given threshold 𝜃′(𝑥), the 

aggregate portion of exiting funds 𝜆 is determined to be the 𝜃 realized such that 

𝜆(𝜃,𝜃′(𝑥)) = �

𝜃 0 ≤ 𝜃 ≤ 𝜃′(𝑥) − 𝜀

𝜃 + (1 − 𝜃) 𝜃−�𝜃
′(𝑥)−𝜀�
2𝜀

𝜃′(𝑥) − 𝜀 ≤ 𝜃 ≤ 𝜃′(𝑥) + 𝜀
1 𝜃′(𝑥) + 𝜀 ≤ 𝜃 ≤ 1

    (22)  

When 0 ≤ 𝜃 < 𝜃′ − 𝜀, all surviving fund managers receive signals that are lower than 𝜃′, so they 

decide to stay. Similarly, when 𝜃′ + 𝜀 ≤ 𝜃 ≤ 1, all signals are greater than 𝜃′ and all managers 

choose to exit. When 𝜃′ − 𝜀 ≤ 𝜃 ≤ 𝜃′ + 𝜀, exiting funds are bankrupt funds corresponding to 𝜃, 

plus leaving funds among survivors, which correspond to (1 − 𝜃) 𝜃−�𝜃
′−𝜀�

2𝜀
. 

 As a second step, we need to calculate the expected net investment return of individual fund 

managers. We define ∆𝛱�(𝜆) as the net investment return between staying in the market and exiting: 

∆𝛱�(𝜆) = 𝛱𝑆���� − 𝛱𝐸���� =

⎩
⎨

⎧𝑥𝑅
� − 𝑥

𝑅�𝜏
− 𝜆 0 ≤ 𝜆 ≤ 𝑐

𝑥𝑅� + (𝜆 − 𝑐) �𝑓𝑓 − 𝑅�/ � 1
𝑅�𝜏
− 𝑓(𝜆 − 𝑐)�� − 𝑥

𝑅�𝜏
− 𝑐 𝑐 ≤ 𝜆 < 𝜋

0 𝜋 ≤ 𝜆 ≤ 1

      (23)  

In the optimal investment decision of whether to stay, a manager of fund 𝑖 considers the 

expected net investment return, denoted 𝐸𝜃𝑖,𝜃′[∆𝛱�]. If 𝐸𝜃𝑖,𝜃′[∆𝛱�] is positive, the manager will 

prefer to stay and will exit otherwise. Since both 𝜃 and 𝜀𝑖 are uniformly distributed, from the 

perspective of the manager of fund 𝑖, whose signal is 𝜃𝑖 = 𝜃 + 𝜀𝑖, 𝜃 is uniformly distributed over 

[𝜃𝑖 − 𝜀,𝜃𝑖 + 𝜀]. Therefore, 𝐸𝜃𝑖,𝜃′[∆𝛱�] can be calculated as 

𝐸𝜃𝑖,𝜃′[∆𝛱�] = 1
2𝜀 ∫ ∆𝛱��𝜆(𝜃,𝜃′)�𝑑𝑑𝜃𝑖+𝜀

𝜃𝑖−𝜀
      (24)  

For a marginal fund manager whose signal equals the threshold 𝜃′ , the expected net 

investment return should be zero, which means that the marginal fund manager has no preference 
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between staying and exiting the market because the expected investment returns from both decisions 

are same. Then, 

𝐸𝜃′,𝜃′[∆𝛱�] = 1
2𝜀 ∫ ∆𝛱��𝜆(𝜃,𝜃′)�𝑑𝑑𝜃′+𝜀

𝜃′−𝜀 = 0      (25)  

To prove the uniqueness of the threshold that satisfies Equation (25), two dominance regions 

should be established, as has already been done. As we have shown, in the lower dominance region, 

where 𝜃′ < 𝜃 − 𝜀, 𝐸𝜃′,𝜃′[∆𝛱�] is positive because fund managers always choose to stay, irrespective 

of the decisions of the others. Similarly, in the upper dominance region, if 𝜃′ > 𝜃 + 𝜀, 𝐸𝜃′,𝜃′[∆𝛱�] is 

negative. In addition, between the two extreme regions, 𝐸𝜃′,𝜃′[∆𝛱�] is continuous and monotonically 

decreasing in 𝜃′. The monotonic decrease indicates that, when both 𝜃𝑖 and 𝜃′ increase by the same 

amount, though the marginal manager’s belief about the portion of exits among surviving funds is 

unchanged, the manager believes that the portion of bankrupt funds increases, leading to an increase 

in the aggregate portion of exiting funds. Then, the investment return of staying deteriorates faster 

than the investment return of exiting does. Therefore, 𝐸𝜃′,𝜃′[∆𝛱�] is monotonically decreasing and 

there exists a unique point 𝜃∗ that satisfies 𝐸𝜃∗,𝜃∗[∆𝛱�] = 0. Unlike Goldstein and Pauzner’s (2005) 

model, in which the signal (economy fundamentals) and the number of exiting agents are independent, 

in our study the two are closely related, in that a higher signal indicates a stronger funding liquidity 

shock, which forces funds to go bankrupt and affects the investment return of surviving funds. 

As the final step, we need to show that the threshold strategy in Equation (21) can be an 

equilibrium strategy. If this is true, 𝐸𝜃𝑖,𝜃∗[∆𝛱�] should be positive when 𝜃𝑖 < 𝜃∗ and negative when 

𝜃𝑖 > 𝜃∗. By the uniqueness of 𝜃∗, we know that there exists only one point 𝜃𝑖 = 𝜃∗ that satisfies 

𝐸𝜃𝑖,𝜃∗[∆𝛱�] = 0, because 𝜃∗ is a unique solution of 𝐸𝜃∗,𝜃∗[∆𝛱�] = 0. Suppose that a manager of fund 

𝑖 receives a signal 𝜃𝑖 that is lower than 𝜃∗; then the integral range of 𝐸𝜃𝑖,𝜃′[∆𝛱�] is [𝜃𝑖 − 𝜀,𝜃𝑖 + 𝜀], 

which is below [𝜃∗ − 𝜀,𝜃∗ + 𝜀]. From Equation (22), if 𝜃 < 𝜃∗, 𝜆(𝜃, 𝜃∗) < 𝜆(𝜃∗,𝜃∗) implies that 

the integral of ∆𝛱�(𝜆(𝜃,𝜃∗)) over the range [𝜃𝑖 − 𝜀,𝜃𝑖 + 𝜀] is greater than that over the range 

[𝜃∗ − 𝜀,𝜃∗ + 𝜀] , because ∆𝛱�(𝜆(𝜃,𝜃∗))  is decreasing in 𝜆 . Thus, 𝐸𝜃𝑖,𝜃∗[∆𝛱�] > 𝐸𝜃∗,𝜃∗[∆𝛱�] = 0 

when 𝜃𝑖 < 𝜃∗, which means that the manager of fund 𝑖 decides to stay in the market. Similar logic 

can apply to the case in which 𝜃𝑖 > 𝜃∗. 

 

THEOREM 1. A unique threshold equilibrium exists in which, for a common threshold 𝜃∗, fund 

managers decide to stay in the market if the private signal is lower than 𝜃∗ and run (exit) if the 

private signal is greater than 𝜃∗. 

Having established the existence of a unique threshold equilibrium, we now need to find the 

threshold 𝜃∗(𝑥). Liu and Mello (2011, p.497) state that as “𝜀 → 0, the fundamental uncertainty 

disappears, while strategic uncertainty remains unchanged.” Applying their argument to our model, 
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we can say that 𝜆(𝜃,𝜃∗) in Equation (22) is uniformly distributed in the interval [𝜃∗, 1] and 

𝜆(𝜃,𝜃∗) becomes a straight line for [𝜃∗ − 𝜀, 𝜃∗ + 𝜀] as 𝜀 → 0. Therefore, it is possible to find 𝜃∗ 

with the equation 

∫ ∆𝛱�(𝜆)𝑑𝑑1
𝜃∗ = 0     (26)  

which is the result of a transformation of variables in Equation (25) by the linearity of 𝜆(𝜃,𝜃∗). 

Figure 2 graphically specifies 𝜃∗, which is determined at the point where the area of A (above the 

horizontal axis) is equal to that of B (below the horizontal axis). Using this result, we can find the 

value of 𝜃∗(𝑥) and the condition for 𝜃∗(𝑥) in the range (𝑐,𝜋). 

 

[Insert Figure 2 about here] 

 

COROLLARY 1. If 1
𝑓2𝜏

(𝑓𝑓 − ln𝑓) > 𝑥
(1+𝑓𝑓)𝑅�2𝜏2

� 𝑥
𝑅�𝜏

+ (1 + 𝑓𝑓)𝑐 − 𝑓
2
� 𝑥

(1+𝑓𝑓)𝑅�𝜏
+ 2𝑐�� , then a 

unique threshold 𝜃∗(𝑥)  exists in the interval (𝑐,𝜋)  and 𝜃∗(𝑥)  can be found by solving the 

equation 1
𝑓2𝜏(𝜋−𝜃∗) ln[(1 + 𝑓𝑓)(1 − 𝑓𝑅�𝜏(𝜃∗ − 𝑐)] = 𝑥

𝑅�𝜏
− (1+𝑓𝑓)𝑅�

𝑓
+ (1 + 𝑓𝑓)𝑐 − 𝑓(𝜋+𝜃∗)

2
.10 

As 𝜀 → 0, the aggregate portion of exiting funds 𝜆 in Equation (22) becomes  

𝜆(𝜃,𝜃∗(𝑥)) = �
𝜃 0 ≤ 𝜃 ≤ 𝜃∗(𝑥)
1 𝜃∗(𝑥) < 𝜃 ≤ 1     (27)  

When 𝜃 is below the threshold 𝜃∗(𝑥), all surviving fund managers decide to stay, but if 𝜃 

is above 𝜃∗(𝑥), all funds exit the market. In contrast to state I, in state II all fund managers vanish 

from the market, even when 𝜃 is lower than 𝜋. If such a panic-based market run occurs, fund 

investors withdraw their entire capital from fund managers. Therefore, surviving fund managers 

cannot survive when 𝜃 ∈ (𝜃∗, 1]. 

As a general condition, our interest in this paper is the range 𝑐 < 𝜃∗ < 𝜋. Otherwise, if 𝜃∗ 

is below 𝑐, panic-based market runs can occur even though fund managers prudently manage their 

assets and hold enough cash in preparation of a run. Therefore, we exclude this case. 

Fund managers facing the risk of panic-based market runs consider 𝜃∗ in deciding optimal 

market exposure at 𝑡1. Therefore, the optimal asset allocation problem of fund manager 𝑖 is  

max𝑥𝑖 𝐸�𝛱𝑖
𝐼𝐼� = max𝑥𝑖

1
2 ∫ 𝛱𝑖𝑆 𝑑𝑑

𝜃∗(𝑥𝑖)
0      (28)  

In the optimization problem of Equation (28), the integral range is [0,𝜃∗(𝑥𝑖)]. This is 

because when 𝜃∗(𝑥) < 𝜃, all fund managers choose to exit and investors withdraw their entire capital, 

so that fund managers obtain zero investment return. What would then happen if some fund managers 
                                                      
10 Proofs are provided in Appendix. 
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remained in the market, even in the range [𝜃∗(𝑥), 1]? Those remaining managers certainly could 

obtain positive investment returns instead of zero, but other managers who chose to exit would make 

greater profits. Therefore, rational fund managers prefer to exit and consequently all fund managers 

choose to exit, even though they know that they will obtain zero investment return. 

Now, let us return to 𝑡1. Then, in equilibrium, all fund managers choose the same optimal 

exposure 𝑥𝐼𝐼∗, which satisfies the equation 

𝜕𝜕[𝛱𝐼𝐼]
𝜕𝜕

≔ lim
𝑛→∞

�
𝜕𝜕�𝛱𝑖𝐼𝐼�
𝜕𝑥𝑖

�
𝑥=𝑥1=⋯=𝑥𝑛

 

= 1
2

lim𝑛→∞ �
𝜕
𝜕𝑥𝑖

�∫ 𝛱𝑖𝑆(𝑥𝑖 ,𝜃)𝑑𝑑𝜃∗(𝑥𝑖)
0 ��

𝑥=𝑥1=⋯=𝑥𝑛
= 0     

(29)  

Once 𝑥𝐼𝐼∗ is determined at 𝑡1, the threshold strategy is that if 𝜃 is below 𝜃∗(𝑥𝐼𝐼∗), all 

surviving funds will stay in the market, but, if not, all funds will exit the market. Moreover, we are 

able to calculate the ex ante probability of market runs. By the assumption that 𝜃 is uniformly 

distributed over the interval [0,1], the probability of runs would be 𝑝𝑟𝑟𝑟 = 1 − 𝜃∗. 

In the remainder of this paper, we explore the effects of panic-based market runs on the asset 

allocation of fund managers and then investigate the changes in the probability of runs in response to 

an unexpected change in trend follower sensitivity. 

 

4. Environmental Changes and Fund Manager Decisions 
 

4.1. Effect of the possibility of a panic-based market run on fund asset allocation 

When a panic-based market run can occur, the surviving range changes from [0,𝜋] to 

[0,𝜃∗]. Then the optimal 𝑥𝐼∗ that maximizes 1
2 ∫ 𝛱𝑖𝑆 𝑑𝑑

𝜋𝑖(𝑥𝑖)
0  in state I is no longer optimal in the 

maximization problem of 1
2 ∫ 𝛱𝑖𝑆 𝑑𝑑

𝜃∗(𝑥𝑖)
0  in state II. If a run is possible, fund managers who are 

subject to panic-based market runs decide upon their optimal asset allocation by considering the 

surviving range [0,𝜃∗]. Therefore, we investigate how fund managers’ optimal decisions change with 

the introduction of a run. 

Since 𝑥𝐼∗  and 𝑥𝐼𝐼∗  are the solutions of the maximization problem in states I and II, 

respectively, they should satisfy �𝜕𝜕�𝛱
𝐼�

𝜕𝜕
�
𝑥=𝑥𝐼∗

= 0 and �𝜕𝜕�𝛱
𝐼𝐼�

𝜕𝜕
�
𝑥=𝑥𝐼𝐼∗

= 0, respectively. Therefore, 

if 𝑥𝐼𝐼∗ < 𝑥𝐼∗, �𝜕𝜕�𝛱
𝐼𝐼�

𝜕𝜕
�
𝑥=𝑥𝐼∗

 is negative but 𝑥𝐼𝐼∗ > 𝑥𝐼∗, �𝜕𝜕�𝛱
𝐼𝐼�

𝜕𝜕
�
𝑥=𝑥𝐼∗

 is positive. In this section, we 

show that 𝑥𝐼𝐼∗ < 𝑥𝐼∗ by proving that �𝜕𝜕�𝛱
𝐼𝐼�

𝜕𝜕
�
𝑥=𝑥𝐼∗

< 0 under the condition 𝜃∗ ∈ (𝑐,𝜋). 
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As a first step, we need to compare the magnitudes of the two integrals ∫ 𝜕𝛱𝐸����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗  and 

∫ 𝜕𝛱𝑆����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗ . From Equations (10) and (11), we know that, in the interval 𝑐 ≤ 𝜆 < 𝜋, 𝜕𝛱
𝐸����

𝜕𝜕
= 𝑟̅ − 1 and 

𝜕𝛱𝑆����

𝜕𝜕
= 𝑅�

𝑟̅
(𝑟̅ − 1 ). Since 𝑅� > 1 > 𝑟̅, 𝜕𝛱

𝑆����

𝜕𝜕
< 𝜕𝛱𝐸����

𝜕𝜕
< 0. Then, the integrals of both formulas over the 

range [𝜃∗,𝜋] also obey this dominance relation, so that ∫ 𝜕𝛱𝑆����

𝜕𝑥
𝑑𝑑𝜋

𝜃∗ < ∫ 𝜕𝛱𝐸����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗ < 0. 

 

LEMMA 1. ∫ 𝜕𝛱𝑆����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗ < ∫ 𝜕𝛱𝐸����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗ < 0. 

As mentioned above, in the interval 𝑐 ≤ 𝜆 < 𝜋, we know that 𝜕𝛱
𝑆����

𝜕𝜕
< 𝜕𝛱𝐸����

𝜕𝜕
< 0 and this 

inequality means that, for the same amount of increase in investment, the loss in returns of staying in 

the market is greater than the loss of exiting. Then, Lemma 1 implies that, on the interval [𝜃∗,𝜋], for 

the same amount of increase in investment, the sum of the marginal losses of funds that stay is larger 

than that of exiting funds when 𝜆 is expected in the ranges of market runs. 

From Equation (26), we know that ∫ 𝛱𝐸����𝑑𝑑𝜋
𝜃∗ = ∫ 𝛱𝑆����𝑑𝑑𝜋

𝜃∗  and, by differentiating both sides 

with respect to 𝑥, we obtain the following lemma. 

 

LEMMA 2. 𝜕𝜃
∗(𝑥)
𝜕𝜕

=
∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗ −∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑𝜋
𝜃∗

𝛱𝑆����(𝑥,𝜃∗)−𝛱𝐸����(𝑥,𝜃∗)
 

The numerator on the right-hand side of Lemma 2 is negative, due to Lemma 1, and the 

denominator, 𝛱𝑆����(𝑥,𝜃∗) −𝛱𝐸����(𝑥,𝜃∗), is positive, because, at 𝜆 = 𝜃∗, the investment return of staying 

is greater than the investment return of exiting, leading to the result 𝜕𝜃
∗(𝑥)
𝜕𝜕

< 0. 

 

THEOREM 2. Threshold 𝜃∗(𝑥) is a decreasing function of market investment 𝑥 under the general 

condition 𝑐 < 𝜃∗(𝑥)  < 𝜋. Then, the probability of market runs, 𝑝𝑟𝑟𝑟, increases as fund managers 

invest more in the market. 

Since the probability of market runs is 𝑝𝑟𝑟𝑟(𝑥) = 1 − 𝜃∗(𝑥), Theorem 2 states that 𝑝𝑟𝑟𝑟 

rises as 𝑥 increases. When fund managers hold a large amount of risky asset, their investment returns 

are closely related to each other, so funds sensitively respond to each other’s runs, since fund exits 

deteriorate short-term market returns and stimulate fund withdrawals. In fact, fund exits worsen the 

investment returns of both staying and exiting, but the remaining fnds then become more fragile than 

exiting funds, since the return of staying is rapidly diminished by short-term market return 
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deterioration and fund withdrawals affect only remaining funds.11 Thus, fund managers, if they hold a 

large amount of risky asset, could choose to exit the market after observing a private signal; otherwise, 

they could choose to stay. In other words, funds behave more prudently when they hold more risky 

assets, which means that 𝜃∗ decreases as 𝑥 increases. Hence, the probability of market runs rises 

along with fund investment. 

Using Lemmas 1 and 2, we can derive the following lemma. 

 

LEMMA 3. 𝑥𝐼𝐼∗ < 𝑥𝐼∗ if and only if �𝛱
𝑆����(𝑥,𝜃∗)

𝛱𝐸����(𝑥,𝜃∗)
�
𝑥=𝑥𝐼∗

< �
∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑𝜋
𝜃∗

�
𝑥=𝑥𝐼∗

 

Lemma 3 explains the condition for 𝑥𝐼𝐼∗ < 𝑥𝐼∗. Following Lemma 3, if �𝛱
𝑆����(𝑥,𝜃∗)

𝛱𝐸����(𝑥,𝜃∗)
�
𝑥=𝑥𝐼∗

<

�
∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

�
𝑥=𝑥𝐼∗

, fund managers optimally reduce market exposure when they take into account the 

possibility of a run. Under this condition, the left-hand side, 𝛱
𝑆����(𝑥,𝜃∗)

𝛱𝐸����(𝑥,𝜃∗)
, is the investment return of 

staying relative to that of exiting at 𝜆 = 𝜃∗ and the right-hand side, 
∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

, is the relative value of 

the sums of marginal loss for an investment increase between staying and exiting conditional on 𝜆 

being in the interval [𝜃∗,𝜋]. Then, 𝛱
𝑆����(𝑥,𝜃∗)

𝛱𝐸����(𝑥,𝜃∗)
<

∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

 can be interpreted such that the relative value 

of the sum of marginal losses on [𝜃∗,𝜋] is greater than the relative investment return at the threshold 

𝜃∗. Therefore, Lemma 3 predicts that, when 𝛱
𝑆����(𝑥,𝜃∗)

𝛱𝐸����(𝑥,𝜃∗)
<

∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

, fund managers will lose more money 

if they do not decrease their investment after the regime has changed from state I to state II. Therefore, 

fund managers prefer to hold cash when there is a risk of market runs. 

From Equations (8) and (11) and Lemma 3, we can derive the following theorem. 

 

THEOREM 3. Fund managers decrease their market investment when they consider market runs in 

their optimal investment strategy; that is, 𝑥𝐼𝐼∗ < 𝑥𝐼∗. 

In our model, 𝛱
𝑆����(𝑥,𝜃∗)

𝛱𝐸����(𝑥,𝜃∗)
 is bounded above by 𝑅�2𝜏, because 𝛱

𝑆����(𝑥,𝑐)
𝛱𝐸����(𝑥,𝑐)

 is 𝑅�2𝜏 at 𝜆 = 𝑐, and 

monotonically decreases as 𝜆 increases. On the other hand, 
∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

 is bounded below by 𝑅�2𝜏, 

                                                      
11 Fund withdrawal indirectly affects the investment return of exits through short-term price deterioration. 
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because �𝜕𝛱
𝑆����

𝜕𝜕
� is greater than 𝑅�2𝜏 ∙ �𝜕𝛱

𝐸����

𝜕𝜕
� on [𝜃∗,𝜋]. Therefore, our model satisfies the condition in 

Lemma 3 and, when the regime changes from state I to state II, fund managers can maximize their 

expected asset value by reducing market exposure up to 𝑥𝐼𝐼∗, so that 𝑥𝐼𝐼∗ < 𝑥𝐼∗. 

Indeed, around the global financial crisis, the regime suddenly changed from state I to state 

II. Hedge fund managers who perceived this regime change anticipated that market runs might 

aggravate the illiquidity problem and quickly reduced market exposures, even prior to the crisis. 

Nevertheless, as the crisis evolved, fund investors started to withdraw and, in response to withdrawals, 

hedge funds also began to liquidate, not because of systematic risk per se, but because of the fear of 

the runs of others. Ultimately, as fear peaked following huge financial events (i.e., the Quant 

Meltdown and Lehman Brothers’ bankruptcy), a mass exodus of hedge funds took place; that is, 

synchronized runs occurred due to the extreme fear of runs. 

 

4.2. Effect of unexpected changes in price sensitivity on the probability of market runs  

So far, we have explored the behavior of fund managers. Now, in this section we investigate 

the effect of trend followers on market stability by examining the relation between trend sensitivity 

and the probability of market runs. 

In our model, after fund managers’ asset allocation at 𝑡1, the market price is depreciated by 

the trading of trend followers. Their sensitivity 𝜏 is known to fund managers, whose asset allocation 

takes into account this information. But what if trend followers suddenly become more risk averse 

between 𝑡1 and 𝑡2? This situation is quite likely when the market is experiencing severe price 

deterioration. 

A change in 𝜏 affects the short-term market price, as well as funds’ investment returns. 

Therefore, if an unexpected change in 𝜏 occurs, for a given 𝑥, fund managers would adjust their 

existing threshold strategy to reflect the new 𝜏. In turn, this adjustment shifts the probability of 

market runs, defined as 𝑝𝑟𝑟𝑟 = 1 − 𝜃∗. 

We calculate the ex ante probability 𝑝𝑟𝑟𝑟 as a function of 𝜏. For a variety of sets of 

parameter values, 𝑝𝑟𝑟𝑟 shows clear upward tendencies in 𝜏. Figure 3 illustrates this tendency for 

different levels of market exposure 𝑥. In this figure, the parameter values are 𝑓 = 4 and 𝑠 = 8. The 

horizontal axis represents 𝜏 from 0.2 to 0.9 and the vertical axis denotes 𝑝𝑟𝑟𝑟. Since the boundary 

condition restricts 𝜏 to the range [1/𝑅�, 1), we exclude both upper and lower extreme values of 𝜏. 

Each curve indicates 𝑝𝑟𝑟𝑟 as a function of 𝜏 for different 𝑥 values, which increase from 0.2 to 0.9 

by increments of 0.1. 
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[Insert Figure 3 about here] 

 

In Figure 3, all the curves are monotonically increasing, which indicates the fragility of a 

highly trend-sensitive market. In a financial market where investors respond with sensitivity to past 

price trends, even moderate levels of market shock can have a large impact on the market price, 

leading to a huge price drop. Price deterioration is more detrimental to funds that stay than to exiting 

funds, so a highly sensitive market is more prone to suffer from market runs. To put it concretely, an 

increase in sensitivity 𝜏 decreases the short-term market return 𝑟̅ and, accordingly, 𝛱𝑆���� falls more 

sharply than 𝛱𝐸���� does. Since it decreases the net investment return function, ∆𝛱�(𝜆) = 𝛱𝑆���� − 𝛱𝐸����, the 

threshold 𝜃∗  shifts to a lower value because 𝜃∗  satisfies ∫ ∆𝛱�(𝜆)𝑑𝑑1
𝜃∗ = 0  (see Figure 2). 

Therefore, in response to an unexpectedly high trend sensitivity 𝜏, fund managers lower the threshold 

𝜃∗ and the probability of market runs, 𝑝𝑟𝑟𝑟, increases. 

The above results suggest a possible price stabilization process for a financial market 

experiencing severe price drops. When fund managers perceive that the regime is changing from state 

I to state II, they reduce market exposure. Meanwhile, as prices diverge more, trend followers become 

more risk averse and respond more sensitively to past price drops. Then, the probability of market 

runs is affected in two opposite ways: reducing 𝑥 decreases 𝑝𝑟𝑟𝑟 and increasing 𝜏 increases 𝑝𝑟𝑟𝑟. 

If the effect of a rising 𝜏 dominates the effect of a decreasing 𝑥, 𝑝𝑟𝑟𝑟 increases, so that the 

financial market becomes more vulnerable to a funding liquidity shock. At the beginning of a crisis, 

the effect of the increased 𝜏 dominates the effect of the diminished 𝑥 and market runs become 

highly probable. However, in the meantime, as the irrational fad wanes and correct information is 

diffused throughout the market, the trading forces of trend followers weaken and price sensitivity 

gradually diminishes. Finally, when the effect of 𝜏 equals the effect of 𝑥, 𝑝𝑟𝑟𝑟 begins to decrease. 

It can rebound after reaching its lowest price. 

To sustain market stability against market runs, we highlight an information cost. In the 

model, the trend-following strategy of uninformed investors delivers a past price shock to the future 

market and, as trend sensitivity increases, the probability of market runs rises. Goldstein and Pauzner 

(2005) and Liu and Mello (2011) predict the similar result that short-term price deterioration raises the 

possibility of synchronized runs. However, their results are derived from the simple assumption of a 

constant short-term return, because their models do not consider a price determination mechanism. In 

contrast, we develop a market model in which short-term market return is endogenously determined 

by several factors and, among them, we note price sensitivity is an important source that affects the 

likelihood of market runs. Since price sensitivity is positively related to the probability of market runs, 

we conclude that lowering the information cost that makes trend followers become informed could 

mitigate the synchronization problem in a distressed market, by enhancing market stability. 
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5. Conclusion 
This paper develops a market model that illustrates the synchronized market runs of 

informed and rational fund managers. Using a global game technique, we show that the possibility of 

runs induces panic-based market runs, not because of systematic risk itself but because of the fear of 

runs. In addition, we find that when the market regime changes from a normal state (in which runs are 

impossible) to a bad state (in which runs are possible), fund managers quickly reduce risky asset 

exposure prior to the occurrence of runs. Through analyzing the ex ante probability of market runs, 

we also suggest that a market in which fund managers have high market exposure and trend followers 

are highly sensitive is more likely to experience synchronized runs. 

On the basis of the above findings, we explain some stylized facts that were observed around 

the global financial crisis. Hedge funds, whose investors are highly loss sensitive, behaved cautiously, 

holding more cash prior to the crisis. Nevertheless, as the financial crisis evolved, fund investors 

started to withdraw capital from their funds in response to the initial loss. Even though some fund 

managers who had sufficiently reduced risky asset exposure in advance knew that the liquidity shock 

was not strong enough to pull them out of the market, the growing fear of capital withdrawals and 

price deterioration caused by the runs of other funds could ultimately induce them to run. In the worst 

case, hedge funds can collectively exit the market not because of risk itself, but because of fear, as 

occurred during the Quant Meltdown of 2007 and Lehman Brothers’ bankruptcy of 2008. In the 

meantime, high-volatility stocks are more likely to experience stronger fire sales than low-volatility 

stocks are, because high-volatility stocks respond sensitively to price movement and, during a market 

downturn, are more likely to experience price drops. 

Our findings also suggest a possible price stabilization process during a financial crisis. At 

the very first sign of crisis, fund managers reduce market exposure after perceiving that the regime 

has changed from a normal to a bad state. As the crisis proceeds, trend followers become more risk 

averse and respond more sensitively to past price drops. Then, two opposite effects arise: The reduced 

exposure decreases the probability of market runs and the increased sensitivity raises it. If the latter 

effect dominates, the probability of market runs rises so that the financial market becomes more 

vulnerable to a funding liquidity shock. At the beginning of a crisis, the former dominates and the 

market price is more likely to decline. However, as time passes, price sensitivity gradually diminishes, 

as does the probability of market runs. Ultimately, the market reaches the lowest price and then 

rebounds. 

In work similar to ours, Goldstein and Pauzner (2005) and Liu and Mello (2011) develop 

models for panic-based runs and predict that a decrease in the short-term return increases the 

possibility of synchronized runs. However, they fail to suggest ways of stabilizing the market, because 
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their models assume the short-term return to be a given value. In contrast, we develop a market model 

in which the short-term return is endogenously determined by market factors, among which we note 

price sensitivity to be an important factor that is positively related to the probability of market runs. 

Therefore, we suggest increasing market stability by decreasing the cost of the information that 

informs trend followers to mitigate synchronization risk. 

 

Appendix 
A.1. Proof of Corollary 1 

The threshold 𝜃∗  satisfies 0 = ∫ ∆𝛱�(𝜆)𝑑𝑑1
𝜃∗ = ∫ ∆𝛱�(𝜆)𝑑𝑑𝜋

𝜃∗ . Then, there exists a unique 

threshold 𝜃∗ in the interval (𝑐,𝜋) if and only if ∫ ∆𝛱�(𝜆)𝑑𝑑𝜋
𝑐 > 0, because ∆𝛱�(𝜆) is positive for 

𝜆 < 𝜃∗ . The inequality ∫ ∆𝛱�(𝜆)𝑑𝑑𝜋
𝑐 > 0  can be rewritten as 1

𝑓2𝜏
(𝑓𝑓 − ln𝑓) > 𝑥

(1+𝑓𝑓)𝑅�2𝜏2
� 𝑥
𝑅�𝜏

+

(1 + 𝑓𝑓)𝑐 − 𝑓
2
� 𝑥

(1+𝑓𝑓)𝑅�𝜏
+ 2𝑐��. Thus, if this condition is satisfied, the existence of a unique 𝜃∗ in 

the interval (𝑐,𝜋) can be assured. 

When 𝑐 < 𝜃∗ < 𝜋 is guaranteed, we can find 𝜃∗ by solving the equation ∫ ∆𝛱�(𝜆)𝑑𝑑𝜋
𝜃∗ =

0 . We obtain ∫ ∆𝛱�(𝜆)𝑑𝑑𝜋
𝜃∗ = ∫ 𝛱𝑆����𝑑𝑑𝜋

𝜃∗ − ∫ 𝛱𝐸����𝑑𝑑𝜋
𝜃∗ = ∫ �𝑥𝑅� − (𝜆 − 𝑐)𝑅�/ � 1

𝑅�𝜏
− 𝑓(𝜆 − 𝑐)�� 𝑑𝑑𝜋

𝜃∗ −

∫ � 𝑥
𝑅�𝜏
− 𝑓𝑓(𝜆 − 𝑐) + 𝑐� 𝑑𝑑𝜋

𝜃∗  for 𝜃∗ ∈ (𝑐,𝜋) , which is calculated as ∫ ∆𝛱�(𝜆)𝑑𝑑𝜋
𝜃∗ = 𝑅� �1+𝑓𝑓

𝑓
(𝜋 −

𝜃∗) + ln[(1+𝑓𝑓)(1−𝑓𝑅�𝜏(𝜃∗−𝑐)]
𝑓2𝑅�𝜏

� − (𝜋 − 𝜃∗) � 𝑥
𝑅�𝜏

+ (1 + 𝑓𝑓)𝑐 − 𝑓
2

(𝜋 + 𝜃∗)� = 0 . After rearranging the 

equation, we have 1
𝑓2𝜏(𝜋−𝜃∗) ln[(1 + 𝑓𝑓)(1 − 𝑓𝑅�𝜏(𝜃∗ − 𝑐)] = 𝑥

𝑅�𝜏
− (1+𝑓𝑓)𝑅�

𝑓
+ (1 + 𝑓𝑓)𝑐 − 𝑓(𝜋+𝜃∗)

2
, 

from which we can calculate the threshold 𝜃∗. 

 

A.2. Proof of Lemma 2 

From Equation (26), we know that 0 = ∫ ∆𝛱�(𝜆)𝑑𝑑1
𝜃∗ = ∫ 𝛱𝑆����𝑑𝑑𝜋

𝜃∗ − ∫ 𝛱𝐸����𝑑𝑑𝜋
𝜃∗ . By 

differentiating both sides with respect to 𝑥, we obtain 𝜕
𝜕𝜕 ∫ 𝛱𝐸����𝑑𝑑𝜋

𝜃∗ = 𝜕
𝜕𝜕 ∫ 𝛱𝑆����𝑑𝑑𝜋

𝜃∗ . Using the Leibniz 

integral rule, we can rewrite the equation as ∫ 𝜕𝛱𝐸����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗ − 𝛱𝐸����(𝑥,𝜃∗) 𝜕𝜃
∗

𝜕𝜕
= ∫ 𝜕𝛱𝑆����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗ − 𝛱𝑆����(𝑥,𝜃∗) 𝜕𝜃
∗

𝜕𝜕
. 

Therefore, we obtain 𝜕𝜃
∗(𝑥)
𝜕𝜕

=
∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗ −∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑𝜋
𝜃∗

𝛱𝑆����(𝑥,𝜃∗)−𝛱𝐸����(𝑥,𝜃∗)
. 
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A.3. Proof of Lemma 3 

The term 𝜕𝜕�𝛱
𝐼𝐼�

𝜕𝜕
− 𝜕𝜕�𝛱𝐼�

𝜕𝜕
 can be rewritten as�∫ 𝜕𝛱𝑆����

𝜕𝜕
𝑑𝑑𝜃∗

0 + 𝛱𝑆����(𝑥,𝜃∗) 𝜕𝜃
∗

𝜕𝜕
− 𝛱𝑆����(𝑥, 0) 𝜕0

𝜕𝜕
�  −

�∫ 𝜕𝛱𝑆����

𝜕𝜕
𝑑𝑑𝜋

0 + 𝛱𝑆����(𝑥,𝜋) 𝜕𝜕
𝜕𝜕
− 𝛱𝑆����(𝑥, 0) 𝜕0

𝜕𝜕
� = −∫ 𝜕𝛱𝑆����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗ + 𝛱𝑆����(𝑥,𝜃∗) 𝜕𝜃
∗

𝜕𝜕
 by the Leibniz integral rule. 

After substituting 𝜕𝜃
∗

𝜕𝜕
=

∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗ −∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

𝛱𝑆����(𝑥,𝜃∗)−𝛱𝐸����(𝑥,𝜃∗)
 and arranging the formula, we obtain 𝜕𝜕�𝛱

𝐼𝐼�
𝜕𝜕

− 𝜕𝜕�𝛱𝐼�
𝜕𝜕

=

𝛱𝐸����(𝑥,𝜃∗)∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗ −𝛱𝑆����(𝑥,𝜃∗)∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

𝛱𝑆����(𝑥,𝜃∗)−𝛱𝐸����(𝑥,𝜃∗)
. Since 𝛱𝑆����(𝑥,𝜃∗) − 𝛱𝐸����(𝑥,𝜃∗) is positive and both ∫ 𝜕𝛱𝑆����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗  and 

∫ 𝜕𝛱𝐸����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗  are negative, we conclude that 𝜕𝜕�𝛱𝐼𝐼�
𝜕𝜕

< 𝜕𝜕�𝛱𝐼�
𝜕𝜕

 if and only if 𝛱𝑆����(𝑥,𝜃∗)
𝛱𝐸����(𝑥,𝜃∗)

<
∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑𝜋
𝜃∗

. 

Substituting 𝑥 = 𝑥𝐼∗ into 𝜕𝜕�𝛱
𝐼𝐼�

𝜕𝜕
< 𝜕𝜕�𝛱𝐼�

𝜕𝜕
 shows that �𝜕𝐸�𝛱

𝐼𝐼�
𝜕𝜕

�
𝑥=𝑥𝐼∗

< 0, which means 𝑥𝐼𝐼∗ < 𝑥𝐼∗.  

 

A.4. Proof of Theorem 3 

Using Lemma 3, we show 𝑥𝐼𝐼∗ < 𝑥𝐼∗ by proving 𝛱
𝑆����(𝑥,𝜃∗)

𝛱𝐸����(𝑥,𝜃∗)
< 𝑅�2𝜏 <

∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

. The relation 

on the left-hand side is justified first, followed by the relation on the left-hand side. From Equations (8) 

and (9), we know that 𝛱𝑆����(𝑥,𝑐)
𝛱𝐸����(𝑥,𝑐)

= 𝑥𝑅�
𝑥
𝑅�𝜏+𝑐

 and we can determine that 𝛱𝑆����(𝑥,𝜃∗)
𝛱𝐸����(𝑥,𝜃∗)

< 𝛱𝑆����(𝑥,𝑐)
𝛱𝐸����(𝑥,𝑐)

,  because 

𝛱𝑆����(𝑥, 𝜆) decreases more steeply than 𝛱𝐸����(𝑥, 𝜆) for 𝜆 ∈ [𝑐,𝜋]. A simple calculation leads to the 

result 𝛱
𝑆����(𝑥,𝑐)

𝛱𝐸����(𝑥,𝑐)
= 𝑥𝑅�

𝑥
𝑅�𝜏+𝑐

≤ 𝑥𝑅�
𝑥
𝑅�𝜏

= 𝑅�2𝜏. Therefore, the derivation of the left-hand relation is complete. 

In Equations (10) and (11), it is obvious that 
𝜕𝛱𝑆�����

𝜕𝜕
(𝑥,𝑐)

𝜕𝛱𝐸�����

𝜕𝜕
(𝑥,𝑐)

= 𝑅�2𝜏 and 
𝜕𝛱𝑆�����

𝜕𝜕
(𝑥,𝜋)

𝜕𝛱𝐸�����

𝜕𝜕
(𝑥,𝜋)

= 𝑅�2𝜏(1 + 𝑓𝑓). 

In addition, we can determine that 
𝜕𝛱𝑆�����

𝜕𝜕
(𝑥,𝜆)

𝜕𝛱𝐸�����

𝜕𝜕
(𝑥,𝜆)

 is a monotonically increasing function of 𝜆 on [𝑐,𝜋], so 

that 
𝜕𝛱𝑆�����

𝜕𝜕
(𝑥,𝜆)

𝜕𝛱𝐸�����

𝜕𝜕
(𝑥,𝜆)

> 𝑅�2𝜏. Since 𝜕𝛱
𝐸����

𝜕𝜕
(𝑥, 𝜆) is negative, 𝜕𝛱

𝑆����

𝜕𝜕
(𝑥, 𝜆) ≤ 𝑅�2𝜏 𝜕𝛱

𝐸����

𝜕𝜕
(𝑥, 𝜆). After integrating both 

sides over the range [𝜃∗,𝜋] and dividing by ∫ 𝜕𝛱𝐸����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗ , we obtain 
∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑𝜋
𝜃∗

>
∫ 𝑅�2𝜏𝜕𝛱

𝐸�����

𝜕𝜕
(𝑥,𝜆)𝑑𝑑𝜋

𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

. 
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When dividing, be sure that ∫ 𝜕𝛱𝐸����

𝜕𝜕
𝑑𝑑𝜋

𝜃∗  is negative. Since 𝑅�2𝜏 is irrelevant to 𝜆, we can derive 

∫ 𝑅�2𝜏𝜕𝛱
𝐸�����

𝜕𝜕
(𝑥,𝜆)𝑑𝑑𝜋

𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

= 𝑅�2𝜏
∫ 𝜕𝛱𝐸�����

𝜕𝜕
(𝑥,𝜆)𝑑𝑑𝜋

𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

= 𝑅�2𝜏. The proof of the right-hand relation is complete. 

By combining the two results, we obtain 𝛱
𝑆����(𝑥,𝜃∗)

𝛱𝐸����(𝑥,𝜃∗)
< 𝑅�2𝜏 <

∫ 𝜕𝛱𝑆�����

𝜕𝜕 𝑑𝑑
𝜋
𝜃∗

∫ 𝜕𝛱𝐸�����

𝜕𝜕 𝑑𝑑𝜋
𝜃∗

. Thus, from Lemma 3, 

𝑥𝐼𝐼∗ < 𝑥𝐼∗. 
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Figure 1. The fraction of U.S. stock market capitalization held by hedge funds 

The shaded areas indicate the quarters around the Quant Meltdown (2007:Q3–Q4) and Lehman 

Brothers’ bankruptcy (2008:Q3–Q4).  

 
Source: Ben-David, Franzoni, and Moussawi (2011). 
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Figure 2. The net investment return between staying and exiting the market.  

The net investment return between staying and exiting the market t, ∆𝛱�, as a function of the 

aggregate portion of exiting funds, 𝜆. Here, 𝑓 = 4, 𝑠 = 8, 𝜏 = 0.3, and 𝑥 = 0.71644. 
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Figure 3. The probability of market runs 

The probability of market runs, 𝑝𝑟𝑟𝑟, as a function of the price sensitivity of trend followers, 𝜏. Each 

curve indicates the function for a different level of market exposure 𝑥, from 0.2 to 0.9. Here, 𝑓 = 4 

and 𝑠 = 8. 
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