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Abstract:

This paper discusses the forecasting performance of alternative factor models based on a
large panel of quarterly time series for the German economy. One model extracts factors
by static principal components analysis, the other is based on dynamic principal compo-
nents obtained using frequency domain methods. The third model is based on subspace
algorithms for state space models. Out-of-sample forecasts show that the prediction er-
rors of the factor models are generally smaller than the errors of simple autoregressive
benchmark models. Among the factors models, either the dynamic principal component
model or the subspace factor model rank highest in terms of forecast accuracy in most
cases. However, neither of the dynamic factor models can provide better forecasts than
the static model over all forecast horizons and different specifications of the simulation
design. Therefore, the application of the dynamic factor models seems to provide only
small forecasting improvements over the static factor model for forecasting German GDP.

Keywords: Factor models, static and dynamic factors, principal components, forecasting
accuracy

JEL-Classification: E32, C51, C43



Non technical summary

Factor models based on large datasets have received increasing attention in the recent
macroeconomics literature. Factor models aim at finding a few representative common
factors underlying a large amount of economic activities. Compared with smaller scaled
models, the factor models have the potential to consider a large amount of time series
data typically available to central bank economists. Particularly for forecasting purposes,
factor models based on large data sets have proven useful. For the USA, Stock and Watson
(1999, 2002a, b) provide evidence for the information content of macroeconomic factors
derived from hundreds of macroeconomic time series for future industrial production and
inflation. This evidence highlights the potential benefits of factors derived from large data
sets as indicators for monetary policy. Following the seminal work of Stock and Watson
(1999, 2002a, b), a number of methodological extensions to their factor model for large
data sets have been developed, so the question for the choice of the appropriate method
in everyday central bank forecasting arises.

In this context, the present paper compares three factor models based on large data sets
with respect to their forecasting accuracy for German GDP. The reference model is the
model proposed by Stock and Watson (2002b), where the factors are obtained by static
principal component analysis. A disadvantage of this model is that only static weights of
factors are allowed for, so dynamic relationships between the variables are not considered
explicitly. In order to take into account this issue, Forni et al. (2003a, b) propose dynamic
principal component analysis in the frequency domain to estimate the factors. An alterna-
tive method proposed by Kapetanios (2004) estimates factors in a state-space framework
using subspace algorithms. Both dynamic approaches allow for dynamic relationships
between the variables in the model and, hence, provide a potentially useful alternative
to the method of Stock and Watson (2002a). In empirical applications, however, it is
not clear whether the postulated dynamics underlying the dynamic factor models can be
found in the data. Moreover, the dynamic models have a more complicated structure to
be estimated, which may be subject to misspecification in empirical applications.

To compare the models, different out-of-sample forecast simulations for German GDP
at forecast horizons of up to four quarters are carried out. The results show that the
forecasting accuracy of the dynamic approaches is not systematically better than that
of the static approach. It seems to be the case that the theoretical advantages of the
dynamic models cannot be fully exploited for forecasting in this empirical application.
Therefore, using the static factors proposed by Stock and Watson (2002b) for forecasting

purposes is not necessarily inferior to using factors estimated in a dynamic framework.



Nicht technische Zusammenfassung

In der jiingeren makrookonomischen Literatur sind Faktorenmodelle auf Basis grofier
Datenséatze vermehrt untersucht worden. Die Faktorenmodelle verfolgen das Ziel, eine
Vielzahl von 6konomischen Aktvititdten durch eine geringe Zahl von gemeinsamen Fak-
toren reprasentativ abzubilden. Verglichen mit kleineren Modellen haben sie den Vorteil,
die groflen Datenmengen, die Zentralbankokonomen heutzutage zur Verfiigung stehen, si-
multan auswerten zu konnen. Insbesondere fiir Prognosezwecke haben sich die Faktoren-
modelle in ersten Studien als niitzlich erwiesen. Fiir die USA konnte von Stock und Wat-
son (1999, 2002a, b) der Informationsgehalt von Faktoren auf Basis grofier Datensétze fiir
die zukiinftige Entwicklung von Produktion und Inflation belegt werden. Als Erganzung
zu den ersten Arbeiten von Stock und Watson (1999, 2002a, b) wurden in der Lite-
ratur einige methodische Erweiterungen entwickelt, welche die Frage nach der Wahl des
geeigneten Verfahrens in der taglichen Prognosearbeit aufwerfen.

Vor diesem Hintergrund vergleicht das vorliegende Papier drei Faktorenmodelle auf Basis
grofler Datensatze in Hinblick auf ihre Prognosegiite fiir das deutsche BIP. Als Referenz-
modell fungiert das Modell von Stock und Watson (2002b), das die Faktoren unter Zuhilfe-
nahme der statischen Hauptkomponentenanalyse extrahiert. Ein Nachteil dieses Modells
ist, dass die statische Faktorenanalyse lediglich statische Faktorengewichte zwischen den
Variablen zulésst, also keine dynamischen Zusammenhange bei der Faktorenbildung ex-
plizit beriicksichtigt werden. Um diesen Aspekt aufzugreifen, haben Forni et al. (2003a,
b) die dynamische Hauptkomponentenanalyse, welche im Frequenzbereich durchgefiihrt
wird, als alternative Schatzmethode fiir die Faktoren vorgeschlagen. Ein weiteres Ver-
fahren von Kapetanios (2004) schétzt die Faktoren mit Zustandsraummodellen unter
Anwendung von Subraumalgorithmen. Beide dynamischen Verfahren versuchen, auf un-
terschiedliche Art und Weise, dynamische Beziehungen zwischen den Variablen innerhalb
eines Faktors zuzulassen und stellen daher eine Alternative zur rein statischen Analyse
von Stock und Watson (2002b) dar. Allerdings stellt sich die Frage, ob sich die in diesen
Modellen unterstellte Dynamik auch in der Realitéat finden lasst. Zudem sind die dynami-
schen Modelle auch komplexer, was in der empirischen Anwendung zu Fehlspezifikationen
fithren kann.

Zum Vergleich der drei Modelle werden verschiedene Prognosesimulationen ausserhalb
des Schatzzeitraumes mit Prognosehorizonten von bis zu vier Quartalen durchgefiihrt.
Die Ergebnisse zeigen, dass die Prognosegiite der dynamischen Modelle die des statischen
Faktorenmodells nicht systematisch iibertrifft. Die Ergebnisse deuten darauf hin, dass sich
die theoretischen Vorteile der dynamischen Faktorenmodelle im Rahmen der empirischen

Anwendung nur in begrenztem Umfang in geringeren Prognosefehlern niederschlagen.
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Forecasting German GDP using alternative factor

models based on large datasets®

1 Introduction

In the recent applied macroeconomics literature, in particular the macroeconomic forecasting
literature, factor models with large data sets have received increasing attention. In a couple
of seminal papers, Stock/Watson (1999, 2002a, b) proposed a univariate dynamic forecast-
ing model augmented with static factors obtained by static principal component analysis as
a forecasting tool. In various applications, the information content of the factors for USA
inflation and output is shown, see Stock/Watson (1999, 2002a). Moreover, various other
applications using this type of factor model provided additional favourable evidence for the
forecasting accuracy of the factors models, see, for example, Brisson et al. (2003) for Cana-
dian data, Camacho/Sancho (2003) for Spanish data, or Artis et al. (2004) for forecasting
UK time series. However, despite the early success of factor models based on large data
sets, some authors cast doubts on the empirical accuracy of large factor models based on
static principal components. For example, Giacomini/White (2004) find that these kinds of
factor models do not always provide the best forecasting performance compared with other
methods in a moving-window simulation experiment. Banerjee et al. (2003) compare static
factor and single indicator forecasts for euro area aggregates and do not find improvements
in the static factor models over single indicator methods. For Germany, Schumacher/Dreger
(2004) do not find significant advantages of factor forecasts according to statistical tests of
forecasting accuracy in a similar exercise. Against the background of these overall mixed
results, the question of improvements in the estimation of factor models based on large data

sets arises.

*Address: Deutsche Bundesbank, Wilhelm-Epstein-Strafie 14, 60431 Frankfurt am Main, Tel.:
++49/469-9566-2939, Fax: ++49/+69-9566-2982. E-mail: christian.schumacher@bundesbank.de. This
paper represents the author’s personal opinions and does not necessarily reflect the views of the Deutsche
Bundesbank. T am grateful to Oliver Bode, Jorg Breitung, Sandra Eickmeier, Rafael Gerke, George Kapetan-
ios, Stefan Kohns, Martin Schneider and Jurgen Wolters as well as seminar participants at the Bundesbank,
University of Osnabriick, DIW Berlin for helpful comments and discussions. The codes used in this paper
are written in Matlab. The estimation of the dynamic factor model based on dynamic principal components
was done using the codes from www.dynfactors.org/software/software.htm.



To take into account a richer dynamic structure for the factor models, various extensions
to the static principal component estimators have been developed. For example, Forni et
al. (2001, 2003a, b) use dynamic principal component analysis in the frequency domain to
estimate large-scale factor models. Forni et al. (2003b) discuss the theoretical advantages of
their proposed dynamic approach over the static approach of Stock/Watson (2002a, b). A
key argument is that dynamic principal components are dynamic factors that link variables
at different points in time, while only contemporaneous variables enter the static factors.
Hence, temporal relationships are, in principle, better approximated by the Forni et al.
(2001) approach. However, despite its theoretical advantages, the empirical success of the
dynamic approach is rather mixed. In an empirical application for monthly euro area data,
Forni et al. (2003a) obtain mixed results concerning the relative forecasting performance. On
the other hand, den Reijer (2005) finds more favourable evidence for the superior forecasting
performance of the dynamic factor model for the Dutch economy. Another dynamic factor
model approach proposed by Kapetanios (2004), Camba-Mendez/Kapetanios (2004) and
Kapetanios/Marcellino (2004) is based on subspace algorithms for state space models. In
this framework, estimation of the factors is essentially a singular value decomposition of the
regression coefficient between the data and its leads on the left-hand side of a vector equation
and lags of the multivariate data on the right-hand side. Kapetanios (2004) uses this model
to derive a core index for UK inflation and discusses the forecasting properties of the factors
for future inflation.

Although the development of more sophisticated dynamic factor models is favourable
from a theoretical point of view, Boivin/Ng (2005) have shown recently that the factor model
based on static principal components is quite robust to misspecification since fewer auxiliary
parameters have to be specified compared with dynamic factor models. This implies that
imposing an explicit dynamic factor structure for forecasting in empirical applications could
lead to a worse forecasting performance if the specification of the larger number of auxiliary
parameters is prone to errors. In their simulations and empirical applications for the US,
Boivin/Ng (2005) find that the static principal components serve quite well as predictors for
various US time series, compared with dynamic factor estimates.

Against the background of this discussion, the relative forecasting accuracy of three al-
ternative factor models introduced above is discussed in this paper. In particular, we discuss
whether the more sophisticated dynamic factor models proposed by Kapetanios (2004) and
by Forni et al. (2003a, b) can outperform the factor model based on static principal compo-
nents proposed by Stock/Watson (2002a, b).

This paper expands on results by Schumacher/Dreger (2004), where the comparative
advantages of the static factor model over the smaller forecasting models are discussed. For
the comparison of the factor models, out-of-sample forecast simulations are carried out, since

to the best of my knowledge, there are not yet any out-of-sample comparisons incorporating



both the Kapetanios/Marcellino (2004) and factor models used by Forni et al. (2003a).!
Moreover, alternative simulation designs are used in order to check the robustness of the
results. For example, we employ a recursive as well as a rolling simulation scheme for out-of-
sample forecasting. Additionally, performance-based model selection as well as information
criteria are used for model specification. This extends the empirical literature on factor
forecasting where often either performance-based model selection, for example in Forni et
al. (2003a), or information criteria as in Stock/Watson (2002a, b) are employed. For the
model selection using information criteria, we use alternative criteria by Bai/Ng (2002) for
the number of static factors and, amongst other things, the recently developed criteria by
Bai/Ng (2005) and Breitung/Kretschmer (2005) for the number of dynamic factors.

To compare the three factor models, their forecast accuracy with respect to German GDP
is investigated. For the German economy, often only small forecasting models, such as single
indicator forecasting equations, are analysed in the literature.? A comparison of different
factor models has not been carried out yet and, hence, may be worth investigaton.?

The paper proceeds as follows: the following section contains a discussion of the factor
models and how they can be estimated by the various methods. In section 3, the single-
equation method for forecasting using the factors as plug-ins is described. In section 4, the
German data set is described briefly, the out-of-sample forecasting simulation is introduced,

and the factor models are applied to predict German GDP. Section 5 concludes.

2 Estimation of the alternative factor models

As stressed by Boivin/Ng (2005), factor forecasting depends on how the factors are deter-
mined and how these factors are used for prediction. And for both estimation and forecasting
many possible implementations exist, for example, different methods for estimating factors
with large data sets. Given the factor estimates, the forecast implementation requires de-
cisions on how the forecast comparisons are undertaken, for example, whether recursive or
rolling out-of-sample simulations are used, or how the auxiliary parameters of the forecast-
ing models are specified. Due to these differences, it is important to eliminate differences in
implementing the forecasting step when a comparison of alternative methods of estimating
the factors is at the centre of investigation. To highlight the difference between estimation of
the factors and forecasting using the factors, Boivin/Ng (2005) divide the process of factor
forecasting into two steps: the factor estimation step and the forecasting step. This two-step

procedure is used in the presentation of the methods below.

! An in-sample comparison for USA data is provided in Kapetanios/Marcellino (2004).

2See Kirchgissner/Savioz (2001), Breitung/Jagodzinski (2002), Fritsche/Stefan (2002), Hiifner/Schroder
(2002) and Bandholz/Funke (2003).

3In Schumacher/Dreger (2004), only the static factor model is used for forecasting German GDP.



Factor model representation In factor models, variables are represented as the sum
of two mutually orthogonal unobservable components: the common component and the
idiosyncratic component. The common component is driven by a small number of factors
common to all of the variables in the model. The idiosyncratic component on the other hand
is driven by variable-specific shocks. Let X; be the (N x 1) dimensional vector of stationary
time series with observations for ¢ = 1,... 7T, and it is assumed that the series have zero

mean and covariance I'y. The factor model representation is given by

Xi :Xt(Ft) + &4, (1)

where y,(F;) are the common components solely driven by factors Fi, and &, are the id-
iosyncratic components for each of the variables. How the factors are related to the common
components x, and how they can be estimated depends on the respective method and will
be described below. The idiosyncratic component is that part of X; not explained by the
common components. The idea behind the factor model is that a small number r of factors
F; should be able to explain most of the variance of the data, r < N. The question is now

how to determine the factors, and three alternative methods will be discussed below.

Determining the factors according to Stock/Watson (2002b) The factor model
proposed by Stock/Watson (2002b) uses static principal component analysis to derive the
factors. The goal of static principal component analysis is to choose the parameters and

factors of the model
X, =CF +¢, (2)

in order to maximise the explained variance of the original variables for a given, small number
r of factors F;. The static factors in this model can be estimated using static principal
component analysis.* Let Ty = (1/7) ST, X, X] be an estimate of the contemporaneous
variance-covariance matrix of the vector of time series X;. The aim is to find » linear
combinations of the time series data }?'jﬂf = §§Xt for j =1,... ,r that maximise the variance
of the factors §§f0§j. The number of factors should be sufficiently small compared with
the total number of time series, r < N. As a restriction, Stock/Watson (2002a) impose
the normalisation §;§Z =1 for i = j and O for ¢ # j. The maximisation problem can be

reformulated as an eigenvalue problem
[oS; = 11,S;, (3)

where 1i; denotes the j-th eigenvalue and §j its (N x 1) corresponding eigenvector. As before,

after the calculation of the maximum of N eigenvalues, they are ranked in decreasing order

4See Bai/Ng (2002), pp. 197-8.



of magnitude and the eigenvectors according to the r largest eigenvalues are the weights of

the static factors
ﬁ‘ltSW — §IXt, (4)

where S is the (N x r) matrix of stacked eigenvectors S = (Sy,...,S,). Note that only
contemporaneous variables are combined to obtain factors, and dynamics are not considered
at this point. To derive the factors, only one auxiliary parameter, namely r, is needed. The

asymptotic properties of the static factors are analysed in Bai/Ng (2002), Stock/Watson
(2002b) and Bai (2003).

Determining the factors according to Forni et al. (2003a) The model proposed by
Forni et al. (2003a, b) aims at identifying a dynamic structure of the factor model. The

dynamic factor model is given by
Xi=x,+& = B(L)U: +¢,, (5)

where x, = B(L)U; are the common components, U, is the (¢ x 1) vector of dynamic factors
which has to be determined from the data. Similar to the factor model above, it is assumed
that the dimension of the dynamic factors is lower than the dimension of the data, so ¢ < N.
B(L) = I+ B;L+...+ BgL?* is a lag polynomial with non-negative power of the lag operator
L, with Lz; = x;_1. Hence, lags of the factors are allowed to affect the current movement of
the variables. ¢, is again the (IV x 1) idiosyncratic component of the variables. Note that for
a given finite lag order s, the model can be rewritten in a static way as X; = C'F; +¢&,, where
F = (Ut’, e ,ULS)/ is a 7 = ¢(s + 1) dimensional vector of stacked dynamic factors.” The
(N x r) dimensional parameter matrix C' contains the coefficients of B(L). The dynamic
method proposed by Forni et al. (2003 a, b) aims at estimating the dynamic factors U; in a
first step, and the static factors F} are derived given the dynamic factors in a second step.
To estimate the dynamic factors and their covariances, Forni et al. (2000) propose
dynamic principal component analysis in the frequency domain. The dynamic principal
components are derived in order to maximise the common components’ variance under or-
thogonality restrictions. The optimisation leads to a dynamic eigenvalue problem of the
spectral density matrix of the vector of observed variables. The spectral density of the vec-
tor of observed variables ¥(6) is estimated at frequency 6 for —m < 6 < w. The estimated
spectrum includes the information of all autocorrelations across the vector of variables and
hence provides a summary of their dynamic relationships. Let fk be the k-lag estimated

autocovariance of the panel of time series X; and X; ;. The estimated spectral density of

5See Stock/Watson (2002a), p. 148, and Boivin/Ng (2005), p. 3.



the vector of observables is then given by

M
S = 3 T (1 L) i 6
0n) = 3 D15 ) ™ (6)

k=—M

at frequency 0y, = 2wh/(2M+1), for h =0, ... ,2M. The spectral density matrix is estimated
with a Bartlett lag window of size M which determines the weights in brackets above. Given
the spectral density estimate, it can be decomposed by an eigen decomposition. For each
frequency, the dynamic eigenvalues and eigenvectors of i(&h) are computed. The eigenvalues
are arranged in decreasing order of magnitude. The (/N x 1) eigenvectors ]3j(9h) are collected
for j = 1,...,q corresponding to the g largest eigenvalues. By inverse discrete Fourier

transform, the eigenvectors in the time domain are given by

M 2M
P D 1D 1 ~ ;
P;(L) = E Pj,kLk’ with Py = ST § D;(01)e K (7)
k=—M o

for k = —-M,... ,M, and j = 1,...,q. The weights ﬁ](L) determine the j-th dynamic
principal component according to (7]-,,5 = ]3]’ (L)X;. The factor loadings are two-sided with
lead-lag order of M. Hence, the resulting time-domain factors allow for dynamic relationships
between the variables at different times. A projection of X; on leads and lags of those
factors gives estimators of the common components ,, which converge to the true common
component y, in (5).° Although these estimators of the dynamic common components
have desirable statistical properties concerning consistency, the reliance on spectral based
estimators leads to two-sided filters. Hence, at the beginning and end of the sample of finite
time series, no estimators of the factors are available due to the lead-lag truncation for the
estimation of the spectral density. This is a serious drawback for forecasting and real-time
estimation.

To circumvent this problem, Forni et al. (2003a, 2003b) propose one-sided estimates of
the factors. For this purpose, the dynamic factor model is rewritten in a static way as in (1),
and r = g(s+1) factors can be determined using static principal components methods where
the covariances of idiosyncratic and common components obtained in the steps before can
be exploited. The estimation of the model aims at maximising the variance of the common
components, and hence the minimisation of the variance of the idiosyncratic components.

These matrices are given by’
25 (0) = P(O)A(0)P7(0), and Z¢(0) = X(0) — £,(0), (8)

where a star denotes complex conjugates, A(f) is a (¢ x ¢) diagonal matrix with the largest q

6See Forni et al. (2004) for further asymptotics.
"See Forni et al. (2003a), p. 1253.



dynamic eigenvalues on the main diagonal, and the (N x ) matrix P(6) = (P,(6), ... ]3q(9))
contains the corresponding eigenvectors at frequency 6. To obtain time-domain autocovari-

ances of the common components, inverse discrete Fourier transform gives

1 2M
[N — N 7S UL 9

X,k 2M+1h§:0 X( h)e ) ( )

for k= —M,... , M, and the covariance of the idiosyncratic component f&k can be obtained

accordingly. The aim is to find r linear combinations of the time series data ﬁﬁ = Zj’-Xt
for j =1,... ,r that maximise the variance explained by the common factors ZiI'y 0Z;. As
a restriction, Forni et al. (2003b) impose the normalisation ZileoZ; = 1 for i = j and
0 for ¢ # j. I'yo and I'¢y are the contemporaneous variance-covariances of the dynamic
common and idiosyncratic components, respectively.® This maximisation problem can be

reformulated as a generalised eigenvalue problem
Iy0Zj = 118¢0Z;. (10)

pi; denotes the j-th generalised eigenvalue and Zj its (N x 1) corresponding eigenvector.
After the calculation of the maximum of N eigenvalues, they are ranked in decreasing order
of magnitude. According to the static factor model (1), the largest r = g(s + 1) eigenvalues
should be used to determine the number of static factors. These factors are obtained as
the product of the r eigenvectors corresponding to the largest eigenvalues and the vector of

observable variables X;:

ﬁtFHLR _ Eth (11)
where Z = (Zy,... , Z,) is the (N xr) matrix of the stacked eigenvectors. Note that although
the first steps to obtain the covariance matrix of the common components are essentially
dynamic, the final step of the estimation of the factors is finding a linear combination of
contemporaneous variables. Asymptotics for the dynamic factor model are discussed in Forni

et al. (2003b). Auxiliary variables to be determined by the user are M, ¢ and r.

Determining the factors according to Kapetanios/Marcellino (2004) The time-
invariant state space model for estimating factors from large data sets proposed by Kapetan-

ios/Marcellino (2004) is given by the prediction error representation

Xt == CFt + Et, (12)
Ft+1 = AFt + KEt, (13)

8The off-diagonal elements of the covariance matrix of the idiosyncratic components are forced to be zero
in order to improve the forecasting properties of the model. See Forni et al. (2003b), p. 16.



where X; is again the NV dimensional data vector, which is determined by the r factors F;, and
the innovations E;.” The factors as well as the system matrices A, C' and the Kalman gain
K are assumed as unknown.!® Kapetanios/Marcellino (2004) now suggest the application
of subspace algorithms to estimate the factors from data where the cross section is large.
In general, subspace algorithms aim at determining the number of factors and the factors
themselves without specifying and identifying the full state space model, for example the
system matrices.!! For the estimation of the factors or states, the state space model can be
written as a vector equation, which can be obtained by solving for the innovations. This

leads to the equation
X! = OKX? + €E/, (14)

which is central to all subspace algorithms.!?> The variables are stacked according to th =
(Xt/a Xt/+1a X£+2’ e ), and ti = (Xt,fb Xt,72> thfsa te )/ and Etf = (Eéa E£+1, E£+2> ce )/' The

coefficient matrices are given by

o=[c AC, (AN, ], (15)
K=K, (A-KC)K, (A- KO)’K, ...], (16)
I 0 0
CK I
£= (17)
CAK . "-. 0
CK 1

Compared with the state space representation above, the factors or states are defined as
F, = KX?!. Hence, the goal of the analysis is to estimate the matrix K, which in turn gives
an estimate for the factors. To obtain the factors, the model user has to decide on the model
order r, the number of factors in our case, and approximate the regression coefficient OXC
by a matrix with a reduced rank r.'* For rank reduction in subspace algorithms, an SVD is
typically used.'* Up to now, the state space model is written in infinite dimensional vectors,

and a truncation is necessary for empirical applications with finite data sets. To replace th

9See, for example, Bauer (1998), p. 2 and Bauer (2005).

10See Van Overschee/De Moor (1996), pp. 61-2.

HSee Van Overschee/De Moor (1996), pp. 11-2.

12For a detailed description of the equation, see Bauer (1998), pp. 45-T.
13See Bauer (1998), p. 46.

14Gee, for example, Van Overschee/De Moor (1996), p. 75.



and X7 the truncated matrices
Xéf,t = (Xt/a Xt/+1> Xt/+2> s aXt/Jrsfl)l and Xl]:,t = (th—la Xt/f% Xt/73> s >Xt/—b)l (18)

are used. Furthermore, since the factors are to be used for forecasting purposes, leads in the
data matrices are ruled out by Kapetanios (2004), which implies s = 1 and X Sf ;= le, =X
Given these stacked data matrices, an estimator of the coefficient matrix OK would be
obtained by regressing Xi . onto X}i -'> However, when the data set to be used is large,
there is a rank deficiency in the variance X? X? of the regressors, where X? contains all the
available stacked data according to X? = (Xﬁ 1r- ,Xﬁ +)'. To overcome the rank deficiency,
Magnus/Neudecker (1999) propose an estimate of X?(OK) instead of only OK.'¢ From

equation (14), this estimator of X?(OK)' is given by

—

XP(OK) = XP(XP'XP)T XV X/, (19)

where X/ = (X f e X f +)/, and AT is the Moore-Penrose inverse of a matrix A. How-
ever, if the row dimension of X7 is smaller than its column dimension, the projection
matrix becomes the identity matrix, XP(X? XP)*X? = ] and the estimate reduces to
XP(/(aIC)’ = X’/. Note that this can easily be the case if relatively more time series are
available than time series observations. Following the subspace literature to estimate the
state space, a decomposition based on this estimate simply leads to an SVD of the contem-
poraneous data (for s = 1) for estimating the factors. To obtain an essentially dynamic
factor estimate, Kapetanios/Marcellino (2004) propose an alternative estimator based on
the coefficient (X? XP)* X7 X/ which is the right part of equation (19). This coefficient is

decomposed by SVD according to
(XP'XP)tXPXT =USV, (20)
and the factors are then defined as X? (7T§T1/ 2, or in time indexed variable notation
Ff™ = KXY, (21)

where K/ = (7,,@1/ 2, and (7} denotes the first r columns of the left singular vector matrix U ,
and Sy/? is the (rxr) upper left square matrix of the square root of the singular value matrix
S containing the largest singular values in descending order.!” Note that this method in-
corporates lead/lag relationships between the variables and is essentially dynamic compared

with the other methods. The auxiliary parameters of this procedure to be chosen are the

15Note that the coefficient matrix OK is now also truncated compared with equation (14). For details,
see Bauer (1998), p. 46.

16See Magnus/Neudecker (1999), pp. 261-3.

17See Kapetanios/Marcellino (2004), p. 21.



number of factors r, and the truncation parameters s and b.

Comparison of the factor estimation methods The factor models described above
differ primarily with respect to the dynamics underlying the factors. The dynamic factor
model by Forni et al. (2003a, b), for example, relies on dynamic principal component
analysis in the first step. The eigen decomposition of the spectral density of the data allows
for more general dynamics of the factors than using only static principal components as in
Stock/Watson (2002a, b). In particular, if M = 0 is chosen in (6), the spectral density
collapses to the covariance matrix and hence encompasses the static factor approach in this
respect. So at least in this first step, more general dynamics are allowed for using the
dynamic principal component analysis. However, since the resulting weights of the dynamic
principal components are two-sided filters in the time domain, and hence are often regarded
as inappropriate for forecasting, a static generalised eigen decomposition is proposed by
Forni et al. (2003a, b), which leads to static factors weights. Hence, compared with the
dynamic loadings obtained in the first step, some of the dynamics are lost in the second
step. Compared with the approach of Stock/Watson (2002a, b) that relies on the covariance
matrix fo for obtaining factor weights, the approach by Forni et al. (2003a, b) relies on the
common components variance fx,O and idiosyncratic variance fs,0~ Thus, possible differences
between variables according to their common component-idiosyncratic component variance
ratios are, in principle, better taken into account when the dynamic factor model approach
by Forni et al. (2003a, b) is applied. The method by Kapetanios/Marcellino (2004) provides
factor estimates that are linear combinations of variables at different periods included in
X? see (21). This is in contrast to the other two factor estimation methods, where factor
weights only link contemporaneous variables included in X, see (4) and (11). Therefore, the
factor estimates proposed by Kapetanios/Marcellino (2004) have the potential to take into
account more complicated dynamics than the other methods.

In forecast applications, the three methods differ not only with respect to the dynamic
properties of the factor estimates, but also with respect to the implementation of the auxil-
iary parameters. Whereas the Stock/Watson (2002a, b) factors require only the specification
of the number of static factors r, the dynamic factors Forni et al. (2003a, b) additionally re-
quire the specification of the number of dynamic factors ¢ and the truncation lag parameter
for spectral estimation M. The estimation of the dynamic factors by Kapetanios/Marcellino
(2004) also requires r, and the truncation parameters for stacking the data matrices s and
b. Although the dynamic factor models allow for a richer structure of the factor dynamics,
it is important to choose the corresponding auxiliary parameters appropriately. Misspecifi-
cations might lead to large sampling errors that could overcompensate the benefits from a
richer dynamic structure. This argument is stressed in Boivin/Ng (2005), where it is shown
that Monte Carlo simulations based on models without misspecification of the auxiliary pa-
rameters provide a too optimistic view on the dynamic factor models compared with the

static factors. In real data applications, the auxiliary parameters might be misspecified,
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implying a poorer forecast performance. Therefore, it cannot be expected that the static
factor forecast proposed by Stock/Watson (2002a, b) are clearly outperformed by the more

sophisticated dynamic factor models.

3 Factor forecasting

To evaluate the empirical performance of the described factor estimates, they have to be
implemented into a forecasting model. This will be described below. Given the forecasting
model, a variety of simulation designs are considered to allow for comparisons of relative
forecasting accuracy between the various factor models. Since there is obviously no “best”
way to carry out the simulations, a variety of simulation designs should ensure the robustness

of the results.

Forecast equation The three types of estimated factors will be used for prediction in a
dynamic estimation model. For forecasting purposes, a single equation model is estimated
with the dynamic or multi-step estimation approach.'® The forecasting model is specified and
estimated as a linear projection of an h-step ahead transformed variable, y;., onto t-dated
predictors. In our case, the predictors are the static and dynamic factors. More precisely,
the forecasting models follow the setup in Forni et al. (2003a), Kapetanios/Camba-Mendez
(2004) and have the form

Yirn = ﬁﬁt + a(L)ys + €ty (22)

where F, are the factors determined by the three factor estimation methods.!® 3 is a coeffi-
cient matrix for the factors which is estimated by OLS for each forecast horizon h. Autore-
gressive terms are taken into account by the coefficients (L), which is a polynomial with
non-negative power of the lag operator L. The variable on the left-hand side of the forecast-
ing equation is y;,,, which is defined as the growth rate of the chosen time series between
period ¢t and period t + h, yiyp = log(Yiin/Y:) = Z?Zl Alog(Yis:), where the original series,
Y}, is assumed to be integrated of order one.?’ The out-of-sample forecast for yr.; given
information in period 7' is then given by the conditional expectation yz 41 = BFr +a(L)yr.
As a simple benchmark for the factor models, we also consider the forecasting performance

of a simple autoregressive model

Yern = a(L)ys + ein, (23)

18See chapter 11 of Clements/Hendry (1998) for a detailed treatment of multi-step estimation.
19Gee Forni et al. (2003a), p. 1250.
208ee Stock/Watson (2002a), p. 149.
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although the main focus of the investigation will be on the forecast comparison of the three
factor models described above. The dynamic estimation approach above differs from the
standard one-step ahead approach. To forecast h periods ahead within the standard ap-
proach, one estimates the model with one lag, and then iterates that model forward to
obtain h-step ahead predictions.?! Choosing the left-hand side variables specified h periods
ahead of the explanatory variables as in the dynamic estimation approach has two main
advantages. First, additional equations for simultaneously forecasting the indicators F; are
not needed. Second, the potential impact of specification errors in the one-step ahead model
can be reduced by using the same horizon for estimation as for forecasting. However, Monte
Carlo simulation results by Marcellino et al. (2005) indicate that the direct estimation ap-
proach is not generally the best method to choose, although their simulations did not take
into account factor forecasts. On the other hand, in the recent investigation by Boivin/Ng
(2005), the direct approach works best overall in forecast comparisons of factor models. In
the forecast simulations below, we follow Boivin/Ng (2005) and also use the direct estimation

approach.

Forecast simulation design: Performance-based versus information criteria model
selection To evaluate the empirical performance of the factor forecasting models described,
a variety of simulation experiments are considered. Common to all the models is that
forecasts are out-of-sample, and only in-sample information is used to estimate the factors.
We compare the models in four simulation experiments that can be distinguished according
to how the models are specified and how the estimation and forecast sample are related to
each other. In particular, we compare recursive versus rolling window simulations as well
as simulations with model specifications chosen after inspecting the forecast performance
versus specifications based on information criteria.

The performance-based model selection is based on the estimation of models with various
specifications of lags and numbers of factors. For example, upper bounds for the number of
dynamic factors ¢, the number of lags s have to be provided for the estimation of dynamic
factors proposed by Forni et al. (2003a, b). For the forecasting equation, a maximum num-
ber of lags for the autoregressive parameters has to be set. For each possible combination of
auxiliary parameters, the factors are estimated and the forecasts are calculated. Finally, the
specification with the lowest mean squared forecast error for each forecast horizon is chosen
as the appropriate specification. This strategy follows Forni et al. (2003a), who estimate
their models over a broad range of parameters and choose parameter combinations which
minimise a forecast error criterion. The models with these parameter values yield a minimal
value of the mean squared forecast error. This mean squared error is thus the best fore-
casting performance obtainable, at the horizon h, via the dynamic forecast procedure based

on each of the models. It eliminates possible errors due to misspecification. In contrast,

21For a discussion, see Clements/Hendry (1998), pp. 243-6.
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the information criteria model selection chooses a configuration of the models based only on
time series information from the estimation sample. For example, to evaluate the specifi-
cations of factor models with respect to the number of factors, special information criteria
are available that minimise the variance of the idiosyncratic components and penalise over-
parameterisation.? An argument in favour of performance-based experiments often found
in the literature is a higher robustness in case of structural change. However, according
to the simulation results of Inoue/Kilian (2003), the performance-based framework is not
necessarily better than information criteria selection and tends to select overparameterised
models. The performance-based exercise selects a model specification, which is constant
over the whole sample of recursions. Hence, it provides insights into the relative accuracy
of the best specifications of different forecasting models. A selected model specification has
the maximum forecasting accuracy among the set of possible constant specifications for this
model, and specification errors are neglected. Moreover, all the sample information is used
to detect the best model specification ex-post. On the other hand, in a real-time environ-
ment, where no out-of-sample information is available for a forecaster, the model has to be
inspected for possible respecification every period.?* Hence, applying information criteria
can use only in-sample information and may lead to time-varying specifications. Therefore,
the two forecasting schemes have a different information content and it is difficult to compare
them. All in all, the recent results by Inoue/Kilian (2003) are more in favour of the informa-
tion criteria approach. However, these simulations are not explicitly concerned with factor
models, and due to the widespread use of performance-based comparisons, the application
below includes both approaches.?* The values for the maximum of the auxiliary parameters
in the performance-based simulations are presented in appendix A.2. For the model selection
based on information criteria, the number of static factors is determined using the criterion
ICpy from Bai/Ng (2002), whereas the number of dynamic factors is determined using the
criterion proposed in Bai/Ng (2005). Details can again be found in appendix A.2.

Forecast simulation design: Rolling versus recursive simulations In addition to
the alternative ways to specify the forecast models, we compare different estimation samples
for the alternative models. In particular, a comparison of recursive versus rolling window
simulations is carried out. The recursive simulation scheme proceeds as follows: to obtain
forecast steps that can be compared with realisations, the full time series sample is shortened.
The first estimation sample period covers one third of the total time series sample. Forecasts
are computed with a forecast horizon of h = 1,... ;4 and forecast errors are stored. Then
the sample size is increased by one period, the model is reestimated, forecasts are computed
and so on. For the rolling scheme, the initial forecast is the same as in the recursive scheme,

but when an additional period of data is added after the first forecast, the first period

22For the number of static factors, these information criteria are provided by Bai/Ng (2002).
23For an application, see Stock/Watson (2002b), p. 1173.
24A complementary use of these methods can also be found in Boivin/Ng (2005).
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of the initial estimation sample is also deleted. Hence, the estimation sample size in the
rolling scheme remains constant, whereas the estimation sample size in the recursive scheme
increases every period. However, the number of forecasts that can be compared with the data
is equal for both methods. The recursive simulation scheme has the advantage of using all
the data available at a certain point in time, whereas the rolling forecast skips information.
However, the rolling forecast scheme might be preferable if some sort of structural change

occurs in the sample.?

4 Predicting German GDP

Data The data set collected for Germany, which is explained in appendix A.1, contains
124 quarterly series over the sample period 1978:1-2004:1. We choose quarterly time series
because we want to discuss the empirical properties of the factor model with respect to GDP
which is available at quarterly frequency. In addition, this data set enables us to describe the
economy on a broad basis because sectoral supply side data can be taken into consideration.
The whole data set includes GDP and its expenditure components such as consumption and
fixed capital formation, as well as gross value added by sectors. It also contains industrial
production, received orders and turnover, disaggregated by sectors. Labour market variables
that are taken into consideration are employment, unemployment and wages. Several disag-
gregated price time series, interest rates and spreads are also considered. Additionally, we
use ifo survey time series such as business situation and expectations, assessment of stocks
and capacity utilisation, and other series.

As is typical for the empirical literature on factor estimation using large data sets, the
vector of time series will be preprocessed prior to estimation. First, the time series are
corrected for outliers and then seasonally adjusted as explained in appendix A.1. Moreover,
since the principal component analysis requires stationary time series for estimation, non-
stationary time-series were appropriately differenced.?® Finally, the series were normalised

to have sample mean zero and unit variance.

Forecasting results using performance-based model selection We first report rel-
ative mean squared errors (MSE) which are computed out-of-sample relative to the MSE
of the autoregressive model. A relative MSE less than one indicates a superior forecasting
performance of a model for the chosen forecast horizon h =1, ... ;4. Table 1 shows the rela-
tive MSEs and a ranking, where smallest relative MSEs are ranked first and largest relative
MSESs last. The table contains results for out-of-sample simulations with performance-based
model selection as discussed in section 3. The results from both panels of the table show

that on average, all models provide smaller MSEs than the simple autoregressive model. Of

25See Giacomini/White (2004), p. 3.
26See, for example, Altissimo et al. (2002), Forni et al. (2001).
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Table 1: Relative MSE, performance-based model selection
A. Recursive scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.725 0.685 0.796 0.865 3 3 3 3
FHLR 0.670 0.648 0.754 0.793 1 1 2 1
KM 0.709 0.674 0.746 0.829 2 2 1 2

B. Rolling-window scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.727 0.657 0.779 0.883 3 2 2 2
FHLR 0.664 0.617 0.758 0.850 1 1 1 1
KM 0.712 0.690 0.832 0.927 2 3 3 3

Notes: The table shows the mean-squared errors (MSE) of the various models relative
to the MSE of the autoregressive model. ‘SW’ denotes the Stock/Watson (2002a,
b) approach forecasts, ‘FHLR’ is the dynamic factor model forecast from Forni et
al. (2003a, b), and ‘KM’ denotes the subspace factor model forecast proposed by
Kapetanios (2004) and Kapetanios/Marcellino (2004). The ranking on the right-hand
side of the panel ranks the series with the smallest relative MSE with respect to the
AR model first.

the factor models, the model proposed by Forni et al. (2003a, b) outperforms the others
with only one exception. The differences in forecast accuracy between the models based
on Kapetanios (2004) and Stock/Watson (2002a, b) are not clear-cut. The Stock/Watson
(2002a, b) model provides better forecasts in the rolling window simulation scheme, while
the Kapetanios (2004) model provides better forecasts for the recursive simulations. Hence,
in this simulation exercise, only the model proposed by Forni et al. (2003a, b) can outper-
form the static factor forecasts proposed by Stock/Watson (2002a, b), although the overall

differences between the relative MSEs are small.

Forecasting results using information criteria for model selection Table 2 shows
the relative MSEs and the respective ranking when information criteria model selection is
applied in the out-of-sample simulation experiment. The relative MSEs from both panels
of the table show that all models provide smaller or equal MSEs than the simple autore-
gressive model. Among the factor models, no model clearly outperforms the other models
over all forecast horizons under investigation, and the ranking changes over the forecast hori-
zons. The differences between the relative MSEs are small. However, the Kapetanios’ (2004)
method provides better forecasts than the other factor models in three out of four forecast

horizons for both the recursive and the rolling window schemes. The forecasts of the dynamic
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Table 2: Relative MSE, information criteria model selection
A. Recursive scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.840 0.739 0.842 0.885 3 2 3 2
FHLR 0.829 0.756 0.817 0.881 2 3 2 1
KM 0.726 0.675 0.825 0.910 1 1 1 3

B. Rolling-window scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.727 0.736 0.809 0.996 2 3 1 2
FHLR 0.731 0.707 0.812 1.000 3 2 2 3
KM 0.707 0.660 0.867 0.915 1 1 3 1

Notes: The table shows the mean-squared errors (MSE) of the various models relative
to the MSE of the autoregressive model. ‘SW’ denotes the Stock/Watson (2002a,
b) approach forecasts, ‘FHLR’ is the dynamic factor model forecast from Forni et
al. (2003a, b), and ‘KM’ denotes the subspace factor model forecast proposed by
Kapetanios (2004) and Kapetanios/Marcellino (2004). The ranking on the right-hand
side of the panel ranks the series with the smallest relative MSE with respect to the
AR model first.

factor model by Forni et al. (2003a, b) and the factor model proposed by Stock/Watson
(2002a, b) have similar accuracy as they change ranks for different forecast horizons. When
using information criteria chosen, it seems to be more difficult for the dynamic factor model
proposed by Forni et al. (2003a, b) to estimate the dynamic factor structure than in a simu-
lated out-of-sample forecast comparison, where the specifications are chosen according to the
forecast performance. Hence, both the performance-based simulations and the simulations
using information criteria show that the Stock/Watson (2002a, b) forecast model is hardly
ever the best forecasting model, although it cannot be systematically outperformed by either
of the other two methods.

Tests for equal forecasting accuracy Up to now, the investigation has relied on the
validity of forecast MSE rankings. However, the differences in MSE behind these rankings
could not be systematic due to sampling errors. If the differences in MSE were indeed not
significant or systematic, the conclusions drawn from the rankings could not be taken at
face value. In particular, the preliminary conclusion that the static factor model proposed
by Stock/Watson (2002a, b) is outperformed by one of the more sophisticated factor models
depending on the specification scheme, would not be warranted. Therefore, for each forecast

horizon, it may be interesting to investigate whether the differences between the forecasting
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performance of the alternative models are systematic or not. For this purpose, pairwise tests
for forecast accuracy are carried out. For the recursive simulation scheme, the test on equal
forecasting accuracy proposed by Diebold/Mariano (1995) and West (1996) is applied. For
the rolling scheme, the asymptotic justification of the same test is given in Giacomini/White
(2004), theorem 6. The detailed results of these tests are given in appendix A.3. The results
show that overall, the differences in MSE between the factor forecasts are not statistically
significant; there are only a few exceptions. Therefore, according to the tests, the dynamic
factor models proposed by Forni et al. (2003a, b) and Kapetanios (2004) do not seem to
outperform the factor forecast model by Stock/Watson (2002a, b) in a systematic way.

Robustness checks To check the robustness of the results obtained so far, we change
some of the settings of the simulation design. Firstly, the information criteria for selecting
the number of static and dynamic factors are changed. In addition to the criterion /Cpy for
the number of static factors used in the simulations above, we also take into account ICy,,
which also performed well in the Monte Carlo analysis by Bai/Ng (2002). Additionally,
alternative rules for the number of dynamic factors for the model of Forni et al. (2003a,
b) are applied. For example, the information criterion proposed by Breitung/Kretschmer
(2005), which is based on canonical correlations of the static factors and its lags, is applied
to determine the number of dynamic factors. The detailed descriptions of the information
criteria used as well as the forecast results are provided in appendix A.4. The results show
that neither criterion leads to a major change of the results obtained above. The alternative
selection rules for determining the number of dynamic factors, in particular, cannot improve
the forecasting accuracy of the model proposed by Forni et al. (2003a, b).

As a further check for robustness, the particular contribution of the factors to the overall
forecasting performance was isolated by neglecting the autoregressive terms in the forecasting
equation (22). Hence, the final forecasting equation used includes only the estimated factors,
Yerh = ﬁﬁ’t +¢&¢1p. The comparison between the results obtained here and the results without
autoregressive terms enables us to assess whether the factor forecasts are the key sources
of the forecasting performance. If the forecasting performance deteriorates too much after
eliminating autoregressive terms, this would indicate only a small information content of
the factors in isolation. The results of this experiment can again be found in appendix
A.4. The key conclusions are not altered by this robustness check. The ranking of the
forecasting methods is similar to the results obtained above, although the factor forecasts
by Stock/Watson (2002a, b) perform a little bit worse compared with the results obtained
above. However, neither the Kapetanios (2004) nor the Forni et al. (2003a, b) factor model
can outperform the static factor forecasts at all forecast horizons and simulation designs,

and MSE differences are often not significant.
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5 Discussion of the results and conclusions

This paper discusses the comparative forecasting accuracy of alternative types of factor
models based on large data sets for German GDP. Of all the different factor models, the factor
forecast model proposed by Stock/Watson (1999, 2002a, b) is hardly ever the best forecasting
model in terms of relative MSE, and either the dynamic principal component model proposed
by Forni et al. (2003a, b) or the dynamic factor model proposed by Kapetanios (2004)
perform best in terms of forecast accuracy in most cases. However, neither of the dynamic
factor models can provide better forecasts than the static model over all forecast horizons and
different specifications of the simulation design. Moreover, statistical significant differences
in forecast accuracy could be found in only a few cases. Therefore, despite the conceptual
and theoretical advantages of the dynamic factor models proposed by Kapetanios (2004) and
Forni et al. (2003a), their forecast performance in the data set used here is only slightly
better than the baseline forecasting model by Stock/Watson (1999, 2002a, b) based on static
principal components. These findings are in line with the mixed empirical results obtained
from forecast comparisons in Forni et al. (2003a) and the conclusions drawn by Boivin/Ng
(2005), who find that the dynamic factor models generally do not outperform the static
Stock/Watson (2002a, b) method for estimating the factors using USA data. These overall
mixed results raise the question of further methodological improvements of factor model
estimation methods. Note that this paper makes no claim on the general usefulness of
dynamic factor models, but, in some data sets, it seems to be the case that their theoretical
advantages cannot be fully exploited for forecasting.

One direction for future research is the heterogeneity of the chosen data set, which may be
worth further investigation. As shown in Boivin/Ng (2004), preselecting variables for factor
estimation may improve the fit of the model because the data often does not represent a
homogenous factor structure.?” Following this discussion, data selection in the factor model

context may be an important topic for future research.
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A Appendix

A.1 German data set

This appendix describes the panel of time series for the German economy. The whole data
set for Germany contains 124 quarterly series over the sample period 1978:1-2004:1. The
sources of the time series are the Bundesbank database, the National Accounts database of
the Federal German Statistical Office, and Datastream. Some of the time series for unified
Germany are available only for the time period after 1991. In order to obtain longer samples,
the time series of West Germany and unified Germany were combined after rescaling the
West German data to the unified German time series.?® The national accounts data for
West and unified Germany are both measured according to the ESA 95 (European System
of National Accounts).

Because GDP is the reference series, all time series are quarterly or transformed by av-
eraging into quarterly series. Moreover, natural logarithms were taken for all time series
except interest rates, unemployment rates, and capacity utilisation. Stationarity was ob-
tained by appropriately differencing the time series. Seasonal fluctuations were eliminated
using Census-X12 if necessary. To eliminate scale effects, the series were centered around
zero mean and standardised to have unit variance. Extreme outlier correction was done
using a modification of the procedure proposed by Watson (2003). Large outliers are defined
as observations that differ from the sample median by more than six times the sample in-
terquartile range.?? The identified observation is set equal to the respective outside boundary

of the interquartile.

28This procedure avoids modelling regime shifts and follows numerous empirical studies based on German
data. For example, the euro area-wide model proposed by Fagan et al. (2001) relies on German time series
that are linked as described above, see Fagan et al. (2001), p. 52. See also Bandholz/Funke (2003), p. 295,
for another application.

298ee Watson (2000), p. 93.
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Use of GDP and gross value added

1. gross domestic product
2. private consumption expenditure

government consumption expenditure

- W

gross fixed capital formation: machinery & equipment

ot

gross fixed capital formation: construction
gross fixed capital formation: other
exports

imports

© % N o

gross value added: mining and fishery

10. gross value added: producing sector excluding construction

11. gross value added: construction

12. gross value added: wholesale and retail trade, restaurants, hotels and transport
13. gross value added: financing and rents

14. gross value added: services

Prices
1. consumer price index
2. export prices

import prices

L

terms of trade

ot

deflator of GDP
deflator of private consumption expenditure
deflator of government consumption expenditure

deflator of machinery & equipment

© % N o

deflator of construction

Manufacturing turnover, production and received orders
1. production: intermediate goods industry
2. production: capital goods industry

production: durable and non-durable consumer goods industry

L

production: mechanical engineering
5. production: electrical engineering
6. production: vehicle engineering

7. export turnover: intermediate goods industry
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8. domestic turnover: intermediate goods industry

9. export turnover: capital goods industry
10. domestic turnover: capital goods industry
11. export turnover: durable and non-durable consumer goods industry
12. domestic turnover: durable and non-durable consumer goods industry
13. export turnover: mechanical engineering
14. domestic turnover: mechanical engineering
15. export turnover: electrical engineering industry
16. domestic turnover: electrical engineering industry
17. export turnover: vehicle engineering industry
18. domestic turnover: vehicle engineering industry
19. orders received by the intermediate goods industry from the domestic market
20. orders received by the intermediate goods industry from abroad
21. orders received by the capital goods industry from the domestic market
22. orders received by the capital goods industry from abroad
23. orders received by the durable and non-durable consumer goods industry from the domestic market
24. orders received by the durable and non-durable consumer goods industry from abroad
25. orders received by the mechanical engineering industry from the domestic market
26. orders received by the mechanical engineering industry from abroad
27. orders received by the electrical engineering industry from the domestic market
28. orders received by the electrical engineering industry from abroad
29. orders received by the vehicle engineering industry from the domestic market

30. orders received by the vehicle engineering industry from abroad

Construction
1. orders received by the construction sector: building construction
2. orders received by the construction sector: civil engineering
3. orders received by the construction sector: residential building
4

. orders received by the construction sector: non-residential building construction

ot

man-hours worked in building construction
man-hours worked in civil engineering
man-hours worked in residential building

man-hours worked in industrial building

© % N>

man-hours worked in public building

10. turnover: building construction
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11.
12.
13.
14.
15.

turnover: civil engineering
turnover: residential building
turnover: industrial building
turnover: public building

production in the construction sector

Surveys

1.

oo

© e N o

10.
11.
12.
13.
14.
15.
16.

business situation: capital goods producers

business situation: producers durable goods

business situation: producers non-durable goods

business situation: retail trade

business situation: wholesale trade

business expectations for the next six months: producers of capital goods
business expectations for the next six months: producers of durable goods
business expectations for the next six months: producers of non-durable goods
business expectations for the next six months: retail trade

business expectations for the next six months: wholesale trade

stocks of finished goods: producers of capital goods

stocks of finished goods: producers of durable goods

stocks of finished goods: producers of non-durable goods

capacity utilisation: producers of capital goods

capacity utilisation: producers of durable goods

capacity utilisation: producers of non-durable goods

Labour market

1.

oo

© % N o

10.

residents

labour force

unemployed

employees and self-employed

employees

self-employed

volume of work, employees and self-employed
volume of work, employees

hours, employees and self-employed

hours, employees
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11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

productivity, per employee

productivity, per hour

wages and salaries per employee

wages and salaries per hour

wages and salaries, excluding employers’ social security contributions
unit labour costs, per production unit

unit labour costs, per production unit, hourly basis

short-term employed

vacancies

unemployment rate

Interest rates, stock market indices

1.

oo @

© % N @

10.
11.
12.
13.
14.
15.

money market rate, overnight deposits

money market rate, 1 month deposits

money market rate, 3 months deposits

bond yields on public and non-public long term bonds with average rest maturity from 1 to 2 years
bond yields on public and non-public long term bonds with average rest maturity from 2 to 3 years
bond yields on public and non-public long term bonds with average rest maturity from 3 to 4 years
bond yields on public and non-public long term bonds with average rest maturity from 4 to 5 years
bond yields on public and non-public long term bonds with average rest maturity from 5 to 6 years
bond yields on public and non-public long term bonds with average rest maturity from 6 to 7 years
bond yields on public and non-public long term bonds with average rest maturity from 7 to 8 years
bond yields on public and non-public long term bonds with average rest maturity from 8 to 9 years
bond yields on public and non-public long term bonds with average rest maturity from 9 to 10 years
stock prices: CDAX

stock prices: DAX

stock prices: REX

Miscellaneous indicators

-~

. current account: goods trade

current account: services
current account: transfers
HWWA raw material price index

new car registrations
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A.2 Model specification for forecast simulations

Information criteria model selection For the dynamic factor model proposed by Forni
et al. (2003a, b), the auxiliary variables to be determined by the user are r, ¢ and M as well
as the autoregressive lag length of the forecast equation. In this paper, the number of static

factors r is determined by the criterion 7Cpy of Bai/Ng (2002), which is given by*°

[Cu(r) = Wn(V(r, F)) + 1 (NN+TT> In(min{N, T}). (24)

The information criterion reflects the trade-off between goodness-of-fit on the one hand and
overfitting on the other. The first term on the right-hand side shows the goodness-of-fit,

which is given by the residual sum of squares

1 N T
V ZWZZ zt_CF’t ) (25)

i=1 t=1

and depends on the estimates of the static factors and the number of factors. The residuals
are given by X;; —C;F;, where C; is a (1 X r) dimensional row vector of the parameter matrix
C of the static model, see (2) in the main text. If the number of factors r is increased, the
variance of the factors F; increases, too, and the sum of squared residuals decreases. Hence,
the information criteria have to be minimised in order to determine the number of factors.
The penalty of overfitting, which is the second term on the right-hand side behind r in (24),
is an increasing function of the cross-section size N and time series length 7. In empirical
applications, one has to fix a maximum number of factors, say ry.x, and estimate the model
for all number of factors » = 1,... , 7pax. The optimal number of factors minimises /Cpy. In
the forecast comparison, we set 7., = 10. The number of dynamic factors q is determined
by the information criterion proposed by Bai/Ng (2005). This criterion takes the estimated
static factors as given, and estimates a VAR of lag order p on these factors, where p is
determined by the Bayesian information criterion (BIC). Then, a spectral decomposition of
the residual covariance matrix I is computed. Define a pseudo matrix f(k) of T according to
f(k‘) = Z’i E}Bjﬁg, where ¢; is the j-th ordered eigenvalue of f, and Bj is the corresponding

7=1
eigenvector, and k£ < r. Define

Dy = ))3k+1 - Ek” / HEO , where dj = vech (T(k)), (26)

and j@ = c/l; lA)k is a measure of the marginal contribution to covariance when the number of
dynamic factors is increased from k to k+1. The set of admissible numbers of dynamic factors
is chosen by a boundary according to K = {k : D), < m/min[N?? T%5]} where m = 0.5 is
chosen following the Monte Carlo results in Bai/Ng (2005), p. 15. Finally, the number of

30See Bai/Ng (2002), p. 201.
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dynamic factors is given by g% = min{k € K}.3! The Bartlett lag length M for calculating
the spectral density in (6) is determined by M =round (37"/%), where T is the time series
sample size in the recursive or rolling-window subsample.?? In the forecasting equation (22),
the lag length is determined according to the Bayesian information criterion with a maximum
number of lags to check equal to four. For the model proposed by Kapetanios/Marcellino
(2004), the auxiliary variables to be determined by the user are r, s and b. The number of
factors r is chosen according to ICps, and the lead truncation in (18) is fixed at s = 1, so the
left-hand side of the subspace core equation (14) contains only contemporaneous data, as
suggested for forecasting purposes by Kapetanios (2004).3 The regressor matrix has a lag
truncation of order b according to b =round (In(7")*%).34 In the forecasting equation, the lag
length is again determined according to the Bayesian information criterion with a maximum
number of lags to check equal to four. For the model by Stock /Watson (2002a, b), the only
parameter to choose is r and the lag length in the forecast equation. This specification is

carried out as above for the other models.

Performance-based model selection For the performance-based model selection max-
imum values are used for the auxiliary parameters. For the dynamic factor model proposed
by Forni et al. (2003a, b), the auxiliary variables to be determined by the user are r, ¢ and
M, as well as the autoregressive lag length of the forecast equation. From the link between
the number of static and dynamic factors, which is given by r = ¢(p+1), we can also specify
q and p, see (5). Here, qumax = 4, Pmax = 4, and My,.x = 4 are used. In the forecasting
equation (22), the maximum lag length is equal to four. For all possible specifications of p,
q, M and lag length in the forecast equation, the model is estimated and forecasts are com-
puted. Finally, the best-performing model according to the forecast MSE is chosen. For the
model proposed by Kapetanios/Marcellino (2004), the auxiliary variables to be determined
by the user are r, s and b. We set rpn.x =8, s = 1, and by, = 4. In the static factor model

proposed by Stock/Watson (2002a, b), the parameter to specify is 7., = 8.

A.3 Testing for equal forecast accuracy

In this section investigates whether the differences between the forecasting performance of
the alternative models are systematic or not. For this purpose, pairwise tests for forecast
accuracy are carried out. For the recursive simulation scheme, the test on equal forecasting
accuracy proposed by Diebold/Mariano (1995) and West (1996) is applied. For the rolling
scheme, the asymptotic justification of the same test is given in Giacomini/White (2004),

theorem 6. Note that both tests are applied to compare the MSEs, so no estimation un-

31Gee Bai/Ng (2005), p. 12, proposition 2.

32This rule for M is chosen by Forni et al. (2000), p. 548, according to its favourable performance in
Monte Carlo simulations.

33Gee Kapetanios (2004), p. 66.

34See Kapetanios/Marcellino (2004), p. 23.
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35 Moreover, the

certainty has to be taken into account for computing the test statistics.
alternative factor models are non-nested, so the tests by Diebold/Mariano (1995) and West,
(1996) can be directly applied.® The test statistic is constructed as follows: Consider two
models A and B that both produce forecasts of the variable g, in period ¢t. The forecasts h
periods ahead are conditional on information available in period ¢ — h, and the forecast is
the application of the conditional expectation operator y4 s:—x and yp ;-5 for model A and
B, respectively. In the factor model context chosen here, the forecasts are provided using
equation (22) in the main text. Calculate a sequence of P forecast errors for both models
€ith = Yt — Yige—n for i = A, B and observations ¢t = 1,... , P. The Diebold/Mariano (1995)
and West (1996) test for equal forecast accuracy is based on the time series of differences of
the squared forecast errors, dy, = €% ,, — e}, . Under the null hypothesis, the sample mean
of dy p, d, = % > dip, is not significantly different from zero. The statistic is defined as
DM, = VP d . (27)
AP0 1= (7 W) (e — ) (djry — )

where the denominator includes a heteroscedasticity and autocorrelation consistent estimate
of the variance of d; ), assuming that the h-step ahead forecast errors are at most (h — 1)-

t.37 The weighting scheme of the autocovariances follows Newey/West (1987). The

dependen
statistic DM}, is standard normal distributed. Harvey et al. (1997) provide simulation results
that suggest using a small sample correction for the statistic DM;. The modified statistic
is defined as MDM,, = x DM, with & = P05 [P 41— 2h + P~ h (h — 1)]°° and its critical
values should be taken from the t(P — 1) distribution rather than the normal distribution.
For the tests presented below, the small sample correction is used. The results of the appli-
cation of the test to the factor models are given in table 3 for both the performance-based
model selection and the model selection based on information criteria. The tables show p-
values for the tests. For the performance-based model selection in panel A of table 3, there
are no significant differences in forecasting accuracy at the 5% level. For the model selection
based on information criteria, only the method proposed by Kapetanios/Marcellino (2004)
can in one case outperform the other models at the 5% level. However, the overall impression
is that the differences in MSEs are not systematic as the significance levels are large in most

cases.

35See West (1996), p. 1073, McCracken/West (2002), p. 312.

36See McCracken/West (2002), p. 309. For the recursive scheme, the distinction of nested or non-nested
models under consideration is not relevant for the asymptotic validity of the tests. See Giacomini/White
(2004), p. 3.

37See Diebold/Mariano (1995), p. 254.
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Table 3: Testing for equal forecasting accuracy
A. Performance-based model selection

Recursive scheme Rolling scheme

Forecast horizon SW FHLR KM SW FHLR KM

SW - 0.24 043 - 0.27 0.42

1 FHLR - 0.36 - 0.28
KM - -

SW - 0.16 0.43 - 0.30  0.32

2 FHLR - 0.36 - 0.21
KM - -

SW - 0.31 0.26 - 0.38 0.27

3 FHLR - 0.47 - 0.11
KM - -

SW - 0.20 0.31 - 0.21  0.30

4 FHLR - 0.38 - 0.13
KM - -

B. Information criteria model selection

Recursive scheme Rolling scheme

Forecast horizon SW FHLR KM SW FHLR KM

SW - 0.39 0.06 - 0.44 0.38

1 FHLR - 0.11 - 0.36
KM - -

SW - 029 0.19 - 0.21  0.05

2 FHLR - 0.13 - 0.15
KM - -

SW - 0.42 040 - 043 0.13

3 FHLR - 0.45 - 0.15
KM - -

SW - 0.42  0.38 - 0.41 0.12

4 FHLR - 0.37 - 0.11
KM - -

Notes: The table shows p-values of the test. The null hypothesis is pairwise equal fore-
cast accuracy. The test is symmetric. Further information about the computation of
the test is given in the appendix. ‘SW’ denotes the Stock/Watson (2002a, b) approach
forecasts, ‘FHLR’ is the dynamic factor model forecast from Forni et al. (2003a, b),
and ‘KM’ denotes the subspace factor model forecast proposed by Kapetanios (2004)
and Kapetanios/Marcellino (2004).
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A.4 Robustness checks of the results

Using alternative information criteria for model selection: static factors In the
literature, several information criteria can be found to determine the number of static factors
or the number of dynamic factors. In order to check the robustness of the results, the forecast
simulations are carried out with different information criteria. With respect to the number
of static factors, Bai/Ng (2002) also find that the criterion ICp; given by

[C(r) = n(V(r, F)) + (N N+TT) In (NNfT) (28)

performs well in Monte Carlo simulations. Hence, as a check for robustness, the forecasts
will be computed using this criterion /C); instead of (24). Table 4 below shows the forecast
performance of the factor models in terms of relative MSE compared with the reference
autoregressive model. The reference model remains the same as in the main text, so the

results can be directly compared with those from table 2 in the main text. Compared with

Table 4: Relative MSE, information criteria model selection using 1Cp
A. Recursive scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.835 0.731 0.780 0.781 3 1 2 2
FHLR 0.829 0.757 0.719 0.754 2 3 1 1
KM 0.797 0.747 0.853 0.894 1 2 3 3

B. Rolling-window scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.816 0.765 0.840 1.032 2 3 3 3
FHLR 0.792 0.802 0.879 1.043 3 2 2 2
KM 0.702 0.645 0.833 0.964 1 1 1 1

Notes: The table shows the mean-squared errors (MSE) of the various models relative
to the MSE of the autoregressive model. ‘SW’ denotes the Stock/Watson (2002a,
b) approach forecasts, ‘FHLR’ is the dynamic factor model forecast from Forni et
al. (2003a, b), and ‘KM’ denotes the subspace factor model forecast proposed by
Kapetanios (2004) and Kapetanios/Marcellino (2004). The ranking on the right-hand
side of the panel ranks the series with the smallest relative MSE with respect to the
AR model first.

the results in the main text, there is less clear evidence in favour of the Kapetanios (2004)

38See Bai/Ng (2002), p. 201.
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model using the criterion /C,; for the recursive scheme, whereas the results of the main text
are clearly confirmed for the rolling scheme. Again, there does not seem to be one model

that consistently outperforms the others.

Using alternative information criteria for model selection: dynamic factors To
investigate the role of the choice of the correct number of dynamic factors in the model
proposed by Forni et al. (2003a, b), we additionally investigate two other rules. Namely,
we investigate the heuristic rule that selects the number of dynamic factors according to
their marginal contribution to the variance of the vector of time series included in the factor
model. In particular, the number of dynamic factors ¢ is determined by the individual
variance contribution of a dynamic factor to the overall variance of the panel of time series,
where we set the marginal contribution boundary to 10%.3° This selection rule will be
denoted as IC'% below. As a second rule, we apply the information criterion proposed by
Breitung/Kretschmer (2005). This criterion is based on canonical correlation analysis of the
static factors obtained from principal component analysis and relies on the estimation of a

VAR of the factors of lag order p which is chosen by the Bayesian information criterion. The

static factors and their lags are stacked into the matrix G,Sp ) = [ﬁt’ Yo 7@713], . Then define
~ T ~ A~
t=2

and solve the generalised eigenvalue problem
‘ﬁgn - §10(§00)_1§01) =0 (30)

to obtain the eigenvalues i, for ¢ = 1,... ,r in decreasing order of magnitude. The informa-

tion criterion is then given by

chK<q>=<—T > 1n<1—m>>+<r—q>21n<T>. (31)

i=r—g+1

Asymptotic properties and Monte Carlo results for this information criterion are provided in
Breitung/Kretschmer (2005). In table 5, the results for the dynamic factor models using the
three alternative information criteria are shown. The table shows that the selection rule by
Bai/Ng (2005), denoted as g7V and used in the main text, provides the best forecasts overall.
Hence, neither criteria used for cross-checking can improve the performance of the dynamic
factor model proposed by Forni et al. (2003a, b) as presented in the main text. Note that the
selection rules tend to choose quite different numbers of g. Whereas the 7C'%% tends to select

between two and three dynamic factors, and the criterion by Breitung/Kretschmer (2005)

39Gee Forni et al. (2000), p. 547.
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Table 5: Relative MSE of dynamic factor model using different information criteria for the
number of dynamic factors
A. Recursive scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
N 0.829 0.756 0.817 0.881 2 1 1 1
ICPK 0.827 0.855 0.828 0.920 1 3 2 2
IC0% 0.840 0.804 0.875 0.938 3 2 3 3

B. Rolling-window scheme

Relative MSE Ranking

Forecast horizon 1 2 3 4 1 2 3 4
N 0.731 0.707 0.812 1.000 1 1 11
ICPK 0.755 0.756 0.872 1.083 2 3 3 3
I1C"% 0.779 0.724 0.828 1.000 3 2 2 2

Notes: The table shows the mean-squared errors (MSE) of the dynamic factor model
forecast from Forni et al. (2003a, b) using three different criteria for selecting the
number of dynamic factors q. ‘BN’ is the selection rule proposed by Bai/Ng (2005),
and ‘BK’ denotes the information criterion by Breitung/Kretschmer (2005). ‘10%’
denotes choosing the number of dynamic factors with marginal variance contribution
to the whole vector of time series of 10%. The ranking on the right-hand side of the
panel ranks the series with the smallest relative MSE with respect to the AR model
first.

between two and four, the selection rule proposed by Bai/Ng (2005) selects between four
and seven dynamic factors. This is in line with the empirical results for the USA provided
by Bai/Ng (2005), where the selection rule g%V chooses considerably more dynamic factors
than other methods. In our case, the larger number of factors also leads to a better forecast

performance when applied to the German data set.

Eliminating AR terms in the forecasting equation The results for the forecasting
models where autoregressive terms are neglected, in particular using the forecast equation
Yirn = ﬁﬁ’t + €141, can be found in table 6. The benchmark autoregressive model remains
the same as in the main text. The results of the table show that the factor models with no
autoregressive terms still have considerable advantages over the benchmark autoregressive
model with respect to their forecasting performance, when the autoregressive terms in the
factor forecasting equation (22) are neglected. Among the factor models, the Stock/Watson
(2002a, b) static factor forecasts never rank first. As in the main text, when performance-
based model selection is used, the Forni et al. (2003a, b) factors always provide better

forecasts than the Stock/Watson (2002a, b) factors. If information criteria are used, the
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Table 6: Relative MSE, no autoregressive terms in the forecast equation

I. Performance-based model selection

A. Recursive scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.833 0.805 0.854 0.865 3 3 3 2
FHLR 0.767 0.689 0.805 0.793 21 2 1
KM 0.709 0.697 0.746 0.909 1 2 1 3

B. Rolling-window scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.839 0.726 0.811 0.940 3 2 2 3
FHLR 0.734 0.695 0.791 0.890 1 1 1 1
KM 0.754 0.747 0.883 0.929 2 3 3 2

II. Information criteria model selection
A. Recursive scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.831 0.817 0.846 0.899 3 3 2 2
FHLR 0.799 0.794 0.828 0.886 2 2 1 1
KM 0.740 0.714 0.878 0.940 1 1 3 3

B. Rolling-window scheme

Relative MSE Ranking
Forecast horizon 1 2 3 4 1 2 3 4
SW 0.804 0.714 0.759 0.945 2 2 2 3
FHLR 0.812 0.731 0.758 0.940 3 3 1 2
KM 0.782 0.688 0.868 0.937 1 1 3 1

34

Notes: The factor model forecasts are based on forecasting equations with no au-
toregressive terms for GDP. The table shows the mean-squared errors (MSE) of the
various models relative to the MSE of the autoregressive model. ‘SW’ denotes the
Stock/Watson (2002a, b) approach forecasts, ‘FHLR’ is the dynamic factor model
forecast from Forni et al. (2003a, b), and ‘KM’ denotes the subspace factor model
forecast proposed by Kapetanios (2004) and Kapetanios/Marcellino (2004). The rank-
ing on the right-hand side of the panel ranks the series with the smallest relative MSE
with respect to the AR model first.



ranking between both models is sometimes reversed in the rolling-window scheme. The
ranking between the dynamic factor model proposed by Forni et al. (2003a, b) and the
dynamic factor model proposed by Kapetanios (2004) changes for different forecast horizons
and simulations schemes. To check whether the differences are significant or not, again
the tests for equal pairwise forecast accuracy are applied. Results can be found in table
7. Compared with the forecast equation, where AR terms are included, there are a few
more cases where differences are significant. However, according to the tests, most of the
differences in forecasting accuracy are not significant and the results are not clear-cut over
the different forecast horizons and simulation designs. Therefore, the exclusion of AR terms
does not alter the key message from the main text: although the factor forecasts proposed
by Stock/Watson (2002a, b) have a slightly worse performance in terms of relative MSE, the

differences in forecast accuracy are small and not systematic.
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Table 7: Testing for equal forecasting accuracy, no autoregressive lags in forecast equation
A. Performance-based model selection

Recursive scheme Rolling scheme

Forecast horizon SW FHLR KM SW FHLR KM

SW - 0.31 0.12 - 0.10 0.13

1 FHLR - 0.25 - 0.33
KM - -

SW - 0.00 0.01 - 0.32  0.35

2 FHLR - 0.45 - 0.23
KM - -

SW - 0.32  0.20 - 0.29 045

3 FHLR - 0.27 - 0.16
KM - -

SW - 0.20 0.26 - 0.22 045

4 FHLR - 0.18 - 0.36
KM - -

B. Information criteria model selection

Recursive scheme Rolling scheme

Forecast horizon SW FHLR KM SW FHLR KM

SW - 0.05 0.07 - 0.28 0.36

1 FHLR - 0.18 - 0.33
KM - -

SW - 0.13 0.07 - 0.13 0.34

2 FHLR - 0.12 - 0.23
KM - -

SW - 023 0.37 - 0.46  0.08

3 FHLR - 0.29 - 0.07
KM - -

SW - 0.23 0.33 - 0.39 0.46

4 FHLR - 0.29 - 0.48
KM - -

Notes: The table shows p-values of the test. The null hypothesis is pairwise equal fore-
cast accuracy. The test is symmetric. Further information about the computation of
the test is given in the appendix. ‘SW’ denotes the Stock/Watson (2002a, b) approach
forecasts, ‘FHLR’ is the dynamic factor model forecast from Forni et al. (2003a, b),
and ‘KM’ denotes the subspace factor model forecast proposed by Kapetanios (2004)
and Kapetanios/Marcellino (2004).
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