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Abstract

The purpose of this paper is to describe the lottery- and insurance-market equilibrium

in an economy with non-convex labor supply decision, unobservable effort, and effi-

ciency wages of the no-shirking type a la Shapiro and Stiglitz (1984). The presence

of indivisible labor creates a market incompleteness, which requires that an insurance

market for (un)employment be put in operation to ”complete” the market.
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1 Introduction and Motivation

The purpose of this paper is to describe the lottery- and insurance-market equilibrium in an

economy with non-convex labor supply decision, unobservable effort, and efficiency wages of

the no-shirking type a la Shapiro and Stiglitz (1984). We show how lotteries as in Rogerson

(1988) can be used to convexify consumption sets. With a discrete labor supply decisions, the

markets are incomplete. The particular focus in this paper is on the lottery- and insurance-

market equilibrium in an economy with indivisible labor supply, unobservable effort and

efficiency wages. The presence of non-convexity requires that an insurance market for em-

ployment be put in operation to achieve market completeness.

2 Model setup

The theoretical setup follows to a great extent Vasilev (2017). There is a unit mass of house-

holds, indexed by i and distributed uniformly on the [0, 1] interval, as well as a representative

firm. In the exposition below, we will use small case letters to denote individual variables

and suppress the index i to save on notation. To simplify the analysis, the model economy

is static, without physical capital, and agents will face a non-convex labor supply decision.

The firm produces output using labor and capital, but cannot observe the effort exerted

by workers. Given that effort is not directly contractible (due to its unobservability on the

firm’s side), the firm sets a reservation wage to induce an optimal level of effort.

2.1 Description of the model

Each household maximizes the following utility function:

U = ln c+ η ln(1− eh− ξ), (2.1)

where η > 0 is the weight attached to leisure, and as in Burnside at al. (1993, 1996), ξ > 0

is some fixed cost of working.1 Variable c denotes household i’s consumption, h denotes

hours worked, and e is the amount of effort exerted. The time available to each worker is

1Parameter ξ is to be interpreted as some kind of organizational or planning cost, e.g the time spent

on planning how to spent the day productively. Note that if the household decides to supply zero hours of

labor, then ξ = 0.
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normalized to unity. In addition, we assume that that worker’s effort will be imperfectly

observable by firms.

All households have equal share in the firm’s profit. Total profit is pooled together (within

the ”family” of households), and then distributed equally among all households. In this

way, households can partially insure one another against unfavorable outcomes in the labor

market, e.g. not being selected for work. The common consumption can be represented as

ch = π, (2.2)

π = Π, or the sum of individual profit income equals firm’s total profit. The other type of

income is the labor income, and households would differ in each period depending on their

employment status.

From the perspective of firms, all individuals are identical, so employment outcome could be

viewed as random, i.e. the firm will choose a certain share of households for work, and leave

the rest unemployed. Since the level of effort is not directly observable by firms, some of the

employed workers will work and exert the required effort level, e, stipulated in the contract,

while others may decide to shirk. If caught, which happens with probability d due to the

imperfect technology of detection, the individual is fired and receives a fraction 0 < s < 1

of the wage.2

The labor contract that the firms then needs to offer provide is to be one that induces

workers not to cheat in equilibrium. The contract would specify a wage rate, an effort level,

and an implementable rule that a worker caught cheating on the job will be fired and paid

only a fraction s of the wage, 0 < s < 1. All workers know this in advance, and take the

terms of the contract and the labor demand as given. In general, the supply of labor will

exceed labor demand, so in equilibrium there is going to be involuntary unemployment.

In addition, each employed transfers/contributes T units of income to the unemployment

pool, where the proceeds are used to payout to the unemployed. The level of transfers is

2As in Burnside et al. (2000), the household does not observe whether the others shirked, or were fired,

only the initial employment status.
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such that individuals who are not selected for work by the firm are at least as well off as

employed workers who are caught shirking. The consumption of an employed worker who

does not decide to shirk then equals:

c = ch + wh− T, (2.3)

where w is the hourly wage rate. Note that an employed worker who decided to shirk, but is

not caught, obtains the same consumption as the conscientious worker, but a higher utility

of leisure due to the zero effort exerted and thus no fixed cost of work is incurred.

In contrast, a worker who is employed, decides to cheat, and is caught, receives

cs = ch + swh− T. (2.4)

Alternatively, as proposed in Alexopoulos (2004), this is identical to a case where the firm

pays swh upfront, and (1 − s)wh at the end of the period, which is retained in case the

worker is caught cheating.

Note that not everyone will be employed, thus the employment rate λ < 1, and 0 < 1−λ < 1

would denote the mass of unemployed.3 The consumption of unemployed individuals, cu, is

then

cu = ch +
λ

1− λ
T, (2.5)

where the transfer received by each unemployed equals λ
1−λT .4 Note that if a household is

selected for work and rejects the job offer, there will be no unemployment insurance, or it

would receive just the common consumption ch. Therefore, no household selected for work

would have an incentive to reject, so the participation constraint will be trivially satisfied.

Depending on whether a household is selected for work or not, the corresponding instanta-

neous utility levels are:

u(cu, eu = 0, hu = 0) = ln cu + η ln 1 = ln cu, (2.6)

3This result is established in Vasilev (2018).
4It is straightforward to reformulate the model so that a self-financing unemployment insurance program

is provided by the government rather than the household. Therefore, this setup is very close to the one using

unemployment lotteries in Rogerson (1988) and Hansen (1985)
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if unemployed,

u(c, e, h) = ln c+ η ln(1− eh− ξ), (2.7)

if employed and the worker does not shirk,

u(c, e, h) = ln c+ η ln(1) = ln c, (2.8)

if the person shirks, but is not caught, and

u(cs, es = 0, hs = 0) = ln cs + η ln(1) = ln cs, (2.9)

if the person shirks, and is caught.

Let λs be the proportion of shirkers and given a detection probability d of a shirker be-

ing caught, this implies dλs would be the proportion of shirkers being caught, and (1− d)λs

are the shirkers not being caught. In turn, λ− λs are the employed individuals who decide

not to shirk.

Finally, note that the leisure (in efficiency units) of shirkers that are caught, and leisure

enjoyed by unemployed individuals is the same. Thus, the lump-sum transfer should be

chosen so that the consumption levels of the two groups is equalized, or

cs = cu (2.10)

ch + swh− T = ch +
λ

1− λ
T. (2.11)

or

T = (1− λ)swh. (2.12)

In this setup the aggregate household takes as given the effort level and wage rate {e, w},
which are specified in the contracts that the firm offers. This means that the household takes

firm’s labor demand as given, which would produce involuntary unemployment. Thus, the

household chooses {ch} to maximize (where we have already used the fact that cu = cs)

(λ− λs)[ln c+ η ln(1− ξ − eh)] + λs[(1− d) ln c+ d ln cs] + (1− λ) ln cs
}

(2.13)
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s.t

(λ− dλs)c+ (dλs + 1− λ)cs =

(λ− dλs)wh+ dλsswh. (2.14)

The first-order condition (FOCs) is as follows:

ch :
(λ− dλs)

c
+

(dλs + 1− λ)

cs
= µ, (2.15)

where µ is the Lagrange multiplier attached to the budget constraint.

2.2 Firm

There is a perfectly competitive representative firm that produces output via the following

Cobb-Douglas production function (H = nh)

yt = (He)1−α. (2.16)

The firm chooses the employment rate, capital input, wage rate ( and thus effort level) to

maximize

(He)1−α − wnh (2.17)

s.t. ”no shirking condition” (the ICC):

ln c+ η ln(1− ξ − h) ≥ (1− d) ln c+ d ln cs (2.18)

or

d ln c+ η ln(1− ξ − h) ≥ d ln cs (2.19)

In equilibrium, the firm chooses the optimal employment. In addition the firm offers an

efficiency wage rate w to induce a certain optimal effort level, i.e. e = e(w).5

n : wh = (1− α)
y

n
. (2.20)

w : H = (1− α)
y

e
e′(w) (2.21)

5As in Solow (1979), we assume that the wage rate is a function of effort.
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Dividing the FOC for employment and wages, we obtain the standard Solow (1979) condition

we′(w)

e
= 1 (2.22)

or

w

e(w)
= (1− α)

y

H
. (2.23)

In other words, this is an equation that characterizes firm’s labor demand. Note that the

firm minimizes cost per efficiency unit here.6 Firms want to hire labor as cheaply as possible,

and w/e(w) is the cost per unit of effective labor.

Next, for a given wage rate, the ”no-shirking” condition indicated a maximum effort level

the firm can obtain from each worker. Rearranging further the constraint, we obtain

e ≤ e(w) =
1− ξ
h
− 1

h
(cs/c)d/η. (2.24)

The firm takes T as given, so the right-hand side is only a function of w, since

c

cs
=

ch + wh− T
ch + swh− T

(2.25)

Also

e′(w) = −d
η

1

h
(
cs

c
)d/η−1(

cs − sc
(cs)2

)h. (2.26)

and

w =
c− cs

(1− s)h
(2.27)

since the ratio of consumptions is a function of the wage rate, a result that follows from

the Solow condition, the effort equation and the wage expression above. Combining the

Solow condition, the effort equation, and the wage expression above, it follows that there

is only one value for cs

c
that solves this equation and produces a positive level of effort in

6If the firm pays higher efficiency wages to induce more effort, that decreases labor demand (because of

the wage premium incorporated in the efficiency wage) and produces involuntary unemployment. Also note

that the firm adjusts the extensive margin (employment rates), while hours per person are not changing.
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equilibrium. Thus the ratio of consumptions is a constant (denoted by χ), and a function of

model parameters, i.e.

c

cs
=

ch + wh− T
ch + swh− T

= χ > 1 (2.28)

In general, the optimal level of employment, will not coincide with the proportion of workers

wishing to accept the contract (w, e(w)). As long as firm’s demand for labor is less than the

labor supply, the ”no-shirking” constraint will be binding (hold with equality), and there

will be involuntary unemployment in equilibrium.

3 Insurance Market: Stand-in Insurance Company

An alternative way to represent the labor selection arrangement is to regard workers as par-

ticipants in a lottery with the proportion employed equal to the probability of being selected

for work. Therefore, we can introduce insurance markets, and allow households to buy in-

surance, which would allow them to equalize the actual income received independent of the

employment status. More specifically, the structure of the insurance industry is as follows:

there is one representative insurance company, which services all households and maximizes

profit. It receives revenue if a household is working in the market sector and makes payment

if it is not. At the beginning of the period, the households decide if and how much insurance

to buy against the probability of being chosen for work. Insurance costs q per unit, and

provides one unit of income if the household is not employed. Thus, household will also

choose the quantity of insurance to purchase b; we can think of insurance as bonds that pay

out only in case the household is not chosen for work.

The amount of insurance sold by the insurance company is a solution to the following prob-

lem: Taking q(i) as given, b(i) solves

max
b(i)

λ(i)q(i)b(i)− [1− λ(i)]b(i). (3.1)

With free entry profits are zero, hence

λ(i)q(i)b(i)− [1− λ(i)]b(i) = 0, (3.2)

hence the insurance market for each household clears.
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4 Decentalized Competitive Equilibrium (DCE) with

lotteries

4.1 Definition of the DCE with lotteries

A competitive Equilibrium with Lotteries for this economy is a list

(c(i)w, c(i)s, e(i)w, λ(i), w, π) (4.1)

such that the following conditions are fulfilled.

1. Consumers maximization condition. Taking prices w, π as given, for each i, the

sequence

σ = (c(i)w, c(i)s, e(i)w, λ(i)) (4.2)

solves the maximization problem

max
σ∈Σ

(λ(i)− λ(i)s)[ln c(i)w + η ln(1− ξ − eh)] + λ(i)s[(1− d) ln c(i)w + d ln c(i)s]

+(1− λ(i)) ln c(i)s (4.3)

s.t

[λ(i)− dλ(i)s]c(i)w + [dλ(i)s + (1− λ(i))]c(i)s =

(λ(i)− dλ(i)s)wh+ dλ(i)sswh. (4.4)

with

c(i)w ≥ 0, c(i)
s ≥ 0, 0 < λ(i) < 1, λ(s)s < λ(i)∀i, (4.5)

where Σ is the constraint defined by relations (4.4)-(4.5).

2. Firm maximization condition. Taking prices w, π as given,

max
H

(He)1−α − wnh (4.6)

s.t.

d ln c(i)w + η ln(1− ξ − h) ≥ d ln c(i)s (4.7)
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3. Market-clearing condition. We have

h

∫
i

λ(i)di = H, (4.8)∫
i

{[λ(i)− dλ(i)s]c(i)w + (dλ(i)s + (1− λ(i))c(i)s}di = (He)1−α, (4.9)

where the first equation describes the clearing in the labor market, while the second equation

captures the goods-market clearing.

4.2 Characterizing the DCE

The household’s problem is as follows:

L = max
σ∈Σ

(λ(i)− λ(i)s)[ln c(i)w + η ln(1− ξ − eh)] + λ(i)s[(1− d) ln c(i)w + d ln c(i)s]

+(1− λ(i)) ln c(i)s

−µ
[
[λ(i)− dλ(i)s]c(i)w + [dλ(i)s + (1− λ(i))]c(i)s − (λ(i)− dλ(i)s)wh− dλsswh

]
,(4.10)

where µ is the Lagrangian multiplier in front of the households’ budget constraint. The

first-order optimality conditions are as follows:

c(i)w :
1

c(i)w
= µ, ∀i, (4.11)

c(i)s :
λsd

c(i)s
= µ[dλs + (1− λ)],∀i. (4.12)

it follows that

cw

cs
= 1 +

1− λ
λsd

6= χ (4.13)

Note that since it cannot be that c(i)s = 0, it follows that λ(i)s = 0. That is, in equilibrium

nobody will be shirking.7

We simplify the Lagrangian by suppressing all consumption superscripts and i notation

in the derivations to follow

λ(i) : ln(cw/cs)(1− ξ − eh)η = µ[cw − cs − wh] (4.14)

7And thus taking first-order conditions with respect to λs makes no sense.
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This condition states that the marginal rate of substitution between effort in the market

sector and consumption equals the wage rate. This implicitly characterizes optimal market

sector participation rate λ. Note that it is optimal from the benevolent planner/government

point of view to choose randomly λ and to introduce uncertainty. With randomization,

choice sets are convexified, and thus market completeness is achieved. Now we extend the

commodity space to include insurance markets explicitly.

5 Decentralized Competitive Equilibrium (DCE) with

insurance markets

6 Definition of the DCE with insurance markets

A competitive Equilibrium with Lotteries and insurance markets for this economy is a list

(c(i)w, c(i)s, e(i)w, λ(i), b(i), q(i), p, w, π) (6.1)

such that the following conditions are fulfilled.

1. Consumers maximization condition. Taking prices p, w, π as given, for each i,

the sequence

σ = (c(i)w, c(i)s, e(i)w, λ(i), b(i), q(i)) (6.2)

solves the maximization problem

max
σ∈Σ

(λ(i)− λ(i)s)[ln c(i)w + η ln(1− ξ − eh)] + λ(i)s[(1− d) ln c(i)w + d ln c(i)s]

+(1− λ(i)) ln c(i)s (6.3)

s.t.

pc(i)w + b(i)q(i) = wh+ π (6.4)

pc(i)s = b(i) + π (6.5)

c(i)w ≥ 0, c(i)s ≥ 0, 0 < λ(i) < 1,∀i (6.6)
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or

pc(i)w + pq(i)c(i)s = wh+ (1 + π)q(i), (6.7)

where Σ is the constraint defined by relations (6.4)-(6.6).

2. Firm maximization condition. Taking prices w, π as given,

max
H

(He)1−α − wnh (6.8)

s.t.

d ln c(i)w + η ln(1− ξ − h) ≥ d ln c(i)s (6.9)

3. Insurance-company condition. Taking q(i) as given, b(i) solves

max
b(i)

λ(i)q(i)b(i)− [1− λ(i)]b(i). (6.10)

With free entry profits are zero, hence

λ(i)q(i)b(i)− [1− λ(i)]b(i) = 0, (6.11)

hence the insurance market for each household clears.

4. Market-clearing condition. We have

h

∫
i

λ(i)di = H, (6.12)∫
i

{[λ(i)− dλ(i)s]c(i)w + (dλ(i)s + (1− λ(i))c(i)s}di = (He)1−α, (6.13)

where the first equation describes the clearing in the labor market, while the second equation

captures the goods-market clearing.

6.1 Characterization of the DCE with insurance markets

L = max
σ∈Σ

(λ(i)− λ(i)s)[ln c(i)w + η ln(1− ξ − eh)] + λ(i)s[(1− d) ln c(i)w + d ln c(i)s]

+(1− λ(i)) ln c(i)s − µ[pc(i)w + pq(i)c(i)s − wh− (1 + π)q(i)](6.14)

12



Without loss of generality, normalize p = 1. We also obtained that λ(i)s = 0, foralli. The

resulting first-order conditions are as follows:

c(i)w :
λ(i)

c(i)w
= pµ, ∀i, (6.15)

c(i)s :
1− λ(i)

c(i)s
= pq(i)µ,∀i. (6.16)

Optimal λ (λ(i) = λ,∀i) is implicitly characterized by the zero-profit condition from the

insurance company:

λ

1− λ
=

1

q
, (6.17)

which implies that the price of the insurance equals the ratio of probabilities of the two

events (“the odds ratio”). Combining this with the other optimality condition, we obtain

that conditional on an efficiency wage schedule that discourages shirking, households buy

full insurance to equalize consumption,

cw = cs,∀i. (6.18)

That is, in the presence of uncertainty, we need an insurance companie to achieve market

completeness.

7 Conclusions

This paper describes the lottery- and insurance-market equilibrium in an economy with non-

convex labor supply decision, unobservable effort, and efficiency wages of the no-shirking

type a la Shapiro and Stiglitz (1984). The presence of indivisible labor creates a market

incompleteness, which requires that an insurance market for (un)employment be put in

operation to ”complete” the market.
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