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Abstract: This work proposes a backtesting analysis that compares the Lee–Carter and the
Cairns–Blake–Dowd mortality models, employing Italian data. The mortality data come from
the Italian National Statistics Institute (ISTAT) database and span the period 1975–2014, over which
we computed back-projections evaluating the performances of the models compared with real
data. We propose three different backtest approaches, evaluating the goodness of short-run forecast
versus medium-length ones. We find that neither model was able to capture the improving shock on
mortality observed for the male population on the analysed period. Moreover, the results suggest
that CBD forecasts are reliable prevalently for ages above 75, and that LC forecasts are basically more
accurate for this data.

Keywords: lee-carter model; cairns-blake-dowd model; backtesting; mortality forecast

1. Introduction

Dowd et al. (2010a) performed a backtesting analysis on seven different stochastic mortality models
with results showing that the models performed adequately by most backtests. The analysis was applied
to English and Welsh male mortality data. We decided to perform a backtesting investigation using
Italian mortality data. The decision was motivated by the study of the historical mortality trend, observed
on the forty-past-years horizon for both the male and female populations. The gap between genders
deeply decreased over the considered horizon with steep improvements in male mortality. Thus, the
first aim of this paper is to scrutinize the forecast proposed by the models for both sexes, which have
experienced different mortality evolutions. Moreover, in the last three decades, mortality projections
have been widely used by Italian policy-makers for making decisions about public pension reforms. The
study of mortality risk, intended as the uncertainty in future mortality rates as well as longevity risk for
the long-term trend in mortality rates (Cairns et al. 2006), played a central role for both public and private
annuity providers. For these reasons, among all the principal stochastic mortality models1, we chose to
compare Lee–Carter (LC) and the Cairns–Blake–Dowd (CBD) ones. In particular, the Italian National
Statistics Institute (ISTAT) adopted the original formulation of the LC model to forecast mortality over
the projection horizon 2007–2051 (Istat 2008) now updated2 over the horizon 2011–2065. The National
Association of Insurance Companies (ANIA) uses those projections as demographic basis for annuity

1 Refer to Cairns et al. (2009) for a detailed list and quantitative comparison of the principal stochastic mortality models.
2 ISTAT population projections 2011–2065: http://demo.istat.it/uniprev2011/note.html.
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computations (ANIA 2014). Therefore, we chose to compare the original formulation of the LC model to
the original CBD since they also represent the two most used parametric families of mortality models.

On the one hand, the Lee–Carter model has sparked a deep methodological revolution in the
field of demographic forecast, particularly in mortality. The mortality model has been used together
with a similar fertility model and deterministic migration assumptions to generate stochastic forecasts
about the population and its components. These stochastic population forecasts, in turn, have been
used as the key component of stochastic projections of the finances of the US Social Security system.
The stochastic forecast avoids some of the problems inherent to using the classic scenario method
for representing forecast uncertainty (Lee 2000). Then, in concurrence with the main demographic
applications, the LC model suggested:

• an important research front on problems related to the parameter estimations (Booth et al. 2006),
with many applications also in the actuarial and economics literature (Loisel and Serant 2007); and

• extension of the forecasting analysis with disaggregated projections on demographic subsets to
maintain consistency at the aggregate level (Lee and Miller 2001; Li and Lee 2005; Li 2010).

On the other hand, the Cairns–Blake–Dowd model, even if more recent in its formulation than the
LC model, has played an important role in forecasting mortality at higher ages (i.e., ages starting at 60
and over). The mortality model made great contributions for pension funds, life-insurance companies
and private annuity providers in general. It is mainly used for pricing longevity bonds as suggested
also by the authors in the first formulation of the model (Cairns et al. 2006).

The second aim of this work is to analyse the medium-length forecast with respect to the short term,
observing potential differences in the parameter estimations (Mavros et al. 2014)3 accordingly with
changes in the starting point of the database. Chan et al. (2014) have also studied the new-data-invariant
property on the quality of the CBD mortality index. For this purpose, we introduced a new backtesting
approach named the jumping fixed-length horizon, which makes short-run projections of five years,
“jumping forward” in the historical database by five-year-steps.

Considerations of the backtesting results do not imply a conclusive evaluation of the models,
since we perform the analysis exclusively for the range of ages 57 to 90. The choice for the interval
of ages was motivated by the fact that, in Italy, Ragioneria dello Stato computes the so-called
transformation coefficients for pension annuities, starting from age 57. Moreover, since the CBD
model is recommended as a good predictor of mortality at higher ages, we chose this interval of ages
to make a more prudent and accurate comparison between the models. Furthermore, we decided to
take into consideration only death probabilities qx,t among all of the other possible biometric functions.

We used4 death probabilities qx,t provided by ISTAT spanning the period 1975–2014. Then, over
the designated horizon of historical data, we select the “lookback” and the “lookforward” windows5,
respectively, for the parameter estimation and forecast. In particular, the length of the forecast window
will be different for each of the three backtesting approaches proposed by the work:

• fixed horizon backtests: lookback and lookforward windows of 20 years;
• jumping fixed-length horizon backtests: lookback window of 20 years and lookforward window of

5 years (short-term projections); and
• rolling fixed-length horizon backtests: lookback window of fixed-length (20 years) and a contracting

lookforward window from 20 to 2 years of projections.

The paper is organized as follows. Section 2 briefly presents the models and the adopted
terminology, Section 3 shows the historical Italian mortality data, and Section 4 and subsections explain
methodology and the backtesting results obtained by the different approaches. Section 5 provides
conclusions.

3 Particularly for the case of Cairns–Blake–Dowd model.
4 Data downloaded on June 2016. Source: http://demo.istat.it/tvm2016/index.php?lingua=eng.
5 For the sake of simplicity, we decided to adopt the same terminology used by Dowd et al. (2010a).

http://demo.istat.it/tvm2016/index.php?lingua=eng
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2. Model Specifications

2.1. The Lee–Carter Model

We took into consideration the original formulation of Lee and Carter (1992), represented by the
following model equation:

mx,t = eαx+βxkt+εx,t , (1)

where mx,t is the central rate of mortality at age x and at time t, and it is given by the formula:

mx,t =
dx,t

Lx,t
,

with6 dx,t representing the number of deaths that occurred between x and x + 1, and Lx,t called the age
units living in x, which is simply the average number of individuals alive between x and x + 1.

For simplicity, the model was implemented by adopting its logarithm transformation:

ln mx,t = αx + βxkt + εx,t,

with the following parameter interpretations:

• kt is the time index representing the level of mortality at time t;
• αx represents the average trend of mortality on the time horizon at age x;
• βx represents a measure of the sensitivity in movement from the parameter kt. In particular,

βx describes the relative speed of mortality changes, at each age, when kt changes; and
• εx,t is the homoskedastic error term, which incorporates historical trends not considered by the

model. It is assumed to be εx,t ∼ N (0, σ2
ε ).

Appendix A illustrates the method adopted for the estimation and projection of the parameters.

2.2. The Cairns–Blake–Dowd Model

We considered the original formulation of the model provided by Cairns et al. (2006) with the
following model equation:

ln

[
qx,t

px,t

]
= k(1)t + k(2)t (x− x̄) + εx,t, (2)

where

• k(1)t and k(2)t are two stochastic processes and represent the two time indexes of the model;
• qx,t and px,t represent, respectively, the death and the survival probability, at time t for an

individual aged x;

• ln

[
qx,t
px,t

]
= ln (φx) = logit qx,t is the logit transformation of qx,t, with φx representing the

mortality odds;
• x̄ is the mean age of the considered interval of ages; and
• εx,t is the error term that encloses the historical trend that the model does not express. All of the

error terms are i.i.d following the Normal distribution with mean 0 and variance σ2
ε .

The model is fully identified, so it does not require additional constraints.
Moreover, the time index k(1)t is the intercept of the model. It affects every age in the same way,

and it represents the level of mortality at time t. More precisely, if it declines over time, it means that

6 The variables dx,t and Lx,t are the common biometric functions as described in the life tables.
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the mortality rate has been decreasing over time at all ages. The time index k(2)t represents the slope of
the model: every age is differently affected by this parameter. For instance, if during the fitting period,
the mortality improvements have been greater at lower ages than at higher ages, the slope period term
k(2)t would be increasing over time. In such a case, the plot of the logit of death probabilities against
age would become steeper as it shifts downwards over time (Pitacco et al. 2009).

Appendix B illustrates the estimation and projection methods involved.

3. Case Study: Italian Mortality Data from 1975 to 2014

The application of the presented models requires the use of the death probabilities time series for
extrapolating mortality forecast. As already mentioned, we use data provided by ISTAT because these
data are commonly used by private insurance companies and public pension providers. The range of ages
is 57 ≤ x ≤ 90. In particular, we chose the upper limit for taking into consideration the ISTAT graduation
method of ending the life table (Istat 2001). The calculation of the probabilities of dying for ages over 95 is
performed by extrapolating the qx,t graduated values following the Thatcher et al. (1998) model7:

qx,t =
ϑeγx

1 + ϑeγx ; x ≥ 95. (3)

This kind of graduation could affect the backtesting results, comparing realized data with forecasts
obtained by applying the LC (1) and the CBD (2) models, since they offer a different mortality pattern at
old ages. For the ages from 5 to 94, ISTAT uses a moving average of crude rates with the length of seven
values. Moreover, we selected the time period from 1975 to 2014 because, from in the mid-seventies in
Italy, the successful fight against cardiovascular diseases began. More recently, efforts against tumors,
which are still the main cause of death, have been launched. These successes have contributed to
an extraordinary acceleration of growth in life expectancy, especially at higher ages: e.g., from 1975
to 2014, life expectancy at 60 years has seen an average increase of about four hours each day, both
for men and women. In the male case, this phenomena extraordinarily occurred. Previously, life
expectancy at birth had registered the first significant increase due to the control of infant and child
mortality, while during the years under review, it has also benefited from the control of adult age
mortality.

Currently, the probability of reaching an old age for a young adult is really high: for a 30 year old,
the probability of reaching the age of 60 is almost 94% for males and 96.4% for females. However, it
remains difficult to reach the threshold of 90 years, especially for men. Table 1 accurately shows8 how
this probability changed starting from age 50. Moreover, it shows how the difference in probability
between genders became greater as the age increased.

This process is known as the rectangularization and shift forward of the survival curves. Its measure
can be derived from the entropy of a life table (Equation (4)). It was introduced by Keyfitz and Caswell
(2005) and it is referred to in this paper as tHK,ξ with ξ the age by which the survival curve is built, and t
the year of the period life table at which the entropy is computed (in our case t = 1975, 1976, ... 2014).
Then,

tHK,ξ = −
∑j(ln lj)lj

∑j lj
, (4)

7 In Equation (3) ϑ and γ are parameters that need to be estimated. In general, those parameters are estimated by applying
Ordinary Least Squares (OLS) on the logit transformation of Equation (3).

8 Even though the backtesting analysis will be focused on the interval of ages 57–90, here we decided to provide information
also on ages lower than x = 57. In this way, we are able to present a more accurate Italian demographic scenario for the
period observed.
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where lj is the probability of surviving from age9 ξ (ξ = 0, 1, ..., w ; lξ=1 ∀ ξ) to age j (j = ξ + 1, ξ +

2, . . . w). The entropy index becomes smaller whenever the survivorship curve lj moves towards a
rectangular form; in this limit case, tHK,ξ = 0.

Table 1. Proportion of persons aged 30 and expected to be alive at selected ages.

Italian Period Life Tables

Ages 1975 1980 1985 1990 1995 2000 2005 2010 2014

Male

50 0.9438 0.9483 0.9554 0.9583 0.9591 0.9662 0.9722 0.9755 0.9777
60 0.8406 0.8487 0.8646 0.8839 0.8951 0.90962 0.9242 0.9324 0.9376
70 0.6292 0.6409 0.6691 0.7081 0.7351 0.7732 0.8060 0.8257 0.8385
80 0.3014 0.3161 0.3539 0.4029 0.4406 0.4936 0.5434 0.5912 0.6188
90 0.0464 0.0527 0.0682 0.0954 0.1170 0.1396 0.1648 0.1996 0.2250
95 0.0080 0.0096 0.0140 0.0235 0.0318 0.0401 0.0491 0.0595 0.0743

Female

50 0.9703 0.9739 0.9769 0.9785 0.9796 0.9822 0.9850 0.9865 0.9871
60 0.9194 0.9290 0.9364 0.9427 0.9473 0.9525 0.9585 0.9620 0.9639
70 0.8009 0.8168 0.8337 0.8546 0.8681 0.8828 0.8972 0.9053 0.9087
80 0.5070 0.5403 0.5814 0.6249 0.6576 0.69561 0.7322 0.7540 0.7674
90 0.1154 0.1433 0.1629 0.2141 0.2547 0.2860 0.3297 0.3653 0.3878
95 0.0226 0.0326 0.0380 0.0626 0.0830 0.1030 0.1259 0.1420 0.1654

Figure 1 shows how the trend of the rectangularization process has changed according to ages
(i.e., from ξ = 50 to ξ = 65, 75). Regarding women, this process was already in place before 1975.
In particular, starting from ages 50 and 65, it is continued with a substantially linear continuity. In the case
of men, the rectangularization process begins to escalate smoothly after 1984. However, the following
trend shows a deep reduction of mortality, from which is derived an attenuation of the inequality between
sexes even though it has not disappeared. In Figure 1, tHk,ξ shows that the mortality improvement in the
elderly population has taken place at different rates over time, particularly with a faster steep decline for
both sexes after 1993.

Figure 1. Italian life tables 1975–2014: males and females entropy (t HK,ξ ).

The differentiation of the pace in reducing mortality of both sexes starting from adult age up to
those who are old is confirmed by the results of the Kullback and Leibler (1951) divergence:

9 The starting point for the final age interval is denoted by w.
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tDKL,ξ(hz, gz) =
w−ξ

∑
z=0

hz ln

(
hz

gz

)
, (5)

where hz and gz are the probability distributions of the “time until death” random variable Zξ for a
person aged ξ, respectively, for males and females. Equation (5) measures the “difference” between
these two probability distributions, which, in our case, is taken as the reference model gz. The choice is
motived not only by the fact that mortality is significantly lower for women than for men, but also
because the continuous decline of female mortality in the reporting period occurred much more
regularly (Maccheroni 2014). The divergence in mortality between genders mortality has different
characteristics depending on the considered age group.

Figure 2 shows that the divergence in mortality between sexes presents different characteristics,
depending on the observed age. In particular, until 1981, the divergence gradually increased on the full
range of ages. At a later time, differentials in mortality between sexes decrease whenever x is lower
than 60, while they progressively increase at higher ages. These diverging trends make the application
of the models interesting, especially for the comparison of results. Needless to say, the mortality
forecast will be more accurate for women than men because women experienced a death risk reduction
process with greater regularity than men.

Figure 2. Kullback–Leibler divergence with respect to Zξ at selected ages.

4. Backtesting Analysis

In this section, we introduce the three different backtesting frameworks, and we present the
related forecast results.

• The fixed horizon backtest uses a fixed twenty-year historical “lookback” interval, 1975 ≤ t ≤ 1994 ,
and a fixed “lookforward” horizon, 1995 ≤ t ≤ 2014 (20 years).

• The jumping fixed-length horizon backtests make short run projections of five years10 and keep fixed
the length of the “lookback” horizon (20 years), but make jumps of five years ahead to cover the
“lookforward” interval, 1995 ≤ t ≤ 2014. This analysis is divided into four groups of estimations
and forecast, described in Table 2.

• Finally, the rolling fixed-length horizon backtests keep fixed the length of the “lookback” horizon (i.e.,
20 years) and let it roll ahead year by year. The projections are made over the remaining horizon,
keeping fixed the last year of the projection at t = 2014. This analysis is divided into nineteen
groups of estimations and forecast, described in Table 3.

10 We made a forecast of each year in the short-run projection window (5 years).
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Table 2. Jumping fixed-length horizon backtests data horizon.

Lookback Horizon Lookforward Horizon

1975–1994 1995–1999
1980–1999 2000–2004
1985–2004 2005–2009
1990–2009 2010–2014

Table 3. Rolling fixed-length horizon backtests data horizon.

Lookback Lookforward Lookback Lookforward

1975–1994 1995–2014 (20) 1985–2004 2005-2014 (10)
1976–1995 1996–2014 (19) 1986–2005 2006–2014 (9)
1977–1996 1997–2014 (18) 1987–2006 2007–2014 (8)
1978–1997 1998–2014 (17) 1988–2007 2008–2014 (7)
1979–1998 1999–2014 (16) 1989–2008 2009–2014 (6)
1980–1999 2000–2014 (15) 1990–2009 2010–2014 (5)
1981–2000 2001–2014 (14) 1991–2010 2011–2014 (4)
1982–2001 2002–2014 (13) 1992–2011 2012–2014 (3)
1983–2002 2003–2014 (12) 1993–2012 2013–2014 (2)
1984–2003 2004–2014 (11)

The numbers in parentheses show the length of the “lookforward” horizon. Moreover, they indicate
the position of the year 2014 over the related projection interval. This will be particularly useful for the
analysis of results that will be presented in Section 4.3.

Before going in depth about the backtesting analysis, we check for the estimation quality of the
models over the historical “lookback” interval, 1975 ≤ t ≤ 1994. For this purpose, we use the index
Λ2

x, a form of R2 that particularly fits our case (Draper and Smith 2014), described as follows:

Λ2
x = 1−

1
n ∑t(qO

x,t − q f t
x,t)

2 −
[

1
n ∑t(qO

x,t − q f t
x,t)
]2

1
n ∑t(qO

x,t)
2 −

[
1
n ∑t(qO

x,t)
]2 ,

where q f t
x,t is the fitted value for the qx,t and n is the total number of considered years (i.e., n = 20).

The index provides the proportion of the temporal variance explained by the model for all 57 ≤ x ≤ 90.
Figure 3 shows that both models fit the observed data generally well. Particularly in the case of males,
the share of the “explained variance” at any age is always greater than 88%, while, for females, in the
case of LC, it falls to 85% at x = 63. However, such a decrease takes place within a very limited age
range between 61 and 65 years.

Figure 3. Proportion of temporal variance explained by the models: 1975–1994.
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More specifically, by the analysis of the “explained variance” for both models, we see that the
irregular path of the curves may be influenced by a cohort effect before the age x = 80. This effect is
diagonally observable on the graphs in Figure 4 for those individuals aged 57–59 in 1975 and 76–78 in
1994, respectively. These are the generations born during the First World War (1915-1918) who, in the
course of their lives, have experienced higher mortality at the same ages than the previous and next
cohorts (Maccheroni 2016). For ages older than x = 75, the differences between the models are sharply
evident. In particular, LC overestimates qO

x,t and CBD underestimates (Figure 4).

Figure 4. Residuals
(
qO

x,t − qP
x,t
)

by age x: 1975–1994.

Analysis of the projection results that will be presented in the next section shows that the described
cohort effect has an impact on the forecast quality of the models in two ways.

• Both models slightly suffer the cohort effect for both populations over the projection horizon
(1995–2014) for the same cohort aged 77–79 in 1995 that is no longer observed from 2006.
In particular, both models show an underestimated forecast for such birth cohorts on both
sexes with observed values above the upper limit of the confidence interval for some ages of the
cohort. This occurred particularly for males.

• The observed male qx,t for individuals aged 57–59 in 1995 and 76–78 in 2014, respectively, are often
under the lower extreme of the forecast confidence interval. It seems that models have replicated
the cohort effect over an homologous cohort in 1995, but since the male mortality evolution has
changed consistently from 1975–1994 to 1995–2014, the two homologous cohorts (i.e., 57–59 in 1975
and 57–59 in 1995) showed different trends that lead to forecast errors. This scenario does not
occur for females, since women experienced a more ordinary mortality evolution. Therefore, the
homologous cohorts are similar, so the bias is not observable.

For these reasons, the results obtained with the three backtesting approaches need to be evaluated,
taking into consideration the analysed cohort effect and its related impact on the forecast. In particular,
forecasts seem to suffer the cohort effect as long as the data used for the estimation of the parameters
take into account years from 1975 to 1985. After 1985, the cohort effect is small compared to the overall
sample; therefore, projections do not suffer greatly from it.
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4.1. Fixed Horizon Backtest (1995–2014)

The first backtesting analysis takes into account a forecast horizon that is demographically
considered a medium-term projection horizon. The comparisons proposed are among the most likely
values of qP

x,t prediction, which is the projected central value derived by the model on which we
constructed the 95% confidence interval and those observed qO

x,t; comparisons between the central
value and extremes of the confidence interval occur only for the ages 65 and 85. These are the ages that
in the demographic literature mark the entrance in the range of so-called “young-old” and “oldest-old”.
Unfortunately, due to space limitations, it was not possible to present the comparison to the age of 75,
which divides the old from the “young-old” (Vaupel 2010).

The qO
x,t can present a strong temporal variability due to the observed cohort effect and to the

so-called “period effect”, which is the time condition that affects mortality via a variety of factors.
Among these, the best known is the climatic effect that can, for instance, cause a rise in mortality at old
ages during a very hot summer (e.g., an episode occurred in Italy in 2003), or epidemiological effects
that arise from flu in winter in low-mortality countries. Needless to say, the impact of those factors
is stronger on the most vulnerable people. For this reason, a rise in mortality due to those factors is
generally followed by a decrease in mortality, since those who remained alive have a lower frailty level.
These mortality shocks can affect short-term forecasts rather than medium-term ones, since the latter
are usually more capable of capturing changes in environmental and socio-economic conditions and
people’s lifestyles.
From an applicative point of view, particularly focused on the insurance and social security sector,
we were interested in analysing the performance of the models on assessing the risk of death at various
ages. It is from this point of view that we are going to develop our analysis. For this purpose, we make
a brief assessment of forecast errors that was performed using as an index the Root Mean Squared
Errors (RMSE), defined as follows:

RMSE =
√

MSE,

with
MSE =

1
υ ∑

x
∑

t
(qO

x,t − qP
x,t)

2,

where the mean squared errors (MSE) are equal to the sum of squared errors adjusted for the residual
degrees of freedom υ. Moreover, qO

x,t and qP
x,t are, respectively, the death probabilities observed and

forecast (projected). We use the root of the adjusted SSE to take into account the difference in the
number of free parameters between the models. Table 4 shows RMSE for the first and the second
backtesting approach that will be presented in the following section. Moreover, it takes into account
exclusively the central value of the confidence interval as the most relevant for pension policy-makers
and annuity providers (Whitehouse 2007).

Table 4 shows how the LC model proposes a more accurate forecast with respect to the CBD
model for the period 1995–2014 for females; it is more difficult to judge the models’ performances for
males given the small difference between the RMSE results. These predictions are produced on the
extrapolated parameters kt (Appendix Equations (A7) and (A9)), but the result is made more flexible
by the stochastic component of the models that allows building of the forecast confidence interval.
One cause of error can arise from the fact that the central value of the projection may be shifted with
respect to the observed data, even though it does not differ from the observed trend recorded over
the projection horizon. Figure 5 provides a graphic explanation of the phenomenon. In particular,
for individuals aged 65, the male forecasts 1995–2014 are above the mortality trend observed for the
same period, with divergent paths for the LC model. In the female case (age 65), only the CBD model
shows divergences. However, these deviations may be instead very low, as in the case of the LC model
for females aged 65, or in the case of both models for both sexes aged 85 (Figure 5). Moreover, the
bias due to the continuing fluctuations of the risk of death over time has to be taken in consideration.
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The confidence interval provided by the two models takes into account this stochastic component of
mortality (Figures 7 and 9), although this may occur with different levels of precision (Figure 10).

Figures 6 and 8 show the overall error dynamic highlighted by the ratio between the projected
qP

x,t and the observed qO
x,t.

Figure 5. LC and CBD models: comparisons between observed and forecast mortality trends.

As far as men are concerned, the LC model initially overestimates qO
x,t from ages 57 to 80

(approximately), with persistence across years. In particular, the overestimation errors become
sharply evident as the projection is extended to the last year of the forecast horizon. Figure 6
multi-dimensionally shows the ratio between projected and the real death probabilities. The described
LC performance trend is also graphically reported by the Figure 7, comparing projections at ages 65
and 85 to the observed data. The overestimation starts decreasing from age 80, pointing out that the
divergence between qO

x,t and qP
x,t is really close to zero. However, for high ages at the extreme of the

interval, LC forecasts systematically underestimate qO
x,t.

Figure 6. Lee–Carter Fixed Horizon Backtest: qP
x,t

qO
x,t

ratio.

As for women, the divergence between qO
x,t and qP

x,t is sharply smaller than for men. This is
particularly evident in Figure 6, which shows that the forecast initially underestimates real data
converging at the age 65 and then starts overestimating for a wide span of ages. Furthermore, the last
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part of the age range is again characterized by an underestimation path. However, the overestimation
experienced at higher ages is smaller than the one observed in the male case.

Figure 7. LC Fixed Horizon Backtest forecast: comparison between observed death rates and the
corresponding 95% confidence interval of the forecast based on the time series 1975–1994.

The CBD forecast greatly overestimates the male mortality historical evolution, particularly for
the central and last years of projection. The error is evident in the full range of ages, although it
becomes smaller at the age 80, after which forecasts start underestimating qO

x,t with an increasing
magnitude until the last age and the last projection year (i.e., x = 90 and t = 2014) (Figure 8).

When we look at the female case, the accuracy of the CBD forecast is worse. In this case, in fact,
we can notice a wide and systematic underestimation on approximately all of the first half of the age
range for almost the totality of the forecast horizon. In particular, the forecast error reduces around the
age 68, then it starts overestimating until x = 85, after which it underestimates again. However, at
x = 85, the forecast is relatively accurate, with values of qO

x,t all inside the confidence interval (Figure
9).

Figure 8. Cairns–Blake–Dowd Fixed Horizon Backtest: qP
x,t

qO
x,t

ratio.
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In conclusion, both models make similar forecast errors. On the one hand, regarding males, the
error is represented by an initial overestimation that smoothly converges to the real data and then
starts underestimating, although the divergences experienced with the CBD model are characterized
by a smaller variability with respect to the LC model. On the other hand, the female case shows
an initial underestimation converging to the real data and then a fluctuation of overestimation and
final underestimation. In general, the LC model provides a better fit over a wide range of ages,
showing lower variability in both over and underestimation.

Figure 9. CBD Fixed Horizon Backtest forecast: comparison between observed death rates and the
corresponding 95% confidence interval of the forecast based on the time series 1975–1994.

In any case, the choice between the models becomes difficult at particular ages. Figure 10 shows
the high and low confidence intervals for both models. Even though LC curves are nested into the
CBD lines with greater differences shown in the male case, both models’ confidence intervals include
the observed data, providing theoretical robustness to the projections.

Figure 10. Fixed Horizon Backtest forecast: comparison between CBD and LC confidence intervals at
age 85.
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Table 4. Root Mean Squared Errors (RMSE) between observed qO
x,t and forecast qP

x,t.

Fixed Horizon Backtest

CBD model LC model

Prediction Years Male Female Male Female
1995-2014 0.00625 0.00401 0.00596 0.00274

Jumping Fixed-Length Horizon Backtests

CBD model LC model

Prediction Years Male Female Male Female
1995–1999 0.00321 0.00201 0.00386 0.00210
2000–2004 0.00470 0.00411 0.00532 0.00369
2005–2009 0.00373 0.00366 0.00455 0.00301
2010–2014 0.00250 0.00229 0.00299 0.00219

4.2. Jumping Fixed-Length Horizon Backtests

From the results shown in Table 4, it is clear that the two models best capture the trend of
female mortality. More specifically, the accuracy of the prediction about the next five years, using the
periods 1975–1994 and 1990–2009 as the database, is far higher than the other two sub-groups of
forecast. On the contrary, neither model shows the underestimating and overestimating path of the qO

x,t
at various ages, which was peculiar in characterizing the result in the previous backtesting case. Only
the results of the CBD model show a similar pattern, although in this case with overestimates and
underestimates staggered by age differently from period to period. This point will be discussed in
detail hereafter.

The analysed models should be assessed on a long-term prediction, but in this case, it is particularly
noticeable how a change in the starting point of the time series makes the models differently incorporate
the changes in mortality that occurred in the past 20 years. This is generally accomplished through
the parameter estimates, which are also reflected throughout the extrapolation process associated with
the model. However, an estimation procedure cannot guarantee a priori a constant performance of
the forecast. This is also due to the fact that the dynamic of mortality varies in accordance with a
multiplicity of social factors that affect the life of every person. Unfortunately, mathematical models are
not always able to capture such factors11. “We conclude that the deviations from exponential law at
young ages can be explained by heterogeneity, namely by the presence of a subpopulation with a high
initial mortality rate presumably due to congenital defects, while those for old ages can be viewed as
fluctuations and explained by stochastic effects” (Avraam et al. 2013, p. 1).

Now, we analyse the immediate effects of these estimates, starting with the LC model (1).
The parameters αx and βx are time-independent age-specific constants, so their estimations will
depend on the historical period used as the database and do not need to be predicted. The kt index
captures the time-series common risk factor in that same period, showing the main mortality trend
for all ages at time t. Forecasts are produced by extrapolating the time index kt, and the mortality
projections at each age are all linked together by the product12 βxkt (1).

In this backtesting framework, the shift forward of the database shows a continuous decline
in mortality provided by the estimates of the parameter αx and kt. Moreover, the estimations for
the parameter βx referring to the male case show greater values at the beginning of the age range
(57 ≤ x ≤ 90) than at the end. This result describes a greater decrease in mortality for those ages with
respect to the others, at which βx presents smaller estimated values (Figure 11, male).

11 Even though the LC and CBD models do not take into account social factors in their original formulation, several other
studies have considered heterogeneity and vitality factors (Li and Anderson 2009; Li and Anderson 2013).

12 For this reason, we decided to plot exclusively the βx dynamics, since they show a more interesting variability with respect
to the kt parameters that, in this case, are barely distant parallel and smooth curves among backtest jumps.
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This scenario is in line ex ante with the historical experience. However, the forecast for the
period 2000–2004 shows a systematic overestimation of the qO

x,t for both men and women until the age
x = 80 (Figure 12, LC model). Taking into consideration the female case, the estimates of the parameter
βx are more susceptible to changes in the starting point of the time series. Figure 11 shows this for the
female case. Needless to say, the female βx trend improved the accuracy of the forecast for the periods
1995–1999 and 2010–2014 (Figure 12, LC model).

Figure 11. LC Jumping Fixed-Length-Horizon: βx parameter estimates.

In the case of CBD model (2), the presence of two time-varying parameters k(1)t and k(2)t should
increase at least a priori the forecasting performance with respect to the LC model. This result is
evident for the male forecast in the short-run (Table 4). As mentioned, in the CBD model, the k(1)t
mortality index represents the level of the mortality curve, after the logit transformation. A reduction
in k(1)t entails a parallel downward shift of the logit-transformed mortality curve, which represents an
overall mortality improvement. In particular, this is what occurred in practice, with greater effects for
the female case that are enhanced by the smooth divergences of k(1)t trends between sexes. This is clear
on the left-hand side of Figure 13 below, in which we also checked for the new-data-invariant property
of the model (Chan et al. 2014).

Figure 12. LC and CBD qP
x,t

qO
x,t

ratio: comparison between models. Note: the curves represent the average

of the qP
x,t

qO
x,t

ratio over the five-years forecast horizon.

In this case, the jumps of five years ahead do not seem to affect the k(1)t trend. This is also
evidenced by the substantial continuity of the overall reduction in mortality. This is not the case as far
as the the k(2)t mortality index is concerned. Its path drafts the slope of the logit-transformed mortality

curve. An increase in k(2)t entails an increase in the steepness of the logit-transformed mortality curve,
which means that mortality at younger ages i.e., those below the mean age x̄ (here x̄ = 73.5) improves
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more rapidly than at older ages. This is clear on the right-hand side of Figure 13. Regarding the male
case, we find that the speed of increase in k(2)t is greater for the periods 1985–2004 and 1990–2009 than
for the other two. For this reason, the projected qP

x,t shows stronger improvements in mortality for
the periods 2005–2009 and 2010–2014 than for the others, particularly for the ages lower than x = 69.
More in depth, results show an underestimation of the qO

x,t for the ages lower than x = 69 and a smooth

overestimation path for those higher. Despite the fact that the growth of k(2)t between 1980 and 1999

is higher than that of 1975–1994 and that the reduction of k(1)t is greater, we find that qP
x,t sharply

overestimates qO
x,t in the period 1995–1999 and particularly in 2000–2004 for the full range of ages.

Figure 13. CBD Jumping Fixed-Length-Horizon: parameter estimates.

Regarding women, k(2)t presents similar records to men, whereas for the period 1990–2009,

the growth rate of k(1)t is slightly attenuated. In contrast with the male scenario, in this case, qP
x,t

systematically and significantly underestimates qO
x,t from the age x = 57, converging gradually to the

observed data as x moves towards x̄. Moreover, Figure 14 shows that the underestimations are larger
for the projection periods 2005–2009 and 2010–2014. This error path does not influence the forecasts of
ages higher than x̄ that generally overestimate qO

x,t. In particular, for ages higher than x̄, forecasts of the
periods 1995–1999 and 2010–2014 show better results than those of the other two projection windows
(Figure 12, CBD model).

Hence, comparatively, we conclude that a good result for the performance index RMSE (Table
4) can hide some compensation for the forecast error in terms of age and time. Figure 14 graphically
shows the described scenario.

Figure 14. LC and CBD qP
x,t

qO
x,t

ratio: comparison between models on the same gender. Note: the curves

represent the average of the qP
x,t

qO
x,t

ratio over the five-years forecast horizon.
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4.3. Rolling Fixed-Length Horizon Backtests

Finally, the analysis concludes with the study of the forecast convergence to the observed qO
x,t in the

year13 2014. For this reason, we build a framework of 19 groups of estimations and projections, rolling
the database (fixed-length of 20 years) sequentially forward from14 1975 to 1993. Then, we compare
the 2014 forecast obtained in each group with the realized mortality for that year. We observe that the
comparison enhances the same critical issues analysed in the previous paragraphs, with particular
emphasis on two main aspects.

Firstly, scrolling the database over time year by year gives rise to strong fluctuations in the
performance of the prediction measured by the ratio of qP

x,t and qO
x,t. These oscillations (Figures 15

and 16) are evident for both sexes in the results of both the LC and the CBD models. Moreover, the trend
is interrupted by a deep break in correspondence of the 1985–2004 database. In particular, the previous
base (1984–2003) provided a strong overestimation of qO

x,t especially at old ages. The base 1985–2004 data
has then reduced the size, while the next one (1986–2005) moved closer to qO

x,t.
One the one hand, this result may be related to the cohort effect described at the beginning

of paragraph 4, since the cohort effect is proportionally greater on the base of data including years
before 1985. On the other hand, they can be partially justified by also recalling that the year 2003
was characterized by a sharp rise in mortality, especially at old ages. Therefore, this historical event
may have affected the estimated parameters. However, in the male case, both models systematically
underestimate qO

x,t when the age is lower than x = 73, and overestimate when it is higher.

Figure 15. LC Rolling Fixed-Length Horizon Backtests: qP
x,t

qO
x,t

ratio 2014.

This result is particularly evident when the “lookback” horizon is 1985–2004, and also for the
following cases. In particular, CBD underestimates when the database refers to the period 1981–2000.
However, for the period 1985–2004, the divergence becomes greater compared to the LC model
(Figures 15 and 16). As is shown, the choice of the database plays a crucial role in forecasting mortality.

Figure 15 shows the ratio between the projected and observed death probabilities for the
year 2014. Table 3 shows the projections obtained for that year on each pair of “Lookback” and
“Lookforward” horizons.

13 The choice for the year 2014 was motivated by the observed regular mortality path. The 2015 mortality trend is expected to
be increased, particularly at old ages (Istat 2016).

14 These represent the initial years of the 20-year-long database; i.e., 1975 refers to the estimation period 1975–1994, and so on.
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Figure 16. CBD Rolling Fixed-Length Horizon Backtests: qP
x,t

qO
x,t

ratio 2014.

In particular, the sub-case index of the graph shows the position of that year on the projection
horizon (i.e., 20 means that the year 2014 was the 20th year of the projection, 19 means the 19th,
and so on ). Since the dataset is rolling over time and decreasing the projection horizon, we decided
to show the position of the year 2014 to take into account both the specific sub-case and the related
length of the forecast horizon. Figure 16 shows the same for the CBD model with an inverted order of
sub-cases for males to better show the shape of each curve.

Secondly, we detected substantial differences between the performances of the two models by
analysing female mortality. Figure 16 shows how the CBD model systematically underestimates real
mortality until the age of 75 and then starts converging to qO

x,t after that “threshold” age. This result,
which was already evident in the previous analysis, is likely linked to the combined effects on the
CBD model (2) of the role of the mean age x̄ (in our case x̄ = 73.5) of the age group, for which the
forecast is made, and of the observed female mortality pattern. These results are also confirmed from
the analysis of the confidence interval referred to the forecast. Figure 17 shows that, in the female case
at age 65 (t = 2014), qO

x,t is always outside the confidence interval, while at age 85, it is inside with
central values almost converged to the real data in each sub-case (Figure 18). In the case of the LC
model, the initial underestimation of the qO

x,t is much less pronounced with respect to the previous
case. Moreover, the “threshold” age, with respect to which the forecast underestimates and then
overestimates qO

x,t, increases as the database moves forward (Figure 15).
Figures 17 and 18 show the convergence of the projections to the observed data for the year 2014,

at ages 65 and 85. The x-axis shows the position of the year on the forecast horizon as before. Figures
19 and 20 present the same for the Lee–Carter model.

Figure 17. CBD Rolling Fixed-Length Horizon Backtests (age 65): convergence to real data (2014).
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Figure 18. CBD Rolling Fixed-Length Horizon Backtests (age 85): convergence to real data (2014).

Figure 19. LC Rolling Fixed-Length Horizon Backtests (age 65): convergence to real data (2014).

Figure 20. LC Rolling Fixed-Length Horizon Backtests (age 85): convergence to real data (2014).

5. Conclusions

The main aims of this paper are to scrutinize the forecast for both sexes proposed by the original
formulation of the models, given the wide use of LC at the national level, and to analyse the long-term
forecast with respect to the short term, observing qualitative differences in the estimation of the
parameter accordingly to changes in the starting point of the database.

Regarding the former, we find that, basically, neither model was able to capture the shock in
terms of improvements on the male mortality trend, with greater biases for ages lower than x = 75,
which were those more affected by the improvement. In this sense, CBD forecasts for those ages are
more biased than LC projections in terms of overestimations. The limited capacity of the models
to predict male mortality is evident in all of the three backtesting frameworks. Table 4 numerically
summarizes the difference in terms of performances between sexes for the first two backtesting
approaches. In addition, the analysis of the forecast for the year 2014 that we provided with the third
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approach confirms this result. Moreover, women’s forecasts are widely more accurate than men’s,
with small biases observed both in the short and the medium-term. However, in the female case,
CBD projections showed particularly deep and systematic underestimations with respect to ages lower
than 75.

From the comparison between the short-term and the medium-term forecast, we find that changes
in the starting point of the database widely affect the estimation of the LC parameters, particularly
for βx with observable impacts on the projections. The female forecasts are more influenced by those
changes in βx. The CBD model satisfies the “new-data-invariant” property for the estimation of the
parameter k(1)t , while k(2)t presents persistent changes for the same year as the dataset slides forward.
This aspect is more evident in males than in females. In particular, the adjustment of the parameter
k(2)t (i.e., x − x̄) affects mortality forecasts with weights of the opposite sign at the extremes of the
considered age range. The weight is greater the larger the age range. This structural characteristic of
the model, albeit simultaneously with k(1)t , results in a systematic underestimation of the qO

x,t for ages
lower than x̄ that gradually decrease as x moves towards x̄. Moreover, mortality forecasts around x̄
are almost exclusively explained by k(1)t , since (x− x̄) is really close to 0 in that case. On the contrary,
as x gets closer to the upper limit of the age range, the weight of (x− x̄) on mortality forecasts changes
with the opposite sign, with resulting overestimation of the qO

x,t. For these reasons, the risk in terms of
application of the models is conspicuous because it could potentially affect both the mortality risk and
the longevity risk. Taking into consideration the variability of both the parameters βx (LC) and k(2)t
(CBD), it is difficult to judge a priori what these two rigidities penalize more in the mortality forecast.

As far as the CBD model is concerned, we find that projections are not reliable for describing
mortality at ages before x = 75. For this reason, LC projections are preferable for describing Italian
mortality in this particular framework of years and ages. However, CBD forecasts showed a more
restrained variability of the forecast error at higher ages with respect to LC. This result and the fact
that usually the CBD confidence interval at higher ages is wider (i.e., LC is nested in CBD) than LC
ones provide a more accurate theoretical robustness to the CBD for ages greater than x = 75.

We would like to make clear that we examined the models in their original form, so we cannot
rule out the possibility that some extensions of the models might resolve these issues on Italian data
(1975–2014). In particular, we expect that the results of both models may be improved with the
adoption of the model extensions, including a cohort component, in order to reduce the bias caused by
the cohort effect of those born during the First World War. Moreover, the CBD extension, including the
quadratic term of the age component, may solve the weighting issue of the model over the considered
interval of ages on this data.

In conclusion, the results seem to be relevant for private and public Italian annuity providers that
use LC forecasts as demographic bases. From this perspective, the choice between the two models may
vary in accordance with the purpose of the use of the model (e.g., the age and the sex of the insured).
Even though we limited our analysis to the study of the forecast qx,t, we can infer that a backtesting
analysis of annuity prices, based on the forecast obtained by the original formulations of the models,
would show evidence of a distortion caused by the forecast error on the money’s worth of an annuity
and on reserves.
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Appendix A. Lee–Carter Estimation and Projection

Appendix A.1. Parameter Estimations

The parameter estimation was computed with respect to the Ordinary Least Square (OLS) estimation
method in accordance with the original approach suggested by the authors.

The following constraints were used to find a unique solution for the parameters:

xm

∑
x=x1

βx = 1 and
tn

∑
t=t1

kt = 0. (A1)

To obtain the estimation for the variable α̂x, it was necessary to compute the partial derivative
of the equation LS(α, β, k) = ∑x ∑t(ln (mx,t)− αx − βxkt)2 , with respect to αx. Then, as a first order
condition, we get:

α̂x =
1

tn − t1 + 1 ∑
t

ln (mx,t), (A2)

where the denominator simply represents the number of years considered in the dataset,
and x = x1, ..., xm is the considered range of ages. As is expressed by the Equation (A2), the estimation
for the first parameter αx was given by the average of the logarithms of the central rate of mortality
over time t. Furthermore, the estimations of β̂x and k̂t for the parameters βx and kt were obtained by
adopting the Singular Value Decomposition of the matrix A of elements (ln mxi ,tj − αxi), with i as age
index and j as time index (years considered in the data).

At this point, the estimated parameters were recalibrated so the differences between the actual
and the estimated total deaths in each year were zero. This implies that the recalibrated k̂∗t solves
the equation15:

∑
x

dx,t = ∑
x

e(α̂
∗
x+β̂∗x k̂∗t )Lx,t. (A3)

Finally, the estimated parameters were adjusted to satisfy the constraint at (A1) for the parameter
k̂∗t . Then:

a∗x = α̂x + β̂x k̄, (A4)

β∗x = β̂x

(
xm−x1+1

∑
j=1

β̂1j

)
, (A5)

k∗t = (k̂∗t − k̄)

(
xm−x1+1

∑
j=1

β̂1j

)
, (A6)

where k̄ = 1
tn−t1+1 ∑tn

t=1 k̂∗t is the arithmetic average of k̂∗t with respect to time t, and

(
∑xm−x1+1

j=1 β̂1j

)
is simply the sum of all the estimated β̂, which sum to 1. The fitted model is then used to estimate the
median and the 95% prediction interval.

15 Equation (A3) has no explicit solution, so it has to be solved numerically.
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Appendix A.2. Parameter Projection

We projected the estimated16 parameters k∗t of the Lee–Carter model using a Random Walk with
Drift equation:

kt = kt−1 + d + ηt with ηx,t ∼ N (0, 1)aandaE(ηs, ηt) = 0, (A7)

where the drift d is estimated by the formula:

d̂ =
(k∗2 − k∗1) + (k∗3 − k∗2) + ... + (k∗T − k∗T−1)

tn − t1
=

(k∗T − k∗1)
tn − t1

,

with k∗T and k∗1, respectively, given by the first and the last elements of the vector k∗t = [k∗1, ..., k∗T ].
The drift is simply the arithmetic mean of the differenced series of estimated parameters.

After having solved Equation (A7) of the RWD model, we describe the projection of the parameter
kt at time T + ∆t as follows:

k̂T+∆t = k∗T + (∆t)d̂ +
√

∆tηt.

At this point, it was possible to get the equation for the projection of the central rates of mortality
as follows:

m̂x,T+∆t = ea∗x+b∗x k̂T+∆t .

Finally, we transformed the central mortality rates into probabilities by adopting the Reed and
Merrell (1939) method. The relation is expressed by the equation:

nqx,t = 1− e−n(mx,t)−n30.008(mx,t)
2
.

Appendix B. Cairns–Blake–Dowd Estimation and Projection

According to the original formulation of the model proposed by Cairns et al. (2006), Equation (2)
is the result of the logit transformation of the following model equation:

qx,t =
ek(1)t +k(2)t (x−x̄)

1 + ek(1)t +k(2)t (x−x̄)
. (A8)

Fitted values for the stochastic processes k(1)t and k(2)t were obtained using least squares applied
to the Equation (A8). The fitted model is then used to estimate the median and the 95% prediction
interval.

The parameters vector~kt =
[
k(1)t , k(2)t

]′
has been projected by considering the following equation

of a two-dimensional random walk with drift:

~kt+1 =~kt + µ + CN(t + 1), (A9)

where

• µ is a constant 2 × 1 vector of drifts, computed as the arithmetic mean of the differenced series of
estimated parameters;

• C is a constant 2 × 2 upper triangular matrix, derived by the unique Cholesky decomposition of
the variance–covariance matrix V = CC′ of the parameters vector~kt+1; and

• N(t + 1) is a two-dimensional standard normal random variable.

16 We used MATLAB (R2010b, The MathWorks, Inc., Natick, Massachusetts 01760 USA) for estimation and forecast.
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The adopted forecast method treats the estimated parameters as if they were the true parameter
values (parameters certainty). In particular, the presented projections were computed17 considering
parameter certainty based on 5000 simulation trials.
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