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Abstract: This paper gives a detailed overview of the current state of research in relation to the use
of state space models and the KALMAN-filter in the field of stochastic claims reserving. Most of
these state space representations are matrix-based, which complicates their applications. Therefore,
to facilitate the implementation of state space models in practice, we present a scalar state space
model for cumulative payments, which is an extension of the well-known chain ladder (CL) method.
The presented model is distribution-free, forms a basis for determining the entire unobservable
lower and upper run-off triangles and can easily be applied in practice using the KALMAN-filter for
prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy
way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of
the scalar state space model, promising prior state space models and some popular stochastic claims
reserving methods is performed.

Keywords: state space models; KALMAN-filter; stochastic claims reserving; outstanding loss liabilities;
ultimate loss; prediction uncertainty; chain ladder method

1. Introduction

At the end of each fiscal year, non-life insurance companies face the situation that the earned
premiums are known, but not the outstanding loss liabilities. Consequently, one of the main tasks for
actuaries in non-life insurance is to quantify accurately the outstanding loss liabilities. The outstanding
claims reserves are often a large share of the liability side of the balance sheet, so it is very important for
every non-life insurer to handle claims reserving adequately. It is not surprising, therefore, that over
the past 40 years, numerous reserving methods have been developed, particularly since the early 1990s.
These methods are based on various models (see Wüthrich and Merz (2008)), but rarely on time series
models. This is surprising, especially in light of the fact that the claims process is a stochastic process,
and claims data, as a sequence of discrete time data, represent time series.

In this paper, methods of claims reserving are considered, which are based on time series models,
particularly on state space models. A state space model consists of a state equation describing the
dynamics of the system and an observation equation establishing a link between the unobservable
states of the system and the observations. Compared to other models, state space models have
the advantage that the temporal dynamics of a system can often be detected more accurately.
In addition, state space representations can be used flexibly to model univariate and multivariate,
stationary and non-stationary time series or in cases of structural changes, interventions, missing data
or other data irregularities. A consideration of state space models leads directly to the application
of the KALMAN-filter algorithms for parameter estimation, forecasting, filtering and smoothing.
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The KALMAN-filter is generally distribution-free and provides the best linear predictors in the sense of
minimizing the mean squared error (see Kalman (1960)).

There are currently 16 research papers in stochastic claims reserving on the topic of state space
models and the KALMAN-filter. Most of these state space representations are based on a calendar year
approach, i.e., all available observations of one calendar year are stacked into one observation vector.
The matrix-based approach of these models and the resulting KALMAN recursions can complicate
their applications. Therefore, to facilitate the implementation of state space models in practice, a new
scalar approach is introduced in this paper. The resulting distribution-free scalar state space model for
cumulative payments can be considered as an extension of the chain ladder (CL) method under the
assumption that the observations in the upper triangle are based on unobservable states.

According to this content, the paper is structured as follows. Section 2 gives a brief overview of
claims development triangles and the CL method. In Section 3, we present the previous papers
in stochastic claims reserving on the topic of state space models, their contentual similarities
and selected modeling approaches. Section 4 introduces the scalar state space model and gives
derivations of the formulas for claims reserves and the mean squared error of prediction (MSEP).
An empirical comparison of the scalar state space model and promising state space models, as well
as popular stochastic claims reserving methods is given in Section 5. Finally, Section 6 provides
concluding remarks.

2. Development Triangles and the CL Method

Statistical analysis of claims payments data is usually done by using claims development triangles.
In this paper, we denote accident years by i = 0, . . . , I, development years by j = 0, . . . , J and
calendar years by t = i + j. We assume further that all claims are settled after the J-th development
year. Cumulative payments in accident year i after j development years are denoted by Ci,j, and
incremental payments in the j-th development year are denoted by Xi,j, respectively. An exemplary
claims development triangle (see Table 1) is the dataset of Taylor and Ashe (1983), which includes data
from the motor bodily injury class of business in one Australian state (1972–1981, quoted in Australian
Dollars). Due to its popularity in claims reserving literature, the dataset of Taylor and Ashe (1983) acts
like a kind of benchmark development triangle for claims reserving methods.

Table 1. Cumulative payments in the claims development triangle of Taylor and Ashe (1983).

Accident Development Year j

Year i 0 1 2 3 4 5 6 7 8 9

0 357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463

1 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085

2 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315

3 310608 1418858 2195047 3757447 4029929 4381982 4588268

4 443160 1136350 2128333 2897821 3402672 3873311

5 396132 1333217 2180715 2985752 3691712

6 440832 1288463 2419861 3483130

7 359480 1421128 2864498

8 376686 1363294

9 344014
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The CL method is probably the most popular loss reserving technique, and there are several
stochastic models that could be used as a basis for the application of the CL method. In this paper, we
introduce briefly the distribution-free CL model of Mack (1993).

Model Assumptions 1 (Distribution-free CL model of Mack (1993)).

B Cumulative payments Ci,j of different accident years i are stochastically independent.
B There exist factors f0, . . . , f J−1 > 0 and variance parameters σ2

0 , . . . , σ2
J−1 > 0, such that for all

i = 0, . . . , I and all j = 0, . . . , J − 1, we have:

E[Ci,j+1|Ci,0, . . . , Ci,j] = E[Ci,j+1|Ci,j] = f jCi,j (1)

Var(Ci,j+1|Ci,0, . . . , Ci,j) = Var(Ci,j+1|Ci,j) = σ2
j Ci,j

C

The development factors and variance parameters are then estimated using the (unconditionally)
unbiased estimators:

f̂ j =
∑

I−j−1
i=0 Ci,j+1

∑
I−j−1
i=0 Ci,j

(2)

and:

σ̂2
j =

1
I − j− 1

I−j−1

∑
i=0

Ci,j

(
Ci,j+1

Ci,j
− f̂ j

)2

(3)

for f j and σ2
j , respectively (for more details, see Mack (1993)).

3. Prior Applications in Stochastic Claims Reserving

This section presents the previous papers in claims reserving literature on the topic of state
space models and the KALMAN-filter, their relationships and selected modeling approaches of claims
development data, as well as their state space representations.

3.1. Chronology and Categorization of the Papers

There are 16 papers in the claims reserving literature that are based on state space models and
the KALMAN-filter. Figure 1 displays these papers in chronological order and classifies them into four
categories considering their substantial contentual similarities. The formulated categories “parametric
development”, “log-normal model”, “different approaches” and “comparisons” need not be taken
as mutually exclusive. Instead, the choice of the appropriate category is made considering the main
approach used in the respective paper. In the papers of the first category a parametric development of
claims data over the development years is assumed. The papers of the second category are based on
the log-normal model for incremental payments, while in the third category, different approaches are
aggregated. The fourth category unites comparisons of various reserving methods. The solid arrows in
Figure 1 represent the contentual similarities among the papers in modeling approaches. The dashed
arrows indicate, however, that the respective models are included in the papers of the fourth category
that compares various models.



Risks 2017, 5, 30 4 of 23

1983

1984
1985
1986
1987
1988

1989

1990

1991
1992
1993

1994

1995
1996

1997

1998
1999
2000
2001

2002

2003

2004

2005

2006

2007
2008
2009

2010

2011

De Jong & Zehnwirth

Wright

Verrall

Verrall

Zehnwirth

England & Verrall Ntzoufras & Dellaportas

Taylor et al. Alpuim & Ribeiro

Verrall

Li

De Jong

De Jong

Atherino et al.

Pang & He2012

2013

2014 Johannssen
t

b

Parametric Development

Log-Normal Model

Different Approaches

Comparisons

Figure 1. Chronology and categorization of the papers based on state space models.

3.2. Modeling of Claims Development Data

In the first category, the authors De Jong and Zehnwirth (1983), Wright (1990), Zehnwirth (1997),
Taylor et al. (2003) and Pang and He (2012) mainly use variations on the Hoerl curve to model
the claims data over the development years. The general exponential-logarithmic Hoerl curve is
given as β j = exp(κ j + δ log j) with development year parameter β j for all j = 0, . . . , J and κ, δ ∈ R.
An advantage of treating development time j as a continuous covariate is that extrapolation is possible
beyond the range of development times observed (see Frees (2010) and Kaas et al. (2009)). As a
variation, De Jong and Zehnwirth (1983), for example, define incremental payments Xi,j as:

Xi,j = αi(j + 1)e−j + wi,j (4)

with accident year parameter αi and wi,j ∼WN
(
0; σ2

w
)

for all i = 0, . . . , I and j = 0, . . . , J. To allow a
dynamic recursive estimation of the accident year parameters and to avoid over-parametrization,
they assume the accident year parameters evolve in the way αi+1 = αi + vi with α0 = 0 and
vi ∼WN

(
0; σ2

v
)
. The modeling (4) leads to the general shape of incremental payments curve over the

development years, i.e., the incremental payments are supposed to rise very fast in early development
years and to decrease exponentially over the following development years.
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The models in the papers of the first category are mostly distribution-free in contrast to the papers
of the second category (Verrall (1989,1994), Ntzoufras and Dellaportas (2002)), in which incremental
payments are assumed to follow a log-normal distribution. The logarithmic incremental payments are
specified by the log-normal model:

Yi,j = log
(
Xi,j
)
= µ + αi + β j + wi,j (5)

with Xi,j > 0, mean µ, accident year parameter αi, development year parameter β j and the GAUSSian
white noise process wi,j ∼ WN

(
0; σ2

w
)

for all i = 0, . . . , I and j = 0, . . . , J. The accident and
development year parameters are further assumed to evolve as follows for the same reasons as
in De Jong and Zehnwirth (1983):

αi+1 = αi + v(α)i

β j+1 = β j + v(β)
j

(6)

with α0 = β0 = 0 and white noise processes v(α)i and v(β)
j for all i = 0, . . . , I and j = 0, . . . , J. Model (5)

was also named as the “linear CL model” by Verrall (1989,1994), since it is very similar to an additive
representation of the CL method (see also Kremer (1982)). In addition to the basic model (5), which is
used by Verrall (1989) and Li (2006), Verrall (1994) and Ntzoufras and Dellaportas (2002) extend the
basic model by integrating varying run-off evolutions.

As a first example of the third category, Atherino et al. (2010) consider a different data ordering of
non-cumulative run-off triangles, in which the stacked rows of a triangle form a univariate time series
yt with several runs of missing data. They choose a structural model for the incremental payments
with a local level component νt, a stochastic periodic component ηt and a regression term hT

t u,

yt = νt + ηt + hT
t u + wt (7)

νt+1 = νt + v(ν)t (8)

ηt+1 = −
J−1

∑
d=1

ηt+1−d + v(η)t (t = J − 1, J, . . .) (9)

with the GAUSSian white noise processes wt, v(ν)t , v(η)t . This model and its components are motivated
by the claims process behavior: The level component shall respond for the average value of claims
along each accident year, while the periodic component is supposed to capture the development year
effect. The regression term is mainly motivated by the need for intervention effects due to the presence
of outliers.

Another example of the third category to model the claims data can be found in
Alpuim and Ribeiro (2003). They assume that the incremental payments Xi,j for the i-th accident
year (i = 0, . . . , I) in the j-th development year (j = 1, . . . , J) depend on the payments Xi,0 of the
respective accident year,

Xi,j = λi,jXi,0 + wi,j (10)

with wi,j ∼ WN
(
0; σ2

w
)
. That is, the total amount of claims incurred in year i and paid j years later

is proportional to the claims incurred and paid in accident year i. This proportion varies randomly
with development and accident year, so that they assume for the proportion parameter λi,j a first order
autoregressive process:

λi,j = µj + φj(λi−1,j − µj) + vi,j (11)
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with mean µj and vi,j ∼ WN
(
0; σ2

v
)
. Moreover, the Xi,j of different development years j = 1, . . . , J are

stochastically independent.
Since the fourth category (England and Verrall (2002), Verrall (2004), Li (2006)) provides

comparisons of various methods, there is only a recapitulation of existing approaches in the remaining
papers.

All of these modeling approaches can be converted into a state space representation, and then,
the KALMAN-filter can be used for prediction, filtering and smoothing of the claims development data.

3.3. Modeling Approaches of State Space Representations

Most of state space representations in the introduced papers are based on the calendar year
approach, which provides the claims data of each calendar year to be stacked into separate observation
vectors of the respective calendar years. In addition to this approach, there are further differing
approaches considering an accident year- or a development year-based modeling of the observation
vectors (see Figure 2) as also detached approaches, which model run-off triangle data, for example as a
univariate time series.

accident year based

d
ev
el
op

m
en
t
ye
ar

b
as
ed

ca
len

da
r y
ea
r b

as
ed

Development years

A
cc
id
en
t
ye
ar
s

Figure 2. Modeling approaches of claims development data.

The popularity of the calendar year-based approach can be justified as follows:

• Annually-added observations build a new diagonal in the run-off triangle. Therefore, the calendar
year approach corresponds to natural modeling of the claims data.

• The observations of the same calendar year are subjected to calendar year effects of the same level,
such as the inflation factor or changes in legislation.

• As for estimating and forecasting, the recent observations should be weighted higher compared
to past observations. This proposition is also consistent with the view of many authors such
as Verrall (1994), Taylor (2000) or De Jong (2005,2006). Therefore, the use of the KALMAN-filter
is justified here. Its recursive and dynamic nature complies with this requirement especially in
relation to the calendar year approach.

Four representative state space models, which are also used for the empirical comparison in
Section 5, are presented below. Two of these models (Verrall (1989), Li (2006)) are based on the calendar
year approach, and the other two models (Atherino et al. (2010), Alpuim and Ribeiro (2003)) consider
detached approaches. As for accident year and development year approaches, they can only be
found in Taylor et al. (2003) and De Jong and Zehnwirth (1983). However, these approaches have
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no significant advantages compared to the calendar year approach, so they are not introduced in
this paper.

The state space representation of the log-normal model for incremental payments in Verrall (1989)
has the observation equation:



Y0,t
Y1,t−1

Y2,t−2
...

Yt−1,1

Yt,0


︸ ︷︷ ︸
observation

vector

=



1 0 . . . . . . 0 1
1 1 0 . . . . . . 0 1 0 0
1 0 0 1 0 . . . 0 1 0 0 0 0
...

. . .
...

...
. . .

...
1 0 1 0 . . . . . . 0 1 0 0 0
1 0 . . . . . . 0 1 0


︸ ︷︷ ︸

system matrix



µ

α1

β1
...

αt

βt


︸ ︷︷ ︸

state
vector

in t

+



w0,t
w1,t−1

w2,t−2
...

wt−1,1

wt,0


︸ ︷︷ ︸
measurement

noise
vector

for calendar year t = 0, . . . , I, which implies (5) for each Yi,j of calendar year t = i + j, and the
state equation:



µ

α1

β1
...

αt+1

βt+1


︸ ︷︷ ︸

state
vector
in t+1

=



1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1
0 . . . 1 0
0 . . . 0 1


︸ ︷︷ ︸

transition matrix



µ

α1

β1
...

αt

βt


︸ ︷︷ ︸

state
vector

in t

+



0
...
0
0

v(α)t

v(β)
t


︸ ︷︷ ︸

process
noise
vector

(12)

for t = 0, . . . , I, where (12) allows a dynamic recursive estimation of the accident and development year
parameters via (6). The state space model of Verrall (1989) is also used in Li (2006), but slightly modified.

The state space representation of the structural model in Atherino et al. (2010) has the
observation equation:

yt =
(

1 1 0 . . . 0
)

︸ ︷︷ ︸
system matrix


νt

ηt

ηt−1
...

ηt−J+2


︸ ︷︷ ︸

state
vector

in t

+hT
t u + wt,

that stands for (7), as well as the state equation:
νt+1

ηt+1

ηt
...

ηt−J+3


︸ ︷︷ ︸

state
vector
in t+1

=


1 0 0 . . . 0
0 −1 −1 . . . −1
0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0


︸ ︷︷ ︸

transition matrix


νt

ηt

ηt−1
...

ηt−J+2


︸ ︷︷ ︸

state
vector

in t

+



v(ν)t

v(η)t
0
...
0


︸ ︷︷ ︸

process
noise
vector

,
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which includes (8) and (9). In both state space representations Verrall (1989) and Atherino et al. (2010),
the GAUSSian white noise processes are assumed to be stochastically independent as also independent
of the initial state.

Both examples and the most state space representations in the other papers have a matrix-based
approach in common, so the KALMAN recursions also contain numerous matrices of high dimensions
(see, for example, Brockwell and Davis (2006)). This complicates parameter estimation and practical
application considerably. Therefore, a scalar structure could likewise be a preferable approach. One
alternative is the state space model in Alpuim and Ribeiro (2003), which consists of the observation
Equation (10), the state Equation (11) and the additional assumption E[vi,jwk,l] = 0 for all i, k = 0, . . . , I
and j, l = 1, . . . , J. Another promising alternative is the newly-developed scalar state space model
introduced in Section 4.

4. Scalar State Space Model for Cumulative Payments

The idea behind the scalar state space model is a modification of the CL method to get a meaningful
state space representation and to use the KALMAN-filter for calculating the claims reserves, as well
as for measuring their precision. Since the CL method operates under the assumption that the
cumulative payments are a linear function of the cumulative payments of the previous development
year, we consider a linear state space model.

4.1. Model Assumptions and KALMAN Recursions

It is assumed that a run-off triangle of observed cumulative payments Cobs
i,j is based on a run-off

triangle of unobservable states Ci,j with i + j ≤ I for all i = 0, . . . , I and j = 0, . . . , J with I = J.
Therefore, there is a probable observation error in the claims data, and we can not definitely observe
“real cumulative payments”, i.e., the payments made do not necessarily correspond with the payments
actually incurred. One possible reason for this difference is that a claim is not reported correctly,
for example if the claim is not reported, only partially reported or reported too late. Therefore,
we model these unobservable “real cumulative payments” as latent variables. The scalar state
space model for cumulative payments presented below provides a basis for determining the entire
unobservable upper and lower run-off triangles using KALMAN-filter, that is prediction, filtering and
smoothing of all states Ci,j with i = 0, . . . , I and j = 0, . . . , J (see Figure 3).
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Figure 3. Unobservable states, observations and KALMAN smoothings (i + j < I), KALMAN filterings
(i + j = I) and KALMAN predictions (i + j > I).

Model Assumptions 2 (Scalar state space model for cumulative payments).

B There exist parameters gj > 0 and σ2
w > 0, such that:

Cobs
i,j = gjCi,j + wi,j (observation equation) (13)

with wi,j ∼WN
(
0; σ2

w
)

for i = 0, . . . , I and j = 0, . . . , J.
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B There exist parameters f j > 0 and σ2
v > 0, such that:

Ci,j+1 = f jCi,j + vi,j (state equation) (14)

with vi,j ∼WN
(
0; σ2

v
)

for i = 0, . . . , I and j = 0, . . . , J − 1.
B The white noise processes (wi,j)

i=0,...,I
j=0,...,J and (vi,j)

i=0,...,I
j=0,...,J−1 are uncorrelated and therefore satisfy

E[vi,jwk,l ] = 0 for all i, k = 0, . . . , I, j = 0, . . . , J − 1 and l = 0, . . . , J.
B Cumulative payments Ci,j of different accident years i are stochastically independent.

C

The assumption of uncorrelated white noise processes is motivated by the fact that there is
no reason to assume a systematic relationship between the measurement noise (wi,j)

i=0,...,I
j=0,...,J and the

process noise (vi,j)
i=0,...,I
j=0,...,J−1. Nevertheless, this assumption is not necessary, but simplifies the KALMAN

recursions. The further assumption of stochastically independent accident years is frequently applied
to claims reserving and especially used in the CL method (see Model Assumptions 1).

The state equation and the observation equation can also be stated as follows:

Ci,j = f j−1Ci,j−1 + vi,j−1 = . . . = ai,j(Ci,0, vi,0, . . . , vi,j−2, vi,j−1) (15)

Cobs
i,j = gjCi,j + wi,j = . . . = bi,j(Ci,0, vi,0, . . . , vi,j−2, vi,j−1, wi,j) (16)

Here, ai,j and bi,j for i = 0, . . . , I and j = 0, . . . , J are appropriate linear functions. Considering (15),
(16) and the assumptions regarding the measurement and process noise, it is clear that:

E[Ci,jvi,l] = 0 and E[Ci,jwi,k] = 0

for all j, k = 0, . . . , J, l = 0, . . . , J− 1 with j ≤ k, j ≤ l. Consequently, the initial state Ci,0 of an accident
year i = 0, . . . , I is uncorrelated with vi,j and wi,j for all j.

Remark 1.

• To forecast future cumulative payments Ci,j with i + j > I for i = 1, . . . , I, j = 1, . . . , J (lower
triangle) the corresponding KALMAN predictions are required. The one-step predictor provides
forecasts for the next calendar year t = I + 1, while the h-step predictor shall be used for forecasting
cumulative payments in calendar years t = I + h with h > 1.

• As for the underlying states Ci,j of the observations Cobs
i,j in the upper triangle, the KALMAN

filterings (for i + j = I) and smoothings (for i + j < I) are useful to identify outliers in the
observations and to replace them with smoothed or filtered observations, as well as to obtain an
adjusted presentation of the observed quantities and to determine outlier effects. Another key
application of smoothing and filtering is the determination of missing values in the upper run-off
triangle (for example, resulting from a merger) to interpolate gaps in the data.

Remark 2.

• We denote the one-step predictor by Ĉ(P)
i,j+1 and its error variance by(

σ̂
(P)
i,j+1

)2
= E

[ (
Ci,j+1 − Ĉ(P)

i,j+1

)2 ]
for j = 0, . . . , I − i, as well as the h-step predictor by Ĉ(P)

i,j+h and

its error variance by
(

σ̂
(P)
i,j+h

)2
= E

[ (
Ci,j+h − Ĉ(P)

i,j+h

)2 ]
for j = 0, . . . , J − h. The superscript (P)

stands for “prediction” and the subscript indicates the cell (i, j+ 1) or (i, j+ h) in the lower triangle,
for which we predict cumulative payments.

• We denote the filtering by Ĉ(F)
i,j and its error variance by

(
σ̂
(F)
i,j

)2
= E

[ (
Ci,j − Ĉ(F)

i,j

)2 ]
for j = 0, . . . , I − i, as well as the smoothings by Ĉ(S)

i,j and their error variances by
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(
σ̂
(S)
i,j

)2
= E

[ (
Ci,j − Ĉ(S)

i,j

)2 ]
for j = I − i, . . . , 0. The superscript (F) or (S) stands for “filtering” or

“smoothing”, and the subscript indicates the (i, j)-cell in the upper triangle, for which we filter or
smooth cumulative payments.

The KALMAN recursions for prediction, filtering and smoothing are given below. There are two
different smoothing approaches: fixed-point and fixed-interval smoothing. While the fixed-point
approach calculates smoothed values for a few fixed, predetermined points of time, the fixed-interval
approach provides an ex post reconstruction of the behavior of a system in order to understand
the phenomenon underlying observations. Since we are going to smooth all observations in the
upper run-off triangle for identifying outliers in the data, the fixed-interval algorithm is presented
(the fixed-point algorithm can be found for example in Brockwell and Davis (2006)).

Theorem 1 (KALMAN-filter algorithms for the scalar state space model).
Given the Model Assumptions 2, the one-step, h-step, filtering and fixed-interval smoothing predictors, as well

as their error variances are uniquely determined by the initial conditions Ĉ(P)
i,0 and

(
σ̂
(P)
i,0

)2
and the recursions

(i = 0, . . . , I, h ≥ 2):

Ĉ(P)
i,j+1 = fjĈ

(P)
i,j +

fjγi,j

∆i,j

(
Cobs

i,j − gjĈ
(P)
i,j

)
(j = 0, . . . , I − i) (17)

Ĉ(P)
i,j+h = ( fj+h−1 · · · fj+1)Ĉ

(P)
i,j+1 (j = 0, . . . , J− h) (18)

Ĉ(F)
i,j = Ĉ(P)

i,j +
γi,j

∆i,j

(
Cobs

i,j − gjĈ
(P)
i,j

)
(j = 0, . . . , I − i) (19)

Ĉ(S)
i,j = Ĉ(F)

i,j + ψi,j

(
Ĉ(S)

i,j+1 − Ĉ(P)
i,j+1

)
(j = I − i, . . . , 0) (20)

and:

(
σ̂
(P)
i,j+1

)2
= f 2

j

(
σ̂
(P)
i,j

)2
+ σ2

v −
(

fjγi,j
)2

∆i,j
(j = 0, . . . , I − i) (21)(

σ̂
(P)
i,j+h

)2
= f 2

j+h−1

(
σ̂
(P)
i,j+h−1

)2
+ σ2

v (j = 0, . . . , J− h) (22)(
σ̂
(F)
i,j

)2
=
(

σ̂
(P)
i,j

)2
−

γ2
i,j

∆i,j
(j = 0, . . . , I − i) (23)(

σ̂
(S)
i,j

)2
=
(

σ̂
(F)
i,j

)2
+ ψ2

i,j

((
σ̂
(S)
i,j+1

)2
−
(

σ̂
(P)
i,j+1

)2
)

(j = I − i, . . . , 0) (24)

where γi,j =
(

σ̂
(P)
i,j

)2
gj, ∆i,j = g2

j

(
σ̂
(P)
i,j

)2
+ σ2

w and ψi,j = fj+1

(
σ̂
(F)
i,j

)2

(
σ̂
(P)
i,j+1

)2 .

C

Proof: See Appendix A.

�

Remark 3.

• The KALMAN gain 0 ≤ γi,j
∆i,j
≤ 1 represents the relative importance of the innovation

εi,j = Cobs
i,j − gjĈ

(P)
i,j with respect to the prior predictor Ĉ(P)

i,j . The higher the covariance γi,j between
the innovation and the state to be predicted and/or the lower the variance ∆i,j of the innovation,
the higher the trust in the new observation Cobs

i,j and therefore the higher the KALMAN gain.
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• Due to the fact that there is no observation after the recent calendar year, and therefore no
innovation εi,j, the covariance γi,j is equal to zero for i + j > I. This implies that the KALMAN gain
is equal to zero in the h-step recursions.

• Since the KALMAN smoother is a backwards recursive algorithm and its initializations Ĉ(F)
i,I−i and(

σ̂
(F)
i,I−i

)2
are values of the last filtering recursion, the smoothings and filterings are identical for

the current calendar year t = I.

4.2. Determination of KALMAN Reserves and MSEP

Using Theorem 1, the ultimate claims Ci,J of accident years i = 1, . . . , I can be forecasted.
The ultimate claim of the first accident year is predicted by the one-step predictor:

Ĉ(P)
1,J = f J−1Ĉ(P)

1,J−1 +
f J−1γ1,J−1

∆1,J−1

(
Cobs

1,J−1 − gJ−1Ĉ(P)
1,J−1

)
, (25)

and the ultimate claims of the accident years i = 2, . . . , I are predicted by the h-step predictors:

Ĉ(P)
i,J = ( f J−1 · · · f J−i+1)Ĉ

(P)
i,J−i+1. (26)

Since we predict the ultimate claims in (26), we have h = i. The KALMAN reserve R̂i for a single
accident year i = 1, . . . , I, as well as the total KALMAN reserve R̂ across all accident years can therefore
be determined by:

R̂i = Ĉ(P)
i,J −Cobs

i,I−i and R̂ =
I

∑
i=1

R̂i,

respectively. The error variance of the predictor Ĉ(P)
1,J according to (25) results in:

(
σ̂
(P)
1,J

)2
= f 2

J−1

(
σ̂
(P)
1,J−1

)2
+ σ2

v −
(

f J−1γ1,J−1
)2

∆1,J−1
, (27)

while the error variances of Ĉ(P)
i,J for i = 2, . . . , I according to (26) are given by:

(
σ̂
(P)
i,J

)2
= f 2

J−1

(
σ̂
(P)
i,J−1

)2
+ σ2

v . (28)

The error variances (27) and (28) provide a basis for estimating the (unconditional) MSEP.
The MSEP for a single accident year i = 1, . . . , I using the KALMAN predictor Ĉ(P)

i,J is defined as follows:

MSEP
(

Ĉ(P)
i,J

)
= E

[(
Ci,J − Ĉ(P)

i,J

)2
]

Therefore, an appropriate estimator of the MSEP for a single accident year results in:

Definition 1 (KALMAN estimator of MSEP for single accident years).
Using Model Assumptions 2 and the KALMAN predictor (25) for i = 1 or (26) for i = 2, . . . , I at time t = I, an
estimator of the MSEP for a single accident year i = 1, . . . , I is given by:

M̂SEP
(

Ĉ(P)
i,J

)
=
(

σ̂
(P)
i,J

)2

C
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To determine an estimator of the MSEP for aggregated accident years, we consider two different
accident years i, k = 1, . . . , I with i < k in the first step.

MSEP
(

Ĉ(P)
i,J + Ĉ(P)

k,J

)
= E

[(
Ci,J − Ĉ(P)

i,J + Ck,J − Ĉ(P)
k,J

)2
]

= E
[(

Ci,J − Ĉ(P)
i,J

)2
]
+E

[(
Ck,J − Ĉ(P)

k,J

)2
]

+ 2E
[(

Ci,J − Ĉ(P)
i,J

)(
Ck,J − Ĉ(P)

k,J

)]
= MSEP

(
Ĉ(P)

i,J

)
+MSEP

(
Ĉ(P)

k,J

)
+ 2E

[(
Ci,J − Ĉ(P)

i,J

)(
Ck,J − Ĉ(P)

k,J

)]
(29)

Therefore, the MSEP for two accident years is the sum of two single accident year MSEPs and a
mixed term based on both accident years. Using independence of the different accident years (see
Model Assumptions 2), we obtain for the expectation in (29):

E
[(

Ci,J − Ĉ(P)
i,J

)(
Ck,J − Ĉ(P)

k,J

)]
= E

[
Ci,J − Ĉ(P)

i,J

]
E
[
Ck,J − Ĉ(P)

k,J

]
=
(
E
[
Ci,J
]
−E

[
Ĉ(P)

i,J

]) (
E
[
Ck,J
]
−E

[
Ĉ(P)

k,J

])
(30)

Since Ĉ(P)
i,J is an unbiased predictor for the ultimate claim Ci,J , the term (30) is equal to zero.

Consequently, the MSEP for two accident years results from the sum of two single accident year MSEPs:

MSEP
(

Ĉ(P)
i,J + Ĉ(P)

k,J

)
= MSEP

(
Ĉ(P)

i,J

)
+MSEP

(
Ĉ(P)

k,J

)
The MSEP of all considered accident years is therefore, by independence, determined as:

MSEP

(
I

∑
i=1

Ĉ(P)
i,J

)
=

I

∑
i=1

MSEP
(

Ĉ(P)
i,J

)
Thus, an estimator of the MSEP for aggregated accident years is given by:

Definition 2 (KALMAN estimator of MSEP for aggregated accident years).
Using Model Assumptions 2, we have the following estimator for the MSEP of the ultimate claim for aggregated
accident years:

M̂SEP

(
I

∑
i=1

Ĉ(P)
i,J

)
=

I

∑
i=1

M̂SEP
(

Ĉ(P)
i,J

)
C

5. Empirical Applications

In this section, various empirical applications are considered. The applications are based on the
claims development triangle of Taylor and Ashe (1983) (see Table 1). Firstly, the scalar state space
model is used to calculate predicted, filtered and smoothed values for cumulative payments, as well as
outlier effects in the data. Secondly, an empirical comparison of representative state space models and
other popular methods in claims reserving is made.

5.1. Applications of Scalar State Space Model

Using Theorem 1, we can calculate forecasts, as well as filtered and smoothed cumulative
payments, but in a prior step, we need to estimate the model parameters gj, fj, σ2

w, σ2
v and the

initializations Ĉ(P)
i,0 and

(
σ̂
(P)
i,0

)2
for all i, j. Alternatively, they can also be determined by consulting
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expert opinion, market statistics or similar portfolios. In this section, we estimate the parameters
as follows. Taking conditional expectations of both sides of (14) with respect to Ci,j leads directly
to E[Ci,j+1|Ci,j] = fjCi,j. If we compare this result to (1), we find that fj plays the role of the usual
CL factor. This fact motivates the estimation of the factors f0, . . . , f J−1 using the CL estimator (2).
To avoid over-parametrization of the model, the parameter gj = g is assumed to be time-invariant.
The parameters g, σ2

w, σ2
v are estimated using maximum likelihood (ML) method in conjunction with the

expectation-maximization (EM) algorithm. Since a direct maximization of the GAUSSian log likelihood
can cause local maxima or convergence problems, we use the EM algorithm, which is an iterative
method to find ML estimates based on the expected conditional GAUSSian log likelihood (for more
details on the EM algorithm, see Shumway and Stoffer (1982 2010) or Johannssen (2016)).

Taking the observations Cobs
i,0 in the respective accident years i = 0, . . . , I and the CL variance

parameter σ̂2
0 (see (3)) as initializations, we get the following parameter estimates for the run-off

triangle of Taylor and Ashe (1983) in Table 2:

Table 2. Estimated parameter values for the dataset of Taylor and Ashe (1983).

f̂0 f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8 ĝ

3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177 1.0014

Since individual estimates of g for different years slightly deviate between 0.98 and 1.02,
the assumption of time invariance has no significant impact on the calculated results. On the contrary:
Due to the small number of observations in more recent years, the quality of the respective estimates
would be questionable. Moreover, the estimated value ĝ ≈ 1 suggests the presumption for the dataset
of Taylor and Ashe (1983) that the observations do not differ systematically upwards or downwards
from the underlying states.

The predicted, filtered and smoothed cumulative payments are given in Table 3.

Table 3. Predictions (lower triangle), Filterings (last diagonal of upper triangle), Smoothings (upper
triangle) for the data set of Taylor and Ashe (1983).

Accident Development Year j

Year i 0 1 2 3 4 5 6 7 8 9

0 357846 1088646 1724703 2344677 2801926 3216482 3460558 3608732 3849709 3907933

1 352118 1245805 2202664 3283457 3811445 4186179 4624394 4910422 5318601 5412740

2 290510 1218431 2204841 3256998 3888722 4213313 4619217 4892887 5267683 5360921

3 310611 1301186 2304955 3558299 4046805 4374444 4652591 4903365 5278963 5372401

4 443156 1255658 2103481 2949026 3444357 3845121 4176955 4402093 4739293 4823179

5 396131 1303545 2175261 3073819 3659435 4039284 4387874 4624381 4978608 5066730

6 440830 1384198 2411162 3494015 4101625 4527373 4918086 5183170 5580201 5678971

7 359483 1455238 2750622 4008757 4705880 5194350 5642622 5946760 6402282 6515602

8 376686 1344075 2348503 3422708 4017917 4434977 4817715 5077390 5466318 5563072

9 344014 1200815 2098185 3057894 3589662 3962269 4304213 4536210 4883683 4970125

Using the smoothed values Ĉ(S)
i,j for i + j ≤ 9 (upper triangle in Table 3), outliers in the data can

be identified in the first place. Subsequently, outlier effects can be isolated, and observations can be
robustified. Table 4 shows the outlier effects Ẑi,j = Cobs

i,j − Ĉ(S)
i,j for all i = 0, . . . , 9 and j = 0, . . . , 9− i.
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Table 4. KALMAN outlier effects.

Accident Development Year j

Year i 0 1 2 3 4 5 6 7 8 9

0 2 36142 10627 −126407 −56330 103512 5778 −2446 −16194 −6470

1 0 −9666 −32631 69865 −12378 −66116 23473 3617 20484

2 −3 73875 13684 −21819 97273 −80395 9693 16428

3 −3 117672 −109908 199148 −16876 7538 −64323

4 4 −119308 24852 −51205 −41685 28190

5 1 29672 5454 −88067 32277

6 2 −95735 8699 −10885

7 −3 −34110 113876

8 0 19219

9 0

The outlier effects at j = 0 are negligible or equal to zero for all i = 0, . . . , 9 due to the chosen
initializations. As for the magnitude of the observed cumulative payments, the outlier effects are
relatively minor with a few exceptions. The largest outlier effect Ẑ3,3 has an (absolute) deviation of
199148. For example, the outlier effect Ẑ0,9 = −6470 indicates that we have an observation error
in the data, which implies that the cumulative payments made are way too low compared to the
unobservable “real cumulative payments”, i.e., there are still outstanding payments. It is for some
claims reserving methods (such as the CL method), which are not robust against outliers, of high
relevance, if the observations Cobs

i,I−i for i = 1, . . . , I of the current calendar year represent outliers.
Therefore, two cumulative payments Cobs

3,6 and Cobs
7,2 in the run-off triangle of Taylor and Ashe (1983)

should be treated with caution. In particular, such observations should be robustified, for example,
they could be replaced by the KALMAN smoothed values. As for the KALMAN recursion algorithms,
outliers entail less problems because of the lack of credibility of these observations and, consequently,
the minor KALMAN gain, i.e., outliers do not change the forecast decisively.

The robustness of the CL method and the impact of outliers were also considered by
Verdonck et al. (2009), who primarily surveyed how (simulated) outliers affect the CL total reserve.
The results of their study show that the most problematic areas in a run-off triangle are the lower
left corner and the upper right corner, since there are too few observations. In these areas, the CL
method is particularly sensitive to outliers, because the CL reserves directly and indirectly (via the CL
estimators (2)) depend on the observations of the recent calendar year. Further papers on the subject of
robustness of the CL method are, for example, Van Wouwe et al. (2009), Verdonck and Debruyne (2011)
and Verdonck and Van Wouwe (2011).

5.2. Empirical Comparison of Selected Models

The models considered in the empirical comparison are the scalar state space model, but the
models in Verrall (1989), Alpuim and Ribeiro (2003), Li (2006), Atherino et al. (2010) and the well-known
methods CL and BORNHUETTER–FERGUSON (BF), as well as the (overdispersed) POISSON (ODP) model.
The chosen BF method is rather conservative, i.e., we use a priori estimates for the expected ultimate
claims, which generally exceed estimates based on development triangle data. It should be pointed
out that the BF results depend largely on the quality of the a priori estimates.

The most results in Table 5 suggest total claims reserves of approximately 18500000± 200000.
The model in Atherino et al. (2010) and the conservative BF method present differing results with more
optimistic and more conservative total reserves, respectively. Higher reserves tend to lead to higher
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MSEP, just like in the ODP model, Li (2006), Verrall (1989) and the CL method, with the exception of
the BF method and the scalar state space model. The model of Atherino et al. (2010), which provides
by far the lowest total claims reserves, also leads to the smallest MSEP for aggregated accident years,
but not to the smallest variational coefficient (VCO =

√
MSEP/reserve) for aggregated accident years.

Table 5. Reserves, standard errors and VCOs for selected models.

Scalar State Space Model Verrall (1989)
i

Reserve
√

MSEP VCO Reserve
√

MSEP VCO

1 73655 167499 227.4% 143834 72675 50.5%

2 451606 221667 49.1% 465847 166438 35.7%

3 784133 270524 34.5% 673175 194229 28.9%

4 949868 317331 33.4% 1060794 266228 25.1%

5 1375018 366006 26.6% 1479407 339755 23.0%

6 2195841 422159 19.2% 2218738 487975 22.0%

7 3651104 507337 13.9% 3287633 735669 22.4%

8 4199778 662654 15.8% 4517179 1040596 23.0%

9 4626111 797161 17.2% 4570683 1167068 25.5%

aggr. 18307113 1376670 7.5% 18417290 2627190 14.3%

Alpuim and Ribeiro (2003) Atherino et al. (2010)
i

Reserve
√

MSEP VCO Reserve
√

MSEP VCO

1 66860 161177 241.1% 78904 18385 23.3%

2 321421 227246 70.7% 433790 75046 17.3%

3 551625 278017 51.0% 663312 90874 13.7%

4 1243900 322745 25.9% 891774 107013 12.0%

5 1535502 422709 27.5% 1336361 144327 10.8%

6 2356440 625125 26.5% 2009913 207021 10.3%

7 2817779 1667381 59.2% 2919587 303637 10.4%

8 4472888 1448251 32.4% 3810769 411563 10.8%

9 4942889 763241 15.4% 4726935 571959 12.1%

aggr. 18309304 1637284 8.9% 16871345 1197865 7.1%

Li (2006) BF Method
i

Reserve
√

MSEP VCO Reserve
√

MSEP VCO

1 101374 54755 54.0% 104097 117241 112.6%

2 457788 178242 38.9% 516462 218187 42.2%

3 651123 198744 30.5% 780602 255401 32.7%

4 1035739 271135 26.2% 1083378 284276 26.2%

5 1473338 360715 24.5% 1561405 334286 21.4%

6 2190410 522967 23.9% 2395405 409247 17.1%

7 3442432 808061 23.5% 4312331 550065 12.8%

8 4269816 1054731 24.7% 4706870 560833 11.9%

9 5027791 1425522 28.4% 5088393 578565 11.4%

aggr. 18649811 2809220 15.1% 20548942 1220525 5.9%
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Table 5. Cont.

CL Method ODP Model
i

Reserve
√

MSEP VCO Reserve
√

MSEP VCO

1 94634 75535 79.8% 94634 110100 116.3%

2 469511 121700 25.9% 469511 216043 46.0%

3 709638 133551 18.8% 709638 260872 36.8%

4 984889 261412 26.5% 984889 303550 30.8%

5 1419459 411028 29.0% 1419459 375014 26.4%

6 2177641 558356 25.6% 2177641 495378 22.7%

7 3920301 875430 22.3% 3920301 789961 20.2%

8 4278972 971385 22.7% 4278972 1046514 24.5%

9 4625811 1363385 29.5% 4625811 1980101 42.8%

aggr. 18680856 2447618 13.1% 18680856 2945661 15.8%

The conservative BF method produces the smallest VCO for aggregated accident years,
closely followed by Atherino et al. (2010), the scalar state space model and Alpuim and Ribeiro
(2003). The model of Alpuim and Ribeiro (2003) and the scalar state space model provide a large
VCO in the first accident year, resulting from the interaction of relatively low reserves and a larger
MSEP for this year. In particular, for the scalar state space model the VCO decreases noticeably in
subsequent accident years. Other models, like the log-normal models in Verrall (1989) and Li (2006),
lead to relatively low VCO in the first accident years, but without a remarkable reduction in later
accident years, so they remain mostly at the level of 25%± 3%.

Compared with the results of the other seven models, the scalar state space model produces quite
precise results with relatively low MSEPs and VCOs. Thus, the scalar structure of this model leads not
only to facilitated practical application, but it is also in no way inferior to more complex models for the
considered dataset.

6. Conclusions

The previously written papers in the stochastic claims reserving literature based on state space
models and the KALMAN-filter have numerous contentual similarities, and we can classify them into
four categories related to the methodology or modeling used in the respective papers. Models for
incremental payments dominate in this field of research, in particular variations on the Hoerl curve,
the log-normal model, as well as calendar year-based state space representations. However, most state
space representations in these papers entail a matrix-based approach, which complicates their direct
application in practice.

In contrast, the newly-developed scalar state space model for cumulative payments is quite elegant
due to its simple, yet powerful structure. Since the CL method is the most commonly-used reserving
method in practice and the scalar state space model is an extension of the CL method, the scalar state
space model can readily be applied to claims reserving practice. In particular, this model provides
facilitated calculation of forecasts for the cumulative payments in the lower run-off triangle and of
smoothed values for the cumulative payments in the upper triangle. Moreover, the determination
of claims reserves and the estimation of their MSEP for single and aggregated accident years are
straightforward calculations using KALMAN-filter. The scalar state space model can also be used to
identify and smooth outliers. This subject is of particular importance for less robust claims reserving
methods such as the CL method. Summarizing, the scalar state space model is a very promising,
robustified extension of the CL method, which renounces a complex matrix structure compared to
most state space models in claims reserving and therefore simplifies its practical applications.
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Because of its recursive and dynamic nature, the KALMAN-filter is predestined for use in stochastic
claims reserving. The authors McGuire (2007), Taylor and McGuire (2008) and Chima-Okereke
(2013) even recommend the use of state space models as a part of a nearly completely automated
script, a so-called reserving robot in stochastic claims reserving. Due to the high flexibility of state
space models and the KALMAN-filter, it is also possible to perform multivariate analyses in a simple
manner and to take several run-off triangles simultaneously into account. In this way, dependencies,
in particular correlations, between run-off triangles can be surveyed and included into the modeling.
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Appendix A. Proof of Theorem 1

This Appendix provides a brief proof of Theorem 1; for a more detailed proof, see
Johannssen (2016) and Shumway and Stoffer (2010). For the derivation of the KALMAN recursions, we
do not need any distributional assumptions. However, to simplify the notation, we can think of E
for conditional expectations as a projection operator instead of an expectation. Then, the predictors
obtained are the minimum MSEP predictors within the class of linear predictors.

Appendix A.1. One-Step Predictors and Error Variances

To derive recursion (17), we use the decomposition:

E
[
Ci,j+1|Cobs

i,0 , . . . , Cobs
i,j

]
︸ ︷︷ ︸

1st component

= E
[
Ci,j+1|Cobs

i,0 , . . . , Cobs
i,j−1

]
︸ ︷︷ ︸

2nd component

+E
[
Ci,j+1|εi,j

]︸ ︷︷ ︸
3rd component

. (A1)

For the first component, we have:

E
[
Ci,j+1|Cobs

i,0 , . . . , Cobs
i,j

]
= Ĉ(P)

i,j+1. (A2)

For the second component, the following expression can be specified with (14):

E
[
Ci,j+1|Cobs

i,0 , . . . , Cobs
i,j−1

]
= E

[
f jCi,j + vi,j|Cobs

i,0 , . . . , Cobs
i,j−1

]
= f jĈ

(P)
i,j (A3)

The third component:

E
[
Ci,j+1|εi,j

]
= E

[
Ci,j+1εi,j

]︸ ︷︷ ︸
1st term

(
E
[
ε2

i,j

]
︸ ︷︷ ︸
2nd term

)−1
εi,j︸︷︷︸

3rd term

(A4)

consists of three terms, which we determine separately below. Since we need the innovation εi,j for
each of these three terms, we start with the third term using (13):

εi,j = Cobs
i,j − gjĈ

(P)
i,j = gj

(
Ci,j − Ĉ(P)

i,j

)
+ wi,j (A5)

Then, the first term in (A4) can be specified with the help of (14) and (A5) as follows:

E
[
Ci,j+1εi,j

]
= E

[(
f jCi,j + vi,j

) (
gj

(
Ci,j − Ĉ(P)

i,j

)
+ wi,j

)]
= f j

(
σ̂
(P)
i,j

)2
gj (A6)
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The second term in (A4) can be determined using (A5):

E
[
ε2

i,j

]
= E

[(
gj

(
Ci,j − Ĉ(P)

i,j

)
+ wi,j

)2
]
= g2

j

(
σ̂
(P)
i,j

)2
+ σ2

w (A7)

Substituting three terms (A5), (A6) and (A7) into (A4) leads to:

E
[
Ci,j+1|εi,j

]
= f j

(
σ̂
(P)
i,j

)2
gj

(
g2

j

(
σ̂
(P)
i,j

)2
+ σ2

w

)−1 (
Cobs

i,j − gjĈ
(P)
i,j

)
(A8)

Inserting components (A2), (A3) and (A8) into (A1) directly implies:

Ĉ(P)
i,j+1 = f jĈ

(P)
i,j + f j

(
σ̂
(P)
i,j

)2
gj

(
g2

j

(
σ̂
(P)
i,j

)2
+ σ2

w

)−1 (
Cobs

i,j − gjĈ
(P)
i,j

)
,

which is equal to (17) with γi,j =
(

σ̂
(P)
i,j

)2
gj and ∆i,j = g2

j

(
σ̂
(P)
i,j

)2
+ σ2

w.

�

The verification of recursion (21) can be carried out using the decomposition:(
σ̂
(P)
i,j+1

)2
= E

[
C2

i,j+1
]︸ ︷︷ ︸

1st component

− E
[(

Ĉ(P)
i,j+1

)2]
︸ ︷︷ ︸
2nd component

. (A9)

For the first component, we have with (14):

E
[
C2

i,j+1
]
= E

[ (
f jCi,j + vi,j

)2 ]
= f 2

j E
[
C2

i,j
]
+ σ2

v , (A10)

while we get for the second component with (17), (A5) and (A7):

E
[(

Ĉ(P)
i,j+1

)2]
= E

[(
f jĈ

(P)
i,j +

f jγi,j

∆i,j

(
Cobs

i,j − gjĈ
(P)
i,j

))2 ]
= f 2

j E
[(

Ĉ(P)
i,j

)2
]
+

(
f jγi,j

)2

∆i,j
(A11)

Inserting (A10) and (A11) into (A9) directly leads to:

(
σ̂
(P)
i,j+1

)2
= f 2

j E
[
C2

i,j
]
+ σ2

v −
(

f 2
j E
[(

Ĉ(P)
i,j

)2
]
+

(
f jγi,j

)2

∆i,j

)
= f 2

j

(
σ̂
(P)
i,j

)2
+ σ2

v −
(

f jγi,j
)2

∆i,j

�

Appendix A.2. h-Step Predictors and Error Variances

Recursion (18) can be easily determined by updating the one-step predictions (17) (see Remark 3,
second bullet point):

Ĉ(P)
i,j+h = f j+h−1Ĉ(P)

i,j+h−1 = . . . = ( f j+h−1 · · · f j+1)Ĉ
(P)
i,j+1 (A12)

�

Recursion (22) for the error variances
(

σ̂
(P)
i,j+h

)2
with h ≥ 2 can be obtained using (14) and (A12):

(
σ̂
(P)
i,j+h

)2
= E

[(
f j+h−1Ci,j+h−1 + vi,j+h−1 − f j+h−1Ĉ(P)

i,j+h−1

)2
]
= f 2

j+h−1

(
σ̂
(P)
i,j+h−1

)2
+ σ2

v

�
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Appendix A.3. Filtering Predictors and Error Variances

To derive recursion (19), we use the decomposition:

E
[
Ci,j|Cobs

i,0 , . . . , Cobs
i,j

]
︸ ︷︷ ︸

1st component

= E
[
Ci,j|Cobs

i,0 , . . . , Cobs
i,j−1

]
︸ ︷︷ ︸

2nd component

+ E
[
Ci,j|εi,j

]︸ ︷︷ ︸
3rd component

. (A13)

The specification of three components in (A13) is analogous to the derivation of the recursion for
one-step prediction. Therefore, we have for the first and second component:

E
[
Ci,j|Cobs

i,0 , . . . , Cobs
i,j

]
= Ĉ(F)

i,j (A14)

E
[
Ci,j|Cobs

i,0 , . . . , Cobs
i,j−1

]
= Ĉ(P)

i,j (A15)

The third component consists of three terms, whose second and third terms are identical to those
in (A4), but the first term differs slightly:

E
[
Ci,j|εi,j

]
= E

[
Ci,jεi,j

]︸ ︷︷ ︸
1st term

(
E
[
ε2

i,j

]
︸ ︷︷ ︸
2nd term

)−1
εi,j︸︷︷︸

3rd term

(A16)

Whereas the last both terms in (A16) are already given by (A5) and (A7), the first term can be
specified using (A5):

E
[
Ci,jεi,j

]
= E

[
Ci,j

(
gj

(
Ci,j − Ĉ(P)

i,j

)
+ wi,j

)]
=
(

σ̂
(P)
i,j

)2
gj (A17)

Substituting three terms (A5), (A7) and (A17) into (A16) leads to:

E
[
Ci,j|εi,j

]
=
(

σ̂
(P)
i,j

)2
gj

(
g2

j

(
σ̂
(P)
i,j

)2
+ σ2

w

)−1 (
Cobs

i,j − gjĈ
(P)
i,j

)
(A18)

Inserting components (A14), (A15) and (A18) into (A13) directly implies:

Ĉ(F)
i,j = Ĉ(P)

i,j +
(

σ̂
(P)
i,j

)2
gj

(
g2

j

(
σ̂
(P)
i,j

)2
+ σ2

w

)−1 (
Cobs

i,j − gjĈ
(P)
i,j

)
,

which is equal to (19) with γi,j =
(

σ̂
(P)
i,j

)2
gj and ∆i,j = g2

j

(
σ̂
(P)
i,j

)2
+ σ2

w.
�

To establish recursion (23), we use (19) as follows:

Ci,j − Ĉ(P)
i,j = Ci,j − Ĉ(F)

i,j + Ĉ(F)
i,j − Ĉ(P)

i,j = Ci,j − Ĉ(F)
i,j +

γi,jεi,j

∆i,j
(A19)

Hence, from (A19), we obtain:

Ĉ(P)
i,j = Ĉ(F)

i,j −
γi,jεi,j

∆i,j
(A20)

Using (A7) and (A20), we get the following expression:

(
σ̂
(P)
i,j

)2
= E

(Ci,j − Ĉ(F)
i,j +

γi,jεi,j

∆i,j

)2
 =

(
σ̂
(F)
i,j

)2
+

γ2
i,j

∆i,j
,

which directly leads to (23). �
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Appendix A.4. Fixed-Interval Smoothing Predictors and Error Variances

In order to obtain fixed-interval recursion (20), first, we need to derive the KALMAN

fixed-point recursion:

Ĉ(S)
i,j|s = Ĉ(S)

i,j|s−1 + Ki,j,s

(
Cobs

i,s − gsĈ(P)
i,s

)
(A21)

with Ki,j,s =
γi,j,s
∆i,s

, γi,j,s = gsE
[(

Ci,j − Ĉ(P)
i,j

) (
Ci,s − Ĉ(P)

i,s

)]
, ∆i,s = g2

s

(
σ̂
(P)
i,s

)2
+ σ2

w for
s = j + 1, j + 2, . . . , I − i, a fixed i = 0, . . . , I and a fixed j = 0, . . . , I − i. For derivation of fixed-point
recursion (A21), we use the decomposition:

E
[
Ci,j|Cobs

i,0 , . . . , Cobs
i,s

]
︸ ︷︷ ︸

1st component

= E
[
Ci,j|Cobs

i,0 , . . . , Cobs
i,s−1

]
︸ ︷︷ ︸

2nd component

+ E
[
Ci,j|εi,s

]︸ ︷︷ ︸
3rd component

. (A22)

The specification of three components in (A22) is analogous to the derivation of the recursion for
one-step prediction. Therefore, we have for the first and second component:

E
[
Ci,j|Cobs

i,0 , . . . , Cobs
i,s

]
= Ĉ(S)

i,j|s (A23)

E
[
Ci,j|Cobs

i,0 , . . . , Cobs
i,s−1

]
= Ĉ(S)

i,j|s−1 (A24)

The third component consists of three terms, whose second and third terms are identical to those
in (A4), but the first term differs slightly:

E
[
Ci,j|εi,s

]
= E

[
Ci,jεi,s

]︸ ︷︷ ︸
1st term

(
E
[
ε2

i,s

]
︸ ︷︷ ︸
2nd term

)−1
εi,s︸︷︷︸

3rd term

(A25)

Whereas the last both terms in (A25) are already given by (A5) and (A7), the first term can be
specified using (A5):

E
[
Ci,jεi,s

]
= E

[
Ci,j

(
gs

(
Ci,s − Ĉ(P)

i,s

)
+ wi,s

)]
= E

[((
Ci,j − Ĉ(P)

i,j

)
+ Ĉ(P)

i,j

) (
gs

(
Ci,s − Ĉ(P)

i,s

)
+ wi,s

)]
= gsE

[(
Ci,j − Ĉ(P)

i,j

) (
Ci,s − Ĉ(P)

i,s

)]
(A26)

Substituting three terms (A5), (A7) and (A26) into (A25) leads to:

E
[
Ci,j|εi,s

]
= gsE

[(
Ci,j − Ĉ(P)

i,j

) (
Ci,s − Ĉ(P)

i,s

)] (
g2

s

(
σ̂
(P)
i,s

)2
+ σ2

w

)−1 (
Cobs

i,s − gsĈ(P)
i,s

)
(A27)

Inserting components (A23), (A24) and (A27) into (A22) directly implies:

Ĉ(S)
i,j|s = Ĉ(S)

i,j|s−1 + gsE
[(

Ci,j − Ĉ(P)
i,j

) (
Ci,s − Ĉ(P)

i,s

)] (
g2

s

(
σ̂
(P)
i,s

)2
+ σ2

w

)−1 (
Cobs

i,s − gsĈ(P)
i,s

)
,

which is equal to (A21) with γi,j,s = gsE
[(

Ci,j − Ĉ(P)
i,j

) (
Ci,s − Ĉ(P)

i,s

)]
, ∆i,s = g2

s

(
σ̂
(P)
i,s

)2
+ σ2

w and

Ki,j,s =
γi,j,s
∆i,s

.
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Now, we can derive fixed-interval recursion (20) by considering (A21), i.e.,

Ĉ(S)
i,j|s = Ĉ(S)

i,j|s−1 + Ki,j,sεi,s = . . . = Ĉ(F)
i,j +

s

∑
l=j+1

Ki,j,lεi,l . (A28)

In a similar way, we get:

Ĉ(S)
i,j+1|s = Ĉ(P)

i,j+1 +
s

∑
l=j+1

Ki,j+1,lεi,l (A29)

Comparing (A28) and (A29), we find that the relation Ki,j,l = ψi,jKi,j+1,l with ψi,j = f j+1

(
σ̂
(F)
i,j

)2

(
σ̂
(P)
i,j+1

)2

holds. Therefore, using these findings, we get the following equation:

Ĉ(S)
i,j|s = Ĉ(F)

i,j + ψi,j

s

∑
l=j+1

Ki,j+1,lεi,l = Ĉ(F)
i,j + ψi,j

(
Ĉ(S)

i,j+1|s − Ĉ(P)
i,j+1

)
(A30)

Since we smooth observations in the upper triangle within the fixed-interval recursion using
all available observations, we have s = I − i (s is therefore no longer required) and can simplify the
notation Ĉ(S)

i,j|s to Ĉ(S)
i,j for all j = I − i, . . . , 0. Then, (A30) is equivalent to (20).

�

The verification of (24) follows from (20) with some straightforward calculations. Using (20),
we obtain: (

Ci,j − Ĉ(S)
i,j

)
+ ψi,jĈ

(S)
i,j+1 =

(
Ci,j − Ĉ(F)

i,j

)
+ ψi,jĈ

(P)
i,j+1. (A31)

Squaring and taking expectations of both sides of (A31), as also using the fact the cross products
are zero, imply: (

σ̂
(S)
i,j

)2
+ ψ2

i,jE
[ (

Ĉ(S)
i,j+1

)2 ]
=
(

σ̂
(F)
i,j

)2
+ ψ2

i,jE
[ (

Ĉ(P)
i,j+1

)2 ]
. (A32)

Now, we use decompositions for the remaining expectations (see (A9)):

E
[ (

Ĉ(S)
i,j+1

)2 ]
= E

[
C2

i,j+1
]
−
(

σ̂
(S)
i,j+1

)2
(A33)

E
[ (

Ĉ(P)
i,j+1

)2 ]
= E

[
C2

i,j+1
]
−
(

σ̂
(P)
i,j+1

)2
(A34)

Inserting the right-hand sides of (A33) and (A34) into (A32) directly leads to (24).
�
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