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Abstract: The literature on capital allocation is biased towards an asset modeling framework
rather than an actuarial framework. The asset modeling framework leads to the proliferation of
inappropriate assumptions about the effect of insurance line of business growth on aggregate loss
distributions. This paper explains why an actuarial analog of the asset volume/return model
should be based on a Lévy process. It discusses the impact of different loss models on marginal
capital allocations. It shows that Lévy process-based models provide a better fit to the US statutory
accounting data, and identifies how parameter risk scales with volume and increases with time.
Finally, it shows the data suggest a surprising result regarding the form of insurance parameter risk.

Keywords: capital; capital allocation; capital determination; diversification; homogeneous; insurance;
insurance pricing; Lévy process; parameter risk; risk measure; risk theory

1. Introduction

Geometry is the study of shape and change in shape. Actuarial Geometry1 studies the shape and
evolution of shape of actuarial variables, in particular the distribution of aggregate losses, as portfolio
volume and composition changes. It also studies the shape and evolution paths of variables in the space
of all risks. Actuarial variables are curved across both a volumetric dimension as well as a temporal
dimension. Volume here refers to expected losses per year, x, and temporal to the duration, t, for which
a given volume of insurance is written. Total expected losses are xt—just as distance = speed × time.
Asset variables are determined by a curved temporal return distribution but are flat in the volumetric
(position size) dimension. Risk, and hence economic quantities like capital, are intimately connected
to the shape of the distribution of losses, and so actuarial geometry is inextricably linked to capital
determination and allocation.

Actuarial geometry is especially important today because risk and probability theory, finance,
and actuarial science are converging after prolonged development along separate tracks. There is now
general agreement that idiosyncratic insurance risk matters for pricing, and as a result we need to
appropriately understand, model, and reflect the volumetric and temporal diversification of insurance
risk. These are the central topics of the paper.

The paper makes two research contributions both linked to the use of Lévy processes in actuarial
science. The first contribution is theoretical. It is to explain precisely how insurance losses diversify as

1 Actuarial Geometry was originally presented to the 2006 Risk Theory Seminar in Richmond, Virginia, Mildenhall (2006).
This version is largely based on the original, with some corrections and clarifications, as well as more examples to illustrate
the theory. Since 2006 the methodology it described has been successfully applied to a very wide variety of global insurance
data in Aon Benfield’s annual Insurance Risk Study, ABI (2007, 2010, 2012, 2013, 2014, 2015), now in its eleventh edition.
The findings have remained overwhelmingly consistent. Academically, the importance of the derivative and the gradient
allocation method has been re-confirmed in numerous papers since 2006. Applications of Lévy processes to actuarial
science and finance have also greatly proliferated. However, the new literature has not touched on the clarification between
“direction” in the space of asset return variables and in the space of actuarial variables presented here.
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volume increases and to compute the impact of this diversification compared to an asset portfolio model
where risk is independent of position size. In particular we show that even when insurance losses and
an asset portfolio have the same distribution of outcomes for a particular volume, the agreement is that
of two lines crossing at an angle. It is not a first order tangency and so any risk allocation involving
derivatives—which almost all do—will produce different results. The picture we make precise is
shown in Figure 1. In the figure k is the distribution of values of an asset portfolio with initial value x,
modeled as k(x) = xX for a fixed return variable X. The map m represents aggregate losses from an
insurance portfolio with expected losses x. Even though X = m(1) = k(1) the tangent vector, ṁ(1),
to the embedding m at x = 1 is not the same as the tangent vector k̇(1). We have drawn m as a straight
line because it will naturally capture the idea of “growth in the direction X”. The full rationale behind
Figure 1 is described in Section 6.

0
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X=m(1)

k'(1)

m'(1)

k and m

x m(x)

R+
Space of risks

m(0)=0

k(x)=xX

Figure 1. Lévy process and homogeneous embeddings of R+ into the space of risks, L. The Lévy
process embedding corresponds to the straight line m and the asset embedding to the curved line k.

The second contribution is empirical. It uses US statutory accounting data to determine a Lévy
process based model for insurance losses by line of business that reflects their observed volumetric
and temporal properties. The analysis compares four potential models and determines that only one is
consistent with the data. The analysis produces specific line of business measures of non-diversifiable
parameter risk that vary substantially but that have been consistent over time. It also provides an
explicit form for the distribution of parameter risk, even though parameter risk cannot be directly
observed. Most papers on risk measures take the actual distribution of losses as given. And
much work done by companies to quantify risk is regarded as proprietary and is not published.
The explicit quantification we provide should therefore be useful as a benchmark for both academics
and practicing actuaries.

The remainder of the paper is organized as follows.
Section 2 describes the how actuaries and academics came to agree, over the last century,

that idiosyncratic insurance risk matters for pricing. This agreement provides an important motivation
for our theoretical and empirical work.

Section 3 defines a risk measure and explains how the allocation problem naturally leads to the
derivative and gradient of a risk measure.

Section 4 presents two motivating examples that it is instructive to keep in mind through the rest
of the paper, and which also illustrate Figure 1.

Section 5 defines Lévy processes and gives some basic examples. It then defines four Lévy
process-based loss models that will be used as candidate models for aggregate losses, as well as an
alternative asset-based model, and it establishes some of their basic properties.

Section 6 is the technical heart of the paper. It investigates the definition of derivative for a real
function and considers how it could be defined on more general spaces, such as the space of random



Risks 2017, 5, 31 3 of 44

variables. It explains how Lévy processes can be used to define “direction” and how the infinitesimal
generator of a Lévy process relates to derivatives. This allows us to pin-point the difference between
the derivatives of an insurance process and of an asset process.

Section 7 is contains all the empirical results in the paper. It shows how we can effectively quantify
parameter risk, even though it cannot be observed directly. It then determines the amount and shape
of parameter risk across many lines of business. Finally, it addresses the differences between temporal
and volumetric growth.

The paper covers topics from a variety of viewpoints befitting an article in this special edition
celebrating the connections between actuarial science and mathematical finance. As a result it is
quite long. Readers more interested in the theoretical findings can focus on Sections 4, 5.1, 5.2 and 6.
Readers more interested in the empirical analysis can focus on Sections 5.1, 5.2 and 7.

2. Why Idiosyncratic Insurance Risk Matters

In its early years property-casualty actuarial science in the US largely ignored risk theory
in rate making because of the dominance of bureau-based rates. Property rates were made to
include a 5% profit provision and a 1% contingency provision; they were priced to a 94% combined
ratio Magrath (1958). Lange (1966) describes a 5% provision for underwriting and contingencies as
“constant for all liability insurance lines in most states”. Kallop (1975) states that a 2.5% profit and
contingency allowance for workers’ compensation has been in use for at least 25 years and that it
“contemplates additional profits from other sources to realize an adequate rate level”. The higher load
for property lines was justified by the possibility of catastrophic losses—meaning large conflagration
losses rather than today’s meaning of hurricane or earthquake related, severity driven events.

Regulators and actuaries started to consider improvements to these long-standing conventions in
the late 1960s. Bailey (1967) introduced actuaries to the idea of including investment income in profit.
Ferrari (1968) was the first actuarial paper to include investment income and to consider return on
investor equity as well as margin on premium. During the following dozen years actuaries developed
the techniques needed to include investment income in ratemaking. At the same time, finance began
to consider how to determine a fair rate of return on insurance capital. The theoretical results they
derived, summarized as of 1987 in Cummins and Harrington (1987), focused on the use of discounted
cash flow models using CAPM-derived discount rates for each cash flow, including taxes. Since CAPM
only prices systematic risk, a side-effect of the financial work was to de-emphasize details of the
distribution of ultimate losses in setting the profit provision.

At the same time option and contingent claim theoretic methods, (Doherty and Garven 1986;
Cummins 1988), were developed as another approach to determining fair premiums. Interest in option
theoretic models was motivated in part by the difficulty of computing appropriate βs. These papers
applied powerful results from option pricing theory using a geometric Brownian motion to model
losses, possibly with a jump component. Cummins and Phillips (2000) and D’Arcy and Doherty (1988)
contain a summary of the CAPM and contingent claims approaches from a finance perspective and
D’Arcy and Dyer (1997) contains a more actuarial view.

The CAPM-based theories failed to explain the observed fact that insurance companies charged
for specific risk. A series of papers, beginning in the early 1990s, developed a theoretical explanation of
this based around agency, taxation and regulatory costs of capital, certainty in capital budgeting,
costly external capital for opaque intermediaries, contracting under asymmetric information,
and adverse selection, see Cummins (2000); Froot and O’Connell (2008); Froot and Stein (1998);
Froot et al. (1993); Froot (2007); Merton and Perold (2001); Perold (2001); Zanjani (2002).

At the same time banking regulation led to the development of robust risk measures and an
axiomatic theory of risk measures, including the idea of a coherent measure of risk Artzner et al. (1999).
Risk measures are sensitive to the particulars of idiosyncratic firm risk, unlike the CAPM-based pricing
methods which are only concerned with systemic risks.
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The next step was to develop a theory of product pricing for a multiline insurance company within
the context of costly firm-specific risk and robust risk measures. This proceeded down two paths.
Phillips et al. (1998) considered pricing in a multiline insurance company from a complete-market
option theoretic perspective, modeling losses with a geometric Brownian motion and without allocating
capital. They were concerned with the effect of firm-wide insolvency risk on individual policy pricing.

The second path, based around explicit allocation of capital, was started by Myers and Read (2001).
They also worked in a complete market setting and used expected default value as a risk measure,
determined surplus allocations by line, and presented a gradient vector, Euler theorem based allocation
assuming volumetrically homogeneous losses—but making no other distributional assumptions.
This thread was continued by Tasche (1999), Denault (2001) and Fischer (2003). Sherris (2006) takes
the view that, in a complete market setting, only the default put has a canonical allocation and that
there is no natural allocation of the remaining capital—a view echoed by Gründl and Schmeiser (2007).
Kalkbrener (2005) and Delbaen (2000a) used directional derivatives to clarify the relationship between
risk measures and allocations.

Concepts from banking regulation, including an own risk solvency assessment, have been adopted
by insurance regulators and have led to increased academic interest in technical aspects of risk
measurement, capital allocation and risk based pricing. A focus on catastrophe reinsurance pricing
following the US hurricanes of 2004 and 2005 and the development of a robust capital market alternative
to traditional reinsurance has also motivated research. As a result there is now a very rich literature
around this nexus, including the following.

• Technical and axiomatic characterization of risk measures: (Dhaene et al. 2003; Furman and Zitikis 2008;
Laeven and Stadje 2013).

• Capital allocation and its relationship with risk measurement: (Dhaene et al. 2003;
Venter et al. 2006; Bodoff 2009; Buch and Dorfleitner 2008; Dhaene et al. 2012; Erel et al. 2015;
Furman and Zitikis 2008; Powers 2007; Tsanakas 2009).

• The connection between purpose and method in capital allocation: (Dhaene et al. 2008;
Zanjani 2010; Bauer and Zanjani 2013b; Goovaerts et al. 2010).

• Questioning the need for capital allocation in pricing: Gründl and Schmeiser 2007.

Recent summaries include Venter (2009) and Bauer and Zanjani (2013a).
With the confluence of these different theoretical threads, and, in particular, in light of the

importance of firm-specific risk to insurance pricing, the missing link—and the link considered
in this paper—is a careful examination of the underlying actuarial loss distribution assumptions.
Unlike traditional static distribution-based pricing models, such as standard deviation and utility,
modern marginal and differential methods require explicit volumetric and temporal components.
The volumetric and temporal geometry are key to the differential calculations required to perform
risk and capital allocations. All of the models used in the papers cited are, implicitly or explicitly,
volumetrically homogeneous and geometrically flat in one dimension. For example, in a geometric
Brownian motion model losses at time t are of the form St = S0 exp(µt + σBt) where Bt is a Brownian
motion. Changing volume, S0, simply scales the whole distribution and does not affect the shape of
the random component. The jump-diffusion model in Cummins (1988) is of the same form. There are
essentially no other explicit loss models in the papers cited. Mildenhall (2004) and Meyers (2005b)
show volumetric homogeneity is not an appropriate assumption. This paper provides further evidence
and uses insurance regulatory data to explore more appropriate models.

3. Risk Measures, Risk Allocation and the Ubiquitous Gradient

3.1. Definition and Examples of Risk Measures

A risk measure, ρ, is a real valued function defined on a space of risks L = L0(Ω,F ,P). Here Ω is
the sample space, F is a sigma-algebra of subsets of Ω, and P is a probability measure on F . The space
L0 consists of all real valued random variables, that is, measurable functions X : Ω→ R, defined up to
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equivalence (identify random variables which differ on a set of measure zero). As Delbaen (2000b)
points out there are only two Lp spaces which are invariant under equivalent measures, L0 and L∞,
the space of all essentially bounded random variables. Since it is desirable to work with a space
invariant under change of equivalent measure, but not to be restricted to bounded variables, we work
with L0. Kalkbrener (2005) works on L0. Risk measures are a large and important topic, but their details
are not central this paper. For more details see Föllmer and Schied (2011) and Dhaene et al. (2006).

Given a risk X ∈ L, ρ(X) is the amount of capital required to support the risk. Examples of
risk measures include value at risk at a percentile α (the inverse of the distribution of X, defined as
inf{x | Pr(X ≤ x) ≥ α}), tail value at risk (the average of the worst 1− α outcomes), and standard
deviation ρ(X) = αSD(X).

3.2. Allocation and the Gradient

At the firm level, total risk X can be broken down into a sum of parts Xi corresponding to different
lines of business. Since it is costly for insurers to hold capital Froot and O’Connell (2008) it is natural to
ask for an attribution of total capital ρ(X) to each line Xi. One way to do this is to consider the effect
of a marginal change in the volume of line i on total capital. For example, if the marginal profit from
line i divided by the marginal change in total capital resulting from a small change in volume in line i
exceeds the average profit margin of the firm then it makes sense to expand line i. This is a standard
economic optimization that has been discussed in the insurance context by many authors including
Tasche (1999), Myers and Read (2001), Denault (2001), Meyers (2005b) and Fischer (2003).

The need to understand marginal capital leads us to consider

∂ρ

∂Xi
(1)

which, in a sense to be made precise, represents the change in ρ as a result of a change in the volume of
line i, or more generally the gradient vector of ρ representing the change across all lines. Much of this
paper is an examination of exactly what this equation means.

Tasche (1999) shows that the gradient vector of the risk measure ρ is the only vector suitable for
performance measurement, in the sense that it gives the correct signals to grow or shrink a line of
business based on its marginal profitability and marginal capital consumption. Tasche’s framework
is unequivocally financial. He considers a set of basis asset return variables Xi, i = 1, . . . , n and then
determines a portfolio as a vector of asset position sizes x = (x1, . . . , xn) ∈ U ⊂ Rn. The portfolio
value distribution corresponding to x is simply

X(x) = X(x1, . . . , xn) =
n

∑
i=1

xiXi. (2)

A risk measure on L induces a function ρ : Rn → R, ρ(x1, . . . , xn) 7→ ρ(∑i xiXi). Rather than
being defined on a space of random variables, the induced ρ is defined on (a subset of) Euclidean
space Rn using the correspondence between x and a portfolio. In this context ∂ρ/∂Xi is simply the
usual limit

∂ρ

∂xi
= lim

ε→0

ρ(x1, . . . , xi + ε, . . . , xn)− ρ(x1, . . . , xn)

ε
. (3)

Equation (3) is a powerful mathematical notation and it contains two implicit assumptions. First,
the fact that we can write xi + ε requires that we can add in the domain. If ρ were defined on a
more general space this may not possible—or it may involve the convolution of measures rather
than addition of real numbers. Second, and more importantly, adding ε to x in the ith coordinate
unambiguously corresponds to an increase “in the direction” of the ith asset. This follows directly
from the definition in Equation (2) and is unquestionably correct in a financial context.
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Numerous papers work in an asset/volume model framework, either because they are working
with assets or as a simplification of the real insurance world, for example (Myers and Read 2001;
Panjer 2001; Erel et al. 2015; Fischer 2003). The resulting risk process homogeneity is essential to
all Euler-based “adds-up” results: in fact the two are equivalent for homogeneous risk measures
(Mildenhall 2004; Tasche 2004). However, it is important to realize that risk can be measured
appropriately with a homogeneous risk measure, that is one satisfying ρ(λX) = λρ(X), even if
the risk process itself is not homogeneous, that is X(λx) 6= λX(x). The compound Poisson process
and Brownian motion are examples of non-homogeneous processes.

In order to consider alternatives to the asset/return framework, we now discuss the meaning
of the differential and examine other possible definitions. The differential represents the best linear
approximation to a function at a particular point in a given direction. Thus the differential to a
function f , at a point x in its domain, can be regarded as a linear map D fx which takes a direction,
i.e., a tangent vector at x, to a direction at f (x). Under appropriate assumptions, the differential of f at
x in direction v, Dx f (v), is defined by the property

lim
v→0

‖ f (x + v)− f (x)− Dx f (v)‖
‖v‖ = 0, (4)

see Abraham et al. (1988) or Borwein and Vanderwerff (2010). The vector v is allowed to tend to 0
from any direction, and Equation (4) must hold for all of them. This is called Fréchet differentiability.
There are several weaker forms of differentiability defined by restricting the convergence of v to 0.
These include the Gâteaux differential, where v = tw with t ∈ R, t → 0, the directional differential,
where v = tw with t ∈ R, t ↓ 0, and the Dini differential, where v = tw′ for t ∈ R, t ↓ 0, and w′ → w.
The function f (x, y) = 2x2y/(x4 + y4) if (x, y) 6= (0, 0) and f (0, 0) = 0 is not differentiable at
(0, 0), in fact it is not even continuous, but all directional derivatives exist at (0, 0), and f is Gâteaux
differentiable. The Gâteaux differential need not be linear in its direction argument.

Kalkbrener (2005) applied Gâteaux differentiability to capital allocation. The Gâteaux derivative
can be computed without choosing a set of basis asset return-like variables, that is without setting up a
map from Rn → L, provided it is possible to add in the domain. This is the case for L because we can
add random variables. The Gâteaux derivative of ρ at Y ∈ L in the direction X ∈ L is defined as

∂ρ

∂X
= DρY(X) = lim

ε→0

ρ(Y + εX)− ρ(Y)
ε

. (5)

Kalkbrener shows that if the risk measure ρ satisfies certain axioms then it can be associated
with a unique capital allocation. He shows that the allocation is covariance-based if risk is measured
using standard deviation and a conditional measure approach when risk is measured by expected
shortfall—so his method is very natural.

We have shown that notions of differentiability are central to capital allocation. The next section
will present two archetypal examples and that show the asset/return and insurance notions of growth
do not agree, setting up the need for a better understanding of “direction” for actuarial random
variables. We will see that Lévy processes provide that understanding.

4. Two Motivating Examples

This section presents two examples illustrating the difference between an asset/return model and
a realistic insurance growth model.

Let X(u) be a Poisson random variable with mean u. Consider two functions, k(u) = uX(1)
and m(u) = X(u). The function k defines a random variable with mean u and standard deviation u.
The function m also defines a random variable with has mean u, but it has standard deviation u1/2.
The variable k defines a homogeneous family, that is k(λu) = λk(u), and correctly models the returns
from a portfolio of size u in an asset with an (unlikely) Poisson(1) asset return distribution. The variable
m is more realistic for a growing portfolio of insurance risks with expected annual claim count u.
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If we measure risk using the standard deviation risk measure ρ(X) = SD(X), this example
shows that although k(1) = m(1) = Poisson(1) have the same distribution the marginal risk for k is
∂ρ(k(u))/∂u = 1 whereas the marginal risk for m is ∂ρ(m(u))/∂u = 1/(2u1/2). For m risk decreases
as volume increases owing to portfolio effects whereas for k there is no diversification.

Next we present a more realistic example, due to Meyers (2005a), where Kalkbrener’s “axiomatic”
allocation produces a different result than a marginal business written approach that is based on a
more actuarial set of assumptions. Meyers calls his approach “economic” since it is motivated by
the marginal increase in business philosophy discussed in Section 3.2. This example has also been
re-visited recently by Boonen et al. (2017).

In order to keep the notation as simple as possible the example works with n = 2 independent
lines of business and allocates capital to line 1 . The risk measure is standard deviation ρ(X) = SD(X)

for X ∈ L. Losses Xi(xi) are modeled with a mixed compound Poisson variable

Xi(xi) = Si,1 + · · ·+ Si,Ni(xi)
(6)

where Ni = Ni(xi) is a Ci-mixed Poisson, so the conditional distribution N | Ci is Poisson with
mean xiCi and the mixing distribution Ci has mean 1 and variance ci. Meyers calls ci the contagion.
The mixing distributions are often taken to be gamma variables, in which case each Ni has a negative
binomial distribution. The Si,j, i = 1, 2 are independent, identically distributed severity random
variables. For simplicity, assume that E(Si) = 1, so that E(Xi(xi)) = E(Ni(xi))E(Si) = xi. Since t = 1
the model only considers volumetric diversification and not temporal diversification.

We can compute ρ(Xi(xi)) as follows:

ρ(Xi(xi))
2 = Var(Xi(xi))

= Var(Ni)E(Si)
2 + E(Ni)Var(Si)

= xi(1 + cixi) + xi(E(S2
i )− 1)

= cix2
i + xiE(S2

i )

= cix2
i + gixi

where gi = E(S2
i ). Note that ρ(kX) = kρ(X) for any constant k.

Kalkbrener’s axiomatic capital is computed using the Gâteaux directional derivative.
Let ρi(xi) = ρ(Xi(xi)) and note that ρ((1 + ε)Xi(xi)) = (1 + ε)ρi(xi). Then, by definition and the
independence of X1 and X2, the Gâteaux derivative of ρ at X1(x1) + X2(x2) in the direction X1(x1) is

∂ρ

∂X1
= lim

ε→0

ρ(X1(x1) + X2(x2) + εX1(x1))− ρ(X1(x1) + X2(x2))

ε

= lim
ε→0

√
(1 + ε)2ρ1(x1)2 + ρ2(x2)2 −

√
ρ1(x1)2 + ρ2(x2)2

ε
(7)

=
ρ1(x1)

2

ρ(X1(x1) + X2(x2))

=
c1x2

1 + g1x1

ρ(X1(x1) + X2(x2))
.
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This whole calculation has been performed without picking an asset return basis, but it can be
replicated if we do. Specifically, use the Xi(xi) as a basis and define a linear map of R-vector spaces
k : Rn → L, by (y1, . . . , yn) 7→ ∑i yiXi(xi). Let ρk be the composition of k and ρ,

ρk(y1, . . . , yn) = ρ(k(y1, . . . , yn)) = ρ

(
∑

i
yiXi(xi)

)
=
√

∑
i

y2
i (cix2

i + gixi).

Then
∂ρk
∂y1

∣∣∣∣
(1,1)

=
c1x2

1 + g1x1

ρ(X1(x1) + X2(x2))
(8)

agreeing with Equation (7). It is important to remember that yXi(xi) 6= Xi(yxi) for y 6= 1.
Given the definition of Xi(xi), we can also define an embedding m : Rn → L,

by (x1, . . . , xn) 7→ ∑i Xi(xi). The map m satisfies m(x + y) = m(x) + m(y) but it is not a linear
map of real vector spaces because m(kx) 6= km(x). In fact, the image of m will generally be an
infinite dimensional real vector subspace of L. The lack of homogeneity is precisely what produces a
diversification effect. As explained in Section 3.2, an economic view of capital requires an allocation
proportional to the gradient vector at the margin. Thus capital is proportional to xi∂ρm/∂xi where
ρm : Rn → R is the composition of m and ρ,

ρm(x1, x2) = ρ(m(x1, x2)) =
√

∑
i

cix2
i + gixi. (9)

Since ρm : R2 → R a real function, we can compute its partial derivative using standard calculus:

∂ρm

∂x1
=

2c1x1 + g1

2ρ(X1(x1) + X2(x2))
. (10)

There are two important conclusion: (1) the partial derivatives of ρm and ρk (which is also the
Gâteaux derivative of ρ) give different answers, Equations (7) and (10), and (2) the implied allocations

c1x2
1 + g1x1

ρ(X1(x1) + X2(x2))
and

c1x2
1 + g1x1/2

ρ(X1(x1) + X2(x2))
(11)

are also different. This is Meyers’ example.

5. Lévy process Models of Insurance Losses

We define Lévy processes and discuss some of their important properties. We then introduce four
models of insurance risk which we will analyze in the rest of the paper.

5.1. Definition and Basic Properties of Lévy processes

Lévy processes are fundamental to actuarial science, but they are rarely discussed explicitly in basic
actuarial text books. For example, there is no explicit mention of Lévy processes in Bowers et al. (1986);
Beard et al. (1969); Daykin et al. (1994); Klugman et al. (1998); Panjer and Willmot (1992). However,
the fundamental building block of all Lévy processes, the compound Poisson process, is well known to
actuaries. It is instructive to learn about Lévy processes in an abstract manner as they provide a very
rich source of examples for modeling actuarial processes. There are many good textbooks covering the
topics described here, including Feller (1971) volume 2, Breiman (1992), Stroock (1993), Bertoin (1996),
Sato (1999), and Barndorff-Nielsen et al. (2001), and Applebaum (2004).
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Definition 1. A Lévy process is a stochastic process X(t) defined on a probability space (Ω,F ,P) satisfying

LP1. X(0) = 0 almost surely;
LP2. X has independent increments, so for 0 ≤ t1 ≤ · · · ≤ tn+1 the variables X(tj+1)−X(tj) are independent;
LP3. X has stationary increments, so X(tj+1)− X(tj) has the same distribution as X(tj+1 − tj); and
LP4. X is stochastically continuous, so for all a > 0 and s ≥ 0

lim
t→s

Pr(|X(t)− X(s)| > a) = 0. (12)

Based on the definition it is clear that the sum of two Lévy processes is a Lévy process.
Lévy processes are in one-to-one correspondence with the set of infinitely divisible distributions,
where X is infinitely divisible if, for all integers n ≥ 1, there exist independent, identically distributed
random variables Yi so that X has the same distribution as Y1 + · · ·+Yn. If X(t) is a Lévy process then
X(1) is infinitely divisible since X(1) = X(1/n) + (X(2/n)− X(1/n)) + · · ·+ (X(1)− X(n− 1/n)),
and conversely if X is infinitely divisible there is a Lévy process with X(1) = X. In an idealized
world, insurance losses should follow an infinitely divisible distribution because annual losses are
the sum of monthly, weekly, daily, or hourly losses. Bühlmann Bühlmann (1970) discusses infinitely
divisible distributions and their relationship with compound Poisson processes. The Poisson, normal,
lognormal, gamma, Pareto, and Student t distributions are infinitely divisible; the uniform is not
infinitely divisible, nor is any distribution with finite support, nor any whose moment generating
function takes the value zero, see Sato (1999).

Example 1 (Trivial process). X(t) = kt for a constant k is a trivial Lévy process.

Example 2 (Poisson process). The Poisson process N(t) with intensity λ has

Pr(N(t) = n) =
(λt)n

n!
e−λt (13)

for n = 0, 1, . . . is a Lévy process.

Example 3 (Compound Poisson process). The compound Poisson process X(t) with severity component Z
is defined as

X(t) = Z1 + · · ·+ ZN(t) (14)

where N(t) is a Poisson process with intensity λ. The compound Poisson processes is the fundamental building
block of Lévy processes in the sense that any infinitely divisible distribution is the limit distribution of a sequence
of compound Poisson distributions, see Sato (1999) Corollary 8.8

Example 4 (Brownian motion). Brownian motion is an example of a continuous Lévy process.

Example 5 (Operational time). Lundberg introduced the notion of operational time transforms in order to
maintain stationary increments for compound Poisson distributions. Operational time is a risk-clock which
runs faster or slower in order to keep claim frequency constant. It allows seasonal and daily effects (rush
hours, night-time lulls, etc.) without losing stationary increments. Operational time is an increasing function
τ : [0, ∞)→ [0, ∞) chosen so that X(τ(t)) becomes a Lévy process.

Example 6 (Subordination). Let X(t) be a Lévy process and let Z(t) be a subordinator, that is, a Lévy process
with non-decreasing paths. Then Y(t) = X(Z(t)) is also a Lévy process. This process is called subordination
and Y is subordinate to X. Z is called the directing process. Z is a random operational time.

The characteristic function of a random variable X with distribution µ is defined as
φ(z) = E(eizX) =

∫
eizxµ(dx) for z ∈ R. The characteristic function of a Poisson variable with
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mean λ is φ(z) = exp(λ(eiz − 1)). The characteristic function of a compound Poisson process
X(t) = Z1 + · · ·+ ZN(t) is

φ(z) = E(eizX(t)) = E(E(eizX(t) | N(t))) (15)

= E exp
(

N(t) log
∫

eizwν(dw)

)
(16)

= exp
(

λt
∫
(eizw − 1)ν(dw)

)
(17)

where ν is the distribution of severity Zi. The characteristic equation of a normal random variable is
φ(z) = exp(iµz− σ2z2/2).

We now quote an important result in the theory of Lévy processes that allows us to identify an
infinitely divisible distribution, and hence a Lévy process, with a measure ν on R, and two constants
σ > 0 and γ.

Theorem 1 (Lévy-Khintchine). If the probability distribution µ is infinitely divisible then its characteristic
function has the form

exp
(
−σ2z2 +

∫
R
(eizw − 1− izw1{|w|≤1}(w))ν(dw) + iγz

)
(18)

where ν is a measure on R satisfying ν(0) = 0 and
∫
R min(|w|2, 1)ν(dw) < ∞, and σ > 0, γ ∈ R.

The representation by (σ, ν, γ) is unique. Conversely given any such triple (σ, ν, γ) there exists a corresponding
infinitely divisible distribution.

See Breiman (1992) or Sato (1999) a proof. In Equation (18), σ is the standard deviation of a
Brownian motion component, and ν is called the Lévy measure. The indicator function 1{|w|≤1} is
present for technical convergence reasons and is only needed when there are a very large number of
very small jumps. If

∫ 1
−1 min(|w|, 1)ν(dw) < ∞ it can be omitted and the resulting γ can be interpreted

as a drift. In the general case γ does not have a clear meaning as it is impossible to separate drift
from small jumps. The indicator can therefore also be omitted if ν(R) < ∞, and in that case the inner
integral can be written as

ν(R)
∫
R
(eizw − 1)ν̃(dw) (19)

where ν̃ = ν/ν(R) is a distribution. Comparing with Equation (17) shows this term corresponds to a
compound Poisson process.

The triples (σ, ν, γ) in the Lévy-Khintchine formula are called Lévy triples. The Lévy process X(t)
corresponding to the Lévy triple (σ, ν, γ) has triple (tσ, tν, tγ).

The Lévy-Khintchine formula helps characterize all subordinators. A subordinator must have
a Lévy triple (0, ν, γ) with no diffusion component (because Brownian motions take positive and
negative values) and the Lévy measure ν must satisfy ν((−∞, 0)) = 0, i.e., have no negative
jumps, and

∫ ∞
0 min(x, 1)ν(dx) < ∞. In particular, there are no non-trivial continuous increasing

Lévy processes.
The insurance analog of an asset return portfolio basis becomes a set of Lévy processes

representing losses in each line of business and “line” becomes synonymous with the Lévy measure
that describes the frequency and severity of the jumps, i.e., of the losses. Unless the Lévy process has
an infinite number of small jumps the Lévy measure can be separated into a frequency component and
a severity component. Patrik et al. (1999) describes modeling with Lévy measures, which the authors
call a loss frequency curve.
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5.2. Four Temporal and Volumetric Insurance Loss Models

We now define four models describing how the total insured loss random variable evolves
volumetrically and temporally. Let the random variable A(x, t) denote aggregate losses from a line
with expected annual loss x that is insured for a time period t years. Thus A(x, 1) is the distribution
of annual losses. The central question of the paper is to describe appropriate models for A(x, t) as x
and t vary. A Lévy process X(t) provides the appropriate basis for modeling A(x, t). We consider four
alternative insurance models.

IM1. A(x, t) = X(xt). This model assumes there is no difference between insuring given insureds for
a longer period of time and insuring more insureds for a shorter period.

IM2. A(x, t) = X(xZ(t)), for a subordinator Z(t) with E(Z(t)) = t. Z is an increasing Lévy process
which measures random operational time, rather than calendar time. It allows for systematic
time-varying contagion effects, such as weather patterns, inflation and level of economic activity,
affecting all insureds. Z could be a deterministic drift or it could combine a deterministic drift
with a stochastic component.

IM3. A(x, t) = X(xCt), where C is a mean 1 random variable capturing heterogeneity and
non-diversifiable parameter risk across an insured population of size x. C could reflect different
underwriting positions by firm, which drive systematic and permanent differences in results.
The variable C is sometimes called a mixing variable.

IM4. A(x, t) = X(xCZ(t)).

All models assume severity has been normalized so that E(A(x, t)) = xt. Two other models
suggested by symmetry, A(x, t) = X(Z(xt)) and A(x, t) = X(Z(xCt)), are already included in this list
because X(Z(t)) is also a Lévy process.

An important statistic describing the behavior of A(x, t) is the coefficient of variation

υ(x, t) :=

√
Var(A(x, t))

xt
. (20)

Since insurance is based on the notion of diversification, the behavior of υ(x, t) as x → ∞ and as
t → ∞ are both of interest. The variance of a Lévy process either grows with t or is infinite for all t.
If X(·) has a variance, then for IM1, υ(x, t) ∝ (xt)−1/2 → 0 as t or x → ∞ or as t→ ∞

Definition 2. For υ(x, t) in Equation (20):

1. If υ(x, t)→ 0 as t→ ∞ we will call A(x, t) temporally diversifying.
2. If υ(x, t)→ 0 as x → ∞ we will call A(x, t) volumetrically diversifying.
3. A process which is both temporally and volumetrically diversifying will be called diversifying.

If X(x) is a standard compound Poisson process whose severity component has a variance then
IM1 is diversifying.

Models IM1-4 are all very different to the asset model

AM1. A(x, t) = xX(t)

where X(t) is a return process, often modeled using a geometric Brownian motion (Hull 1983; Karatzas and
Shreve 1988). AM1 is obviously volumetrically homogeneous, meaning A(kx, t) = kA(x, t). Therefore
it has no volumetric diversification effect whatsoever, since Pr(A(kx, t) ≤ ky) = Pr(A(x, t) ≤ y) and

υ(x, t) =
√

Var(X(t))
t

(21)

is independent of x.
Next we consider some properties of the models IM1-4 and AM1. In all cases severity is

normalized so that E(A(x, t)) = xt. Define σ and τ so that Var(X(t)) = σ2t and Var(Z(t)) = τ2t.
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Practical underwritten loss distributions will have a variance or will have limits applied so the
distribution of insured losses has a variance, so this is not a significant restriction.

Models IM3 and IM4 no longer define Lévy processes because of the common C term. Each process
has conditionally independent increments given C. Thus, these two models no longer assume that
each new insured has losses independent of the existing cohort. Example 6 shows that IM2 is a
Lévy process.

Table 1 lays out the variance and coefficient of variation υ of these five models. It also shows
whether each model is volumetrically (resp. temporally) diversifying, that is whether υ(x, t)→ 0 as
x → ∞ (resp. t→ ∞). The calculations follow easily by conditioning. For example

Var(X(xZ(t))) = EZ(t)(Var(X(xZ(t)))) + VarZ(t)(E(X(xZ(t))))

= E(σ2xZ(t)) + Var(xZ(t))

= σ2xt + x2τ2t = xt(σ2 + xτ2).

Table 1. Variance of IM1-4 and AM.

Diversifying
Model Variance υ(x, t) x → ∞ t → ∞

IM1: X(xt) σ2xt σ√
xt Yes Yes

IM2: X(xZ(t)) xt(σ2 + xτ2)

√
σ2

xt + τ2

t No Yes

IM3: X(xCt) xt(σ2 + cxt)

√
σ2

xt + c No No

IM4: X(xCZ(t)) x2t2
(
(c + 1)τ2

t
+ c
)

+ σ2xt

√
σ2

xt + τ′2
t + c No No

AM1: xX(t) x2σ2t σ/
√

t Const. Yes

In IM4, τ′ = (1 + c)τ.

The characteristics of each model will be tested against regulatory insurance data in Section 7.
The models presented here are one-dimensional. A multi-dimensional version would use

multi-dimensional Lévy processes. This allows for the possibility of correlation between lines.
In addition, correlation between lines can be induced by using correlated mixing variables C. This is
the common-shock model, described in Meyers (2005b).

6. Defining the Derivative of a Risk Measure and Directions in the Space of Risks

This section is the technical heart of the paper. It investigates the definition of derivative for a real
function and considers how it could be defined on more general spaces, such as the space of random
variables. It explains how Lévy processes can be used to define "direction" and how the infinitesimal
generator of a Lévy process relates to derivatives. This allows us to pin-point the difference between
the derivatives of an insurance process and of an asset process.

6.1. Defining the Derivative

When ρ : Rn → R the meaning of ∂ρ/∂Xi is clear. However we want to consider ρ : L→ R where
L is the more complicated space of random variables. We need to define the derivative mapping DρX



Risks 2017, 5, 31 13 of 44

as a real-valued linear map on tangent vectors or “directions” at X ∈ L. Meyers’ example shows the
asset/return model and an insurance growth model correspond to different directions.

A direction in L can be identified with the derivative of a coordinate path x : U → L where
U ⊂ R. Composing ρ and x results in a real valued function of a real variable ρx := ρ ◦ x : U → R,
u 7→ ρ(x(u)), so standard calculus defines dρx/du. The derivative of ρ at x(u) in the direction defined
by the derivative ẋ(u) of x(u) is given by

Dρx(u)(ẋ(u)) :=
dρx

du
(22)

The surprise of Equation (22) is that the two complex objects on the left combine to the
single, well-understood object on the right. The exact definitions of the terms on the left will be
discussed below.

Section 4 introduced two important coordinates. The first is k : R→ L, k(u) = uX for some fixed
random variable X ∈ L. It is suitable for modeling assets: u represents position size and X represents
the asset return. The second coordinate is m : [0, ∞) → L, m(u) = Xu, where Xu is a compound
Poisson distribution with frequency mean uλ and severity component Z. It is suitable for modeling
aggregate losses from an insurance portfolio. (There is a third potential coordinate path w(u) = Bu

where Bu is a Brownian motion, but because it always takes positive and negative values it is of less
interest for modeling losses.)

An issue with the asset coordinate in an insurance context is the correct interpretation of uX.
For 0 < u ≤ 1, uX can be interpreted as a quota share of total losses, or as a coinsurance provision.
However, uX for u < 0 or u > 1 is generally meaningless due to policy provisions, laws on
over-insurance, and the inability to short insurance. The natural way to interpret a doubling in
volume (“2X”) is as X1 + X2 where X, X1, X2 are identically distributed random variables, rather than
as a policy paying $2 per $1 of loss. This interpretation is consistent with doubling volume since
E(X1 + X2) = 2E(X). Clearly X + X has a different distribution to X1 + X2 unless X1 and X2 are
perfectly correlated. The insurance coordinate has exactly this property: m(2) = X2u is the sum of two
independent copies of Xu because of the additive property of the Poisson distribution.

To avoid misinterpreting uX it is safer to regard insurance risks as probability measures
(distributions) µ on R. The measure µ corresponds to a random variable X with distribution
Pr(X ≤ x) = µ(−∞, x]. Now there is no natural way to interpret 2µ. Identify L with M(R), the set of
probability measures on R. We can combine two elements of M(R) using convolution: the distribution
of the sum of the corresponding random variables. Since the distribution if X + Y is the same as the
distribution of Y + X order of convolution does not matter. Now 2X in our insurance interpretation,
X1 + X2, corresponds to µ ? µ := µ?2, where ? represents convolution, and we are not led astray.

We still have to define “directions” in L and M(R). Directions should correspond to the derivatives
of curves. The simplest curves are straight lines. A straight line through the origin is called a ray.
Table 2 shows several possible characterizations of a ray Rn each of which uses a different aspect of the
rich mathematical structure of Rn, and which could be used as characterizations in L.

Table 2. Possible characterizations of a ray in Rn.

Characterization of Ray Required Structure on Rn

α is the shortest distance between α(0) and α(1) Notion of distance in Rn, differentiable manifold
α′′(t) = 0, constant velocity, no acceleration Very complicated on a general manifold.
α(t) = tx, x ∈ Rn. Vector space structure
α(s + t) = α(s) + α(t) Can add in domain and range, semigroup structure only.

The first two use properties of Rn that require putting a differential structure on L, which is very
complicated. The third corresponds to the asset volume/return model and uses the identification of
the set of possible portfolios with the R vector space Rn. This leaves the fourth approach: a ray is
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characterized by the simple relationship α(s + t) = α(s) + α(t). This definition only requires the ability
to add for the range space, which we have on L. It is the definition adopted in Stroock (2003).

Therefore rays in L should correspond to families of random variables satisfying Xs + Xt = Xs+t

(or, equivalently, in M(R) to families of measures µs satisfying µs ? µt = µs+t), i.e., to Lévy processes.
Since X0 = X0+0 = X0 + X0 a ray must start at 0, the random variable taking the value 0 with
probability 1. Straight lines correspond to translations of rays: a straight line passing through the point
Y ∈ L is a family Y + Xt where Xt is a ray (resp. passing thought ν ∈ M(R) is ν ? µt where µt is a ray.)
Directions in L are determined by rays. By providing a basis of directions in L, Lévy processes provide
the insurance analog of individual asset return variables.

We now think about derivatives in a more abstract way. Working with functions on Rn obscures
some of the complication involved in working on more general spaces (like L) because the set of
directions at any point in Rn can naturally be identified with a point in Rn. In general this is not the
case; the directions live in a different space. A familiar non-trivial example of this is the sphere in
R3. At each point on the sphere the set of directions, or tangent vectors, is a plane. The collection of
different planes, together with the original sphere, can be combined to give a new object, called the
tangent bundle over the sphere. A point in the tangent bundle consists of a point on the sphere and a
direction, or tangent vector, at that point.

There are several different ways to define the tangent bundle. For the sphere, an easy method
is to set up a family of local charts, where a chart is a differentiable bijection from a subset of R2 to a
neighborhood of each point. Charts must be defined at each point on the sphere in such a way that
they overlap consistently, producing an atlas, or differentiable structure, on the sphere. Charts move
questions of tangency and direction back to functions on R2 → R2 where they are well understood.
This is called the coordinate approach.

Another way of defining the tangent bundle is to use curves, or coordinate paths, to define tangent
vectors: a direction becomes the derivative of a curve. The tangent space can be defined as the set of
curves through a point, with two curves identified if they are tangent (agree to degree 1). In the next
section we will apply this approach to L. A good general reference on the construction of the tangent
bundle is Abraham et al. (1988).

Figure 2 is an illustrative schematic. The sphere S is used as a proxy for L, an object with more
complex geometry than flat Euclidean space. The two paths m and k are shown as the red and blue
lines, passing through the same point (distribution) x on the sphere at t = 1. The red line is part of a
great circle geodesic—the analog of a straight line on a sphere—whereas the blue line is not. Above x
is the tangent plane (isomorphic to R2) to the sphere at x,TSx; π is the projection from the tangent
bundle TS to S. The derivative of ρ at x is a linear map Dρ : TSx → TR. For Euclidean spaces we can
identify the tangent bundle with the space so TR = R. Although k(1) = m(1) = x they have different
derivatives (define different vectors in TSx), ṁ 6= k̇ at t = 1.

The derivative of a risk measure ρ, ∂ρ/∂X, is the evaluation of the linear differential Dρ on a
tangent vector in the direction X. Meyer’s embedding m corresponds to ∂(ρ ◦m)/∂t|t=1 = DρX(ṁ(1))
whereas Kalkbrener’s corresponds to ∂(ρ ◦ k)/∂t|t=1 = DρX(k̇(1)). As demonstrated in Section 4 these
derivatives are not the same—just as the schematic leads us to expect—because the direction ṁ(1) is
not the same as the direction k̇(1).

The difference between k̇(1) and ṁ(1) is a measure of the diversification benefit given by m
compared to k. The embedding k maps x 7→ xX and so offers no diversification to an insurer. Again,
this is correct for an asset portfolio (you don’t diversify a portfolio by buying more of the same stock)
but it is not true for an insurance portfolio. We will describe the analog of TSx next.
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Figure 2. Schematic of the Kalkbrener-Meyers example, using the sphere to illustrate the more
complex space L.

6.2. Directions in the Space of Actuarial Random Variables

We now show how Lévy processes provide a description of “directions” in the space L.
The analysis combines three threads:

1. The notion that directions, or tangent vectors, live in a separate space called the tangent bundle.
2. The identification of tangent vectors as derivatives of curves.
3. The idea that Lévy processes, characterized by the additive relation X(s + t) = X(s) + X(t),

provide the appropriate analog of rays to use as a basis for insurance risks.

The program is to compute the derivative of the curve t 7→ X(t) ∈ L defined by a Lévy
process family of random variables (or t 7→ µt ∈ M(R) defined by an additive family of probability
distributions on R). The ideas presented here are part of a general theory of Markov processes.
The presentation follows the beautiful book by Stroock (2003). We begin by describing a finite sample
space version of L which illustrates the difficulties involved in regarding it as a differentiable manifold.

To see that the construction of tangent directions in L may not be trivial, consider the space
M of probability measures on Z/n, the integers {0, 1, . . . , n− 1} with + given by addition modulo
n. An element µ ∈ M can be identified with an n-tuple of non-negative real numbers p0, . . . , pn−1

satisfying ∑i pi = 1. Thus elements of M are in one to one correspondent with elements of the n− 1
dimensional simplex ∆n−1 = {(x0, . . . , xn−1) | ∑i xi = 1} ⊂ Rn. ∆n inherits a differentiable structure
from Rn+1 and we already know how to think about directions and tangent vectors in Euclidean space.
However, even thinking about ∆2 ⊂ R3 shows M is not an easy space to work with. ∆2 is a plane
triangle; it has a boundary of three edges and each edge has a boundary of two vertices. The tangent
spaces at each of these boundary points is different and different again from the tangent space in the
interior of ∆2. As n increases the complexity of the boundary increases and, to compound the problem,
every point in the interior gets closer to the boundary. For measures on R the boundary is dense.

Let δx ∈ M(R) be the measure giving probability 1 to x ∈ R. We will describe
the space of tangent vectors to M(R) at δ0. By definition, all Lévy processes X(t) have
distribution δ0 at t = 0. Measures µt ∈ M(R) are defined by their action on functions f on R.
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Let 〈 f , µ〉 =
∫
R f (x)µ(dx) = E( f (X)), where X has distribution µ. In view of the fundamental theorem

of calculus, the derivative µ̇t of µt should satisfy

〈 f , µt〉 − 〈 f , µ0〉 =
∫ t

0
µ̇τ f dτ, (23)

with µ̇t a linear functional acting on f , i.e., µ̇t( f ) ∈ R and f 7→ µ̇t( f ) is linear in f . Converting
Equation (23) to its differential form suggests that

µ̇0 f = lim
t↓0

〈 f , µt〉 − 〈 f , µ0〉
t

(24)

= lim
t↓0

E( f (X(t)))− E( f (X(0)))
t

(25)

where X(t) has distribution µt.
We now consider how Equation (25) works when X(t) is related to a Brownian motion or a

compound Poisson—the two building block Lévy processes. Suppose first that X(t) is a Brownian
motion with drift γ and standard deviation σ, so X(t) = γt + σB(t) where B(t) is a standard Brownian
motion. Let f be a function with a Taylor’s expansion about 0. Then

µ̇0 f = lim
t↓0

[E( f (0) + X(t) f ′(0) +
X(t)2 f ′′(0)

2
+ o(t))− f (0)]/t (26)

= lim
t↓0

[γt f ′(0) +
σ2t f ′′(0)

2
+ o(t))]/t (27)

= γ f ′(0) +
σ2 f ′′(0)

2
, (28)

because E(B(t)) = 0 and E(B(t)2) = t and so E(X(t)) = E(γt + σB(t)) = γt and
E(X(t)2) = γ2t2 + σ2t. Thus µ̇0 acts as a second order differential operator evaluated at x = 0 (because
we assume µ0 = δ0):

µ̇0 f = γ
d f
dx

(0) +
σ2

2
d f 2

dx2 (0). (29)

Next suppose that X(t) is a compound Poisson distribution with Lévy measure ν, ν({0}) = 0
and λ = ν(R) < ∞. Let J be a variable with distribution ν/λ, so, in actuarial terms, J is the severity.
The number of jumps of X(t) follows a Poisson distribution with mean λt. If t is very small then the
axioms characterizing the Poisson distribution imply that in the time interval [0, t] there is a single
jump with probability λt and no jump with probability 1− λt. Conditioning on the occurrence of a
jump, E( f (X(t))) = (1− λt) f (0) + λtE( f (J)) and so

µ̇0 f = lim
t↓0

E( f (X(t)))− E( f (X(0)))
t

(30)

= lim
t↓0

λt(E( f (J))− f (0))
t

(31)

= λ(E( f (J))− f (0)) (32)

=
∫
( f (y)− f (0)) ν(dy) (33)

This analysis side-steps some technicalities by assuming that ν(R) < ∞. For both the Brownian
motion and the compound Poisson if we are interested in tangent vectors at µ0 = δx for x 6= 0 then we
replace 0 with x because 〈 f , µ0〉 = E( f (x + X0)) = f (x). Thus Equation (33) becomes

µ̇0 f =
∫
( f (x + y)− f (x)) ν(dy) (34)
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for example. Combining these two results makes the following theorem plausible.

Theorem 2 (Stroock (2003) Thm 2.1.11). There is a one-to-one correspondence between Lévy triples and rays
(continuous, additive maps) t ∈ [0, ∞)→ µt ∈ M(R). The Lévy triple (σ, ν, γ) corresponds to the infinitely
divisible map t 7→ µ

(σ,ν,γ)
t given by the Lévy process with the same Lévy triple. The map is t 7→ µ

(σ,ν,γ)
t is

differentiable and
µ̇
(σ,ν,γ)
t f = µ̇t f = 〈L(σ,ν,γ) f , µt〉. (35)

where L(σ,ν,γ) is a pseudo differential operator, see Applebaum (2004); Jacob (2001 2002 2005), given by

L(σ,ν,γ) f (x) = γ
d f
dx

+
1
2

σ2 d2 f
dx2 +

∫
R

f (y + x)− f (x)− d f
dx

y
1 + |y|2 ν(dy). (36)

If t 7→ µt ∈ L is a differentiable curve and µ0 = δx for some x ∈ R then there exists a unique Lévy triple
(σ, ν, γ) such that µ̇0 is the linear operator acting on f by

µ̇0 f = L(σ,ν,γ) f (x) = 〈L(σ,ν,γ) f , µ0〉. (37)

Thus Tδx (M(R)), the tangent space to M(R) at δx, can be identified with the cone of linear functionals of
the form f 7→ L(σ,ν,γ) f (x) where (σ, ν, γ) is a Lévy triple.

Just as in the Lévy-Khintchine theorem, the extra term in the integral is needed for technical
convergence reasons when there is an infinite number of very small jumps. Note that µ̇0 f ∈ R is a
number, L(σ,ν,γ) f is a function and its value at x, L(σ,ν,γ) f (x) ∈ R is a number. The connection between
µt and x is µ0 = δx is the measure concentrated at x ∈ R.

At this point we have described tangent vectors to L = M(R) at degenerate distributions
δx. To properly illustrate Figures 1 and 2 we need a tangent vector at a more general µ. Again,
following (Stroock 2003, sct. 2.11.4), define a tangent vector to M(R) at a general µ to be a linear
functional of the form Λµ f = 〈L f , µ〉 where L = L(σ(x),ν(x),γ(x)) is a continuous family of operators
L determined by x. We will restrict attention to simpler tangent vectors where L = L(σ,ν,γ) does not
vary with x. If µt is the Lévy process corresponding to the triple (σ, ν, γ) and f is bounded and has
continuously bounded derivatives, then, by independent and stationary increments

µ̇u f = 〈L(σ,ν,γ) f , µt〉 (38)

= lim
s↓0

E
(

f (Xs+u)− f (Xu)

s

)
(39)

= lim
s↓0

EXu

(
EXs( f (Xs + Xu)− f (Xu))

s

)
(40)

= EXu

(
lim
s↓0

EXs( f (Xs + Xu)− f (Xu))

s

)
(41)

= EXu

(
〈L(σ,ν,γ) f (Xu)

)
(42)

by dominated convergence. The tangent vector is an average of the direction at all the locations that
Xu can take.

6.3. Examples

We present a number of examples to illustrate the theory. Test functions f are usually required to
be bounded and twice continuously and boundedly differentiable to ensure that all relevant integrals
exist. However, we can apply the same formulas to unbounded differentiable functions for particular µt

if we know relevant integrals converge. Below we will use f (x) = x2 as a example, with distributions
having a second moment.
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Example 7 (Brownian motion). Let Xt be a standard Brownian motion, corresponding to Lévy triple
(σ, ν, γ) = (1, 0, 0) and f (x) = x2. The density of Xt is g(x, t) = (2πt)−1/2 exp(−x2/2t) and let lt
be the associated measure. We can compute l̇t f in three ways. First, using Stroock’s theorem Equation (37)

l̇t f =
〈

L(1,0,0) f , lt
〉
=
〈1

2
∂2 f
∂x2 , lt

〉
= 〈1, lt〉 = 1. (43)

Second, using l̇t f = d/dt〈 f , lt〉 and the fact that 〈 f , lt〉 = E(X2
t ) = t again gives l̇t f = 1. Thirdly,

differentiating d/dt〈 f , lt〉 through the integral gives

d
dt
〈 f , lt〉 =

∫
R

f (x)
∂g
∂t

(x, t)dx (44)

=
∫
R

1√
2πt

e−x2/2tx2
(

x2

2t2 −
1
2t

)
dx (45)

=
E(X4

t )

2t2 − E(X2
t )

2t
(46)

= 1 (47)

since E(X4
t ) = 3t2 and E(X2

t ) = t.

Example 8 (Gamma process). Let Xt be a gamma process, (Sato 1999, p. 45), Barndorff-Nielsen (2000),
meaning Xt has law lt = Γ(tλ, α) with density αtλ/Γ(tλ)xtλ−1e−αx and Lévy measure
ν(dx) = (λ/x)e−αxdx, γ = σ = 0 on x ≥ 0. We have

E(Xt) =
λt
α

, E(X2
t ) =

λt(λt + 1)
α2 , and Var(Xt) =

λt
α2 . (48)

Notice that ν([0∞)) = ∞ so this example is not a compound Poisson process because it has infinitely many
small jumps. But it is a limit of compound Poisson processes. For f (x) = x2, 〈 f , lt〉 = E(X2

t ) = λt(λt + 1)/α2

so
d
dt
〈 f , lt〉 =

2λ2t + λ

α2 . (49)

On the other hand, using Equation (37) with L(0,ν,0) gives

L(0,ν,0) f (x) =
∫
( f (x + y)− f (x))

λ

y
e−αydy (50)

=
2λx

α
+

λ

α2 , (51)

so l̇t f = 〈L(0,ν,0) f , lt〉 = (2λ2t + λ)/α2, agreeing with Equation (49).

Example 9 (Laplace process). Let Xt be a Laplace process with law lt, (Sato 1999, p. 98), and (Kotz et al.
2001, p. 47) . X1 has density α exp(−α|x|)/2 and Lévy measure ν(dx) = exp(−α|x|)/|x|dx. Xt can be
represented as the difference of two Γ(t, α) variables. E(Xt) = 0, Var(Xt) = E(X2

t ) = 〈 f , lt〉 = 2t/α2 and
hence

d
dt
〈 f , lt〉 =

2
α2 . (52)



Risks 2017, 5, 31 19 of 44

On the other hand

L(0,ν,0) f (x) =
∫
( f (x + y)− f (x))

1
|y| e

−α|y|dy (53)

=
∫
(2xy + y2)

1
|y| e

−α|y|dy (54)

= 2
∫ ∞

0
ye−αydy =

2
α2 (55)

as the first term in the middle equation is odd and hence zero.

6.4. Application to Insurance Risk Models IM1-4 and Asset Risk Model AM1

We now compute the difference between the directions implied by each of IM1-4 and AM1
to quantify the difference between ṁ(1) and k̇(1) in Figures 1 and 2. In order to focus on realistic
insurance loss models we will assume γ = σ = 0 and ν(R) < ∞. Assume the Lévy triple for the
subordinator Z is (0, ρ, 0). Also assume E(C) = 1, Var(C) = c, and that C, X and Z are all independent.

For each model we can consider the time derivative or the volume derivative. There are obvious
symmetries between these two for IM1 and IM3. For IM2 the temporal derivative is the same as the
volumetric derivative of IM3 with C = Z(t).

Theorem 2 gives the direction for IM1 as corresponding to the operator Equation (37) multiplied
by x or t as appropriate. If we are interested in the temporal derivative then losses evolve according
to the process X̃t = Xxt, which has Levy triple (0, xν, 0). Therefore, if µ0 = δz, z ∈ R, then the time
direction is given by the operator

µ̇0 f =
∫

f (z + y)− f (z)(xν)(dy) = x
∫

f (z + y)− f (z)ν(dy). (56)

The temporal derivative of IM2, X(xZ(t)), is more tricky. Let K have distribution ρ/ρ(R),
the severity of Z. For small t, Z(t) = 0 with probability 1− ρ(R)t and Z(t) = K with probability
ρ(R)t. Thus

µ̇0 f = ρ(R)E( f (z + X(xK))− f (z)) (57)

=
∫
(0,∞)

∫
(0,∞)

f (z + xy)− f (z)νxk(dy)ρ(dk) (58)

where νk is the distribution of X(k). This has the same form as IM1, except the underlying Lévy
measure ν has been replaced with the mixture

ν′(B) =
∫
(0,∞)

νk(B)ρ(dk). (59)

See (Sato 1999, chp. 6, Thm 30.1) for more details and for the case where X or Z includes a
deterministic drift.

For IM3, X(xCt), the direction is the same as for model IM1. This is not a surprise because the
effect of C is to select, once and for all, a random speed along the ray; it does not affect its direction.
By comparison, in model IM2 the “speed” is proceeding by jumps, but again, the direction is fixed.
If E(C) 6= 1 then the derivative would be multiplied by E(C).

Finally the volumetric derivative of the asset model is simply

µ̇0 f = X(t)
d f
dx

(z). (60)

Thus the derivative is the same as for a deterministic drift Lévy process. This should be expected
since once X(t) is known it is fixed regardless of volume x. Comparing with the derivatives for IM1-4
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expresses the different directions represented schematically in Figure 2 analytically. The result is also
reasonable in light of the different shapes of tZ and

√
tZ as t→ 0, for a random variable Z with mean

and standard deviation equal to 1. For very small t, tZ is essentially the same as a deterministic tE(Z),
whereas

√
tZ has a standard deviation

√
t which is much larger than the mean t. Its coefficient of

variation 1/
√

t → ∞ as t → 0. The relative uncertainty in
√

tZ grows as t → 0 whereas for tZ it
disappears see Figure 3.
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Figure 3. Illustration of the difference between tZ and
√

tZ for Z a standard normal as t→ 0.

Severity uncertainty is also interesting. Suppose that claim frequency is still λ but that severity is
given by a family of measures ν̃V for a random V. Now, in each state, the Lévy process proceeds along
a random direction defined by V(ω), so the resulting direction is a mixture

µ̇0 =
∫

µ̇0,vdv. (61)

We can interpret these results from the perspective of credibility theory. Credibility is usually
associated with repeated observations of a given insured, so t grows but x is fixed. For models
IM1-4 severity (direction) is implicitly known. For IM2-4 credibility determines information about
the fixed (C) or variable (Z(t)) speed of travel in the given direction. If there is severity uncertainty,
V, then repeated observation resolves the direction of travel, rather than the speed. Obviously both
direction and speed are uncertain in reality.

Actuaries could model directly with a Lévy measure ν and hence avoid the artificial distinction
between frequency and severity as Patrik et al. (1999) suggested. Catastrophe models already
work in this way. Several aspects of actuarial practice could benefit from avoiding the artificial
frequency/severity dichotomy. The dichotomy is artificial in the sense it depends on an arbitrary
choice of one year to determine frequency. Explicitly considering the claim count density of losses by
size range helps clarify the effect of loss trend. In particular, it allows different trend rates by size of loss.
Risk adjustments become more transparent. The theory of risk-adjusted probabilities for compound
Poisson distributions (Delbaen and Haezendonck 1989; Meister 1995), is more straightforward if loss
rate densities are adjusted without the constraint of adjusting a severity curve and frequency separately.
This approach can be used to generate state price densities directly from catastrophe model output.
Finally, the Lévy measure is equivalent to the log of the aggregate distribution, so convolution of
aggregates corresponds to a pointwise addition of Lévy measures, facilitating combining losses from
portfolios with different policy limits. This simplification is clearer when frequency and severity
are not split.
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6.5. Higher Order Identification of the Differences Between Insurance and Asset Models

We now consider whether Figure 1 is an exaggeration by computing the difference between the
two operators k̇ and ṁ acting on test functions. We first extend k slightly by introducing the idea of
a homogeneous approximation.

Let X be an infinitely divisible distribution with associated Lévy process u 7→ Xu. As usual, we
consider two coordinate maps R+ → L: the asset return model k : R+ → L, u 7→ k(u) = uX1, and
the insurance model m : R+ → L, u 7→ m(u) = Xu. These satisfy k(1) = m(1) = X1, but in general
k̇u 6= ṁu at u = 1. We use u rather than t as the argument to avoid giving the impression that the index
represents time: remember it represents the combination of time and volume.

Obviously there is no need to restrict k to be an approximation of X1. For general u = u0 we can
construct a homogeneous approximation to m(u0) at u0 by k(u) = (u/u0)Xu0 . The name homogeneous
approximation is apt because k(u0) = m(u0), and k is homogeneous: k(su) = (su/u0)Xu0 = sk(u),
for real s > 0. For a general Lévy process X, Xxt does not have the same distribution as xXt, so m is not

homogeneous. For example if X is stable with index α, 0 < α < 2 then Xxt
d
= x1/αXt (Brownian motion

is stable with α = 2). This section will compare k̇ and ṁ by computing the linear maps corresponding
to k̇ and ṁ and showing they have a different form. We will compute the value of these operators on
various functions to quantify how they differ. In the process we will recover Meyers’ Meyers (2005a)
example of “axiomatic capital” vs. “economic capital” from Section 4.

Suppose the Lévy triple defining Xu is (σ, ν, γ), where σ is the standard deviation of the continuous
term and ν is the Lévy measure. Let L(σ,ν,γ) be the pseudo-differential operator defined by Theorem 2
and let µu be the law of Xu. Using the independent and additive increment properties of an Lévy
process and (Sato 1999, Theorem 31.5) we can write

µ̇u f = 〈L(σ,ν,γ) f , µu〉 = EXu

[
lim
s↓0

s−1EXs( f (Xu + Xs)|Xu)− f (Xu)

]
(62)

where f : R→ R is a doubly differentiable, bounded function with bounded derivatives.
Regarding k as a deterministic drift at a random (but determined once and for all) speed Xu0 /u0,

we can apply Equation (62) with γ = Xu0 /u0 and average over Xu0 to get

k̇u f = EXu0
(〈L f , ku〉) = E[Xu0 /u0 f ′(uXu0 /u0)]. (63)

We can see this equation is consistent with Equation (23):∫ u

0
ẋυdυ =

∫ u

0
E[Xu0 /u0 f ′(υXu0 /u0)]dυ (64)

=
∫ u

0

∫
x/u0 f ′(υx/u0)µu0(dx)dυ (65)

=
∫ ∫ ux/u0

0
f ′(y)dyµu0(dx) (66)

=
∫

f (ux/u0)− f (0)µu0(dx) (67)

= E[ f (uXu0 /u0)]− f (0), (68)

where lt is the law of Xt.
Suppose that the Lévy process Xt is a compound Poisson process with jump intensity λ and jump

component distribution J. Suppose the jump distribution has a variance. Then, using Equation (62),
and conditioning on the presence of a jump in time s, which has probability λs, gives

ṁu f = λEXu [E( f (Xu + J))− f (Xu)]. (69)
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Now let f (x) = x. Usually test functions are required to be bounded. We can get around
this by considering min( f , n) for fixed n and letting n → ∞ and only working with relatively
thin tailed distributions—which we do through our assumption the severity J has a variance.
Since E(Xu) = λuE(J), Equations (63) and (69) give k̇u f = E(Xu0 /u0) = λE(J) and ṁu f = λE(J)
respectively so the homogeneous approximation has the same derivative in this case.

If f (x) = x2 then since E(X2
u) = λ2u2E(J)2 + λuE(J2) we get

k̇u f = 2λ2uE(J)2 + 2λuE(J2)/u0. (70)

On the other hand
ṁu f = 2λ2uE(J)2 + λE(J2). (71)

Thus

k̇u0 f = 2λ2u0E(J)2 + 2λE(J2) = 2λE(Xu0)E(J) + 2λE(J2) (72)

ṁu0 f = 2λ2u0E(J)2 + λE(J2) = 2λE(Xu0)E(J) + λE(J2). (73)

The difference k̇u0 f − ṁu0 f = λE(J2) is independent of u0 and so the relative difference decreases
as u0 increases, corresponding to the fact that Xu0 changes shape more slowly as u0 increases. If J has
a second moment, which we assume, then the relative magnitude of the difference depends on the
relative size of E(J2) compared to λE(J)2, i.e., the variance of J offset by the expected claim rate λ.

In general, if f (x) = xn, n ≥ 3 then

k̇u0 f = E(nXn
u0

/u0). (74)

On the other hand

ṁu f = λEXu

[
n

∑
i=1

(
n
i

)
Xn−i

u E(Ji)

]
(75)

= λ
n

∑
i=1

(
n
i

)
E(Xn−i

u )E(Ji). (76)

Let κn(u) be the nth cumulant of Xu and µ′n(u) = E(Xn
u) be the nth moment.

Recall κn(u) = u
∫

xnν(dx) = λuE(Jn) and the relationship between cumulants and moments

κn = µ′n −
n−1

∑
k=1

(
n− 1
k− 1

)
κkµ′n−k. (77)

Combining these facts gives

E(Xn
u) = λuE(Jn) +

n−1

∑
i=1

(
n− 1
i− 1

)
λuE(Ji)E(Xn−i

u ) (78)
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and hence

k̇u0 f − ṁu0 f = E(nXn
u0

/u0)− λ
n

∑
i=1

(
n
i

)
E(Ji)E(Xn−i

u0
)

= λ(nE(Jn) + n
n−1

∑
i=1

(
n− 1
i− 1

)
E(Ji)E(Xn−i

u0
)−

n

∑
i=1

(
n
i

)
E(Ji)E(Xn−i

u0
)) (79)

= λ((n− 1)E(Jn) +
n−1

∑
i=1

(
n
(

n− 1
i− 1

)
−
(

n
i

))
E(Ji)E(Xn−i

u0
))

= λ
n

∑
i=2

(i− 1)
(

n
i

)
E(Ji)E(Xn−i

u0
).

As for n = 2, the E(Jn) term is independent of u0 whereas all the remaining terms grow with u0.
For n = 3 the difference is 3λE(J2)E(X) + 2E(J3).

In the case of the standard deviation risk measure we recover same results as Section 4.
Let ρ(µu) = (〈x2, µu〉 − 〈x, µu〉2)1/2 be the standard deviation risk measure. Using the chain rule,
the derivative of ρ in direction k̇ at u = u0, where m(u0) = k(u0), is

Dρm(u0)
(k̇) =

k̇u0(x2)− 2〈x, xu0〉k̇u0(x)
2ρ(kt0)

(80)

and similarly for direction ṁ. Thus

Dρ(k̇)− Dρ(ṁ) =
λE(J2)

2ρ(mu0)
, (81)

which is the same as the difference between Equations (7) and (10) because here ci = 0, g = E(J2) and,
since we are considering equality at u0 where frequency is x = λu0, and we are differentiating with
respect to u we pick up the additional λ in Equation (10).

This section has shown there are important local differences between the maps k and m. They may
agree at a point, but the agreement is not first order—the two maps define different directions.
Since capital allocation relies on derivatives—the ubiquitous gradient—it is not surprising that
different allocations result. Meyer’s example and the failure of gradient based formulas to add-up for
diversifying Lévy processes are practical manifestations of these differences.

The commonalities we have found between the homogeneous approximation k and the insurance
embedding m are consistent with the findings of Boonen et al. (2017) that although insurance portfolios
are not linearly scalable in exposure the Euler allocation rule can still be used in an insurance context.
Our analysis pinpoints the difference between the two and highlights particular ways it could fail and
could be more material in applications. Specifically, it is more material for smaller portfolios and for
portfolios where the severity component has a high variance: these are exactly the situations where
aggregate losses will be more skewed and will change shape most rapidly.

7. Empirical Analysis

7.1. Overview

Next we test different loss models against US statutory insurance data. Aon Benfield’s original
Insurance Risk Study ABI (2007) was based on the methodology described in this paper and the exhibits
below formed part of its backup. The Risk Study has been continued each year since, see ABI (2012,
2013, 2014, 2015) for the most recent editions. The 2015 Tenth Edition provides a high-level analysis
using regulatory insurance data from 49 countries that together represent over 90% of global P & C
premium. The conclusions reported here hold across a very broad range of geographies and lines
of business.
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The original analysis ABI (2007) focused on the US and used National Association of Insurance
Commissioners (NAIC) data. The NAIC is an umbrella organization for individual US state regulators.
The NAIC statutory annual statement includes an accident year report, called Schedule P, showing ten
years of premium and loss data by major line of business. This data is available by insurance company
and insurance group. The analysis presented here will use data from 1993 to 2004 by line of business.
We will model the data using IM1-4 from Section 5.2. The model fits can differentiate company effects
from accident year pricing cycle effects, and the parameters show considerable variation by line of
business. The fits also capture information about the mixing distribution C.

We will show the data is consistent with two hypotheses:

H1. The asymptotic coefficient of variation or volatility as volume grows is strictly positive.
H2. Time and volume are symmetric in the sense that the coefficient of variation of aggregate losses

for volume x insured for time t only depends on xt.

H1 implies that insurance losses are not volumetrically diversifying. Based on Table 1, H1 is
only consistent with IM3 or IM4. H2 is only consistent with IM1 and IM3. Therefore the data is only
consistent with model IM3 and not consistent with the other models. IM3 implies that diversification
over time and volume follows a symmetric modified square root rule, υ(x, t) =

√
(σ2/xt) + c.

7.2. Isolating the Mixing Distribution

We now show that the mixing distribution C in IM3 and IM4 can be inferred from a large book of
business even though it cannot be directly observed.

Consider an aggregate loss distribution with a C-mixed Poisson frequency distribution,
per Equation (6) or IM3, 4. If the expected claim count is large and if the severity has a variance
then particulars of the severity distribution diversify away in the aggregate. Any severity from a policy
with a limit obviously has a variance. Moreover the variability from the Poisson claim count component
also diversifies away, because the coefficient of variation of a Poisson distribution tends to zero as the
mean increases. Therefore the shape of the normalized aggregate loss distribution, aggregate losses
divided by expected aggregate losses, converges in distribution to the mixing distribution C.

This assertion can be proved using moment generating functions. Let Xn be a sequence of random
variables with distribution functions Fn and let X be another random variable with distribution F.
If Fn(x)→ F(x) as n→ ∞ for every point of continuity of F then we say Fn converges weakly to F and
that Xn converges in distribution to X.

Convergence in distribution is a relatively weak form of convergence. A stronger form is
convergence in probability, which means for all ε > 0 Pr(|Xn − X| > ε) → 0 as n → ∞. If Xn

converges to X in probability then Xn also converges to X in distribution. The converse is false. For
example, let Xn = Y and X be binomial 0/1 random variables with Pr(Y = 1) = Pr(X = 1) = 1/2.
Then Xn converges to X in distribution. However, since Pr(|X−Y| = 1) = 1/2, Xn does not converge
to X in probability.

Xn converges in distribution to X if the moment generating functions (MGFs) Mn(z) = E(ezXn)

of Xn converge to the MGF of M of X for all z: Mn(z) → M(z) as n → ∞, see (Feller 1971, vol. 2,
chp. XV.3 Theorem 2). We can now prove the following proposition.

Proposition 1. Let N be a C-mixed Poisson distribution with mean n, C with mean 1 and variance c, and let
X be an independent severity with mean x and variance x(1 + γ2). Let An = X1 + · · ·+ XN and a = nx.
Then the normalized loss ratio An/a converges in distribution to C, so

Pr(An/a < α)→ Pr(C < α) (82)

as n→ ∞. Hence the standard deviation of An/a satisfies

σ(An/a) =

√
c +

x(1 + γ2)

a
→
√

c. (83)



Risks 2017, 5, 31 25 of 44

Proof. The moment generating function MAn(z) of An is

MAn(z) = MC(n(MX(z)− 1)) (84)

where MC and MX are the moment generating functions of C and X. Using Taylor’s expansion we
can write

lim
n→∞

MAn/a(z) = lim
n→∞

MAn(z/a)

= lim
n→∞

MC(n(MX(z/nx)− 1))

= lim
n→∞

MC(n(M′X(0)z/nx + R(z/nx)))

= lim
n→∞

MC(z + nR(z/nx)))

= MC(z)

for some remainder function R(z) = O(z2). The assumptions on the mean and variance of X guarantee
M′X(0) = x = E(X) and that the remainder term in Taylor’s expansion is O(z2). The second part
is trivial.

Proposition 1 is equivalent to a classical risk theory result of Lundberg describing the stabilization
in time of portfolios in the collective, see (Bühlmann 1970, sct. 3.3). It also implies that if the frequency
distribution is actually Poisson, so the mixing distribution is C = 1 with probability 1, then the loss
ratio distribution of a very large book will tend to the distribution concentrated at the expected.

Figures 4 and 5 illustrate the proposition, showing how the aggregate distributions change shape
as expected counts increase. In Figure 4, C = 1 and the claim count is Poisson. Here the scaled
distributions get more and more concentrated about the expected value (scaled to 1.0). In Figure 5,
C has a gamma distribution with variance 0.0625 (asymptotic coefficient of variation of 0.25). Now the
scaled aggregate distributions converge to C.
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Figure 4. Theoretical distribution of scaled aggregate losses with no parameter or structure uncertainty
and Poisson frequency.

Proposition 1 shows that in many realistic insurance situations severity is irrelevant to the shape
of the distribution of aggregate losses for a large book of business. This is an irritating but important
result. Severity distributions are relatively easy to estimate, particularly when occurrence severity is
limited by policy terms and conditions. Frequency distributions, on the other hand, are much more
difficult to estimate. Proposition 1 shows that the single most important variable for estimating the
shape of A is the mixing distribution C. Problematically, C is never independently observed! The power
of the proposition is to suggest a method for determining C: consider the loss ratio distribution of
large books of business.
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Figure 5. Theoretical distribution envelope of scaled aggregate losses with a gamma mixed Poisson
frequency with mixing variance c = 0.0625.

The mixing distribution C can be thought of as capturing parameter risk or systematic insurance
risks since its effect does not diversify away in a large book of business. In our context C is capturing
a number of non-diversifiable risk elements, including variation the type of insured or coverage
within a given classification, variation in the weather or other macro-risk factor over a long time
frame (for example, the recent rise in distracted driving or changes in workplace injuries driven by the
business cycle) as well as changes in the interpretation of policy coverage. We will estimate expected
losses using premium and so the resulting C also captures inter-company pricing effects, such as
different expense ratios, profit targets and underwriting appetites, as well as insurance pricing cycle
effects (both of which are controlled for in our analysis). Henceforth we will refer to C as capturing
parameter risk rather than calling it the mixing distribution.

7.3. Volumetric Empirics

We use NAIC annual statement data to determine an appropriate distribution for C (or Z(1)),
providing new insight into the exact form of parameter risk. In the absence of empirical information,
mathematical convenience usually reigns and a gamma distribution is used for C; the unconditional
claim count is then a negative binomial. The distribution of C is called the structure function in
credibility theory Bühlmann (1970).

Schedule P in the NAIC annual statement includes a ten accident-year history of gross, ceded
and net premiums and ultimate losses by major line of business. We focus on gross ultimate
losses. The major lines include private passenger auto liability, homeowners, commercial multi-peril,
commercial auto liability, workers compensation, other liability occurrence (premises and operations
liability), other liability claims made (including directors and officers and professional liability but
excluding medical), and medical malpractice claims made. These lines have many distinguishing
characteristics that are subjectively summarized in Table 3 as follows.

• Heterogeneity refers to the level of consistency in terms and conditions and types of insureds
within the line, with high heterogeneity indicating a broad range. The two Other Liability lines are
catch-all classifications including a wide range of insureds and policies.

• Regulation indicates the extent of rate regulation by state insurance departments.
• Limits refers to the typical policy limit. Personal auto liability limits rarely exceed $300,000 per

accident in the US and are characterized as low. Most commercial lines policies have a primary
limit of $1M, possibly with excess liability policies above that. Workers compensation policies do
not have a limit but the benefit levels are statutorily prescribed by each state.

• Cycle is an indication of the extent of the pricing cycle in each line; it is simply split personal (low)
and commercial (high).
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• Cats (i.e., catastrophes) covers the extent to which the line is subject to multi-claimant,
single occurrence catastrophe losses such as hurricanes, earthquakes, mass tort, securities
laddering, terrorism, and so on.

The data is interpreted in the light of these characteristics.

Table 3. Characteristics of Various Lines of Insurance

Insurance Line Heterogeneity Regulation Limits Cycle Cats

Personal Auto Low High Low Low No
Commercial Auto Moderate Moderate Moderate High No
Workers Compensation Moderate High Statutory High Possible
Medical Malpractice Moderate Moderate Moderate High No
Commercial Multi-Peril Moderate Moderate Moderate High Moderate
Other Liability Occurrence High Low High High Yes
Homeowners Multi-Peril Moderate High Low Low High
Other Liability Claims Made High Low High High Possible

In order to apply Proposition 1 we proxy a “large” book as one with more than $100M of premium
in each accident year. Figure 6 shows how the volatility of loss ratio by line varies with premium
size. It is computed by bucketing Schedule P loss ratios by premium size band and computing the
volatilities in each bucket. Each inset chart shows the same data on a log/log scale. The figure shows
three things.

1. The loss processes are not volumetrically diversifying, that is the volatility does not decrease to
zero with volume.

2. Below a range $100M-1B (varying by line) there are material changes in volatility with
premium size.

3. $100M is a reasonable threshold for large, in the sense that there is less change in volatility
beyond $100M.

The second point means that the inhomogeneity in a loss portfolio is very material in the $10–100M
premium range where most companies would try to set profit targets by line or business unit. This is
consistent with Mildenhall (2004).

We now determine C by line by applying Proposition 1. The data consists of observed schedule P
gross ultimate loss ratios λc,y by company c and accident year y = 1993, . . . , 2004. The observation λc,y

is included if company c had gross earned premium ≥ $100M in year y. The data is in the form of an
unbalanced two-way ANOVA table with at most one observation per cell. Let λ.,. denote the average
loss ratio over all companies and accident years, and λc,. (resp. λ.,y) the average loss ratio for company
c over all years (resp. accident year y over all companies). Each average can be computed as a straight
arithmetic average of loss ratios or as a premium-weighted average. With this data we will determine
four different measures of volatility.

Res1. Raw loss ratio volatility across all twelve years of data for all companies. This volatility
includes a pricing cycle effect, captured by accident year, and a company effect.

Res2. Control for the accident year effect λ.,y. This removes the pricing cycle but it also removes some
of the catastrophic loss effect for a year—an issue with the results for homeowners in 2004.

Res3. Control for the company effect λc,.. This removes spurious loss ratio variation caused by
differing expense ratios, distribution costs, profit targets, classes of business, limits, policy size
and so forth.

Res4. Control for both company effect and accident year, i.e., perform an unbalanced two-way
ANOVA with zero or one observation per cell. This can be done additively, modeling the loss
ratio λc,y for company c in year y as

λ̂c,y = λ.,. + (λc,. − λ.,.) + (λ.,y − λ.,.), (85)
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or multiplicatively as
λ̂c,y = λ.,.(λc,./λ.,.)(λ.,y/λ.,.). (86)

The multiplicative approach is generally preferred as it never produces negative fit loss ratios.
The statistical properties of the residual distributions are similar for both forms.
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Figure 6. The relationship between raw loss ratio volatility, measured as coefficient of variation of loss
ratios, and premium volume, using data from accident years 1993–2004. Each inset graph plots the
same data on a log/log scale, showing that the volatility continues to decrease materially for premium
volumes in the $100Ms. The total line is distorted by changing mix of business by volume; the largest
companies are dominated by private passenger auto liability which is the lowest volatility line.

Using Proposition 1 we obtain four estimates for the distribution of C from the empirical
distributions of λc,y/λ̂.,., λc,y/λ̂.,y, λc,y/λ̂c,. and λc,y/λ̂c,y for suitably large books of business.
The additive residuals λc,y − λ̂c,y also have a similar distribution (not shown).

Figures 7–9 show analyses of variance for the model described by Equation (85). Because the data
is unbalanced, consisting of at most one observation per cell, it is necessary to perform a more subtle
ANOVA than in the balanced case. We follow the method described in (Ravishanker and Dey 2002,
sct. 9.2.2). The idea is to adjust for one variable first and then to remove the effect of this adjustment
before controlling for the other variable. For example, in the extreme case where there is only one
observation for a given company, that company’s loss ratio is fit exactly with its company effect and
the loss ratio observation should not contribute to the accident year volatility measure. Both the
accident year effect and the company effect are highly statistically significant in all cases, except the
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unadjusted company effect for homeowners and the adjusted company effect for other liability claims
made. The R2 statistics are in the 50–70% range for all lines except homeowners. As discussed above,
the presence of catastrophe losses in 2004 distorts the homeowners results.

Additive ANOVA for Commercial Auto, $100M Threshold
Source of Variation Sum of Squares D of F Mean Squares F Ratio p Value
Unadjusted Accident Year 6.3446 11 0.5768 37.2271 6.70E-55 ***
Adjusted Company Effect 4.9147 56 0.0878 5.6645 3.44E-26 ***
Residual 5.7658 407 0.0142
     Std. Deviation 11.9%

Total (about mean) 17.0251 474 0.0359
     Std. Deviation 19.0%
R2 0.6613

Adjusted Accident Year 5.0773 11 0.4616 29.7914 8.48E-46 ***
Unadjusted Company Effect 6.1819 56 0.1104 7.1250 3.14E-34 ***

Tukey's Test for Interactions
SSA 0.0035 F statistic 0.2443
SSB 5.7658 p Value 0.621
SSR 5.7624

Additive ANOVA for Commercial Multiperil, $100M Threshold
Source of Variation Sum of Squares D of F Mean Squares F Ratio p Value
Unadjusted Accident Year 7.3649 11 0.6695 21.3469 1.85E-34 ***
Adjusted Company Effect 7.9119 67 0.1181 3.7650 5.72E-17 ***
Residual 12.0741 420 0.0287
     Std. Deviation 17.0%

Total (about mean) 27.3509 498 0.0549
     Std. Deviation 23.4%
R2 0.5585

Adjusted Accident Year 9.4834 11 0.8621 27.4873 4.09E-43 ***
Unadjusted Company Effect 5.7934 67 0.0865 2.7569 3.68E-10 ***

Tukey's Test for Interactions
SSA 0.0277 F statistic 0.9668
SSB 12.0741 p Value 0.326
SSR 12.0464

Additive ANOVA for Homeowners, $100M Threshold
Source of Variation Sum of Squares D of F Mean Squares F Ratio p Value
Unadjusted Accident Year 3.0722 11 0.2793 3.1671 3.67E-04 ***
Adjusted Company Effect 12.9407 78 0.1659 1.8813 3.39E-05 ***
Residual 42.7530 488 0.0876
     Std. Deviation 29.6%

Total (about mean) 58.7659 577 0.1018
     Std. Deviation 31.9%
R2 0.2725

Adjusted Accident Year 12.9724 11 1.1793 13.3729 1.97E-22 ***
Unadjusted Company Effect 3.0405 78 0.0390 0.4420 1.00E+00

Tukey's Test for Interactions
SSA 0.0001 F statistic 0.0008
SSB 42.7530 p Value 0.977
SSR 42.7529

Figure 7. Adjusted analysis of variance (ANOVA) for commercial auto, commercial multiperil
and homeowners.

Tukey’s test for interactions in an ANOVA with one observation per cell (Miller and Wichern 1977, sct. 4.11)
does not support an interaction effect for any line at the 5% level. This is consistent with a hypothesis
that all companies participate in the pricing cycle to some extent.
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Additive ANOVA for Medical Malpractice CM, $100M Threshold
Source of Variation Sum of Squares D of F Mean Squares F Ratio p Value
Unadjusted Accident Year 5.7299 11 0.5209 8.9928 7.43E-11 ***
Adjusted Company Effect 3.2898 29 0.1134 1.9584 7.88E-03 ***
Residual 3.9561 97 0.0408
     Std. Deviation 20.2%

Total (about mean) 12.9758 137 0.0947
     Std. Deviation 30.8%
R2 0.6951

Adjusted Accident Year 4.9819 11 0.4529 7.8189 1.49E-09 ***
Unadjusted Company Effect 4.0377 29 0.1392 2.4037 7.46E-04 ***

Tukey's Test for Interactions
SSA 0.1502 F statistic 3.8683
SSB 3.9561 p Value 0.052
SSR 3.8059

Additive ANOVA for Other Liability CM, $100M Threshold
Source of Variation Sum of Squares D of F Mean Squares F Ratio p Value
Unadjusted Accident Year 8.6215 11 0.7838 17.0633 6.97E-21 ***
Adjusted Company Effect 2.1244 31 0.0685 1.4919 6.22E-02
Residual 5.0512 138 0.0366
     Std. Deviation 19.1%

Total (about mean) 15.7971 180 0.0878
     Std. Deviation 29.6%
R2 0.6802

Adjusted Accident Year 2.9908 11 0.2719 5.9192 7.73E-08 ***
Unadjusted Company Effect 7.7551 31 0.2502 5.4463 1.49E-12 ***

Tukey's Test for Interactions
SSA 0.0566 F statistic 1.5756
SSB 5.0512 p Value 0.211
SSR 4.9945

Additive ANOVA for Other Liability Occurrence, $100M Threshold
Source of Variation Sum of Squares D of F Mean Squares F Ratio p Value
Unadjusted Accident Year 10.5218 11 0.9565 16.9844 4.71E-27 ***
Adjusted Company Effect 9.6707 59 0.1639 2.9104 5.08E-10 ***
Residual 19.5477 362 0.0540
     Std. Deviation 23.2%

Total (about mean) 39.7401 432 0.0920
     Std. Deviation 30.3%
R2 0.5081

Adjusted Accident Year 10.4953 11 0.9541 16.9416 5.47E-27 ***
Unadjusted Company Effect 9.6972 59 0.1644 2.9184 4.56E-10 ***

Tukey's Test for Interactions
SSA 0.0042 F statistic 0.0779
SSB 19.5477 p Value 0.780
SSR 19.5435

Figure 8. Adjusted ANOVA for medical malpractice claims made and other liability claims made
and occurrence.

Figure 10 shows the indicated volatilities for commercial auto, commercial multi-peril,
homeowners, other liability occurrence, private passenger auto liability and workers compensation for
the four models Res1-4 and Equation (86). The right hand plot shows the impact of the pricing (accident
year) effect and the firm effect on total volatility. This Figure shows two interesting things. On the left
it gives a ranking of line by volatility of loss ratio from private passenger auto liability, 14% unadjusted
and 8% adjusted, to homeowners and other liability occurrence, 41% and 36% unadjusted and 30% and
23% adjusted, respectively. The right hand plot shows that personal lines have a lower pricing cycle
effect (28% and 32% increase in volatility from pricing) than the commercial lines (mostly over 50%).
This is reasonable given the highly regulated nature of pricing and the lack of underwriter schedule
credits and debits. These results are consistent with the broad classification in Table 3.
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Additive ANOVA for Private Passenger Auto, $100M Threshold
Source of Variation Sum of Squares D of F Mean Squares F Ratio p Value
Unadjusted Accident Year 1.3640 11 0.1240 20.9565 1.55E-37 ***
Adjusted Company Effect 6.1637 101 0.0610 10.3137 1.11E-90 ***
Residual 4.5636 786 0.0058
     Std. Deviation 7.6%

Total (about mean) 12.0913 898 0.0135
     Std. Deviation 11.6%
R2 0.6226

Adjusted Accident Year 6.2189 11 0.5654 95.5466 9.70E-137 ***
Unadjusted Company Effect 1.3088 101 0.0130 2.1900 2.86E-09 ***

Tukey's Test for Interactions
SSA 0.0022 F statistic 0.3720
SSB 4.5636 p Value 0.542
SSR 4.5615

Additive ANOVA for Workers Compensation, $100M Threshold
Source of Variation Sum of Squares D of F Mean Squares F Ratio p Value
Unadjusted Accident Year 13.9945 11 1.2722 68.2576 1.94E-96 ***
Adjusted Company Effect 5.1661 86 0.0601 3.2229 1.00E-16 ***
Residual 9.5719 569 0.0168
     Std. Deviation 13.0%

Total (about mean) 28.7325 666 0.0431
     Std. Deviation 20.8%
R2 0.6669

Adjusted Accident Year 6.1297 11 0.5572 29.8973 1.08E-49 ***
Unadjusted Company Effect 13.0309 86 0.1515 8.1295 2.58E-57 ***

Tukey's Test for Interactions
SSA 0.0133 F statistic 0.7954
SSB 9.5719 p Value 0.373
SSR 9.5586

Figure 9. Adjusted ANOVA for private passenger auto liability and workers compensation.
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Figure 10. Left plot shows the loss ratio volatility by line for companies writing $100M or more
premium each year based on Schedule P accident year ultimate booked gross loss ratios, from 1993–2004.
The graph shows the effect of adjusting the loss ratio for an accident year pricing effect, a company
effect, and both effects (i.e., Res1-4). The right hand plot shows the differential impact of the pricing
effect and company effect by line. Each bar shows the increase in volatility of the unadjusted loss ratios
compared to the adjusted.

Figures 11–14 show the histograms of normalized loss ratio distributions corresponding to Res1-4
for the same eight lines of business. These give a direct estimate of the distribution of C. There are four
plots shown for each line.

The top left plot shows the distribution of normalized Schedule P accident year ultimate booked
gross loss ratios for companies writing $100M or more premium, for 1993–2004. The distributions
are shown for each of the four models Res1-4. LR indicates the raw model Res1, AY Avg adjusts for
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accident year or pricing cycle effect Res 2, Co Avg adjusts for company effect Res 3, and Mult Both Avg
adjusts for both Res 4, per Equation (86). All residuals are computed using the multiplicative model.
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Figure 11. Commercial auto liability (top four plots) and commercial multiperil volatility (bottom
four plots). Note 9/11 loss effect in the lower-left plot. See text for a description of the plots.

The top right hand plot shows five parametric distribution fits to the raw residuals, Res1.
The distributions are described in Table 4. The shifted lognormal distribution has three parameters
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and so would be expected to fit better. The raw residuals, Res1, are typically more skewed than Res4
and do not have the same peaked shape. The commonly-assumed gamma distribution fit is shown in
bold grey; the adequacy of its fit varies from line to line.
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Figure 12. Homeowners (top four plots) and medical malpractice claims made volatility (bottom four
plots). Note the 2004 homowners catastrophe losses. See text for a description of the plots.
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Figure 13. Other liability claims made (top four plots) and occurrence volatility (bottom four plots).
See text for a description of the plots.
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Figure 14. Private passenger auto liability (top four plots) and workers compensation volatility
(bottom four plots). Note vertical scale on private passenger auto loss ratios and the visibly higher
volatility of premium than loss in the lower left hand plot. See text for a description of the plots.
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Table 4. Summary of distributions fit to C in Figures 11–14.

Abbreviation Parameters Distribution Fitting Method

Wald 2 Wald (inverse Gaussian) Maximum likelihood
EV 2 Frechet-Tippet extreme value Method of moments

Gamma 2 Gamma Method of moments
LN 2 Lognormal Maximum likelihood

SLN 3 Shifted lognormal Method of moments

The lower right hand plot shows the residuals adjusted for both pricing cycle and company effects,
Res4, and it includes a maximum likelihood Laplace fit to the multiplicative model Equation (86).
This plot strongly supports the choice of a Laplace distribution for C in the adjusted case. This is a
very unexpected result as the Laplace is symmetric and leptokurtic (peaked). The Laplace distribution
has the same relationship to the absolute value difference that the normal distribution has to squared
difference; median replaces mean. One could speculate that a possible explanation for the Laplace
is the tendency of insurance company management to discount extreme outcomes and take a more
median than mean view of losses. The Laplace can be represented as a subordinated Brownian
motion, introducing operational time as in IM2 and IM4. The subordinator has a gamma distribution.
The Laplace is also infinitely divisible and its Lévy measure has density ν(x) = |x|−1e−|x|/s explored
in Example 13. See Kotz et al. (2001) for a comprehensive survey of the Laplace distribution.

The lower left hand plot shows the premium and loss volume by accident year. It shows the effect
of the pricing cycle and the market hardening since 2001 in all lines.

The analysis in this section assumes t = 1. Therefore it is impossible to differentiate models IM2-4.
However, the data shows that losses are not volumetrically diversifying, Figure 6. The data suggests
that C (or Z(1)) has a right-skewed distribution when it includes a company and pricing cycle effect
and strongly suggests a Laplace distribution when adjusted for company and pricing cycle effects.

Subsequent analyses, conducted after 2006 when the bulk of this paper was written, confirm the
parameter estimates shown in Figure 10 are reasonably stable over time. Volatility for liability lines
has increased since 2004 driven by loss development from the soft market years that has dispersed loss
ratios further as they emerged to ultimate, but the relative ordering is unchanged. Interestingly the
Global Financial Crisis had very little impact on insurance volatility other than for Financial Guarantee.

Table 5 and (ABI 2010, p. 6) show a comparison of Solvency II premium risk factors with the risk
factors computed here. Finally, Table 6 and (ABI 2012, p. 6) show a comparison of the individual line
of business parameters based on data 1992–2011 vs. the original study 1992–2004. See (ABI 2015, p. 52)
for a further update of the underwriting cycle effect on volatility by line.

Table 5. Comparison of risk factors with Solvency II premium risk factors.

Dimension Actuarial Geometry Solvency II

Time horizon to ultimate one year
Catastrophe risk included excluded
Size of company large average

Table 6. Coefficient of variation of gross loss ratio, Source: Aon Benfield Insurance Risk Study,
7th Edition, used with permission.

Line 1st Edition 7th Edition Change

Private Passenger Auto 14% 14% 0%
Commercial Auto 24% 24% 0%
Workers’ Compensation 26% 27% 1%
Commercial Multi Peril 32% 34% 2%
Medical Malpractice: Claims-Made 33% 42% 9%
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Table 6. Cont.

Line 1st Edition 7th Edition Change

Medical Malpractice: Occurrence 35% 35% 0%
Other Liability: Occurrence 36% 38% 2%
Special Liability 39% 39% 0%
Other Liability: Claims-Made 39% 41% 2%
Reinsurance Liability 42% 67% 25%
Products Liability: Occurrence 43% 47% 4%
International 45% 72% 27%
Homeowners 47% 48% 1%
Reinsurance: Property 65% 85% 20%
Reinsurance: Financial 81% 93% 12%
Products Liability: Claims-Made 102% 100% −2%

7.4. Temporal Empirics

We now investigate the behavior of the coefficient of variation of a book with volume x insured
for t years, υ(x, t) for different values of t. The analysis is complicated by the absence of long-term,
stable observations. Multi-year observations include strong pricing cycle effects, results from different
companies, different terms and conditions (for example the change from occurrence to claims made in
several lines), and the occurrence of infrequent shock or catastrophe losses. Moreover, management
actions, including reserve setting and line of business policy form and pricing decisions, will affect
observed volatility.

Reviewing Table 1, and comparing with Figure 6, shows IM2-4 are consistent with the data
analyzed so far. The difference between IM2 and IM4 compared to IM3 is the presence of a separate
time effect in υ(x, t). Both models IM2 and IM4 should show a lower volatility from a given volume
insurance when that insurance comes from multiple years, whereas model IM3 will not. This suggests
a method to differentiate IM2/4 from IM3. First, compute υ(x, 1), from the data underling Figure 6.
Then combine two years of premium and losses, from the same company and line, and recompute
volatilities. This computes υ(x/2, 2)—total volume is still x but it comes from two different years.
Similarly, combining 4, 6 or 12 years of data (divisors of the total 12 years of data available) gives
estimates of υ(x/4, 4), υ(x/6, 6), and υ(x/12, 12). Normalizing the data to a constant loss ratio across
accident years prior to performing the analysis will remove potentially distorting pricing-cycle effects.

Figure 15 shows the results of performing this analysis for private passenger auto liability.
Private passenger auto liability is used because it has very low inherent process risk and low parameter
risk, and so provides the best opportunity for the delicate features we are analyzing to emerge. In the
figure, the second column shows υ(x, 1) and the last four show υ(x/t, t) for t = 2, 4, 6, 12. The average
volume in each band is shown as average premium in the first column. Below the data we show the
averages and standard deviations of υ for broader volume bands. Clearly the differences in means
are insignificant relative to the standard deviations, and so a crude analysis of variance would not
reject the hypothesis that υ(x/t, t) is independent of t. This data implies that models IM2 and IM4 do
not provide a good fit to the data—unless τ is very small. However, if τ is small then IM2 and IM4
degenerate to IM1, which has already been rejected since it is volumetrically diversifying.
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Coefficient of Variation Loss Ratio Computed From
1 Year 2 Years 4 Years 6 Years 12 Years

473 1.085 0.819 0.520 0.471 0.550
1,209 0.580 0.428 0.449 0.419 0.438
1,680 0.448 1.455 0.684 0.342 0.245
2,410 1.927 0.451 1.238 0.423 0.383
3,458 0.294 0.299 0.204 0.187 0.376
4,790 0.369 0.286 0.347 0.312 0.346
6,809 0.475 0.292 0.310 0.267 0.350
9,526 0.272 0.346 0.311 0.236 0.248

13,501 0.290 0.623 0.246 0.521 0.212
19,139 0.191 0.227 0.303 0.204 0.211
26,649 0.244 0.195 0.183 0.292 0.196
37,481 0.188 0.191 0.223 0.171 0.155
54,287 0.173 0.183 0.297 0.239 0.264
73,882 0.191 0.154 0.166 0.167 0.219

108,762 0.158 0.169 0.170 0.122 0.159
153,233 0.137 0.185 0.147 0.204 0.175
213,224 0.127 0.152 0.172 0.146 0.102
307,833 0.186 0.129 0.141 0.116 0.152
439,136 0.117 0.125 0.146 0.174 0.085
606,457 0.110 0.182 0.090 0.136 0.137
845,813 0.092 0.102 0.145 0.126 0.137

1,215,551 0.132 0.103 0.124 0.112 0.101
1,725,327 0.115 0.088 0.111 0.125 0.071
2,362,126 0.068 0.130 0.101 0.089 0.135
3,597,590 0.042 0.111 0.080 0.085 0.082
8,430,433 0.079 0.073 0.094 0.087 0.079

Avg. $3M-20M 0.315 0.345 0.287 0.288 0.291
Std.Dev. $3M-20M 0.097 0.141 0.052 0.123 0.075

Avg. $21M-200M 0.182 0.179 0.198 0.199 0.195
Std.Dev. $21M-200M 0.037 0.015 0.055 0.060 0.042

Avg >$200M 0.107 0.120 0.120 0.120 0.108
Std.Dev. >$200M 0.040 0.032 0.030 0.029 0.030

Average Premium

Figure 15. Coefficient of variation of loss ratio by premium volume for private passenger auto liability,
computed using bucketed xt for t = 1, 2, 4, 6, 12.

Finally, Figures 16 and 17 provide a graphical representation of the same data for homeowners,
private passenger auto, commercial auto, workers’ compensation, commercial multi-peril and other
liability occurrence (other liability claims made and medical malpractice lack the necessary volume).
The left hand plot shows the same data as Figure 6 on a log/linear scale and a fit of υ(x, t) by√

(σ2/xt) + c. In the fit, c is estimated from the observed asymptotic volatility and σ is estimated
using minimum squared distance. The right hand plot overlays υ(x/t, t) for t = 2, 4, 6, 12 using the
method described above. Thus the private passenger auto liability plot shows the data in Figure 15.
These plots are consistent with the hypothesis that υ(x/t, t) is independent of t as there is no clear
trend with t. (The case t = 12 is subject to higher estimation error owing to the lower number
of observations.)

We conclude that of the models IM1-4 and AM1 only model IM2 of has volumetric and temporal
properties consistent with the data in the NAIC annual statement database.
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Figure 16. Fit of

√
σ2

xt + c to volatility by volume, xt, for homeowners, private passenger auto and

commercial auto. Left hand plot shows data based on a single year t = 1; right hand plot shows the
same data for t = 1, 2, 4, 6, 12.
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Other Liability Occurrence

0

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

100 1,000 10,000 100,000 1,000,000 10,000,000

Fit CVLR

0

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

100 1,000 10,000 100,000 1,000,000 10,000,000

CV CV2 CV4 CV6 CV12 Fit

Figure 17. Fit of

√
σ2

xt + c to volatility by volume, xt, for workers compensation, commercial multiperil

and other liability occurrence. Left hand plot shows data based on a single year t = 1; right hand plot
shows the same data for t = 1, 2, 4, 6, 12.

8. Conclusions

The difference between asset geometry and actuarial geometry reflects a fundamental difference
between an individual security, or asset, and a line of insurance. A line is analogous to a mutual
fund specializing in an asset class and not to an individual asset. The choice of coordinate used to
differentiate risk measures must reflect these differences.

We have provided an introduction to the actuarial use of Lévy processes to model aggregate
losses. The Lévy process model reflects the realities of insurance: it is curved in both the volume and
time dimensions. Asset returns, in contrast, are volumetrically flat. We have clarified the notion of a
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“direction” in the space of risks and used it to explain two different allocation results derived using the
gradient of a risk measure.

US NAIC annual statement data is used to demonstrate that insurance liabilities do not
diversify volumetrically or temporally. We reviewed four models of aggregate losses based on
Lévy processes—models with a long risk-theoretic pedigree, it should be noted—and showed that
only model IM2 is consistent with the NAIC data. We also show how parameter risk can be
explicitly quantified at a distributional level even though it is unobservable. Volume-related parameter
risk, adjusted for company and pricing cycle effects, is shown to have a Laplace distribution—a
surprising result.

In conclusion, this paper is a call-to-arms. Finance now provides a theoretical justification for
pricing company-specific risk. Risk theory provides a rigorous approach to evaluating and attributing
risk to line using risk measure gradients. Regulation and Enterprise Risk Management, both of which
depend crucially on an accurate quantification of aggregate loss distributions, demand accurate and
realistic modeling. It is time to satisfy that demand with a fully data-grounded model for losses,
including appropriate parameter risk.
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