
Léveillé, Ghislain; Mitric, Ilie-Radu; Côté, Victor

Article

Effects of the age process on aggregate discounted
claims

Risks

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Léveillé, Ghislain; Mitric, Ilie-Radu; Côté, Victor (2018) : Effects of the age
process on aggregate discounted claims, Risks, ISSN 2227-9091, MDPI, Basel, Vol. 6, Iss. 4,
pp. 1-17,
https://doi.org/10.3390/risks6040106

This Version is available at:
https://hdl.handle.net/10419/195881

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/risks6040106%0A
https://hdl.handle.net/10419/195881
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


risks

Article

Effects of the Age Process on Aggregate
Discounted Claims

Ghislain Léveillé * , Ilie-Radu Mitric and Victor Côté

École D’actuariat, Université Laval, Québec, QC G1V 0A6, Canada; Ilie-Radu.Mitric@act.ulaval.ca (I.-R.M.);
Victor.Cote.1@act.ulaval.ca (V.C.)
* Correspondence: Ghislain.Leveille@act.ulaval.ca

Received: 31 August 2018; Accepted: 21 September 2018; Published: 24 September 2018
����������
�������

Abstract: In this document, we examine the effects of the age process on aggregate discounted
claims by studying the conditional raw and joint moments, the moment generating function and the
distribution function of the increments of compound renewal sums with discounted claims, taking
into account the past experience of an insurance portfolio.

Keywords: age process; aggregate discounted claims; increments; Lundberg-type bounds; moments;
net force of interest; stochastic ordering; risk measures

1. Introduction

Compound renewal sums with discounted claims have been extensively studied under
many aspects for the last few decades. The interested reader will find a relevant overview of
this subject in Garrido and Léveillé (2014). Whether it is their raw moments as discussed in
Léveillé and Garrido (2001a, 2001b), their joint moments derived in Léveillé and Adékambi (2011)
or their moment generating functions (mgf) and related distributions such as examined by
Léveillé et al. (2010), many challenging problems still remain within this context.

One of these challenges is to take into account all the information recorded by the insurer up to
time t, i.e., number of claims, severities and occurrence times of the claims, in order to examine their
incidence on the increment of the risk process on a subsequent time interval open at left ]t, t + h].
This question has been largely studied in credibility theory (see Bühlmann and Gisler (2005)), but not
within this context, compound renewal sums with discounted claims, where very detailed attention
will be given to the age of our counting process, an aspect not covered by the credibility theory,
but which is however very important.

Thus, in order to carry out this analysis, we have to make first some assumptions on the interest
rate, on the counting process, on the severity of claims and on their possible dependence with the
inter-occurrence times. Then, it will be also important to recall some results related to non-conditional
moments of the increments of this risk process in order to compare them to their corresponding
conditional moments. Finally, as a function of the age process, we will show some orderings of our risk
process in terms of its distribution functions, moments and Lundberg-type bounds of ruin probabilities.

Hence, consider the following risk process:

Z(t) =
N(t)

∑
k=1

e−δTk Xk,

where,
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• {τk; k ∈ N∗ = {1, 2, . . .}} is a sequence of continuous positive independent and identically
distributed (i.i.d.) random variables, with common distribution function Fτ(x), such that τk
represents the inter-occurrence time between the (k − 1)-th and the k-th claims.

• {Tk; k ∈ N∗} is a sequence of random variables such that Tk =
k
∑

i=1
τi , T0 = 0, and then,

Tk represents the occurrence time of the k-th claim.
• {Xk; k ∈ N∗} is a sequence of positive i.i.d. random variables, with common distribution function

FX(x), independent of {τk; k ∈ N∗}, such that Xk represents the deflated amount of the claim.
• {N(t); t ≥ 0} is a counting process, which is generated by the inter-occurrence times τk and

represents the number of corresponding claims occurring in [0, t].
• δ > 0 is a constant force of net interest.

Assuming only that the first two raw moments of the claim exist, a particular case of heavy
tail distributions relatively frequent in actuarial problems, the following results were obtained by
Léveillé and Garrido (2001a) and Léveillé and Adékambi (2011):

Proposition 1. Consider the risk process {Z(t); t ≥ 0}, such as defined previously, and assume that E[X] < ∞,
E
[
X2] < ∞ and h ≥ 0. Then,

(i). E[Z(t)] = E[X]
t∫

0
e−δνdm(v),

(ii). E
[
Z2(t)

]
= E

[
X2] t∫

0
e−2δvdm(v) + 2E2[X]

t∫
0

t−v∫
0

e−δ(2v+u)dm(u)dm(v),

(iii). E[Z(t)Z(t + h)] = E
[
Z2(t)

]
+ E2[X]

t∫
0

t+h−v∫
t−v

e−δ(2v+u)dm(u)dm(v),

where m(t) = E[N(t)] =
∞
∑

k=1
F∗kτ (t) is the renewal function.

From these results, we are able to calculate a premium, based on the expectation and the standard
deviation of our risk process, and we can also examine the autocorrelation function of our risk process.
However, for an insurance business, the insurer must rather evaluate his/her risk from one period to
another by also taking into account his/her past experience. Thus, our purpose is to extend the
preceding results to this dynamical context and then analyze the incidence of the age process on the
moments, distribution functions, risk measures and even on the ruin probability. This work must be
seen as a useful complement to credibility theory (see Bühlmann and Gisler (2005)) and not just a pure
incremental study on aggregate discounted claims.

2. First Raw and Joint Moments of the Conditional Increments

Now, assume that we are currently at the time t and that the past experience is given by the
following set,

Σn,t = {N(t) = n, Ti = ti, Xi = xi; i = 1, . . . , n},

where Σn,0 = ∅, Σ0,t = {N(t) = 0; t > 0}.
Then, the conditional increment of the aggregate discounted claims on ] t, t + h], at time t, will be

denoted by:
Zn,t(h) = eδt[Z(t + h)− Z(t)] |Σn,t .

Hence, by observing that our conditional counting process on ] t, t + h] is generated by a delayed
renewal process {Nd(h) ; h ≥ 0}, i.e., by the sequence of times

{
τ∗n+1, τk; k > n + 1

}
, where:

τ∗n+1 = Tn+1 − t|Σn,t = τn+1 − (t− tn)|τn+1 > t− tn , Fτ∗(v) = Fτ∗n+1
(v),
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one can start by adapting the results obtained by Léveillé and Garrido (2001a) and
Léveillé and Adékambi (2011) to our risk Zn, t(h) when the counting process is a delayed renewal
process. We then have the following theorem.

Theorem 1. Consider the risk process {Zn,t(h); h ≥ 0} such as defined previously. Then, by assuming that
E[X] < ∞ and E

[
X2] < ∞, we get the following moments:

(i). E[Zn,t(h)] = E[X]
h∫

0
e−δv

[
1 +

h−v∫
0

e−δudm(u)

]
dFτ∗(v).

(ii).
E
[
Z2

n,t(h)
]
= E

[
X2] h∫

0
e−2δv

[
1 +

h−v∫
0

e−2δudm(u)

]
dFτ∗(v)

+2E2[X]
h∫

0
e−2δv

[
h−v∫
0

e−δudm(u) +
h−v∫
0

h−v−w∫
0

e−δ(u+2w)dm(u)dm(w)

]
dFτ∗(v).

(iii).
E[Zn,t(h)Zn,t(h + h′)] = E

[
Z2

n,t(h)
]

+E2[X]
h∫

0
e−2δv

{
h+h′−v∫

h−v
e−δudm(u) +

h−v∫
0

h+h′−v−w∫
h−v−w

e−δ(u+2w)dm(u)dm(w)

}
dFτ∗(v).

Proof. (i) By conditioning on τ∗ and applying Proposition 1 (i), we get the first moment, i.e.,

E[Zn,t(h)] = E[E[Zn,t(h)|τ∗ ]]

= E

[
e−δτ∗Xn+1 + e−δτ∗E

[
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)Xk|τ∗
]]

= E[X]E

[
e−δτ∗

{
1 + E

[
N(h−τ∗)

∑
k=1

e−δTk

]}]

= E[X]

{
h∫

0
e−δv

[
1 +

h−v∫
0

e−δudm(u)

]
dFτ∗(v)

}
,

where Fτ∗(v) =
Fτ(v+t−tn)

Fτ(t−tn)
.

(ii) By conditioning on τ∗ and applying Propositions 1 (i) and (ii), we get the second moment, i.e.,

E
[
Z2

n,t(h)
]

= E
[
E
[
Z2

n,t(h)|τ∗
]]

= E

E

(e−δτ∗Xn+1 + e−δτ∗
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)Xk

)2

|τ∗


= E

E

e−2δτ∗X2
n+1 + 2e−2δτ∗Xn+1

N(t+h)
∑

k=n+2
e−δ(τn+2+...+τk)Xk + e−2δτ∗

(
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)Xk

)2

|τ∗


Hence,

E
[
Z2

n,t(h)
]

= E
[
X2]E[e−2δτ∗

]
+ 2E2[X]E

[
e−2δτ∗E

[
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)|τ∗
]]

+E

e−2δτ∗

(
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)Xk

)2

|τ∗


= E
[
X2] h∫

0
e−2δvdFτ∗(v) + 2E2[X]

h∫
0

e−2δvE

[
N(h−v)

∑
k=1

e−δTk

]
dFτ∗(v)

+
h∫

0
e−2δτ∗E

(N(h−v)
∑

k=1
e−δTk Xk

)2
dFτ∗(v)

= E
[
X2] h∫

0
e−2δvdFτ∗(v) + 2E2[X]

h∫
0

e−2δv
h−v∫
0

e−2δudm(u)dFτ∗(v)

+
h∫

0
e−2δv

{
E
[
X2] h−v∫

0
e−2δudm(u) + 2E2[X]

h−v∫
0

h−v−w∫
0

e−δ(u+2w)dm(u)dm(w)

}
dFτ∗(v),
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which is equivalent to the following expression:

E
[
Z2

n,t(h)
]

= E
[
X2] h∫

0
e−2δv

[
1 +

h−v∫
0

e−2δudm(u)

]
dFτ∗(v)

+2E2[X]
h∫

0
e−2δv

[
h−v∫
0

e−δudm(u) +
h−v∫
0

h−v−w∫
0

e−δ(u+2w)dm(u) dm(w)

]
dFτ∗(v).

(iii) By conditioning on τ∗ and applying Propositions 1 (i)–(iii), we get the first joint moment, i.e.,

E[Zn,t(h)Zn,t(h + h′)] = E
[
Z2

n,t(h)
]

+E

[
E

[(
N(t+h)

∑
k=n+1

e−δ(τ∗n+1+τn+2+...+τk)Xk

)(
N(t+h+h′)

∑
j=N(t+h)+1

e−δ(τ∗n+1+τn+2+...+τk)Xj

)∣∣τ∗n+1

]]

= E
[
Z2

n,t(h)
]
+ E2[X]E

[
E

[(
e−δτ∗ + e−δτ∗

N(t+h)
∑

k=n+2
e−δ(τn+2+...+τk)

)(
e−δτ∗

N(t+h+h′)
∑

j=N(t+h)+1
e−δ(τn+2+...+τk)

)
|τ∗
]]

= E
[
Z2

n,t(h)
]

+E2[X]E

[
e−2δτ∗

{
E

[
N(t+h+h′)

∑
j=N(t+h)+1

e−δ(τn+2+...+τk)|τ∗
]
+ E

[
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)
N(t+h+h′)

∑
j=N(t+h)+1

e−δ(τn+2+...+τk)|τ∗
]}]

Hence,

E[Zn,t(h)Zn,t(h + h′)] = E
[
Z2

n,t(h)
]

+E2[X]
h∫

0
e−2δv

{
E

[
N(h+h′−v)

∑
j=N(h−v)+1

e−δTk

]
+ E

[
N(h−v)

∑
k=1

e−δTk
N(h+h′−v)

∑
j=N(h−v)+1

e−δTj

]}
dFτ∗(v)

= E
[
Z2

n,t(h)
]

+E2[X]
h∫

0
e−2δv

{
h+h′−v∫

h−v
e−δudm(u) +

h−v∫
0

h+h′−v−w∫
h−v−w

e−δ(u+2w)dm(u)dm(w)

}
dFτ∗(v).

�

Remark 1. (1) If the counting process is a homogeneous Poisson process, the memoryless property of the
exponential inter-occurrence times implies the following identities,

• E[Zn,t(h)] = eδtE[Z(t + h)− Z(t)],

• E
[
Z2

n,t(h)
]
= e2δtE

[
[Z(t + h)− Z(t)]2

]
,

• E[Zn,t(h)Zn,t(h + h′)] = e2δtE[[Z(t + h)− Z(t)][Z(t + h + h′)− Z(t)]].

(2) If tn = t, then:

• E[Zn,t(h)] = E[Z(h)], E
[
Z2

n,t(h)
]
= E

[
Z2(h)

]
,

• E[Zn,t(h)Zn,t(h + h′)] = E[Z(h)Z(h + h′)].

(3) If h→ ∞ , then we get the conditional asymptotic formulas for (i) and (ii), i.e.,

• E[Zn,t(∞)] = E[X]
Lτ∗ (δ)

1−Lτ(δ)
,

•
E
[
Z2

n,t(∞)
]
= E

[
X2] Lτ∗ (2δ)

1−Lτ(2δ)
+ 2E2[X]

Lτ(δ)
1−Lτ(δ)

Lτ∗ (2δ)
1−Lτ(2δ)

= Lτ∗ (2δ)
1−Lτ(2δ)

{
E
[
X2]+ 2E2[X]

Lτ(δ)
1−Lτ(δ)

}
,

where Lτ(δ) =
∞∫
0

e−δvdFτ(v) is the Laplace transform of the random variable τ.

Example 1. Consider the risk process {Zn,t(h); h ≥ 0} such as given in Theorem 1, and assume that
τ ∼ Erlang(2, 2), X ∼ exp(1), t = h = h′ = 1 and δ = 0.05. Then, we obtain the following conditional
expectations, standard deviations and autocorrelation functions of our conditional risk process for different
values of the age t− tn in Table 1.
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Table 1. Behavior of Zn,1(1) with respect to age 1− tn.

1− tn 0 0.25 0.5 0.75 1

E[Zn,1(1)] 0.73280 0.89454 0.97541 1.02393 1.05628
E
[

Z2
n,1(1)

]
1.76279 2.25139 2.49568 2.64226 2.73998

σ[Zn,1(1)] 1.10715 1.20465 1.24268 1.26247 1.27446
ρ[Zn,1(1), Zn,1(2)] 0.66998 0.70132 0.71230 0.71774 0.72093

In this table, we observe that the first two conditional moments, standard deviation and autocorrelation
function increase with the increase of the age process. This difference can be more apparent with a change of
parameters. In other words, for this model, a more or less high age implies a more or less high risk for the next
period.

For comparison, if you consider the non-conditional quantities corresponding to those calculated in the
preceding table (actualized at time t = 1), then we get these middle range quantities:

E
[
e0.05[Z(2)− Z(1)]

]
= 0.97097, E

[
e0.1[Z(2)− Z(1)]2

]
= 2.48227,

σ
[
e0.05[Z(2)− Z(1)]

]
= 1.24076,

ρ
[
e0.05[Z(2)− Z(1)] , e0.05[Z(3)− Z(1)]

]
= 0.71177.

Hence, for this model, this means that the risk evaluation without conditioning on the past experience of
the insurance portfolio could lead to underestimating or overestimating the future risks and consequently to
charging a premium that does not reflect the real risk.

In fact, the preceding behavior of our risk process with respect to the age process is not so
surprising if we consider certain classes of distribution functions for the inter-occurrence time. In
what follows, we analyze the behavior of the distribution function of Zn,t(h) with respect to the age
process and the class of distributions to which the inter-occurrence time belongs. In order to do
that, we will first recall two definitions, and we present an integral equation for the distribution
function of Zn,t(h). The first definition is related to the usual stochastic order and the second one to the
increasing (decreasing) failure rate family of distribution functions. We refer the interested reader to
Müller and Stoyan (2002) or Shaked and Shanthikumar (2007).

Definition 1. Given two random variables X and Y, X is said to be preceding Y in the usual stochastic order,
denoted as X ≤st Y , if FX(x) ≤ FY(x) for all x ∈ R.

The preceding definition is equivalent to the inequality E[w(X)] ≤ E[w(Y)] for any
non-decreasing function w such that the expectations exist.

Definition 2. A random variable X is said to have an increasing failure rate (IFR) if its survival function FX is
log concave, and it is said to have a decreasing failure rate (DFR) if its survival function FX is log convex.

The preceding definition is equivalent to saying that X is IFR (DFR) if and only if, for each
x ≤ x′, we have {X− x|X > x} ≥st (≤st){X− x′|X > x′ }. Note that if X is the lifetime of a device,
then {X− x|X > x} is the residual life of such a device with age x.

Now, an integral formula can be obtained for the distribution function of Zn,t(h), and that one
will be solved (at least numerically) if we know the non-conditional distribution of Z(t).
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Lemma 1. Consider the risk process {Z(t); t ≥ 0} such as defined previously. Then, the conditional distribution
function of Zn,t(h) is given, for x ≥ 0, by:

FZn,t(h)(x) = Fτ∗(h) +
h∫

0

xeδv∫
0

FZ(h−v)

(
xeδv − u

)
dFX(u)dFτ∗(v).

Proof. Again, we condition on τ∗ and Xn+1. Thus, we get:

FZn,t(h)(x) = Fτ∗(h) +
h∫

0

xeδv∫
0

P

(
ue−δv + e−δv

N(t+h)
∑

k=n+2
e−δ(Tk−v)Xk ≤ x|τ∗ = v

)
dFX(u)dFτ∗(v)

= Fτ∗(h) +
h∫

0

xeδv∫
0

P

(
N(t+h)

∑
k=n+2

e−δ(Tk−v)Xk ≤ xeδv − u|τ∗ = v

)
dFX(u)dFτ∗(v)

= Fτ∗(h) +
h∫

0

xeδv∫
0

P

(
N(h−v)

∑
k=1

e−δTk Xk ≤ xeδv − u

)
dFX(u)dFτ∗(v)

= Fτ∗(h) +
h∫

0

xeδv∫
0

FZ(h−v)
(
xeδv − u

)
dFX(u)dFτ∗(v) .

�

Theorem 2. Consider the risk process {Zn,t(h); h ≥ 0} such as defined previously. Then:

(i) If the inter-occurrence time is IFR (DFR), then FZn,t(h) is a non-decreasing (non-increasing) function of
the age t− tn , i.e., Zn,t(h) increase (decrease) in stochastic order with the age t− tn.

(ii) If the inter-occurrence time is exponentially distributed, thenFZn,t(h) does not depend of the age t− tn.

Proof. Lemma 1 yields:

FZn,t(h)(x) =
∞∫

0

1]h,∞[(v) + 1[0,h](v)
xeδv∫
0

FZ(h−v)

(
xeδv − u

)
dFX(u)

dFτ∗(v).

Assuming that w(x, h, v) = I]h,∞[(v) + I[0,h](v)
xeδv∫
0

FZ(h−v)
(

xeδv − u
)
dFX(u) , then:

w(x, h, v) =

{
P
(
Z(h− v) + X ≤ xeδv) , v ∈ [0, h]

1 , v > h

and then, FZn,t(h)(x) = E[w(x, h, τ∗)].
Now, when τ is IFR (DFR), we have for t′n ≤ tn ≤ t,

{τ − (t− tn)|τ > t− tn } ≥st (≤st)
{

τ −
(
t− t′n

)∣∣τ > t− t′n
}

.

Since w(x, h, v) is a non-decreasing function of v for each positive x and h, Definition 2 implies for
t′n ≤ tn:

E[w(x, h, τ − (t− tn)|τ > t− tn)] ≥ (≤)E
[
w(x, h, τ − tn)

∣∣τ > t− t′n

Thus, assuming that Z′n,t(h) includes the last occurrence time t′n, this last inequality and
Definition 1 yield for any x ∈ R:

FZn,t(h)(x) ≥ (≤)FZ′n,t(h)
(x)⇔ FZn,t(h)(x) ≤ (≥)FZ′n,t(h)

(x)⇔ Zn,t(h) ≤st (≥st)Z′n,t(h).
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Finally, if τ is exponentially distributed, it satisfies both the IFR and DFR requirements.
Consequently, the distribution function of Zn,t(h) is independent of the age process, which is coherent
with the memoryless property of the exponential distribution. �

Remark 2. In Example 1, the inter-occurrence time τ follows an Erlang distribution with shape parameter
α = 2 , which has an IFR distribution.

Corollary 1. If the inter-occurrence time τ is IFR (DFR), then E
[

Zk
n,t(h)

]
is a non-decreasing (non-increasing)

function of the age t− tn, for any k ∈ N∗ , such that the corresponding expectation exists.

Proof. From Theorem 2, and for t′n ≤ tn, we have:

Zn,t(h) ≤st (≥st)Z′n,t(h).

Since w(x) = I[0,∞[(x)xk is a non-decreasing function of x, Definition 1 yields:

E
[

Zk
n,t(h)

]
≤ E

[
Z′kn,t(h)

]
.

�

Corollary 2. If the inter-occurrence time τ is IFR (DFR), then MZn,t(h)(s) is a non-decreasing (non-increasing)
function of s > 0 (s < 0), for each s ∈ R, such that the mgf exists.

Proof. Similarly to Corollary 1, we apply Definition 1 to the function w(x) = esx and then get:

MZn,t(h)(s) ≤ (≥)MZ′n,t(h)
(s).

�

Corollary 3. If the inter-occurrence time τ is IFR (DFR), then the Wang risk measure associated with our risk
process Zn,t(h) , i.e., the functional defined by:

ρg(Zn,t(h)) =
∞∫

0

g
(

FZn,t(h)(x)
)

dx,

is a non-increasing (non-decreasing) function of the age t− tn , where g is a non-decreasing function with
g(0) = 0, g(1) = 1.

Proof. This is a direct consequence of Definition 1 and Theorem 2. �

Remark 3. Let us recall that, for particular choices of the function g, we get certain classical risk measures such
as VaR (value at risk), TVaR (tail value at risk), proportional hazard (PH)-transform and many other known
distortion and spectral risk measures.

3. mgf of the Conditional Increments

Assume that the mgf of Z(t) exists, i.e., that the distribution of X has a light tail. The next theorem
gives an analytic expression for the mgf of Zn,t(h), from which all its conditional moments can be
calculated in terms of the non-conditional recursive moments of Z(t).



Risks 2018, 6, 106 8 of 17

Theorem 3. Consider the risk process {Z(t); t ≥ 0} such as defined previously, and assume that the mgf of
X, i.e., MX(s) , exists on a subset Ω ∈ R that contains the origin. Then, the mgf of the conditional increment
process {Zn,t(h); h ≥ 0} is given by:

MZn,t(h)(s) = Fτ∗(h) +
h∫

0

MX

(
se−δv

)
MZ(h−v)

(
se−δv

)
dFτ∗(v).

Proof. By conditioning on τ∗, we have:

MZn,t(h)(s) = E
[

E
[
esZn,t(h)|τ∗

]]
=

∞∫
h

dFτ∗(v) +
h∫

0
E
[
esZn,t(h)|τ∗ = v

]
dFτ∗(v)

= Fτ∗(h) +
h∫

0
E

[
exp

{
se−δvXn+1 + se−δv

N(t+h)
∑

k=n+2
e−δ(τn+2+...+τk)Xk

}
|τ∗ = v

]
dFτ∗(v)

= Fτ∗(h) +
h∫

0
MX

(
se−δv)E[N(t+h)

∏
k=n+2

MX

(
se−δv

(
e−δ(τn+2+...+τk)

))
|τ∗ = v

]
dFτ∗(v)

= Fτ∗(h) +
h∫

0
MX

(
se−δv)E[ N

∏
k=1

MX
(
se−δv)]dFτ∗(v)

As in Léveillé and Garrido (2001b), E

[
N(h−v)

∏
k=1

MX
(
se−δv(e−δTk

))]
= MZ(h−v)

(
se−δv), and then:

MZn,t(h)(s) = Fτ∗(h) +
h∫

0

MX

(
se−δv

)
MZ(h−v)

(
se−δv

)
dFτ∗(v).

�

Corollary 4. Consider the risk process {Z(t); t ≥ 0} , such as defined in Theorem 3. Then, the m-th moment of
the conditional increment process{Zn,t(h); h ≥ 0} is given by:

M(m)
Zn,t(h)

(0) =
m

∑
j=0

(
m
j

)
M(j)

X (0)
h∫

0

e−mδv M(m−j)
Z(h−v)(0)dFτ∗(v), m ∈ N∗,

where (see Léveillé and Garrido (2001b)),

M(k)
Z(u)(0) =

k−1

∑
i=0

(
k
i

)
M(k−j)

X (0)
u∫

0

e−kδv M(i)
Z(h−v)(0)dm(v), k ∈ N∗, u > 0.

Proof. We easily verify that:

M(m)
Zn,t(h)

(s) =
m

∑
j=0

(
m
j

)
M(j)

X

(
se−δv

) h∫
0

e−mδv M(m−j)
Z(h−v)

(
se−δv

)
dFτ∗(v), m ∈ N∗,

from which we get the result by evaluating the last identity at s = 0. �
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Example 2. Assume that t = h = 1, tn = 0.5, δ = 0.01 and X and τ have the following probability density
functions:

fX(x) =
(

0.5e−x + e−2x
)

1[0,∞[(x), fτ(t) =
(

0.02e−0.04t + 0.05e−0.12tsinh(0.08t)
)

1[0,∞[(t)

Then, the mgf of X is given by:

MX(s) =
0.5(4− 3s)

(1− s)(2− s)
, s < 1

and according to Wang et al. (2018), the mgf of Z(t) is given by:

MZ(t)(s) =
s2e−0.02t − 3se−0.01t + 2

(1− s)(2− s)
s < 1.

The resulting integral equation of Theorem 3 yields:

MZn,1(1)(s) =
1− Fτ(1.5)
1− Fτ(0.5)

+
1

1− Fτ(0.5)

1∫
0

MX

(
se−0.01v

)
MZ(1−v)

(
se−0.01v

)
fτ(0.5 + v)dv.

As it is relatively hard to find an exact expression to the preceding integral, we will approximate MZn,1(1)(s)
as follows:

• Firstly, we evaluate MZn,1(1)(s) at s = −2,−1.8,−1.6, . . . , 0, 0.2, . . . , 0.8, 0.99999. For each value of s,
we use the adaptive quadrature method of Simpson with 100 partitions of the interval [0, 1].

• Secondly, with the 16 points obtained, we then use the Thiele interpolation method to get an approximation of
MZn,1(1)(s).

We thus obtain,

MZn,1(1)(s) ≈
A(s)
B(s)

,

where,
A(s) = 5.610217992− 13.45352888 s− 22.26490450 s2

+41.51418664 s3 + 14.68293130 s4 − 25.77608592 s5

−6.269903420 s6 + 5.956565424 s7 + 7.293961274× 10−8s8

and:
B(s) = 5.610217996 + 13.55065137 s− 22.11155393 s2

−42.01989981 s3 + 14.38336892 s4 + 26.24459595 s5

−6.203308268 s6 − 6.096631995 s7.

The corresponding Laplace transform can be inverted to give the (approximate) defective density function of
Zn,1(1), i.e.,

fZn,1(1)(x) ≈
{

0.02264150961e−2.000375828 x + 0.002402451389e−1.001576285x

+0.009255658868e−0.9998435682 x − 1.130460919× 10e−0.3523520060x

+6.782429960× 10−13e0.6043858815x

−7.710551954× 10−11e1.366132116 xcos(0.5392463904 x)
−2.141819988× 10−11e1.366132116 xsin(0.5392463904 x)

}
1]0,8.1966](x)

and probability mass at x = 0 , i.e., P(Zn,1(1) = 0) ≈ 0.9770255943.
How accurate is this approximation of the distribution of Zn,1(1)? The answer will be given in Table 2,

if we compare the exact and approximate values of the probability mass at x = 0 and the first two moments of
Zn,1(1).
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Table 2. Comparison of quantities related to the distribution of Zn,1(1)

P(Zn,1(1) = 0) E[Zn,1(1)] E
[
Z2

n,1(1)
]

œ[Zn,1(1)]

Exact 0.9770254902 0.01732118193 0.02898943080 0.1693794777
Approximate 0.9770255943 0.01730588222 0.02886125039 0.1690022391

Absolute error 0.0000001041 0.00001529971 0.00012818041 0.0003772386
Relative error 0.0000001065 0.00088329480 0.00444126323 0.0022271801

We can conclude that this approximation of the distribution function of Zn,1(1) is satisfactory since the
relative errors of the previous quantities are very small. The accuracy of our method can be improved in many
ways by adding more interpolation points, by refining the partition in our adaptive quadrature method, and so on.

4. Conditional Increments in a Context with More Dependence

In this section, we examine our conditional increment process by adding to the previous
assumptions that {(Xk, τk); k ∈ N∗} forms a sequence of i.i.d. random vectors where the components of
each vector could be dependent. This new assumption could be interpreted such that if the
inter-occurrence time τk is greater than a certain threshold, then the distribution of the next claim
amount Xk could be modified. See Albrecher and Teugels (2006), Asimit and Badescu (2010) or
Woo and Cheung (2013) for a discussion on this hypothesis.

For brevity’s sake, we will focus our attention only on the first two moments of our conditional
risk process. However, before presenting an expression for these first two conditional moments,
we need a lemma that gives an integral expression for the first two non-conditional moments of our
risk process, which takes into account our additional assumption. This lemma improves greatly the
method used by Bargès et al. (2011) to get these moments for the compound Poisson process with
discounted claims and generalize them to compound renewal sums with discounted claims.

Lemma 2. Consider our basic risk process {Z(t); t ≥ 0} such as defined in Section 1, except that we assume
now that {(Xk, τk); k ∈ N∗} forms a sequence of i.i.d. random vectors with F(Xk ,τk)

(x, y) = F(X,τ)(x, y).
Then, the first two moments of our (non-conditional) risk process are given by:

(i) E[Z(t)] =
t∫

0
e−δuE[X|τ = u ]

{
1 +

t−u∫
0

e−δvdm(v)

}
dFτ(u),

(ii)
E
[
Z2(t)

]
=

t∫
0

e−2δuE
[
X2|τ = u

]{
1 +

t−u∫
0

e−2δvdm(v)

}
dFτ(u)

+2
t∫

0
e−2δuE[X|τ = u ]

{
E[Z(t− u)] +

t−u∫
0

e−2δvE[Z(t− u− v)]dm(v)

}
dFτ(u).

Proof. See Léveillé and Hamel (2018) and Appendix A. �

Example 3. Consider the risk process {Z(t); t ≥ 0} such as defined in Lemma 2, and assume that τ ∼ Erl(2, 2),
X ∼ exp(1), δ = 0.05 and that the joint density function of the random vector (X, τ) is given by the
Farlie–Gumbel–Morgenstern copula with dependence parameter θ = 1 (see Nelsen (2006)), i.e.,

fX,τ(x, y) = 4ye−x−2y
{

1 +
[
−1 + 2e−x][−1 + (2 + 4y)e−2y

]}
.

Then, we obtain the following first two moments of Z(t):

• E[Z(t)] =
(
0.4298032364 + 0.7407031077t + 0.4999237927t2 − 0.6584362139t3)e−4.05t

−
(
2.821534801× 10−10 + 8.634146341× 10−10t

)
e−2.05t − 20e−0.05t + 19.57019676.
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• E
[
Z2(t)

]
= 0.0005344418631e−8.15 t

+
(
−5.628670301× 109 + 1.127823677 t + 0.1685352370 t2)e−4.15 t

+
(
−1.585076044× 1012 − 4.818405190× 1010t − 5.892141072× 108t2

−3.412320328× 106t3 − 0.3325301684× 10−4 t4 + 9.066666667× 10−7t5)e−4.1 t

+
(
1.605576585× 1012 − 3.154533279× 1010t + 1.844758398× 108t2

+1.706645888× 105 t3)e−4.05 t

+
(
−1.487187100× 1010 + 6.563090127× 108t− 9.201544226× 106t2)e−4t

+
(
1.007826244× 107 + 2.143574930× 105t + 0.1481056999× 10−5t2

−0.1441068156× 10−5t3)e−2.1 t

+
(
−1.151963835× 107 + 2.913964353× 105t

)
e−2.05 t

+
(
1.441371845× 106 − 73937.78256 t

)
e−2 t

+
(
510.9436234− 8.141354387× 10−9t + 5.516497390× 10−9t2)e−0.15 t

+
(
−460.7647363 + 7.294504087× 10−9t− 5.063291141× 10−9t2)e−0.1 t

+(−428.5094693)e−0.05 t + (−0.005615672923t)e2 t

+393.5612420 + 0.3070688311 t− 0.1027233695 t2 .

Theorem 4. Consider the risk process {Zn,t(h); h ≥ 0} such as defined in Theorem 2, except that we assume
now that{(Xk, τk); k ∈ N∗} forms a sequence of i.i.d. random vectors. Then, the first two moments of our
conditional risk process are given by:

(i) E[Zn,t(h)] =
h∫

0
e−δv{E[X|τ = v + t− tn ] + E[Z(h− v)]}dFτ∗(v),

(ii)
E
[
Z2

n,t(h)
]
=

h∫
0

e−2δν
{

E
[
X2|τ = v + t− tn

]
+ 2E[X|τ = v + t− tn ]E[Z(h− v)]

+E
[
Z2(h− v)

]}
dFτ∗(v),

where E[Z(h− v)] and E
[
Z2(h− v)

]
are obtained from Lemmas 2 (i) and (ii).

Proof. (i) By conditioning on τ∗ and using Lemma 2 (i), we have:

E[Zn,t(h)] = E[E[Zn,t(h)|τ∗ ]]

= E

[
e−δτ∗E[Xn+1|τ∗ ] + e−δτ∗E

[
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)Xk|τ∗
]]

=
h∫

0
e−δvE[X|τ = v + t− tn ]dFτ∗(v)

+
h∫

0
e−δv

h−v∫
0

e−δuE[X|τ = u ]

[
1 +

h−v−u∫
0

e−δwdm(w)

]
dFτ(u)dFτ∗(v)

=
h∫

0
e−δv{E[X|τ = v + t− tn ] + E[Z(h− v)]}dFτ∗(v)

(ii) By conditioning on τ∗ and using Lemmas 2 (i) and (ii), we have:

E
[
Z2

n,t(h)
]

= E
[
E
[
Z2

n,t(h)|τ∗
]]

= E

E

{e−δτ∗Xn+1 + e−δτ∗
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)Xk

}2

|τ∗


= E

E

e−2δτ∗X2
n+1 + 2e−2δτ∗Xn+1

N(t+h)
∑

k=n+2
e−δ(τn+2+...+τk)Xk + e−2δτ∗

[
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)Xk

]2

|τ∗
 .
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Thus,

E
[
Z2

n,t(h)
]

= E

[
e−2δτ∗E

[
X2

n+1|τ∗
]
+ 2e−2δτ∗E[Xn+1|τ∗ ]E

[
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)Xk|τ∗
]

+ e−2δτ∗E

[
N(t+h)

∑
k=n+2

e−δ(τn+2+...+τk)Xk

]2

|τ∗


=
h∫

0
e−2δvE

[
X2

n+1|τ∗ = v
]
dFτ∗(v) + 2

h∫
0

e−2δvE[Xn+1|τ∗ = v ]E

[
N(h−v)

∑
k=1

e−δTk Xk

]
dFτ∗(v)

+
h∫

0
e−2δvE

[
N(h−v)

∑
k=1

e−δTk Xk

]2

dFτ∗(v)

=
h∫

0
e−2δν

{
E
[
X2|τ = v + t− tn

]
+ 2E[X|τ = v + t− tn ]E[Z(h− v)]

+E
[
Z2(h− v)

]}
dFτ∗(v).

�

Remark 4. If we remove the assumption of dependence between Xk and τk , then we retrieve the results of
Theorems 1 (i) and 1 (ii). Thus, the first moment yields:

E[Zn,t(h)] = E[X]
h∫

0
e−δvdFτ∗(v) + E[X]

h∫
0

e−δv
h−v∫
0

e−δu

[
1 +

h−v−u∫
0

e−δwdm(w)

]
dFτ(u)dFτ∗(v)

= E[X]
h∫

0
e−δv

[
1 +

h−v∫
0

e−δudm(u)

]
dFτ∗(v) ,

and using Proposition 1, the second moment yields:

E
[
Z2

n,t(h)
]

= E
[
X2] h∫

0
e−2δνdFτ∗(v) + 2E[X]

h∫
0

e−2δνE[Z(h− v)]dFτ∗(v)

+
h∫

0
e−2δνE

[
Z2(h− v)

]
dFτ∗(v)

= E
[
X2] h∫

0
e−2δv

[
1 +

h−v∫
0

e−2δudm(u)

]
dFτ∗(v)

+2E2[X]
h∫

0
e−2δv

[
h−v∫
0

e−δudm(u) +
h−v∫
0

h−v−w∫
0

e−δ(u+2w)dm(u) dm(w)

]
dFτ∗(v) .

Example 4. Consider the risk process {Zn,t(h); h ≥ 0} such as given in Theorem 4, and consider the same
assumptions such as given in Example 3. Then, we obtain the following conditional expectations of our risk
process for different values of the age t− tn in Table 3.

Table 3. Behavior of Zn,1(1) with respect to age 1− tn and dependence between Xk and τk.

1− tn 0 0.25 0.5 0.75 1

E[Zn,1(1)] 0.56324 0.75787 0.91893 1.05256 1.15882
E
[

Z2
n,1(1)

]
0.97900 1.52900 2.02490 2.46600 2.81680

σ[Zn,1(1)] 0.81349 0.97706 1.08650 1.16538 1.21406

Again, we observe that the first two conditional moments increase with the increasing of the age of the
process, but with greater variations than those obtained for the corresponding conditional moments in Table 1,
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whereXk and τk are independent. On the other hand, the values of the standard deviation always increase with
the increasing of the age of the process, but they are all relatively smaller than those obtained in Table 1.

Hence, in addition to conditioning on the past experience, we can conclude that the fact of adding
dependence between Xk and τk has increased even more the risk of underestimating or overestimating
the risks over the next period.

5. A Lundberg-Type Inequality, Conditional to the Past Experience

For several decades, the Lundberg inequality has been an “object of predilection” in the actuarial
literature. Several models were considered in ruin theory for which Lundberg-type bounds were found.
For the interested reader, excellent surveys on this subject can be found in Lin (2014) and Lin (2014).

A direction that has not been sufficiently explored is the dynamical context of an insurance
company where the ruin probability can change from one period to another, if the past experience
is taken into account. For an illustration of this idea, and in order to recover some past results on
Lundberg-type inequalities, we will consider the following accumulated surplus process with constant
interest rate:

Uδ(t + h) = Uδ(t)eδh + cshδ − {Z(t + h)− Z(t)}eδ(t+h),

where shδ =
eδh−1

δ , δ is a force of interest without inflation and c is a constant premium.
Here, we also assume that MX(s) exists for 0 < s < γ and lim

s→∞
MX(s) = ∞, E[csτδ − X] > 0

and that the surplus process is positive on [0, t]. Thus, by conditioning on the past experience, the
occurrence time and the severity of the first claim in the interval ] t, ∞], we get:

Ψ
(

Uδ(t)
∣∣∣Σ+

n,t

)
=

∞∫
0

Uδ(t)eδv+csvδ∫
0

Ψ
(
Uδ(t)eδv + csvδ − w

)
dFX(w) + FX

(
Uδ(t)eδv + csvδ

)dFτ∗(v),

where Σ+
n,t = Σn,t ∩ {Uδ(v) ≥ 0; 0 ≤ v ≤ t}.

Now, since after time τ∗, we have an ordinary renewal process, it can be proven
(see Cai and Dickson (2003)) that a constant ς > 0 exists, which is the unique solution of the
following expression:

E[exp{−ς(csvδ − X)}] = 1,

from which we get for Uδ(t)eδv + csvδ > w,

Ψ
(

Uδ(t)eδv + csvδ − w
)
≤ βe−ς(Uδ(t)eδv+csvδ−w), β−1 = inf

x≥0

∞∫
x

[
eςv/

(
eςxFX(x)

)]
dFX(v).

Hence, using the previous inequality and the definition of β, we get:

Ψ
(

Uδ(t)
∣∣∣Σ+

n,t

)
≤

∞∫
0

Uδ(t)eδv+csv δ∫
0

βe−ς(Uδ(t)eδv+csv δ−w) dFX(w)

+βe−ς(Uδ(t)eδv+csv δ)
∞∫

Uδ(t) eδv+csv δ

eςwdFX(w)

dFτ∗(v)

= β
∞∫
0

[
∞∫
0

e−ς(Uδ(t)eδv+csv δ−w) dFX(w)

]
dFτ∗(v)

= βMX(ς)E
[
e−ς(Uδ(t) eδτ∗+csτ∗ δ)

]
.

Generally speaking, the calculations of this Lundberg-type bound have to be done numerically,
but many software packages (such as Maple or Mathematica) can evaluate these quantities with a high
degree of accuracy.
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Now, let us examine some special cases for the preceding formula. For example, if t− tn = 0,
then we easily find one of the Lundberg-type inequalities of Cai and Dickson (2003), i.e.,

Ψ
(

Uδ(t)
∣∣∣Σ+

n,t

)
≤ βMX(ς)E

[
e−ς(Uδ(t)eδτ+csτδ)

]
= βMX(ς)e−ςUδ(t)E

[
e−ς(δUδ(t)+c)sτδ

]
≤ βe−ςUδ(t)E

[
e−ς(csvδ−X)

]
= βe−ςUδ(t).

If t− tn > 0 and δ = 0, then:

Ψ
(

U0(t)
∣∣∣Σ+

n,t

)
≤ βMX(ς)

∞∫
0

e−ς(U0(t)+cv)dFτ∗(v) = βe−ςU0(t)E
[
e−ς(cδ∗−X)

]
,

where ς is the unique solution of E[exp {−ς(cδ− X )}] = 1.
If we add to the preceding inequality the assumption that τ ∼ exp(λ), then we obtain the classical

Lundberg bound, i.e.,

Ψ
(

U0(t)
∣∣∣Σ+

n,t

)
≤ βe−ςU0(t)E

[
e−ς(cδ−X)

]
= βe−ςU0(t) ≤ e−ςU0(t).

Finally, assume that the inter-occurrence time of the claims is an IFR (DFR) distribution. Then, the
following inequalities hold between the conditional and non-conditional Lundberg-type bounds, i.e.,

βMX(ς)E
[
e−ς(Uδ(t)eδτ∗+csτ∗δ)

]
≥ (≤)βMX(ς)E

[
e−ς(Uδ(t)eδτ+csτδ)

]
.

Hereafter, we present a proof of these last two inequalities and an example that illustrates
both cases.

Proof. Assume that τ is an IFR (DFR) distribution. In particular, the respective assumptions imply that:

τ = τ − 0|τ > 0 ≥st (≤st)τ
∗ = τ − (t− tn)|τ > t− tn , t > tn.

Therefore, for the non-decreasing function w(v) = −e−ς(Uδ(t)eδv+csvδ) , we have:

E
[
−e−ς(Uδ(t)eδτ+csτδ)

]
≥ (≤)E

[
−e−ς(Uδ(t)eδτ∗+csτ∗δ)

]
⇔ E

[
e−ς(Uδ(t)eδτ∗+csτ∗δ)

]
≥ (≤)E

[
−e−ς(Uδ(t)eδτ+csτδ)

]
The conclusion follows easily by multiplying both sides of the inequalities by βMX(ς). �

Example 5. Consider the risk process such as defined at the beginning of this section, and assume that
Σ2,1 = {N(1) = 2, T1 = 0.1, T2 = 0.25, X1 = 1.5, X2 = 2}, τ ∼ Erl(2, 2), X ∼ exp(1), δ = 0.05, c = 2
and Uδ(0) = 5 . Then, we have:

U0.05(1) = 3.661733537, ς = 0.630463424, β = 0.369536576,

which implies that, for this IFR distribution,

(0.369536576)MX(0.630463424)E
[
e−0.630463424(3.661733537 e0.05τ∗+2sτ∗0.05)

]
= 0.04881733328 ≥

(0.369536576)MX(0.630463424)E
[
e−0.630463424(3.661733537 e0.05τ+2sτ0.05)

]
= 0.03425337420.
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Now, keep the same assumptions except that now τ ∼ Erl(0.5, 0.5) . Then, for this DFR distribution,
we have ς = 0.3712512013, β = 0.6287487988, and we thus get:

(0.6287487988)MX(0.3712512013)E
[
e− 0.3712512013(3.661733537e0.05τ∗+2sτ∗0.05)

]
= 0.1193205821 ≤

(0.6287487988)MX(0.3712512013)E
[
e−0.3712512013(3.661733537e0.05τ+2sτ0.05)

]
= 0.1572522651.

These results are consistent with Theorem 2 and Corollary 2 where, for an IFR (DFR) distribution,
the distribution function and the moments of our risk process increase (decrease) with the age process
at time t. These families of distributions involve the increasing (decreasing) of the corresponding bound of the
ruin probability.

6. Conclusions

By assuming first that the claims have heavy tails, formulas for the first two raw and joint
moments were obtained for the increments of compound renewal sums with discounted claims, taking
into account the past experience of the insurance portfolio. Then, by assuming that the claims have
light tails, the mgf, moments and particular distribution functions of this conditional risk process were
found. A situation where the severity of the claim is dependent on the time elapsed since the preceding
claim was also studied in this context. Finally, a new “conditional” Lundberg-type bound was obtained
for the ruin probability, and this upper bound could be larger or smaller than the non-conditional
Lundberg bound if the inter-occurrence time has an IFR or DFR distribution.

We brought another point of view showing that ignoring the importance of the age process
in an insurance portfolio could lead to greatly underestimating or overestimating the future risks
over the next period. Our approach is more probabilistic than statistical and has to be considered
complementary to the credibility theory, mainly because the age of the counting process is not
considered explicitly in this last theory despite its importance.
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Appendix A

Proof of Lemma 2: For the first identity, we have:

E[Z(t)] = E
[

E
[

Z(t)
∣∣∣T1, T2, . . . , TN(t), N(t)

]]
= E

[
N(t)
∑

j=1
e−δTj E

[
Xj
∣∣τj
]]

.

Conditioning on N(t), we thus get:

E

[
N(t)
∑

j=1
e−δTk E

[
Xj
∣∣τj
]]

= E

[
E

[
N(t)
∑

j=1
e−δTk E

[
Xj
∣∣τj
]]
|N(t)

]
=

∞
∑

n=1

n
∑

j=1

t∫
0

t∫
v

E
[
e−δuE

[
Xj
∣∣τj = u− v

]]
dFTj−1,Tj |N(t)(v, u|n ) P(N(t) = n)

=
∞
∑

j=1

∞
∑

n=j

t∫
0

t∫
v

E
[
e−δuE[X1|τ1 = u− v ]

]
P(N(t− u) = n− j)dFτ1(u− v)dFTj−1(v)

=
∞
∑

j=1

t∫
0

t∫
v

E
[
e−δuE[X|τ = u− v ]

]
dFτ(u− v)dF∗(j−1)

τ (v)

=
t∫

0
e−δuE[X|τ = u ]dFτ(u) +

t∫
0

t∫
v

e−δuE[X|τ = u− v ]dFτ(u− v)dm(v) .
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By permuting the order of integration of the last integral, we obtain the result.
For the second identity, we have,

E
[
Z2(t)

]
= E

[
E

[
N(t)
∑

j=1
e−2δTj X2

j

∣∣∣T1, T2, . . . , TN(t), N(t)

]]

+2E

[
E

[
N(t)−1

∑
j=1

N(t)
∑

k=j+1
e−δ(Tj+Tk)XjXk

∣∣∣T1, T2, . . . , TN(t), N(t)

]]

= E

[
N(t)
∑

j=1
e−2δTj E

[
X2

j

∣∣τj

]]
+ 2E

[
N(t)−1

∑
j=1

N(t)
∑

k=j+1
e−δ(Tj+Tk)E

[
Xj
∣∣τj
]
E[Xk|τk ]

]
.

Similarly to preceding identity, the first summation yields:

E

[
N(t)

∑
j=1

e−2δTk E
[

X2
j
∣∣τj

]]
=

t∫
0

e−2δuE
[

X2|τ = u
]1 +

t−u∫
0

e−2δvdm(v)

dFτ(u)

and the second summation yields,

E

[
N(t)−1

∑
j=1

N(t)
∑

k=j+1
e−δ(Tk+Tj)E

[
Xj
∣∣τj
]
E[Xk|τk ]

]
= E

[
E

[
N(t)−1

∑
j=1

N(t)
∑

k=j+1
e−δ(Tj+Tk)E

[
Xj
∣∣τj
]
E[Xk|τk ]

]
|N(t)

]
=

∞
∑

n=2

n−1
∑

j=1

n
∑

k=j+1

t∫
0

t∫
v

t∫
u

t∫
w

e−δ(z+u)E
[
Xj
∣∣τj = u− v

]
E[Xk|τk = z− w ]

×dFTj−1,Tj ,Tk−1,Tk |N(t)(v, u, w, z|n )P(N(t) = n)

=
∞
∑

n=2

n−1
∑

j=1

n
∑

k=j+1

t∫
0

t∫
v

t∫
u

t∫
w

e−δ(z+u)E[X|τ = u− v ]E[X|τ = z− w ]

×P(N = n− k)dFτdFTk−1−j dFτdFTj−1(v)

=
∞
∑

n=2

n−1
∑

j=1

t∫
0

t−v∫
0

t−v−γ∫
0

e−δ(α+2(γ+v))E[X|τ = γ ]E[X|τ = α ]

×P(N(t− z) = n− j− 1)dFτ(α)dFτ(γ)dF∗(j−1)
τ (v)

+
∞
∑

n=3

n−2
∑

j=1

n
∑

k=j+2

t∫
0

t−v∫
0

t−v−γ∫
0

t−v−γ−β∫
0

e−δ(α+β+2(γ+v))E[X|τ = γ ]E[X|τ = α ]

×P(N(t− z) = n− k)dFτ(α)dF∗(k−1−j)
τ (β)dFτ(γ)dF∗(j−1)

τ (v).

Hence,

E

[
N(t)−1

∑
j=1

N(t)
∑

k=j+1
e−δ(Tk+Tj)E

[
Xj
∣∣τj
]
E[Xk|τk ]

]
=

∞
∑

j=1

∞
∑

n=j+1

t∫
0

t−v∫
0

t−v−γ∫
0

e−δ(α+2(γ+v))E[X|τ = γ ]E[X|τ = α ]

×P(N(t− z) = n− j− 1)dFτ(α)dFτ(γ)dF∗(j−1)
τ (v)

+
∞
∑

j=1

∞
∑

k=j+2

n
∑

n=k

t∫
0

t−v∫
0

t−v−γ∫
0

t−v−γ−β∫
0

e−δ(α+β+2(γ+v))E[X|τ = γ ]E[X|τ = α ]

×P(N(t− z) = n− k)dFτ(α)dF∗(k−1−j)
τ (β)dFτ(γ)dF∗(j−1)

τ (v)

=
t∫

0

t−γ∫
0

e−δ(α+2γ)E[X|τ = γ ]E[X|τ = α ]dFτ(α)dFτ(γ)

+
t∫

0

t−v∫
0

t−v−γ∫
0

e−δ(α+2(γ+v))E[X|τ = γ ]E[X|τ = α ] dFτ(α)dFτ(γ)dm(v)

+
t∫

0

t−γ∫
0

t−γ−β∫
0

e−δ(α+β+2γ)E[X|τ = γ ]E[X|τ = α ] dFτ(α)dm(β)dFτ(γ)

+
t∫

0

t−v∫
0

t−v−γ∫
0

t−v−γ−β∫
0

e−δ(α+β+2(γ+v))E[X|τ = γ ]E[X|τ = α ] dFτ(α)dm(β)dFτ(γ)dm(v)

=
t∫

0
e−2δγE[X|τ = γ ]

{
t−γ∫
0

e−δαE[X|τ = α ]

{
1 +

t−γ−α∫
0

e−δβdm(β)

}
dFτ(α)

}
dFτ(γ)

+
t∫

0

t−v∫
0

e−2δ(γ+v)E[X|τ = γ ]

{
t−v−γ∫

0
e−δαE[X|τ = α ]

{
1 +

t−v−γ−α∫
0

e−δβdm(β)

}
dFτ(α)

}
dFτ(γ)dm(v).
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Permuting the order of integration between γ and v in the second term, we then obtain:

E

[
N(t)−1

∑
j=1

N(t)
∑

k=j+1
e−δ(Tk+Tj)E

[
Xj
∣∣τj
]
E[Xk|τk ]

]
=

t∫
0

e−2δγE[X|τ = γ ]E[Z(t− γ)]dFτ(γ)

+
t∫

0

t−γ∫
0

e−2δ(γ+v)E[X|τ = γ ]E[Z(t− v− γ)] dm(v)dFτ(γ)

=
t∫

0
e−2δγE[X|τ = γ ]

{
E[Z(t− γ)] +

t−γ∫
0

e−2δvE[Z(t− v− γ)]dm(v)

}
dFτ(γ).

The result follows by adding the appropriate quantities. �
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