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Abstract: The Solvency II directive asks insurance companies to derive their solvency capital requirement
from the full loss distribution over the coming year. While this is in general computationally infeasible
in the life insurance business, an application of the Least-Squares Monte Carlo (LSMC) method offers a
possibility to overcome this computational challenge. We outline in detail the challenges a life insurer
faces, the theoretical basis of the LSMC method and the necessary steps on the way to a reliable proxy
modeling in the life insurance business. Further, we illustrate the advantages of the LSMC approach via
presenting (slightly disguised) real-world applications.

Keywords: Least-Squares Monte Carlo method; proxy modeling; life insurance; Solvency II

1. Introduction

The standards set out in the Solvency II directive mark the starting point for the recent
developments of proxy modeling to calculate solvency capital requirements in the insurance sector,
see European Parliament and European Council (2009). As noted in Article 122 of the latter document:

“Where practicable, insurance and reinsurance undertakings shall derive the solvency capital
requirement directly from the probability distribution forecast generated by the internal
model of those undertakings, using the Value-at-Risk measure set out in Article 101(3).”

The crucial point of this quotation is that the insurers are asked to derive their full loss distributions.
A common understanding is that, for a reasonably accurate full distribution, several hundred thousand
simulations are necessary. Moreover, for each of these simulations, for with profit business at least 1000
Monte Carlo valuations must be carried out. This leaves the insurance companies with the requirement
to perform hundreds of millions of own funds calculations to obtain their full loss distributions.

The mere fact that such an extensive calculation is foreseen in the directive shows that, in the years
preceding the Solvency II directive, it was believed that by the time Solvency II would be introduced
much lower hardware costs and increased valuation efficiency would allow European life insurance
companies to perform that many simulations. Since the industry as of today is still far away from such
computational capacities, the companies face the challenge to find suitable approximation techniques.
Among them are sophisticated techniques such as Least-Squares Monte Carlo (LSMC), which we
focus on in this paper. The central idea of LSMC is to get along with comparably few Monte Carlo
simulations and to estimate the desired values by least-squares regression.

Let us return to the probability distribution forecast mentioned in the directive. Which are
major considerations affecting a company’s own funds and thus its loss distribution? Life insurance
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constitutes a long-term business. Take a typical annuity policy: It is a life-long contract which may be
written when a person is 25 years old. It will be in the books of the insurer potentially for 60 years
or more. To assess the potential losses from a portfolio of such policies, it does not suffice to look at
the profits or losses in the current year or in the last five or ten years. The policyholder may pay her
premiums without receiving any benefits for decades and decades. From a company’s perspective,
it will only become clear whether it has made profits or losses from this policy after the policy
has expired, either cancelled or due to the policyholder’s death. This assessment gets even more
complicated by the regulatory frameworks. In more complex business regulations, such as in Germany,
the company has to assure it will have enough assets to cover the expected annuity payments during
the entire lifetime of the policy. Furthermore, each year it has to set aside a sufficient provision for the
future benefits taking into account the interest rate guarantees promised to the customer.

For this purpose, each policy is projected into the future. The provisions are built and released as
stipulated, and the annuity payments performed until expiration, all according to the actuarial tables.
The software used for projecting the policies is variously called actuarial platform, stochastic model or
cash flow projection model. We stick to the last of these notions throughout this article. It is obviously
an enormous challenge to make assumptions about the world in 50 or 60 years from now. The most
relevant actuarial assumptions such as mortality rates, expenses or lapse behavior of customers are
derived according to industry-wide standard approaches. They are largely based on historical data and
contain certain assumptions regarding the expected trends. The relevant market data such as interest
rates or equity developments are modeled by acknowledged methods of financial mathematics.

The computational challenge we mentioned above after citing Article 122 of the Solvency II
directive (European Parliament and European Council 2009) refers primarily to the cash flow projection
models. The computational burden for the calculation of the solvency capital requirement is namely
directly related to the complexity of the cash flow projections models. Our intention in this paper is to
shed some light on how this challenge can be overcome by utilizing the LSMC approach. We divide
the calculation process into four steps. In the first step, we allocate the computational capacities to
the simulations that will be used to generate the own funds fitting and validation data, and run the
Monte Carlo simulations of the insurer’s cash flow projection model accordingly. Conditional on the
fitting data, the proxy function for the own funds is then calibrated in the second step. This step is
mathematically most demanding as it offers a great variety of regression methods which must be
chosen from. A good method not only reliably generates proxy functions which capture the behavior
of the cash flow projection model well, but is also transparent, flexible with regard to the characteristics
of the model and fast. In the third step, the proxy function is validated conditional on the validation
data. Once the validation has been successful, the proxy function is passed on for evaluation to the
last step, where it yields an approximation to the insurer’s full loss distribution. Finally, the solvency
capital requirement is computed as a value-at-risk of that loss distribution.

The main purpose of this paper is to give a current snapshot of why and how the companies in the
life insurance sector can use an LSMC-based approach to derive their full loss probability distribution
forecasts. In doing so, we close the gap between theory and practice by designing a concrete algorithm
along with a suitable theoretical framework. We highlight the practical considerations an insurer
should make in the various necessary steps. Even though we do not have the intention of giving
a step-by-step worked example, we offer numerical illustrations in which we place our focus on the
proxy function calibration, validation and evaluation and compare LSMC to the directly calculated full
loss distribution (nested stochastics). Finally, we address current research topics in the area of LSMC
modeling for life insurance companies.

2. Cash Flow Projection Models and LSMC

The Monte Carlo valuations we deal with are performed in the cash flow projection (CFP) models.
Future cash flows dependent on market development and actuarial assumptions such as benefits
paid to the policyholders are calculated in these models. Those future cash flows then get discounted
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to obtain the company’s value or the fair value of the company’s liabilities which are used for the
derivation of the loss distribution.

2.1. Cash Flow Projection Models

In the projection of life insurance policies, the cash flow projection models play a crucial role.
They replicate the modeling of products, insurance contracts and assets from the administration
systems. In the following sections, we take two different perspectives when discussing the CFP models.

2.1.1. Full Balance Sheet Projections

For a projection of the future cash inflows and outflows, both assets and liabilities of a company
have to be modeled. In a company’s balance sheet the assets and liabilities are interlinked in a complex
manner, most prominently through the profit sharing mechanism. The CFP models hence have to be
able to project all of the most important balance sheet items. Particularly complicated challenges arise
from businesses such as German life insurance business where the entire portfolio belongs to a single
fund and the profit sharing arises not only from the investments but also from risk and expenses profit
sources. This implies that the profits in a given year which are the basis for the profit sharing can be
determined only after all policies have been projected.

A CFP model thus projects a company’s balance sheet. In cases where book and market values
of assets differ, it calculates them both. A pair consisting of a simulation and a projection year is
a knot in the CFP model. For each knot the algorithms in the model value the company’s assets
and liabilities. To derive the gross profit, the CFP model projects assets and liabilities between two
consecutive projection years. A CFP model can hence be understood as a full enterprise model which
projects the company in its entirety.

In this view, the CFP model consists of four modules, that is building blocks:

• Assets
• Liabilities
• Capital Market
• Management Actions

At this moment for most life insurance companies their CFP models are separate tools
detached from other productive systems which are used for the statutory accounts. For instance,
companies typically employ assets valuation tools other than CFP models to value their assets in
the business closure. Similarly, liabilities are modeled in complex administration systems which are
usually too heavy for numerous Monte Carlo projections needed for Solvency II. With increased
computational capacities in the future it is conceivable that both Solvency II and statutory account
valuations may be done by the same model.

2.1.2. Pricing Machine

A different perspective on the CFP model arises when it is seen as a pricing machine. In this
view, the company is understood as an exotic derivative which produces future cash flows, both into
(premiums) and out of the company (benefits for policyholders, costs and dividends). In this sense,
it resembles a financial instrument with some swap-like and option-like features:

• inflows of premiums (mostly pre-determined);
• outflow of costs (mostly pre-determined); and
• outflow of benefits and dividends (volatile, dependent on the capital market development).

The annual premium of a policyholder is in most cases constant since policyholders demand
certainty about their payments to the insurance company. This lies in the nature of the insurance business:
Policyholders exchange known premium payments against uncertain benefits. For endowment and
annuity products, the interest rate guarantees and profit sharing mechanisms make the cash flow
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patterns complex. Take for instance clique style profit sharing mechanisms (policyholder profit share in
a given year underlies the original guarantee). The dependency on the capital market scenarios which
are used in the projections is multi faceted and the cash flows can become arbitrarily complex. It is
therefore understandable why an analytic formula for the present value of the cash flows mentioned
above which would enable insurance companies to easily calculate the full distribution of losses cannot
be derived.

2.2. LSMC—From American Option Pricing to Capital Requirements

In this section, we present the fundamental idea behind the LSMC approach and then consider
some of its particular applications in the finance and insurance business.

The Basic Idea behind LSMC

Originally introduced as a Monte Carlo alternative for pricing American or Bermudan options,
the LSMC approach combines Monte Carlo methods with regression techniques (see e.g., Carriere (1996);
Tsitsiklis and Van Roy (2001) and Longstaff and Schwartz (2001)). Its basic ingredients are a set of
simulated evolutions of the paths of underlying stock price(s) on a discrete time grid. While for
standard European options it is straight forward to calculate the resulting payoffs, averaging over them
and considering the discounted average as an approximation for the option price, such an approach is
not feasible for American options due to the possibility of an early exercise.

Instead, we have to follow each path of the stock price closely and have to decide at each future
time instantly if it is better to exercise the option now or to continue holding it. While the intrinsic
value of the option is given by its actual payoff when immediately exercised, the continuation value
depends on the future performance of the stock prices. Of course, the latter is not known at the
current time. This, however, is exactly where the regression techniques come into the game. As the
continuation value can be expressed as discounted (conditional) expectation of the future value of
the American option (given it will not be exercised immediately), it can be expressed as a typically
unknown function of the current stock price. This function is then estimated via linear regression, i.e.,
with the help of the least-squares method (see e.g., Korn et al. (2010) for a detailed description of the
full algorithm). Having obtained the regression function at future time steps, one can compare the
intrinsic value of the option and the (approximation of the) continuation value by plugging the current
stock price in the regression function. In this way, one can calculate the optimal exercise boundary of
an American option backward from maturity to its initial time.

This LSMC technique for American options has the typical Monte Carlo advantage of beating tree
methods or PDE based methods for multiple underlyings, but tends to be slow in univariate applications.

2.3. Calculating Capital Requirements

The LSMC technique, however, is not only limited to the valuation of American-style options.
Bauer and Ha (2015) have extended the scope of the LSMC approach to the risk management activities
of financial institutions and in particular of life insurance companies. There, the main contribution of
the LSMC technique is the possibility to overcome so-called nested valuation problems.

2.3.1. Nested Valuation Problem

As outlined in Section 1, to calculate an insurance company’s capital requirement, its assets
and liabilities in the CFP model have to be projected one year into the future under a large number
of real-world scenarios. The obtained positions after one year have to be (re-)valued, conditional
expectations (under a pricing measure!) have to be calculated. To obtain a reliable estimate for those
values, for each real-world scenario numerous stochastic simulations of the company’s CFP model need
to be carried out in a naive Monte Carlo approach. This approach with simulations in the simulations is
called a nested valuation problem. Such a conventional approach will for most life insurance companies
exceed the computational capacities. Typically life insurance companies would need hundreds of
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millions of simulations for an acceptably accurate nested valuation, whereas due to time and hardware
constraints they typically have the capacities to perform at most a few hundred thousand simulations.

2.3.2. Least-Squares Monte Carlo Solution

Taking up the LSMC idea from American option pricing above, Bauer and Ha (2015) have
suggested a way to overcome the nested valuation problem of calculating the capital requirement by
the naive approach. Instead of determining option prices by Monte Carlo simulation, they simulate
paths of CFP models. Similar to estimating conditional continuation values, they estimate a company’s
available capital as the difference between its assets and liabilities conditional on the real-world
scenarios by ordinary least-squares regression.

Thereby, they also highlight the flexibility of the LSMC approach to switch between pricing
and projection, i.e., to simulate under different probability measures over disjoint time intervals.
Particularly, they cope with the nested valuation problem by introducing a hybrid probability measure:
While the physical measure captures the one-year real-world scenarios under which the assets and
liabilities shall be evaluated, the risk-neutral measure concerns the valuations in the CFP model after
the one-year time period. Key to overcoming the nested valuation problem is that the LSMC technique
gets along with only few stochastic simulations per real-world scenario. Where numerous simulations
can be foregone in the LSMC approach compared to the conventional approach, the approximation of
the available capital by ordinary least-squares comes in.

For a better understanding, suppose the number of stochastic simulations required to reliably
estimate the available capital for one real-world scenario in the conventional approach is Ñ. Then,
the LSMC approach takes advantage of the idea that the Ñ required simulations do not necessarily
have to be performed based on the single real-world scenario under which the available capital shall be
derived. This means that the Ñ simulations can be carried out based on different real-world scenarios.
The effects of the different real-world scenarios just have to be excludable by ordinary least-squares
regression. By implication, we can select and perform Ñ simulations in the LSMC approach for many
relevant real-world scenarios together and thereby decrease the required computational capacities
tremendously compared to the conventional approach.

Compare this to the American option pricing problem where we only simulate under the
risk-neutral measure. However, each scenario at time t is only followed by one price path. Starting from
maturity, the continuation values in the preceding period are simply calculated via a regression over
the cross-sectional payments from not exercising the option. Thus, nested simulation at each time t for
each single scenario is replaced by comparing the intrinsic option value with the current stock price
inserted in the just obtained regression function. In the calculation of capital requirements, we do not
even have to think about the exercise problem.

3. Least-Squares Monte Carlo Model for Life Insurance Companies

In this work, we adopt the LSMC technique as described in Bauer and Ha (2015) and develop it
further to meet the specific needs of proxy modeling in life insurance companies. Amongst others,
Barrie and Hibbert (2011), Milliman (2013) and Bettels et al. (2014) have already given practical
illustrations of the LSMC model in risk management.

We close the gap between theory and practice by developing a practical algorithm along with
a suitable theoretical framework. Variants of this algorithm have already been applied successfully
in many European countries and different life insurance companies under the Solvency II directive.
Although this approach appears superior to other methods in the industry and the algorithm meets the
demands for reliable derivations of the solvency capital requirement, various active research streams
search for refinements of the proxy functions, see the last section 6 for details.

In this section we look in detail at the necessary steps and ingredients on the way to a reliable
proxy modeling using the LSMC framework. The particular steps are:

• a detailed description of the simulation setting and the required task;
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• a concept for a calibration procedure for the proxy function;
• a validation procedure for the obtained proxy function; and
• the actual application of the LSMC model to forecast the full loss distribution.

We would like to emphasize that only a carefully calibrated and rigorously validated proxy function
can be used in the LSMC approach. Otherwise, there is the danger of e.g., using an insufficiently good
approximation or an overfitted model.

3.1. Simulation Setting

We adopt the simulation framework of Bauer and Ha (2015) and modify it where necessary to
describe the current state of the implementation in the life insurance industry.

3.1.1. Filtered Probability Space

Let (Ω,F ,F,P) be a complete filtered probability space. We also assume the existence of a
risk-neutral probability measure Q equivalent to the physical probability measure P. By P, we capture
the real-world scenario risk an insurer faces with regard to its assets and liabilities.

We model the risk an insurer is exposed to in the next projection year by a vector X = (X1, . . . , Xd),
X ∈ Rd, where each component represents the stress intensity of a financial or actuarial risk factor.
We refer to X under P as an outer scenario. Conditional on X, we model the insurer’s uncertainty under
Q by a time-dependent market consistent Markov process (φt (X))t≥0 that reflects the developments
of stochastic capital market variables over the projection horizon. We refer to Monte Carlo simulations
for the risk-neutral valuation (φt (X))t≥0 as inner scenarios. Each outer scenario is assigned a set
of inner scenarios. Under Q, we can price any security by taking the expectation of its deflated
cash flows. The deflation takes place with respect to the process (Bt)t≥0 with Bt = exp

(∫ t
s=0 rsds

)
,

where rt = r (φt (X)) denotes the instantaneous risk-free interest rate.
The filtration F = (Ft)t≥0 of the σ-algebra F contains the inner scenario sets, that is the sets with

the financial and actuarial information over the projection horizon, and the σ-algebra Ft captures
solely the sets with the accumulated information up to time t.

3.1.2. Solvency Capital Requirement

An insurer is interested in its risk profile to assess its risks associated with possible business
strategies. With the knowledge of how its risks influence its profit, an insurer can steer the business
using an appropriate balance between risks and profits. In risk management, a special focus is
given to an insurer’s loss distribution over a one-year horizon due to the Solvency II directive,
compare European Parliament and European Council (2009).

We define an insurer’s available capital at time t as its market value of assets minus liabilities and
abbreviate it by ACt. Furthermore, we define its one-year profit ∆ as the difference between its deflated
available capital after one year and its initial available capital, i.e.,

∆ = B1AC1 −AC0, (1)

where B1AC1 constitutes an after risk result and AC0 the unique before risk result. The solvency capital
requirement (SCR) is given as the value-at-risk of the insurer’s one-year losses, that is the negative of ∆,
at the confidence level ϕ. Formally, this is the ϕ-quantile of the loss distribution, i.e.,

SCR = VaRϕ (−∆) = inf
{

y ∈ R | FP
−∆ (y) ≥ ϕ

}
, (2)

where FP
−∆ (y) = P (−∆ ≤ y) denotes the cumulative distribution function of the loss under P.

Hence, if the initial available capital AC0 is equal to SCR, the insurer is statistically expected to
default only in 1− ϕ business years. For instance, ϕ = 99.5% as set out in Article 101(3) of the Solvency
II directive means the company will default only with probability 0.5%.
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3.1.3. Available Capital

Assume the projection of asset and liability cash flows occurs annually at the discrete times
t = 1, . . . , T. Let Zt denote the net profit (dividends and losses for the shareholders after profit sharing)
at time t and let T mark the projection end. At projection start, we can express the after risk available
capital conditional on the outer scenario X as

AC (X) = EQ
[

T

∑
t=1

B−1
t Zt | X

]
. (3)

In our modeling, we approximate the under Solvency II sought-for deflated available capital
after a one-year horizon by the after risk available capital (3), i.e., B1AC1 ≈ AC (X). In other words,
we assume that an outer scenario X = (X1, . . . , Xd) realizes immediately after projection start and
not after one year. This consideration is important as an insurance company only knows its current
CFP model but not its future ones such as after one year. Each summand B−1

t Zt in the expectation on
the right-hand side is a result of the characteristics of the underlying CFP model. Under the Markov
assumption, such a summand takes on a value conditional on the present inner scenario component
φt (X) in a simulation. Mathematically speaking, the summands can be interpreted as functionals
zt on the vector space of profit cash flows to R. Each CFP model can be represented by an element
(z1, . . . , zT) of a suitable function space. As long as the risk-free interest rate enters φt (X), we can
write zt (φt (X)) = B−1

t Zt, t = 1, . . . , T, so that, by linearity of expectation, Equation (3) becomes

AC (X) =
T

∑
t=1

EQ [zt (φt (X)) | X] . (4)

For the sake of completeness, if we are interested in an economic variable other than the available
capital such as the market value of assets or liabilities, we can proceed in principle as described above.
Essentially, we would have to adjust the cash flows Zt of the available capital in Equations (3) and (4)
such that they represent the respective variable. Instead of the SCR, another economic variable such as
the changes in assets or liabilities would be defined in Equation (2).

3.1.4. Fitting Points

Unlike Bauer and Ha (2015), we specially construct a fitting space on which we define the outer
scenarios that are fed into the CFP model solely for simulation purposes. We call these outer scenarios
fitting scenarios. The fitting scenarios should be selected such that they cover the space of real-world
scenarios sufficiently well. This is important as the proxy function of the available capital or another
economic variable is derived based on these scenarios. To formalize the distribution of the fitting
scenarios, we introduce another physical probability measure P′ besides P. Apart from the physical
measure, we adopt the filtered probability space from above so that we refer for the fitting scenarios to
the space (Ω,F ,F,P′). We specify the fitting space as a d-dimensional cube

Sfit = Πd
l=1[al , bl ] ⊂ Rd, (5)

where the intervals [al , bl ], l = 1, . . . , d, indicate the domains of the risk factors. The endpoints of these
intervals correspond respectively to a very low and a very high quantile of the risk factor distribution.

The set of fitting scenarios xi, i = 1, . . . , N, and the number of inner scenarios a per fitting
scenario need to be defined conditional on the run time of the CFP model in the given hardware
architecture. Thereby, the minimum number of scenarios required to obtain reliable results needs
to be guaranteed. Moreover, the calculation budget should be split reasonably between the fitting
and validation computations. To allocate the fitting scenarios on Sfit, we need to specify the physical
probability measure P′ and suggest an appropriate allocation procedure.
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Once the fitting scenarios have been defined, the inner scenarios
(

φ
j
t
(
xi))

t≥1
, j = 1, . . . , a,

per fitting scenario xi, i = 1, . . . , N, must be generated. An economic scenario generator (ESG) can
be employed to derive the inner scenarios. Essentially, such a generator simulates market consistent
capital market variables over the projection horizon under Q and ensures thus risk neutrality.

When all required inner scenarios are available, the Monte Carlo simulations of the CFP model
are performed. These simulations provide the results for the available capital, i.e.,

(
y′
)i,j

=
(

AC′
(

xi
))j

=
T

∑
t=1

zt

(
φ

j
t

(
xi
))

, j = 1, . . . , a, i = 1, . . . , N. (6)

The averages of these results over the inner scenarios yield the fitting values per fitting scenario, i.e.,

yi = AC
(

xi
)
=

1
a

a

∑
j=1

(
y′
)i,j, i = 1, . . . , N. (7)

In the following, we call the points
(
xi, yi) , i = 1, . . . , N, consisting of the fitting scenarios and

fitting values fitting points.

3.1.5. Practical Implementation

We now outline how the theoretical framework presented above can actually be implemented in
the industry.

The first step of a life insurance company is to identify the risks its business is exposed to.
Some of these risks are not quantifiable and are hence excluded from the modeling in the CFP models.
However, if a risk is significant for the company and can also be implemented in the CFP model,
it will usually be considered. Some quantifiable risks may not be relevant for a company: A company
underwriting solely risk insurance policies is not exposed to the longevity risk for instance.

In Table 1, we list the typical risks which can be implemented in the CFP model. In this example,
d = 17 is the number of risk factors being quantifiable and relevant for the company. While the first
nine risk factors X1, . . . , X9 are shocks on the capital market, the remaining eight X10, . . . , X17 constitute
actuarial risks. We model the risk factors as either additive or multiplicative stresses. For each stress,
the base value is usually zero. Except for the mortality catastrophe stress, all actuarial stresses in the
table can be modeled as symmetric multiplicative or additive stresses.

Table 1. Risk factors in the CFP model.

Component Risk Factor Description

X1 Risk-free interest rates movement
X2 Change in interest rate volatility
X3 Change in equity volatility
X4 Shock on volatility adjustment (if used by the company)
X5 Credit default
X6 Credit spread widening
X7 Currency exchange rate risk
X8 Shock on equity market value
X9 Shock on property market value

X10 Lapse stress on best estimate assumptions
X11 Mortality catastrophe stress with a one-off increase in mortality
X12 Mortality trend volatility stress
X13 Mortality level stress on best estimate assumptions
X14 Longevity trend volatility stress on best estimate assumptions
X15 Longevity level stress on best estimate assumptions
X16 Morbidity stress on best estimate assumptions
X17 Expenses stress on best estimate assumptions
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Some of the risk factors can depend on vectors of underlying random factors. For example,
the historic interest rate movements cannot be explained reasonably well with a one-factor model,
so companies use two-factor or three-factor models for implementing X1. They can also include
risk-free rates in different currencies which increase the number of dimensions even further.
Equally, the equity shock X8 can be the outcome of several shocks of indices, if the company is
exposed to different types of equity. The spread widening risk X6 can also be multidimensional.

As far as the number of outer scenarios is concerned, it depends on the dimensionality of the
fitting space and the calculation capacities. Numbers ranging from N = 5000 to N = 100,000 fitting
scenarios have been seen and tested in the industry. For the inner scenarios, the natural choice would
be a = 1 as this would allow greater diversification among the fitting scenarios (and is in line with the
original LSMC approach!). However, in the implementations we have observed a = 2, based on the
observation that the benefits from the method of antithetic variates overcompensate the reduction of
the fitting scenarios, for this method see ((Glasserman 2004), Section 4.2).

For the practical implementations, it is important that the fitting space Sfit in Equation (5) is a cube.
This allows using low discrepancy sequences which is a powerful tool ensuring optimal usage of the
scenario budget in Monte Carlo simulations. By far the most widely used are Sobol low discrepancy
sequences which are easy to implement. They have a big advantage in that they ensure that each new
addition of fitting points will be optimally placed in a certain sense. For details and the exact definition
of what it means that a sequence has low discrepancy see Niederreiter (1992). Since a Sobol sequence
is defined on the cube Πd

l=1[0, 1], we perform a linear transformation of the dimensions to map it to
our fitting space Sfit.

It is worth noting that some risk factors require an ESG for the inner scenarios conditional on the
fitting scenarios to be generated. In the ESG, the financial models which determine the dynamics of
for instance interest rates, equity, property and credit risk are implemented. The first four risk factors
X1, . . . , X4 from Table 1 are always modeled directly in the ESG, the next three X5, . . . , X7 can also be
modeled in such a way. The remaining risk factors are modeled directly as input for the CFP model.

As the final step, Monte Carlo simulations of the CFP model conditional on the inner scenarios are
performed leading to the non-averaged values in Equation (6) for the available capital. After averaging,
we get the fitting values in Equation (7) per fitting scenario and thus the fitting points which enter
the regression.

3.2. Proxy Function Calibration

We now describe how the proxy functions used for the CFP model are practically obtained.

3.2.1. Two Approximations

As stated before, Bauer and Ha (2015) have transferred the LSMC approach from American
option pricing to the field of capital requirement calculations. A practical outline of this approach was
given by Koursaris in (Barrie and Hibbert 2011). Instead of approximating conditional continuation
values, they approximate conditional profit functions by an LSMC technique. Both application fields,
option pricing and capital requirement calculation, have in common that the proxy functions shall
predict aggregate future cash flows conditional on current states. Overall, Bauer and Ha (2015) stay
rather theoretical and do not address practical considerations regarding the calibration of suitable
proxy functions. Therefore, we adopt their theoretical framework and complement it by a concrete
calibration algorithm.

Due to limited computational capacity and a finite set of basis functions, we have to make two
approximations with the aim of evaluating the economic variable in Equation (4) conditional on the
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outer scenario X. Firstly, we replace the conditional expected value over the projection horizon with a
linear combination of linear independent basis functions ek (X) ∈ L2

(
Rd,B,P′

)
, k = 0, 1, . . . , K− 1, i.e.,

AC (X) ≈ ÂC
(K)

(X) =
K−1

∑
k=0

βkek (X), (8)

with e0 (X) = 1 and the intercept β0. Secondly, we replace the vector β = (β0, . . . , βK−1)
T with

the ordinary least-squares estimator β̂(N) =
(

β̂
(N)
0 , . . . , β̂

(N)
K−1

)T
. In dependence of the fitting points(

xi, yi) , i = 1, . . . , N, derived by the Monte Carlo simulations, β̂(N) is given by

β̂(N) = argminβ∈RK

 N

∑
i=1

(
yi −

K−1

∑
k=0

βkek

(
xi
))2

 . (9)

By further approximating Equation (8) in terms of Equation (9), we obtain

AC (X) ≈ ÂC
(K)

(X) ≈ ÂC
(K,N)

(X) =
K−1

∑
k=0

β̂
(N)
k ek (X), (10)

which we can evaluate at any outer scenario X.

3.2.2. Convergence

According to Proposition 3.1 of Bauer and Ha (2015), the LSMC algorithm is convergent. We split
their proposition into two parts and can adapt it such that we are able to apply their findings to our
modified model setting. Since we have made the analogies and differences between their and our model
setting clear above, the translation of their proposition into our propositions is simple. Therefore, we do
not prove our propositions explicitly. For completeness, we state these main convergence results.

Proposition 1. ÂC
(K)

(X)→ AC (X) in L2
(
Rd,B,P′

)
as K → ∞.

Proposition 2. ÂC
(K,N)

(X)→ ÂC
(K)

(X) as N → ∞ Q-almost surely.

By conclusion, we arrive at ÂC
(K,N)

(X) → AC (X) in probability and thus in distribution
as K, N → ∞. This means that a proxy function converges in probability to the true values of
the economic variable if the basis functions are selected properly. Since P′ can be replaced with P,
the propositions hold conditional on both the scenarios on the fitting space and the real-world scenarios.
The convergence in distribution implies furthermore that the distribution of a proxy function evaluated
at the real-world scenarios approximates the actual real-world distribution. A linear transformation of
the available capital finally yields the special case that the estimate for the solvency capital requirement
converges to the actual one as K, N → ∞. We take up these results once more later in this article.

3.2.3. Adaptive Algorithm to Build up the Proxy Function

The crucial ingredient for the regression step is the choice of the basis functions. We build up
the set of basis functions according to an algorithm given in Krah (2015). To illustrate this algorithm,
we adopt a flowchart from Krah (2015) and depict a slightly generalized version of it in Figure 1.
Hereinafter, we explain a customized version comprehensively and discuss modifications. The core
idea is to begin with a very simple proxy function and to extend it iteration by iteration until its
goodness of fit can no longer be improved. We derive a proxy function for the available capital,
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but it can equally be done for best estimate liabilities or potentially other economic variables such as
guaranteed best estimate liabilities.

Figure 1. Flowchart of the calibration algorithm.

3.2.4. Initialization

The procedure starts in the upper left side in Figure 1 with the specification of the basis functions
for the start proxy function. Typically, this will be a constant function. Then, we perform the initial
ordinary least-squares regression of the fitting values against the fitting scenarios (k = 0). With our
choice of a constant function, the start proxy function becomes the average of all fitting values.

In the last step of the initialization, we determine a model selection criterion and evaluate it for
the start proxy function. The model selection criterion serves as a relative measure for the goodness of
fit of the proxy functions in our procedure. In the applications in the industry, one of the well-known
information criteria such as the Akaike information criterion (AIC from (Akaike 1973)) or the Bayesian
information criterion (BIC) is applied. For that it is assumed that the fitting values conditional on the
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fitting scenarios, or equivalently the errors, are normally distributed and homoscedastic. As we cannot
guarantee this, the final proxy function has to pass an additional validation procedure before being
accepted. The preference in the industry for AIC is based on its deep foundations, easiness to compute
and compatibility with ordinary least-squares regression under the assumptions stated above.

AIC will help us find the appropriate compromise between a too small and too large set of basis
functions. In our case, it has the particular form of a suitably weighted sum of the calibration error and
the number of basis functions:

AIC = N
(

log
(

2π
(

σ̂(N)
)2
)
+ 1
)

︸ ︷︷ ︸
calibration error

+ 2 (K + 1)︸ ︷︷ ︸
number of basis functions

(11)

Here,
(

σ̂(N)
)2

= 1
N ∑N

i=1

(
yi −∑K−1

k=0 β̂
(N)
k ek

(
xi))2

with the ordinary least-squares estimator β̂(N)

from Equation (9) and the fitting points
(

xi, yi) , i = 1, . . . , N. For the derivation of this particular form
of AIC, see Krah (2015).

This form of AIC depends positively on both the calibration error and the number of basis
functions. This allows for a very intuitive interpretation of AIC. As long as the number of basis
functions is comparably small and the model complexity thus low, the proxy function underfits the
CFP model. Under these circumstances, it makes sense to increase the model complexity appropriately
to reduce the calibration error. As a consequence, AIC decreases. We repeat this procedure unless AIC
begins to stagnate or increase as such a behavior is a signal for a proxy function that overfits the CFP
model. In this case, reductions in the calibration error are achieved if the proxy function approximates
noise. Since such effects reduce the generalizability of the proxy function to new data, they should be
avoided. Hence, the task at hand is to find a proxy function with a comparably low AIC value.

3.2.5. Iterative Procedure

After the initialization, the iterative nature of the adaptive algorithm comes into play. At the
beginning of each iteration (k = 1, . . . , K− 1), the candidate basis functions for the extension of the
proxy function need to be determined according to a predefined principle. By providing the candidate
basis functions, this principle also defines the function types which act as building blocks for the proxy
function. Since we want the proxy function to be a multivariate polynomial function with the risk
factors X1, . . . , Xd as the covariates, we let the principle generate monomial basis functions in these d
risk factors. To keep the computational costs below an acceptable limit, we further restrict the candidate
basis functions by conditioning them on the current proxy function structures. The principle must be
designed in a way that it derives candidate basis functions with possibly high explanatory power.

A principle which satisfies these properties and which we employ is the so-called principle of
marginality. According to this principle, a monomial basis function may be selected if and only if all
its partial derivatives are already part of the proxy function. For instance, after the initialization
(k = 1), the proxy function structure consists only of the constant basis function e0 (X) = 1.
Since 1 = X0

l , l = 1, . . . , d, is the partial derivative of all linear monomials, the candidate basis
functions of the first iteration are ẽc

1 (X) = Xc, c = 1, . . . , d. To give another example, the monomial
X2

1X2 would become a candidate if the proxy function structure had been extended by the basis
functions X1X2 and X2

1 in the previous iterations. These basis functions would become candidates
themselves if the linear monomials X1 and X2 had been selected before.

When the list of candidate basis functions is complete, the proxy function structure is extended by
the first candidate basis function ẽ1

k (X). An ordinary least-squares regression is performed based on
the extended structure and AIC is calculated. If and only if this AIC value is smaller than the currently
smallest AIC value of the present iteration, the latter AIC value is updated by the former one and the
new proxy function memorized instead of the old one. This procedure is repeated separately with the
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remaining candidate basis functions ẽc
k (X) , c = 2, . . . , C, one after the other. In Figure 1, this part of

the algorithm can be viewed on the lower left side.
If there are candidates ẽc

k (X) , c = 1, . . . , C, which let AIC decrease when being added to the
proxy function, the one that lets AIC decrease most, say c̃, is finally selected into the proxy function of
the present iteration, i.e., ek (X) = ẽc̃

k (X). The minimum AIC value of the entire adaptive algorithm is
updated accordingly. The algorithm terminates and provides the final proxy function if either there is
no candidate which lets AIC decrease or the prespecified maximum number of basis functions Kmax

could be exceeded in an additional iteration. Otherwise, the next iteration (k + 1) again starts by an
update of the list of candidate basis functions.

3.2.6. Refinements

The adaptive algorithm illustrated in Figure 1 is an approach for the derivation of suitable proxy
functions which has already proved its worth in practice when applied together with some refinements.
The refinements are in particular needed if the algorithm has not generated a proxy function which
passes the validation procedure. In this case, useful refinements can be restrictions that are made
based on prior knowledge about the behavior of the CFP model. These restrictions might increase the
accuracy of the proxy function or reduce the computational costs. For example, one can restrict the
maximum powers to which the risk factors may be raised in the basis functions by defining joint or
individual limits. Thereby, it could be reasonable to apply different rules for monomials with single
and multiple risk factors. In addition, it is possible to specify a maximum allowed number of risk
factors per monomial. The principle of marginality would have to be adjusted in accordance with
these restrictions. Moreover, one could constrain the intercept or select some basis functions manually.

If there are risk factors that have no or negligible interactions with other ones, one can split the
derivation of the proxy function into two or more parts to achieve better fits on each of these parts
and finally merge the partial proxy functions. However, such an approach requires separate fitting
points for each of these parts and thus an adjusted simulation setting in the first place. As long as such
modifications do not become too time-consuming and stay transparent, they can serve as useful tools to
increase the overall goodness of fit of the final proxy function or to eventually meet the validation criteria.

3.3. Proxy Function Validation

As we cannot judge the quality of the derived proxy function only on the fitting scenarios, we also
have to perform a validation on scenarios that have not entered the calibration procedure. Only if this
works satisfactory, we can expect a good performance from the proxy function.

3.3.1. Validation Points

To conduct the validation procedure, we adopt the filtered probability space and formalization
of the available capital from the simulation setting. The idea of the validation is to check if the proxy
function provides indeed approximately the expected value of the available capital in Equation (4)
conditional on the outer scenarios. Since the fitting values rely only on few inner scenarios per fitting
scenario, they usually do not come close to Equation (4) and are therefore not suitable for measuring
the absolute goodness of fit of a proxy function. To measure the absolute goodness of fit, we derive
validation points with sufficiently many inner scenarios per validation scenario.

To specify the validation scenarios xi, i = 1, . . . , M, considerations similar to those made above for
the fitting scenarios are necessary. This means, we have to take into account the run time of the CFP
model in the given hardware architecture while ensuring to choose enough validation scenarios for a
reasonable validation. Moreover, the validation scenario budget must be harmonized with the fitting
scenario budget. Additionally, the number of inner scenarios b per validation scenario needs to be set
such that the resulting validation values approximate the expectation in Equation (4) sufficiently well.
Lastly, the rather few validation scenarios have to be allocated in a way that the absolute goodness of
fit of the proxy function is reliably measured.
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Before the Monte Carlo simulations of the CFP model can be performed, the inner scenarios
associated with the validation scenarios must be generated. Again, an ESG can take over this task.
As a result from the simulations, we obtain the validation values yi, i = 1, . . . , M, analogously to the
fitting values in Equation (7) by averaging Equation (6), where M has to be substituted for N and b for
a. In the end, we obtain the validation points

(
xi, yi) , i = 1, . . . , M.

The choice of validation scenarios is not an easy task. Since the number of validation scenarios
M is limited, it is important to decide which scenarios give more insight into the quality of the fit.
There exist different paradigms for the selection of the validation points:

• Points known to be in the Capital Region, that is scenarios producing a risk capital close to the
value-at-risk from previous risk capital calculations;

• Quasi random points from the entire fitting space;
• One-dimensional risks leading to a 1-in-200 loss in the one-dimensional distribution of this risk factor,

that is points which have only one coordinate changed and which ensure a good interpretability;
• Two-dimensional or three-dimensional stresses for risk factors with high interdependency,

for example interest rate and lapse; and
• Points with the same inner scenarios which can be used to more accurately measure a risk capital

in scenarios which do not have the ESG relevant risk factors changed.

3.3.2. Practical Implementation

The number of validation scenarios obviously depends on the computational capacities of
a company. Using more validation scenarios is always more accurate. It is important to strike
a balance between the fitting and validation scenarios as well as between the number of outer and
inner scenarios. In the industry, we have observed between M = 15 and M = 200 validation scenarios
with, respectively, between b = 1000 and b = 16,000 inner scenarios. This means that the fitting
and validation computations can be split in half or the validation may get up to 3/4 of the entire
calculation budget. Depending on the company’s complexity the choice needs to guarantee both
reliable validations while remaining feasible.

Once we have selected the validation scenarios, we produce the corresponding bM inner scenarios
by the same ESG which we have employed in the context of the fitting scenarios. After all Monte Carlo
simulations have been calculated, we compute the validation values per validation scenario by averaging.

3.3.3. Out-of-Sample Test

To assess whether a proxy function reflects the CFP model sufficiently well, we specify three
validation criteria. The first two criteria will be of quantitative nature whereas the third criterion will
be more of qualitative nature. We let a proxy function pass the out-of-sample test if it fulfills at least
two validation criteria. If a proxy function fails to meet exactly one validation criterion, in addition,
a sound explanation needs to be given. If it fails more than one criterion, the proxy function calibration
has to be refined and performed again.

The idea of our first validation criterion is to determine thresholds which the absolute deviations
between the validation values and the proxy function conditional on the validation scenarios,
δACi, i = 1, . . . , M, given by

δACi =

∣∣∣∣∣∣y
i − ÂC

(K,N) (
xi)

ai

∣∣∣∣∣∣ , i = 1, . . . , M, (12)

should not exceed. Here, ÂC
(K,N) (

xi) is given by Equation (10). For measuring the relative deviation
we use the assets metric ai. This means that each absolute deviation is divided by the market value of
assets ai in scenario i. |·| denotes the absolute value. The assets metric is a more suitable denominator
in the fraction above in the cases in which the approximated economic variable may take very low



Risks 2018, 6, 62 15 of 26

values. This can occur for life business that is deeply in the money and whose own funds can thus be
very low. Another example can be a company selling exclusively term insurances, where the technical
provisions can become small in comparison to the market value of assets.

We require that at least 90% of the validation points have deviations in Equation (12) not higher
than 0.5% and that the remaining validation points have deviations of at maximum 1%. If a proxy
function satisfies this condition, we say it satisfies the first validation criterion. Let the insurer have
an equity-to-assets ratio of about 2%. Then, the deviations in Equation (12) for the available capital
can be translated into the relative deviations as follows. If a validation point has a deviation with
respect to the assets metric of between 0% and 0.5%, it has a relative deviation of between 0% and 25%.
Accordingly, it has a relative deviation between 25% and 50% if its deviation with respect to the assets
metric falls in between 0.5% and 1%.

For our second validation criterion, we define an overall measure for the goodness of fit of the
proxy function by a weighted sum of the absolute deviations, i.e.,

δwAC =
M

∑
i=1

wiδACi, (13)

where wi = ai

∑M
j=1 aj , i = 1, . . . , M, are weights with respect to the market value of assets and δACi,

i = 1, . . . , M, are given by Equation (12). We say the second validation criterion is met if δwAC ≤ 0.5%.
Further graphical analyses serve as a verification of the results. First, to check if the fitting values

are at least roughly normally distributed, we create a histogram of the fitting values. Then, for each
risk factor, we separately plot the fitting values together with the curve of the proxy function to
see if the proxy function follows the behavior of the fitting values. Thereby, we vary the proxy
function only in the respective risk factor and set all other risk factors equal to their base values.
In the evaluation, we have to be aware of the fact that the proxy function usually also includes mixed
monomials which might have no effect if one of the monomials’ risk factors is equal to the base value.
Additionally, for each risk factor, we separately create plots with selected validation points and the
curve of the proxy function. These plots help us verify if the proxy function behaves similar to the
validation points as well. For each risk factor, we select only those validation points that are not stressed
in the components different from the currently considered risk factor. If a proxy function follows both
the fitting and validation points and shows a behavior that is consistent with our knowledge of the
CFP model, we say it fulfills our third validation criterion.

3.4. Full Distribution Forecast

After the proxy function has been successfully validated, it can finally be used to produce full loss
distribution forecasts. Based on a loss forecast, we are not only able to calculate the solvency capital
requirement as a value-at-risk but also to derive statistical values related to other risk measures such
as the expected shortfall.

3.4.1. Solvency Capital Requirement

We take the set of real-world scenarios xi, i = 1, . . . , R, that needs to be drawn from the joint
real-world distribution of the risk factors P as given. A possibility to model the joint real-world
distribution of the risk factors is the use of copulas (see, e.g., Mai and Scherer (2012)). In our context,
P is typically modeled with the aid of historical data and expert judgment.

We obtain the real-world values of the available capital by evaluating the proxy function in
Equation (10) at the real-world scenarios, i.e.,

ŷi = ÂC
(K,N)

(
xi
)
=

K−1

∑
k=0

β̂
(N)
k ek

(
xi
)

, i = 1, . . . , R. (14)
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Accordingly, we compute the real-world values of the profit in Equation (1), i.e.,

∆̂i = ŷi − ŷ0, i = 1, . . . , R, (15)

where ŷ0 denotes the estimate for the initial available capital.
We recall the definition of the solvency capital requirement from the simulation setting in

Equation (2) and replace the theoretical expressions with their empirical counterparts, i.e.,

ŜCR = V̂aRϕ

(
−∆̂
)
= inf

{
y ∈

{
−∆̂1, . . . ,−∆̂R

}
| F̂P
−∆̂ (y) ≥ ϕ

}
, (16)

where ∆̂ represents the real-world values of the profit and F̂P
−∆̂

(y) = P
(
−∆̂ ≤ y

)
is the empirical

distribution function of the loss under P. By using the identity F̂P
−∆̂

(y) = 1
R ∑R

i=1 1−∆̂i≤y for the
empirical distribution function, Equation (16) becomes

ŜCR = inf

{
y ∈

{
−∆̂1, . . . ,−∆̂R

}
|

R

∑
i=1

1−∆̂i≤y ≥ ϕR

}
. (17)

Hence, the solvency capital requirement has to be greater than or equal to dϕRe real-world losses.
Accordingly, we estimate the solvency capital requirement as the b(1− ϕ) Rc highest real-world loss.

3.4.2. Convergence

As already stated above, Proposition 1 and 2 for the convergence of the two approximations of
the available capital also imply convergence in probability and distribution. Since P can be substituted
for P′, the convergence results are valid under both physical probability measures. The following two
corollaries formalize the convergence in distribution.

Corollary 1. F̂P
ÂC

(K,N) (y) = P
(

ÂC
(K,N) ≤ y

)
→ P (AC ≤ y) = FP

AC (y) as K, N → ∞ for y ∈ R.

Corollary 2.
(

F̂P
ÂC

(K,N)

)−1

(ϕ)→
(
FP

AC
)−1

(ϕ) as K, N → ∞ for all continuity points ϕ ∈ (0, 1) of
(

FP
ÂC

)−1
.

Since Corollaries 1 and 2 hold as well for linear transformations of the available capital,
we conclude that ŜCR→ SCR as K, N → ∞. Hence, the estimate for the solvency capital requirement
in Equations (16) and (17) converges to the theoretical solvency capital requirement in Equation (2).

3.4.3. Practical Implementation

To model the joint real-world distribution of the risk factors, we can use a fully specified Gaussian
copula and for example R = 217 = 131,072 real-world scenarios. Then, we compute the corresponding
real-world values of the available capital and profit according to Equations (14) and (15), respectively,
to obtain a full distribution forecast of the loss.

The solvency capital requirement is defined as the 99.5% value-at-risk of the loss distribution
under the Solvency II directive. This is the reason why we set ϕ = 99.5% in Equations (16) and (17).
As already mentioned above, this can be interpreted as a target for the insurance company to survive
199 out of 200 business years. Eventually, we calculate an estimate for the solvency capital requirement
by evaluating Equation (17). Independent of the data, we are able to characterize this estimate under
the assumption R = 131,072 as the b(1− ϕ) Rc = 655 th highest real-world loss.

Numerical calculations and examples illustrating our full approach can be found in, e.g.,
Bettels et al. (2014).
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4. Numerical Illustration of Convergence

With the help of the following numerical examples, we demonstrate how an actual application
of our proposed LSMC-based approach might look like in practice. In this first numerical section,
we illustrate the convergence of the adaptive LSMC algorithm. In Section 5, to point out the advantages
of our method, we compare an LSMC-based and a nested stochastics solvency capital requirement
approach. We take the CFP models and real-world distributions as given and place our focus on the
proxy function calibration, validation and evaluation. Throughout this section, we stick to conveniently
scaled available capital data stemming from the CFP model of a German life insurer that have already
served as illustrations in Krah (2015).

4.1. Simulation Setting

Let the exemplary life insurer be exposed to d = 14 relevant capital market and actuarial risks
from Table 1. By numbering these risks consecutively, i.e., Xl , l = 1, . . . , d, we overwrite the notation
of Table 1 for this example and therefore mainly disguise the meaning of the risks for keeping the
anonymity of the exemplary insurer. Let it be our task to find a proxy function for the insurer’s available
capital conditional on the specified risk factors to derive its solvency capital requirement under
Solvency II as the 99.5% value-at-risk of the corresponding loss distribution. Given the complexity
of the CFP model and the insurer’s computational capacities, it is reasonable to run the CFP model
conditional on N = 25,000 fitting scenarios with each of these outer scenarios entailing a = 2 inner
scenarios. While the fitting scenarios are defined such that they follow a linear transformation of the
Sobol sequence, the components of the inner scenarios are partly generated by a suitable ESG and
partly modeled directly as input in the CFP model.

4.2. Proxy Function Calibration

For the proxy function calibration, we apply the adaptive algorithm depicted in the flowchart of
Figure 1 and set the maximum number of basis functions at Kmax = 100. As the start proxy function,
we use a constant function. In Table 2, the start proxy function structure is represented by the first row
(k = 0) containing the basis function e0(X) = ∏14

l=1 Xr0,l
l = 1 since r0,1 = ... = r0,14 = 0. Then, the initial

regression is performed and the selected model selection criterion, here AIC, evaluated. For the initial
AIC value in this example, see the AIC entry in the first row of Table 2. It is a high value indicating the
obvious fact that a constant poorly describes the possible changes of the insurer’s own funds.
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Table 2. Construction sequence of the proxy function in the adaptive algorithm with the final coefficients. Furthermore, AIC and out-of-sample mean squared errors
after each iteration.

Iteration Exponents of Risk Factors Regression Results Out-of-Sample MSE

k rk,1 rk,2 rk,3 rk,4 rk,5 rk,6 rk,7 rk,8 rk,9 rk,10 rk,11 rk,12 rk,13 rk,14 β̂
(N)
k AIC (1) (2)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8048.89 405,919.54 279,972.87 41,918.48

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 5796.16 347,121.57 22,744.22 32,479.31
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 80.08 342,819.19 9863.42 5112.25
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −28.03 337,759.88 4048.53 4413.39
4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 26.61 336,372.65 3003.24 4339.50
5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 108.73 335,245.70 2534.24 4329.35
6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 22.68 334,903.08 2334.00 4314.37
7 0 0 0 1 0 0 0 1 0 0 0 0 0 0 −614.79 334,579.21 2257.41 4308.28
8 0 0 0 2 0 0 0 0 0 0 0 0 0 0 297.50 334,299.51 1341.89 1970.71
9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 32.93 334,043.75 1376.76 1945.95
10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 71.60 333,840.00 1084.23 1501.77

11 1 0 0 0 0 0 0 1 0 0 0 0 0 0 57.32 333,769.40 1134.52 1843.88
12 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1636.91 333,523.57 638.87 748.50
13 0 1 0 0 0 0 0 1 0 0 0 0 0 0 −58.12 333,420.22 637.63 700.10
14 0 1 0 1 0 0 0 0 0 0 0 0 0 0 15.67 333,367.94 645.54 699.57
15 0 0 0 0 0 0 0 0 0 1 0 0 0 0 29.69 333,316.80 327.84 172.71
16 0 0 0 1 0 0 0 0 0 0 0 1 0 0 42.48 333,265.87 313.90 172.91
17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 13.64 333,222.65 321.78 169.47
18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6.81 333,182.38 280.15 167.30
19 1 0 0 1 0 0 0 0 0 0 0 0 0 0 −5.66 333,144.02 292.49 166.74
20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −9.91 333,118.13 285.39 167.79

21 0 0 0 2 0 0 0 1 0 0 0 0 0 0 −440.05 333,093.91 259.30 178.81
22 0 0 0 0 0 1 0 1 0 0 0 0 0 0 36.14 333,083.85 268.45 169.96
23 1 0 0 1 0 0 0 1 0 0 0 0 0 0 −35.76 333,074.41 256.88 166.85
24 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0.85 333,066.67 270.83 163.39
25 0 0 0 0 0 0 0 1 0 0 1 0 0 0 −82.22 333,059.15 264.46 163.59
26 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −2.32 333,047.07 248.44 163.48
27 1 0 0 0 0 0 0 0 0 0 0 1 0 0 −2.21 333,039.92 254.61 163.62
28 0 1 0 0 0 0 0 0 0 0 1 0 0 0 3.69 333,033.27 251.67 163.51
29 0 1 0 1 0 0 0 1 0 0 0 0 0 0 −48.47 333,026.83 259.06 163.76
30 0 1 0 0 0 0 0 2 0 0 0 0 0 0 126.06 333,020.64 255.68 162.53
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Table 2. Cont.

Iteration Exponents of Risk Factors Regression Results Out-of-Sample MSE

k rk,1 rk,2 rk,3 rk,4 rk,5 rk,6 rk,7 rk,8 rk,9 rk,10 rk,11 rk,12 rk,13 rk,14 β̂
(N)
k AIC (1) (2)

31 0 0 0 1 0 1 0 0 0 0 0 0 0 0 −20.94 333,015.48 247.72 169.26
32 2 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.30 333,010.56 282.84 264.54
33 2 0 0 1 0 0 0 0 0 0 0 0 0 0 −0.98 333,001.42 290.84 273.88
34 0 0 0 2 0 0 0 0 0 0 0 1 0 0 51.52 332,996.57 285.59 270.99
35 1 0 0 0 0 0 0 2 0 0 0 0 0 0 −93.15 332,991.83 299.74 269.59
36 0 0 0 1 0 0 0 0 0 0 0 0 0 1 −3.99 332,987.49 294.01 269.92
37 0 0 0 0 0 0 0 0 0 0 0 2 0 0 9.48 332,983.89 244.46 193.39
38 0 0 0 0 0 0 0 0 0 0 0 3 0 0 17.52 332,981.05 246.77 193.69
39 0 0 0 0 0 0 0 1 0 0 0 1 0 0 −42.29 332,978.40 252.84 193.19
40 0 0 0 3 0 0 0 0 0 0 0 0 0 0 76.70 332,975.77 239.20 186.54

41 0 0 0 4 0 0 0 0 0 0 0 0 0 0 −279.08 332,971.77 203.89 133.62
42 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2.57 332,969.67 208.28 133.57
43 0 0 0 0 0 2 0 0 0 0 0 0 0 0 −0.62 332,967.85 218.11 146.76
44 0 0 0 1 0 2 0 0 0 0 0 0 0 0 4.71 332,965.46 210.39 148.32
45 0 0 0 0 0 0 0 0 0 1 0 0 0 1 13.36 332,963.97 208.86 148.27
46 0 0 0 1 0 0 0 0 0 0 1 0 0 0 11.10 332,962.49 198.29 148.32
47 0 0 2 0 0 0 0 0 0 0 0 0 0 0 −5.85 332,961.35 226.05 193.90
48 0 0 1 0 0 0 0 0 0 0 0 0 0 1 5.69 332,960.33 222.46 193.81
49 0 0 0 0 0 0 0 1 0 1 0 0 0 0 −56.01 332,959.53 207.33 198.33
50 0 0 0 0 0 0 1 1 0 0 0 0 0 0 70.44 332,958.77 209.11 197.42

51 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1390.37 332,958.18 217.77 203.07
52 1 0 0 1 0 1 0 0 0 0 0 0 0 0 −1.06 332,957.82 219.21 203.00
53 0 0 0 2 0 1 0 0 0 0 0 0 0 0 −64.50 332,957.51 192.10 159.88
54 0 0 0 2 0 2 0 0 0 0 0 0 0 0 17.64 332,953.46 165.97 143.94
55 0 0 0 1 0 0 0 0 0 1 0 0 0 0 17.25 332,953.31 169.81 137.14
56 0 0 0 1 0 0 0 0 0 1 0 0 0 1 37.24 332,951.99 172.65 137.00
57 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2.00 332,951.87 172.90 137.59
58 0 0 0 0 0 0 0 1 0 0 0 0 1 0 −26.38 332,951.38 171.80 137.55
59 0 0 0 0 0 1 1 0 0 0 0 0 0 0 6.21 332,951.14 182.94 149.27
60 0 0 0 1 0 0 0 1 0 0 0 1 0 0 −66.58 332,951.14 182.17 148.10
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Now that the initialization has been completed, the iterative part of the algorithm relying on
the principle of marginality is carried out. As mentioned in the previous section, in the first iteration
(k = 1), the candidate basis functions are just the linear functions of all risk factors. The second row
of Table 2 indicates that the proxy function is extended by candidate e1(X) = X8 in this iteration,
meaning that risk factor X8, the credit default stress, has the highest explanatory power in terms of
AIC among the candidates. For the AIC value corresponding to the updated proxy function structure
e0(X) + e1(X), see the AIC entry in the second row. In the second iteration (k = 2), in addition to
the linear functions of the remaining risk factors, the quadratic function of the credit default stress
becomes a candidate basis function. However, as we can see in the third row of Table 2, risk factor X6,
the shock on the equity market value, is selected next as this risk factor complements the existing proxy
function best in this iteration. The algorithm continues this way until iteration k = 61 in which no
further candidate basis function lets AIC decrease anymore. The sequence in which the basis functions
are selected into the proxy function and the corresponding course of AIC are reported in Table 2.
The coefficients denoted in this table belong to the final proxy function emerging from iteration k = 60.
We can see that except for the risks X5 and X9, all risk factors contribute to the explanation of the
available capital. With K = 61 and ek(X) = ∏14

l=1 Xrk,l
l , k = 0, . . . , K − 1, the general expression of

Equation (10) for the proxy function conditional on any outer scenario X becomes in this example

ÂC
(K,N)

(X) =
K−1

∑
k=0

(
β̂
(N)
k

14

∏
l=1

Xrk,l
l

)
. (18)

4.3. Proxy Function Validation

We perform the proxy function validation based on two different sets of validation points to
highlight the impact of these choices and depart for reasons of simplification slightly from the extensive
validation procedure described in the previous section. In conjunction with the calculation budget
for the fitting computations, we let Set (1) comprise M = 51 and Set (2) comprise M = 56 validation
scenarios with each validation scenario entailing b = 1000 inner scenarios. While Set (1) contains the
stress-neutral base point, 26 properly transformed multi-dimensional stress points and 24 one-, two- or
higher dimensional points, Set (2) contains only four equidistant one-dimensional stresses for each risk
factor. Among the two sets of validation points, Set (1) can be viewed as the more sophisticated one.

The column “Out-of-Sample MSE” on the right-hand side of Table 2 contains the evolution of the
mean squared errors associated with Set (1) and Set (2) over the iterations. Typically, the mean squared
errors decrease together with AIC over the iterations. However, since the sets of validation points are
small and incur random fluctuations, they cannot fully reflect the goodness of fit of a proxy function.
Therefore, we do not expect the mean squared errors to decrease monotonously over all iterations.
Nevertheless, Table 2 shows well the trend of the diminishing impact of each additional basis function
in explaining the dependencies of the available capital.

Furthermore, by looking at descriptive statistics on the relative deviations between the validation
values and proxy function predictions (e.g., quantiles, mean, and median), the proxy function admits
a satisfying performance on the validation sets (to keep the anonymity of the insurer, we are not
allowed to report exact numbers here).

Whether the proxy function is successfully validated by these simplified out-of-sample tests and
can thus be passed on to the last step of the LSMC framework, the full distribution forecast, or whether
the calibration needs to be repeated with some refinements depends on the exact validation criteria
which we have not further specified in this example.

4.4. Full Distribution Forecast

As the next step, we consider the forecast of the full distribution of the losses. Taking up the
approach of Section 3.4, we have generated R = 217 = 131,072 real-world scenarios from the joint
distribution of the risk factors. The evaluation at each of these scenarios is simple, as it amounts to
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the evaluation of a polynomial. After ordering the own funds losses by size, we are able to calculate
empirically the solvency capital requirement as the corresponding 99.5% quantile.

For the setting of our insurance company, we have furthermore performed a comparison between
the solvency capital requirement determined with the LSMC approach and the one using an explicit
valuation with the CFP model. In the next section, we demonstrate that for a similar company the
scenarios leading to the 99.5% quantile in the nested stochastics approach and in the LSMC approach
are similar. This means that, based on the LSMC algorithm, we can define a set of, e.g., 50, real-world
scenarios leading to losses close to the solvency capital requirement and feed them into the CFP
model. This valuation is similar to the out-of-sample validation since 1000 inner simulations are used.
Finally, comparing the 50 LSMC-based losses with the 50 nested stochastics losses unveils potential
differences in the solvency capital requirement estimation for the two approaches.

The difference between the LSMC-based and this explicit CFP model solvency capital requirement
estimation turns out to be only about 3%, which corresponds to a 0.5% difference in own funds.

5. Numerical Comparison with Nested Stochastics

In the Introduction, we have described the requirements European life insurance companies face:
To fully comply with the regulatory requirements, they need to calculate explicitly the full distribution
of losses over a one-year time period. In Section 2.3, we have explained how this requirement leads
to the nested valuation problem. The corresponding calculation is often called nested stochastics.
We consider the nested stochastics approach as the natural benchmark for the LSMC-based method.
Therefore, in this section, we compare those two approaches in terms of computation time and accuracy.

5.1. Computation Time

Given the required task, the number of real-world scenarios, the duration of one simulation in the
CFP model and the computational capacities of the insurer, we can easily determine good estimates for
the overall computation times of the two opposing approaches. Let us calculate the computation times
for the German life insurer from the previous numerical illustration in Section 4. For the validation,
let us merge the two validation Sets (1) and (2) to one validation set with M = 51 + 56 = 107 scenarios.
Then, it takes τMC = 55 s to run one simulation of the CFP model and the simulations can be allocated
to up to νCPU = 476 CPUs.

For the nested stochastics approach, we assign the same number of inner simulations to
each real-world scenario as we did in the LSMC-based approach to each validation scenario.
The computation time of the latter approach is mainly driven by two factors: the time needed to
carry out the Monte Carlo simulations of the CFP model and the time needed to calibrate the proxy
function. The calibration takes τcalib. = 45 min in our example. In contrast, the validation involves
only the fast computation of selected figures in the out-of-sample test and the full distribution forecast
requires only the fast evaluation of the proxy function at the real-world scenarios as well as the
subsequent ordering of the available capital estimates. Together, these calculations take only a few
seconds. In the nested stochastics approach, the computation time is solely driven by one main factor:
the time for the Monte Carlo simulations. The ordering of the directly resulting available capital estimates
for the value-at-risk computation is negligible here as well. The computation times are, respectively,

τLSMC = (aN + bM) τMC/νCPU + τcalib. < 6 h, (19)

τnest.stoch. = bRτMC/νCPU ≈ 25 weeks, (20)

where N = 25,000, a = 2, M = 107, b = 1000 and R = 131,072. These are pure run times for the
projections, on top of this 30–40% additional run time is needed for splitting the runs, saving and
merging the results per scenarios as well as reading out the figures. Hence, the LSMC-based approach
is even feasible for the exemplary German life insurer if the calibration and validation procedures
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have to be repeated several times until the specified validation criteria are finally met, whereas the full
nested stochastics approach is not feasible at all.

5.2. Accuracy

We have seen in Section 4.4 that the LSMC method showed great accuracy in predicting the
solvency capital requirement when compared to the explicit CFP model. We challenge the LSMC
method to the extreme below.

For the purpose of assessing the accuracy of the LSMC method for this task, we have performed
a nested stochastics-like calculation. To have a higher likelihood for seeing differences between the
solvency capital requirement calculated with nested stochastics as opposed to LSMC, we have created
a CFP model for a life insurance company with very strong guarantees in the portfolio. To achieve that
we have magnified the traditional annuity business and ensured this fictitious company suffers huge
losses in low interest rate environments. We have thus put the LSMC method under a hard stress.

We have utilized legacy hardware consisting of 476 CPUs. In total, seven weeks were needed for
setting up the CFP models, performing the calculations, post-processing the results and validating the
results. Even with this computational effort, we could only calculate the highest 5% losses for this life
insurance company.

In the next step, we have derived the LSMC polynomials. The entire procedure along the lines
described in Section 3 has taken three days. Afterwards, we have evaluated the polynomials at the
real-world scenarios in order to derive the full distribution forecast. To keep the run time under control,
we have chosen the scenarios which cause losses beyond the 95% quantile. Our main intention was to
be reasonably sure that the 99.5% quantile is included in the valuation. The simulation budget was set
to around 6 million simulations. Instead of using 6554 ≈ 5%× 217 real-world scenarios, we have opted
for a thinner evaluation with only 215 real-world scenarios. We employed the additional calculation
capacity to increase the accuracy of the CFP model evaluation of a company with such high guarantees
using 4000 inner simulations instead of 1000 which would typically be used in the out-of-sample
validation. We have hence in total evaluated 1638 ≈ 5% × 32,768 scenarios with 4000 simulations
totalling 6,552,000 simulations of the CFP model. The base own funds of this imaginary company were
additionally calculated with the CFP model.

After that, we have compared the 1638 losses calculated directly with the CFP model (nested
stochastics) with the losses implied by the LSMC proxy function. After removing 1 outlier which
represented a real-world scenario with an extreme risk factor realization very far away from the fitting
space, we have obtained a surprisingly monotonous picture in the following sense: Plotting the own
funds from nested stochastics in the order of the own funds from LSMC, we see that the resulting
graph resembles well a monotonously increasing function. This means that the order of losses—which
scenarios lead to which quantile—does not get significantly distorted by the LSMC method. Figure 2
shows this plot. We have further removed 13 additional data points and produced another plot. All of
these data points were extreme risk factor combinations which were very far away from the original
fitting space, which means that the regression did not have any chance to capture the behavior of the
CFP model for these points. Furthermore, polynomials do a poor job at extrapolation. The result is
shown in Figure 3.

Thus, we can conclude that the LSMC methodology captures very well the information on which
real-world scenarios lie in the area of the 1 in 200 years loss.

The final question is whether the size of the own funds loss is estimated correctly with the LSMC
method. For that, we have estimated the solvency capital requirement using both methods LSMC and
nested stochastics. From the base case, we have subtracted the average of own funds in 129 scenarios
around the 0.5% quantile, that is the 1 in 200 loss scenario itself and 64 neighboring scenarios in
each direction. For the company with extreme guarantees the solvency capital requirement was
underestimated by approximately 12% with LSMC. The main reason seems to be the inaccuracy in the
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base case, since the regression does not put a particular weight on the base point. The average of own
funds in the capital region was similar.

This indicates that, although the LSMC method is quick, sound and reliable, further improvements
in terms of accuracy are in order for extreme settings. In the following section, we cast some light on
possible approaches in the future research endeavors.
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Figure 2. Nested stochastics own funds in the order of LSMC own funds w/o 1 outlier.
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Figure 3. Nested stochastics own funds in the order of LSMC own funds w/o 14 outliers.

6. Conclusions, Further Aspects, and Potential Improvements

In the foregoing sections, we have in detail derived the theoretical foundations of the LSMC
approach for proxy modeling in the life insurance business. We have detailed all the necessary steps to
a reliable implementation of the LSMC method. They mainly consist of a detailed description of the
simulation setting and the required task, a concept for a calibration procedure for the proxy function,
a validation procedure for the obtained proxy function, and the actual application of the LSMC model
to forecast the full loss distribution.

In the rest of this section, we present some areas of potential practical use for the industry as well
as current research topics in the area of LSMC modeling for life insurance companies.
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6.1. Simulation Setting

An interesting deviation from the framework we have introduced above stems from the idea
that the fitting space can be partitioned into several d-dimensional hyperspaces. This follows the idea
that, if a polynomial cannot globally capture all the features of the liabilities due to some kinks or
non-smooth areas, then two or more polynomials can be accurate in their domains. The main limit of
this approach comes from the uncertainty about the position of the mentioned area.

A completely different approach, which has still not been sufficiently tested, consists of using a
low discrepancy sequence only for the sample generators (for example, from [0, 1]), but evaluating
the CFP model using the joint real-world distribution of the risk factors. The disadvantage of this
method is obviously that rare events, that is events from areas with less scenarios, get less weight in
the regression. Since we are interested in an extreme quantile, the result may be too inaccurate for the
calculation of the solvency capital requirement.

6.2. Proxy Function Calibration

The most intensive research is ongoing in the area of proxy modeling. In the standard approach
presented above, monomial basis functions are used. In the last few years, various orthogonal
polynomial basis functions have been examined. Whilst the stability of the regression can be improved,
there was not a very significant difference in the goodness of fit compared to the non-orthogonal
polynomial basis functions.

To model non-smooth behaviors or other significant patterns of the underlying CFP model, the set
of possible basis functions could also be extended by other function types such as rational, algebraic,
transcendental, composite or piecewise functions, where transcendental functions include exponential,
logarithmic, power, periodic and hyperbolic functions. The CFP model might have characteristics
which other function types than polynomials capture better. Since the principle of marginality is not
compatible with every other function type, an adjustment or a new principle might be required.

Furthermore, parametric distribution families other than the normal distribution could be
assumed for the calculations of AIC or other model selection criteria than AIC could be employed.
Examples are then non-parametric cross-validation, the Bayesian information criterion (BIC), Mallows’s
Cp or the Takeuchi information criterion (TIC). Mallows’s Cp is named after Mallows (1973) and
has been shown by Boisbunon et al. (2014) to be equivalent to AIC under the normal distribution
assumption. TIC has been introduced by Takeuchi (1976) as a generalization of AIC. In fact, AIC arises
from TIC when the true distribution of the phenomenon is contained in the assumed parametric
distribution family.

Besides the ordinary least-squares regression, other regression methods such as generalized
least-squares regression, the ridge regression by Hoerl and Kennard (1970), robust regression, the least
absolute shrinkage and selection operator (LASSO) by Tibshirani (1996) or the least angle regression
(LARS) by Efron et al. (2004) can be applied. For possible approaches within the generalized least-squares,
ridge and robust regression framework in life insurance proxy modeling, see Hartmann (2015),
Krah (2015) and Nikolic et al. (2017), respectively. The most difficult part of these approaches is
to select the additional degrees of freedom properly. Commenting on the approaches in detail goes
beyond the scope of the paper.

Further possible alternatives to the entire base algorithm are the multivariate adaptive
regression splines (MARS) by Friedman (1991), artificial neural networks (ANN) firstly mentioned by
McCulloch and Pitts (1943) or support vector machines (SVM) invented by Vapnik and Chervonenkis (1963)
and extended by Boser et al. (1992). Currently, there are two research streams which examine how well
artificial neural networks can be used for the regression. In Kazimov (2018), the radial basis functions were
analyzed. The second stream of research follows the approach from Hejazi and Jackson (2016). The big
challenge in these approaches arises from the fact that the fitting points are not exact and therefore any
learning techniques struggle to choose optimal function parameters. It is for instance a non-trivial task to
determine the centers of radial basis functions which can well approximate the real loss function.
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Since these alternatives only concern the calibration of the proxy function, the remaining steps to
determine the solvency capital requirement, described in the other sections, are valid for them as well.

6.3. Proxy Function Validation

To assess the goodness of fit of the proxy functions, typically a set of out-of-sample valuations are
used as described in Section 3.3. The fitting points themselves can be incorporated into the validation
of the proxies and potentially interesting insights about the behavior of the CFP model can be obtained
from them.

Another stream of research considers the main application of the proxy functions: They are
primarily used to calculate the 99.5% quantile of the loss distribution, see Equation (2). Hence,
by choosing the scenarios close to the presumed capital region, for instance the area in the fitting
space close to the 99.5% quantile of the previous quarter’s solvency capital requirement calculation,
the proxy function can be validated in the relevant areas. The drawback is of course that this approach
can propagate the error by perpetually putting emphasis on a wrong hyperspace.
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