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Abstract: In this paper we analyze insurance demand when the utility function depends both upon
final wealth and the level of losses or gains relative to a reference point. Besides some comparative
statics results, we discuss the links with first-order risk aversion, with the Omega measure,
and with a tendency to over-insure modest risks that has been been extensively documented in
real insurance markets.

Keywords: first-order risk aversion; stochastic dominance; insurance; expected utility

1. Introduction

In his early and deep contributions to the insurance economics literature, Borch (1960, 1962) made
the assumption that the decision-maker’s utility function depends only upon his/her final wealth.
This assumption was adopted for decades in the analysis of insurance choice, and a recent survey of
this literature by Schlesinger (2013) confirms this observation.

Borch’s assumption has been considered and developed in a number of papers, also in conjunction
with Yaari (1987) dual theory of choice and its implications for insurance demand (see, for instance,
Denneberg 1990; Doherty and Eeckhoudt 1995; Wang and Young 1998).

An exception to Borch’s assumptions resulted from the distinction made by Segal and Spivak (1990)
between second-order and first-order risk aversion (respectively, SORA and FORA). While under
SORA (as for Borch) the utility function of final wealth is always differentiable, it exhibits (at least)
one point of non-differentiability under FORA, and this assumption has important consequences for
the insured’s optimal behavior. For instance, under FORA, Mossin’s (1968) famous claim about the
non-optimality of full insurance under a positive premium loading may no longer hold.

More recently, Guo et al. (2016) have proposed a model of choice in which the decision-maker’s
risk-averse utility function depends upon two arguments: his/her final wealth and the level of losses
or gains relative to a reference level.1 Guo et al. (2016) consider only the implications of their model
for the stochastic dominance literature and do not discuss the implications for insurance demand.

It is precisely the purpose of the present paper to analyze the implications of Guo et al.’s (2016)
model for the analysis of insurance decisions. It is worth observing that Guo’s model provides new

1 As pointed out by a referee, Guo’s model contains indeed two deviations from Borch’s assumptions: one is the presence
of gain/loss utility, the other one is non-differentiability at the reference point. In an earlier study, Eeckhoudt et al. (2016)
have considered a gain/loss argument of utility where differentiability holds everywhere. Other authors, contrarily to
Guo et al. (2016), have assumed that at least one component of the utility function exhibits risk loving (see, e.g., Bernard and
Ghossoub 2010; Köbberling and Wakker 2005, and the literature therein).
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perspectives about optimal behavior with respect to insurance choices. Additionally, since Guo’s
model presents some similarities (but also differences) with the FORA case developed by Segal and
Spivak (1990), we also extend a result derived by Segal and Spivak (1990) for binary risks to any
distribution of losses.

In the context of proportional insurance, this extension creates a link between features of the
insurance contract and the Omega performance measure, a concept often used in the quantitative
finance literature (see, e.g., Keating and Shadwick 2002). Based on the Omega measure, we obtain
a necessary and sufficient condition for the optimality of full coverage and illustrate its similarities
with some recent works on stochastic orderings (Müller et al. 2016) and optimal portfolio choices
(Bernard and Ghossoub 2010).

A necessary and sufficient condition for the optimality of full coverage is also derived in the
context of deductible insurance, in which the extension of Segal and Spivak’s result to a general loss
distribution is shown to be possible under Guo’s model.

Based on a comparative analysis of insurance decisions under FORA and SORA, we prove that
FORA always stimulates the demand for insurance coverage relative to SORA, leading to either a
higher co-insurance rate or a lower level of deductible. These findings can help explain some empirical
“anomalies” in risky choices that have been documented for some agents in real insurance markets,
namely that people tend to over-insure against modest risks (Schmidt 2016) and that many customers
purchase low deductibles despite costs exceeding expected losses (Sydnor 2010).

Our analysis differs from Schmidt (2016) substantially. Whereas Schmidt (2016) uses a
single-argument value function specified as a power function of gains and losses, our results are
derived for a two-argument utility model and for a general specification of the gain/loss function
(not necessarily power-based). Different than Schmidt (2016), we work with general loss distributions
(rather than with binary risks) and we allow a positively loaded insurance premium. Our approach is
therefore instrumental to analyze the impact of FORA on the decision to take up full coverage
when insurance contracts are priced above their actuarially fair value, as usually happens in
real-world circumstances.

In Guo’s model, preferences are consistent with a set of stochastic dominance rules for ordering
risks in the presence of an exogenous target. Based on these rules, we prove an extension of Arrow’s
theorem of the deductible (Arrow 1974) showing that, under FORA, risk-averse decision-makers
maintain a preference for concentrating insurance coverage in the states with the largest losses.
Hence, a straight deductible policy is proved to be the optimal choice relative to other forms of
insurance contracts.

Guo et al. (2016) were not the first to propose the reference-dependent utility model. Its origins
date back to Köszegi and Rabin (2006, 2007), whose work stimulated an impressive stream of theoretical
research aimed at investigating how FORA is embedded in alternative models of non-expected utility
(see Masatlioglu and Raymond (2016), for a complete taxonomy). Our framework is, on the one hand,
more specific than that of Masatlioglu and Raymond and permits the derivation of some relevant
results under milder conditions. On the other hand, our setting is a bit different from that of the
aforementioned authors since we consider an exogenous reference point instead of an endogenous one.

Other important precursors of Guo et al. (2016) are the papers of Cox and Sadiraj (2006,
2008), Schmidt et al. (2008), and Sugden (2003), who all pointed out an “income-and-wealth”
characterization of utility. In particular, a promising direction for future research is the
“Third-generation prospect theory” introduced by Schmidt et al. (2008) combining reference
dependence, decision weights, and an uncertain reference point. Based on these considerations,
we believe that it may be useful to explore the implications of allowing a two-argument utility function
for insurance demand, and we show here that the model of Guo et al. (2016) provides a tractable
framework for this analysis.

Our paper is organized as follows. In Section 2, we describe the model and its specificities for
the measurement of local risk aversion. Proportional insurance is covered in Section 3, while in
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Section 4 we turn to deductible insurance. Alternative forms of insurance contracts are compared in
Section 5. Section 6 includes a discussion of our findings in connection with some recent literature and
a few conclusions.

2. Model and Notation

A decision-maker (DM) with initial wealth w0 is exposed to a random loss L defined on [0, l] where
l ≤ w0 is the potential maximum loss. We denote by FL(l) the cumulative distribution function of L
and by µL its expected value. Initial wealth is assumed fixed and known to the DM.2

The DM may purchase an insurance contract that compensates the occurrence of a loss by an
indemnity I(L), with 0 ≤ I(L) ≤ l. The premium charged for the contract is assumed proportional to
the expected indemnity, π = (1 + k)E[I(L)], where k > 0 is the loading factor. The final wealth of an
insured agent is thus given by W = w0 − L + I(L)− π.

Under FORA, the DM’s utility function is concave with (at least) one point of non-differentiability.
Such a situation may arise because of utility loss aversion3 as recently argued by Guo et al. (2016).
Their model combines a classical outcome-based utility function, which reflects intrinsic taste for
end-period wealth, with a Kahneman–Tversky value function, which describes the sensation of gain
or loss induced by deviations from a reference wealth level. Formally, the DM’s reference-dependent
utility is specified by

v(w) = u(w) +<η,λ[u(w)− u(r)] (1)

where r is a fixed (exogenous) reference point, u is a concave utility function of wealth, and <η,λ is a
piecewise linear value function:

<η,λ(x) =

{
ηx for x ≥ 0

ληx for x < 0.
(2)

Here, η is a positive parameter that represents the relative weight of gain–loss utility, while λ > 1 is
the magnitude of loss aversion. In the limit case of η → ∞, the reference-dependent utility expressed
by Equation (1) is only composed of a Kahneman–Tversky value function (see Guo et al. (2016), for a
formal proof). For computational purposes, the utility function expressed by Equation (1) may be
rewritten as follows:

v(w) =

{
v+(w) = (1 + η)u(w)− ηu(r) for w ≥ r

v−(w) = (1 + λη)u(w)− ληu(r) for w < r.
(3)

For reference-dependent utility models, the choice of the target or reference wealth r plays a
central role. In a paper dealing with portfolio choice under cumulative prospect theory, Bernard and
Ghossoub (2010) argue that the target corresponds to “the amount the individual would have received
at the end of the period had he invested all of his initial wealth in the risk-free asset.” In a sense in the
portfolio problem, the target corresponds to the choice of a zero risk situation. The equivalent target in
an insurance problem is a situation, where the DM is fully insured, so one interesting way to define
the reference wealth r is given by

r = w0 − (1 + k)µL. (4)

2 This assumption is further discussed in the last section, in which we also outline some papers proposing
possible generalizations.

3 As pointed out by a referee, the concept of utility loss aversion is different from the probabilistic loss aversion that comes
in cumulative prospect theory from any differences in decision weights between gains and losses (see Schmidt and Zank 2008).
In the present work, the term loss aversion is used in the sense of utility loss aversion.
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This reference point was also considered in an insurance setting by Schmidt (2016), who refers to
Equation (4) as the “safe alternative”.

Indeed, the definition of the reference point is critical and may be a subjective choice. Alternative
approaches were suggested, for instance, by Köszegi and Rabin (2006, 2007) (who considered as a
reference point for practical purposes the expected value of a lottery), by Gul (1991) (who used the
certainty equivalent), and by Schmidt et al. (2008) (who argued in favor of an uncertain reference point).
A variety of possible characterizations for the reference point were empirically tested by
Baillon et al. (2016), who found that approximately 60% of subjects involved in an experimental
study chose a fixed reference point consisting of either the status quo (given by the participation fee
paid to subjects enrolled in the study), or a security level (given by the maximum of the minimal
outcome of the prospects in a choice). As is common practice in empirical studies, the experiment of
Baillon et al. (2016) involved choices among speculative gambles, i.e., lotteries in which the risk could
result in either a loss or a gain to the agent.

As pointed out by Sydnor (2010), insurance decisions are different from speculative gambles
because their consequences are determined entirely in the loss domain. It is therefore questionable
whether the status quo (corresponding to initial wealth without taking up insurance) could be an
appropriate reference point for a two-argument utility model. Conversely, a safe alternative is
available if subjects take up full insurance (Schmidt 2016), and some empirical evidence reported in
Baillon et al. (2016) is also consistent with a security-based rule according to which subjects adopt the
maximum outcome they can reach for sure as the reference point (see Baillon et al. (2016), footnote 4
and online appendix).

In the following sections, we analyze optimal insurance demand using Equation (4) as the
reference point. A comparative statics analysis is included in Section 3 to illustrate the impact of
changes in r.

First-Order Risk Aversion, Loss Aversion, and Local Risk Attitude

The reference-dependent utility v specified in Equation (1) is always concave4 owing to the
concavity of u and the piecewise linearity of the value function <η,λ. However, in contrast with recent
literature on downside loss aversion within the EU framework (see, e.g., Eeckhoudt et al. (2016);
Jarrow and Zhao (2006); references therein), neither loss aversion nor the gain–loss component
introduced via Equation (2) affect the degree of local risk aversion of u away from the reference
point. It is straightforward to verify that, for all w 6= r, the Arrow–Pratt coefficient of absolute risk
aversion (ARA) for v is given by

ARAv (w) = −v′′ (w)

v′ (w)
= −u′′ (w)

u′ (w)
= ARAu (w) .

We now examine local risk attitudes at the reference point considering a real number t and a
zero-mean risk ε with cumulative distribution function Gε valued in (−∞,+∞). Denote by πv(r, t)
the risk premium that a DM with utility function expressed by Equation (3) associates to the outcome
r + tε. This risk premium is defined by

v[r− πv(r, t)] = E[v(r + tε)] = (1− p)E[v(r + tε)|ε ≤ 0] + pE[v(r + tε)|ε > 0]

where p = P(ε > 0) = 1− Gε(0).

4 Notice the difference with non-EU models of loss aversion where the utility function has convex portions.
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In accordance with Davies and Satchell (2007), we examine the characteristics of πv for sufficiently
small risks by taking a first-order Taylor approximation around the reference point on the left-hand
side (LHS) of the above equation:

LHS ≈ v(r)− πv(r, t)v′−(r) ≈ u(r)− πv(r, t)(1 + λη)u′(r)

and a second-order approximation around r on the right-hand side (RHS):

RHS ≈ (1− p)E
[

v−(r) + tεv′−(r) +
t2ε2

2
v′′−(r)

∣∣∣ε ≤ 0
]
+ pE

[
v+(r) + tεv′+(r) +

t2ε2

2
v′′+(r)

∣∣∣ε > 0
]

.

For notational simplicity we denote the conditional mean and variance of ε, given ε ≤ 0, as µ−ε
and σ2,−

ε , and, given ε > 0, as µ+
ε and σ2,+

ε , respectively. Based on Equation (3), the approximation on
the RHS above can be rewritten as

RHS ≈(1− p)
[

v−(r) + t(1 + λη)u′(r)µ−ε +
t2

2
(1 + λη)u′′(r)σ2,−

ε

]
+ p

[
v+(r) + t(1 + η)u′(r)µ+

ε +
t2

2
(1 + η)u′′(r)σ2,+

ε

]
≈u(r)− tu′(r)η(λ− 1)pµ+

ε +
t2

2
u′′(r)

[
(1 + λη)(1− p)σ2,−

ε + (1 + η)pσ2,+
ε

]
where (1− p)µ−ε = −pµ+

ε because ε is a zero-mean risk, and v−(r) = v+(r) = u(r).
From LHS ≈ RHS, we finally obtain

πv(r, t) = t
η(λ− 1)
1 + λη

pµ+
ε︸ ︷︷ ︸

πv,1(r,t)

+
t2

2
ARAu(r)

[
(1− p)σ2,−

ε +
1 + η

1 + λη
pσ2,+

ε

]
︸ ︷︷ ︸

πv,2(r,t)

. (5)

Based on Equation (5), we may decompose the total risk premium πv(r, t) into the sum of two
terms. The first term πv,1(r, t) represents the first-order effect of loss aversion on risk attitude. The sign
of this effect is always positive as long as η > 0 and λ > 1. Differentiating both sides of Equation (5)
with respect to t, we obtain, at t = 0+,

∂πv(r, t)
∂t

∣∣∣∣
t=0+

=
η(λ− 1)
1 + λη

pµ+
ε ,

which is a special case of Segal and Spivak’s (1990) result5 at points where the utility function is not
differentiable. This shows that, in the reference-dependent utility model of Guo et al. (2016), the risk
premium πv(r, t) for small risks is proportional to t rather than t2, i.e., loss aversion induces FORA at r.

The second term πv,2(r, t) shows the effect of curvature of the utility function v in Guo’s model
in Equation (3) and is analogous to the classical Arrow–Pratt risk premium associated to the basic
utility u:

πu(r, t) =
t2

2
ARAu(r)σ2

ε (6)

where σ2
ε = (1 − p)σ2,−

ε + pσ2,+
ε is the total variance of ε. Comparing Equation (6) with πv,2, it

appears that

πv,2(r, t) = πu(r, t)− t2

2
ARAu(r)

η(λ− 1)
1 + λη

pσ2,+
ε ,

5 see (Segal and Spivak (1990), p. 118).
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so the presence of loss aversion lowers the effect of utility curvature by a factor that depends on the
upper variance σ2,+

ε of the zero-mean risk. This reflects the change in (second-order) risk perception
across the reference point induced by loss aversion.

Moreover, by Equations (5) and (6),

πv(r, t)− πu(r, t) = p
η(λ− 1)
1 + λη

[
tµ+

ε −
t2

2
ARAu(r)σ2,+

ε

]
, (7)

and, consequently,

πv(r, t) ≥ πu(r, t) ⇔ 0 < t <
2µ+

ε

σ2,+
ε ARAu(r)

. (8)

Since the focus of our analysis is on small risks, i.e., around t = 0, Equation (8) implies that loss
aversion induces higher risk aversion at r.

As Segal and Spivak (1990) have pointed out, for small risks, a DM is almost risk-neutral under
SORA (i.e., for λ = 1 in Guo’s model) because a differentiable utility function is almost linear in
a neighborhood of r. As the Arrow–Pratt risk premium expressed by Equation (6) under SORA is
proportional to t2, the DM evaluates small risks essentially by their expected value and is always
willing to take up very small gambles that are in his/her favor.

Conversely, a DM may reject a small gamble under FORA if the expected yield is positive
but sufficiently small, which is a consequence of his/her risk attitude being of order 1. By similar
arguments, Segal and Spivak (1990) have argued (and have proved for binary risks) that people may
buy full insurance under FORA even though they have to pay some marginal loading. This behavior
will be studied in detail in Sections 3 and 4, where we will extend Segal’s and Spivak’s result to a
general loss distribution using Guo’s model and distinguishing the case of proportional insurance
from that of deductible insurance.

It is interesting to observe that the first-order term of the total risk premium expressed by
Equation (5) is increasing in each of the two “behavioral” parameters λ, η. As long as η > 0 and λ > 1,
differentiating πv,1(r, t) with respect to λ (respectively, η) gives

∂πv,1(r, t)
∂λ

= t
η(1 + η)

(1 + λη)2 pµ+
ε > 0

∂πv,1(r, t)
∂η

= t
λ− 1

(1 + λη)2 pµ+
ε > 0.

Evaluating the overall effect of each parameter on Equation (5), we obtain

∂πv(r, t)
∂λ

=
∂πv,1(r, t)

∂λ
+

∂πv,2(r, t)
∂λ

= t
η(1 + η)

(1 + λη)2 p
[

µ+
ε −

t
2

ARAu(r)σ2,+
ε

]
∂πv(r, t)

∂η
=

∂πv,1(r, t)
∂η

+
∂πv,2(r, t)

∂η
= t

λ− 1
(1 + λη)2 p

[
µ+

ε −
t
2

ARAu(r)σ2,+
ε

]
,

which are both positive under the condition expressed by Equation (8) discussed above. It thus appears
that higher values of λ, η are associated to a higher risk premium that a FORA agent is willing to
pay to avoid a sufficiently small fair gamble when w = r. The intuition underlying these findings
is that the first-order effect of an increase in λ induces a drop in v−(w) that is not compensated by
v+(w). The second-order effect of λ is more complex; however, as long as we are sufficiently close to
the reference point (i.e., under the condition expressed by Equation (8)), it is the first-order effect that
prevails. A similar intuition can also be recovered for the impact of η.
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3. Proportional Insurance

We here suppose that insurance is available in the form of proportional coverage (or coinsurance).
We characterize the optimal insurance-purchasing decision of a DM with a reference-dependent
utility, expressed by (1), and a reference wealth r corresponding to the no-risk situation outlined in
Equation (4). The impact of a modification in preferences or in r will be studied in Section 3.

A DM who insures a fraction α of his/her initial wealth6, with 0 ≤ α ≤ 1, is charged a
proportional premium:

π = (1 + k)αµL, (9)

so his/her final wealth is given by

W(L, α) = w0 − L + αL− π(L) = w0 − (1− α)L− (1 + k)αµL. (10)

Based on Equation (1), the DM chooses the optimal proportion of insurance coverage α∗r ∈ [0, 1]
by maximizing the expected utility of the final wealth specified in Equation (10):

V(α) = E[v(W(L, α))] = E
{

u(W) +<η,λ[u(W)− u(r)]
}

=
∫ lr

0
{u (w(l, α)) + η[u (w(l, α))− u(r)]} dFL(l) (11)

+
∫ l

lr
{u (w(l, α)) + λη[u (w(l, α))− u(r)]} dFL(l)

where lr = (1 + k)µL is the loss incurred at the reference wealth r (henceforth, the target loss), such that
l ≤ lr iff w ≥ r.

Notice that, under FORA, the utility function v is not differentiable at w = r, nor therefore
at L = lr. Nevertheless, assuming that L is continuous at lr (together with Lebesgue’s dominated
convergence theorem) guarantees that

V′(α) = (1 + η)
∫ lr

0
u′ (w(l, α)) wαdFL(l) + (1 + λη)

∫ l

lr
u′ (w(l, α)) wαdFL(l) (12)

where wα = ∂w
∂α = l − (1 + k)µL. The previous equation can be also written as

V′(α) = (1 + η)
∫ l

0
u′ (w(l, α)) wαdFL(l) + (λ− 1)η

∫ l

lr
u′ (w(l, α)) wαdFL(l)

= (1 + η)U′(α) + (λ− 1)η
∫ l

lr
u′ (w(l, α)) wαdFL(l) (13)

where

U(α) = E[u(W(L, α))] =
∫ l

0
u (w(l, α)) dFL(l) (14)

is the classical expected utility of terminal wealth and U′(α) =
∫ l

0 u′ (w(l, α)) wαdFL(l). It thus
appears that V′(α) can be decomposed into a first term based on EU maximization with respect to the
initial utility function u and a second term taking into account gain–loss utility à la Guo et al. (2016)
(hence considering both λ and η).

6 Since it is often the case that over insurance is not allowed, we maintain throughout the paper the assumption that the
coinsurance rate α cannot exceed 1. As pointed out by a referee, this is also known as the principle of indemnity in the
insurance economics literature (see Peter et al. 2017).
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Proposition 1. Consider an EU-maximizing agent whose reference-dependent utility, expressed by Equation (1),
exhibits FORA at the target wealth r specified in Equation (4). Define the lower and upper partial expectations
of L with respect to the target loss lr = (1 + k)µL as, respectively,

E
[
(lr − L)+

]
=
∫ lr

0
(lr − l)dFL(l), (15)

E
[
(L− lr)+

]
=
∫ l

lr
(l − lr)dFL(l), (16)

where FL is assumed continuous at lr.
If

1 + λη

1 + η
>

E [(lr − L)+]
E [(L− lr)+]

, (17)

the agent will purchase full insurance coverage, i.e., α∗r = 1, even when the insurance premium has a positive
loading k > 0.

If the opposite inequality holds in Equation (17), then the agent will purchase partial insurance coverage,
i.e., 0 ≤ α∗r < 1.

Finally, if equality holds in the condition expressed by Equation (17) and V is a strictly concave function,
then the agent will also purchase full insurance coverage, i.e., α∗r = 1.

Proof. Based on Equation (11), we notice that the expected utility V(α) is a concave function of the
decision variable α. The optimal level of insurance coverage α∗r is consequently found by studying the
sign of V′(α) in Equation (12). Since w(l, 1) = w0 − (1 + k)µL = r, evaluating V′(α) at α = 1 gives

V′(1) = u′(r)

[
(1 + η)

∫ lr

0
(l − lr)dFL(l) + (1 + λη)

∫ l

lt
(l − lr)dFL(l)

]
= u′(r)

{
−(1 + η)E

[
(lr − L)+

]
+ (1 + λη)E

[
(L− lr)+

]}
,

which is strictly positive under the condition expressed by Equation (17). It follows that α∗r = 1 is a
constrained optimum (when over insurance is prohibited). The last two statements follow immediately
from the sign of V′(1) and from the concavity of V.

Under the general definition of loss aversion as the behavioral phenomenon that losses matter
more than gains, the ratio 1+λη

1+η , which determines the occurrence of the condition expressed by
Equation (17), may be interpreted as an index of loss aversion in the style of Köbberling and
Wakker (2005). It is the magnitude of this index that can induce a rational, EU-maximizing agent to
purchase full insurance coverage at a loaded price in violation of Mossin’s theorem but in accordance
with common observation for some agents (see, e.g., Borch 1990). Our result shows that the amount of
loss aversion required to trigger the realization of Equation (17) is determined by the partial moment

ratio
E[(lr−L)+]
E[(L−lr)+ ]

, which compares the DM’s upside potential (the expectation of loss deviations below
the threshold lr, in the numerator) to his/her downside risk exposure (the expectation of loss deviations
in excess of lr, in the denominator). This moment ratio is the analogue of a portfolio performance index
that is well known in the quantitative finance literature as the Omega measure (see, e.g., Bertrand and
Prigent (2011) and the references therein). We will accordingly denote the RHS of Equation (17) by

Ω(lr) =
E [(lr − L)+]
E [(L− lr)+]

. (18)

In the context of investment decisions, a (subjectively modified) version of the Omega measure has
been shown to determine the optimal portfolio choice of a cumulative prospect theory (CPT) agent in a
one-period economy with one risk-free and one risky asset (Bernard and Ghossoub 2010). More recently,
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the Omega measure expressed by Equation (18) has appeared in a stochastic dominance rule of order
(1 + γ) that Müller et al. (2016) have introduced to explain why some classes of utility-maximizing
investors prefer to purchase a risk-free rather than a risky asset (or portfolio). As far as we know,
our condition expressed by Equation (17) represents the first evidence of a link between the Omega
measure and the optimal insurance choice.

Based on the decomposition,

µL − lr︸ ︷︷ ︸
−kµL

=
∫ lr

0
(l − lr)dFL︸ ︷︷ ︸
−E[(lr−L)+ ]

+
∫ l

lr
(l − lr)dFL︸ ︷︷ ︸
E[(L−lr)+ ]

,

the Omega measure expressed by Equation (18) may be rewritten as

Ω(lr) = 1 + k
µL

E [(L− lr)+]
,

which implies that Ω(lr) = 1 if and only if k = 0. This leads to an optimality of full coverage
when insurance is fairly priced, since the loss aversion measure 1+λη

1+η —which appears on the LHS of
Equation (17)—is greater than 1 as long as λ > 1 and η > 0. Additionally, from

∂E [(L− lr)+]

∂k
= −µL [1− FL(lr)] < 0,

it follows that Ω(lr) is an increasing function of k and exceeds 1 as long as the insurance premium is
positively loaded. Consequently, for given values of the behavioral parameters λ > 1 and η > 0,
there is a range of values of the loading factor k such that the condition expressed by Equation (17) is
verified for 0 ≤ k ≤ k∗, leading to the optimality of full insurance coverage. The value of k∗ can be
determined from Equation (17) once the shape of the loss distribution FL is specified.

An empirical study of Guo’s model is beyond the aim of the present paper. However, we
refer the interested reader to papers that have estimated similar models, finding values of λ either in the
range of 1.4–5 (see Table 1 in Abdellaoui et al. (2007)) or slightly above 1 Murphy and ten Brincke (2018);
Nilsson et al. (2011). For a careful and critical review, see, e.g., Harrison and Swarthout (2016).

Comparative Statics Results

An interesting question relates to the comparison of the optimal coverage proportions implied by
FORA in the reference-dependent utility model of Guo et al. (2016) and by SORA in a classical EU
model where the utility function is twice differentiable and concave at all wealth levels. This is
considered in the following proposition.

Proposition 2. The optimal proportion of insurance coverage α∗r that maximizes Equation (11) is always larger
than the optimal proportion of insurance coverage α∗ implied by a conventional utility function u that exhibits
SORA at all wealth levels.

Proof. Consider a conventional utility function of terminal wealth u(w) that is always twice
differentiable, with u′(w) > 0 and u′′(w) < 0 as implied by SORA. The optimal proportion α∗ ∈ [0, 1] of
insurance coverage induced by u(w) is found by maximization of U(α) defined in Equation (14). Owing
to the concavity of u, α∗ is the unique solution to

(1 + η)U′(α∗) = 0 (19)

where η > 0 is the relative weight of gain–loss utility that appears in Equation (2).
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For a DM with reference-dependent utility expressed by Equation (1), the optimal proportion of
insurance coverage is determined by the sign of V′(α) in Equation (13). Evaluating the latter at α∗ and
subtracting the LHS of Equation (19) gives

V′(α∗)− (1 + η)U′(α∗) = η (λ− 1)
∫ l

lr
u′(w(l, α∗))[l − (1 + k)µL] dFL, (20)

which is positive under loss aversion because λ > 1. It follows that the optimal proportion α∗r
of insurance coverage in the reference-dependent utility model expressed by Equation (1) is larger
than α∗.

Intuition would suggest that an increase in either loss aversion or in the gain–loss component of
the utility function stimulates a higher demand for insurance coverage. The next proposition shows
that this indeed the case.

Proposition 3. For a DM with reference dependent utility expressed by Equation (11) and target expressed by
Equation (4), the optimal proportion of insurance coverage α∗r increases as either λ or η increases.

Proof. Evaluating the first-order condition expressed by Equation (13) at the optimal coverage α∗r gives

V′(α∗r ) = (1 + η)U′(α∗r ) + (λ− 1)η
∫ l

lr
u′ (w(l, α∗r )) (l − lr)dFL(l) = 0. (21)

Differentiating V′(α∗r ) in λ gives

∂V′

∂λ
= η

∫ l

lr
u′ (w(l, α∗r )) (l − lr)dFL > 0,

which, in view of the concavity of V(α), implies that α∗r is increasing in λ.
Differentiating V′(α∗r ) in η gives

∂V′

∂η
= U′(α∗r ) + (λ− 1)

∫ l

lr
u′ (w(l, α∗r )) (l − lr)dFL. (22)

The condition expressed by Equation (21) implies

U′(α∗r ) = −(λ− 1)
η

1 + η

∫ l

lr
u′ (w(l, α∗r )) (l − lr)dFL(l).

Plugging this into Equation (22) yields:

∂V′

∂η
= (λ− 1)

η2

1 + η

∫ l

lr
u′ (w(l, α∗r )) (l − lr)dFL(l) > 0,

which, in view of the concavity of V(α), implies that α∗r is increasing in η.

As shown in Section 2, increasing either λ or η entails an increase in the first-order term of the
total risk premium at the reference point r.

The result of the above proposition is consistent with a well-established stream of the portfolio
selection literature in which reference dependence and loss aversion are shown to determine the
increasing demand for capital protection (Bertrand and Prigent (2011), for instance, make this point
for constant proportion portfolio insurance (CPPI) strategies that offer increased protection against
downside risk exposure). However, contrary to the mainstream thinking in the field, we here consider a
reference-dependent utility function expressed by Equation (3) that has no convex portions. Our results
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may consequently be interpreted as direct implications of FORA as they do not presume risk loving
attitudes below the reference point r.

As previously mentioned, the choice of r is of crucial importance to reference-dependent utility
models. For this reason, we here investigate the behavior of the optimal insurance coverage α∗r as a
function of the target r taken into account.

Based on the condition expressed by Equation (27), the final wealth of a DM who insures a fraction
α of the potential loss L is given by W(L, α) = w0 − L + αL− (1 + k)αµL. Hence, for a general target r,
it follows that

W ≥ r ⇔ L ≤ w0 − r− (1 + k)αµL
1− α

, lr,k.

Consequently,
r S w0 − (1 + k)µL ⇔ lr,k T (1 + k)µL.

Let r̃ , w0 − (1 + k)µL and, as previously, lr , (1 + k)µL.
A loss-averse DM chooses the optimal proportion of insurance coverage α∗r ∈ [0, 1] by maximizing

the expected utility of his/her final wealth:

V(α) = E[v(W, r)] = E
{

u(W) +<η,λ[u(W)− u(r)]
}

=
∫ lr,k

0
{u (w(l, α)) + η[u (w(l, α))− u(r)]} dFL(l)

+
∫ l

lr,k

{u (w(l, α)) + λη[u (w(l, α))− u(r)]} dFL(l). (23)

Proposition 4. The optimal proportion α∗r of insurance coverage that maximizes Equation (23) is (non-strictly)
decreasing in r for r ≤ r̃ and (non-strictly) increasing in r for r ≥ r̃.

Proof. Differentiating Equation (23) with respect to α and following the same steps as those outlined
in previous developments, we obtain

V′(α) = (η + 1)U′(α) + (λ− 1)η
∫ l̄

lr,k

u′(w)(l − (1 + k)µL)dFL(l),

where the first term is independent of the choice of r. It follows that

∂V′

∂r
=

(λ− 1)η
1− α

u′(r)(lr,k − (1 + k)µL) fL(lr,k)


< 0; r > r̃
= 0; r = r̃
> 0; r < r̃

,

so V′ is decreasing in r for r > r̃ and increasing in r for r < r̃. The argument above together with the
concavity of V(α) in α implies the result.

As shown by the above result, our choice of reference point r̃ identifies a crucial level of wealth for
loss-averse decision-makers. In particular, compared to the frequently used “status quo” (r = w0),
the optimal insurance proportion related to the safe alternative r̃ is lower or equal.

4. Deductible Insurance

We now suppose that insurance is available in the form of a straight deductible policy. This repays
the DM for losses in excess of a predefined deductible level D ≥ 0, according to the indemnity function:

I(L) = max{0, L− D}.
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The price for obtaining deductible D ≥ 0 is specified by the insurance premium, which is assumed
proportional to the expected indemnity:

πD = (1 + k)E[I(L)] = (1 + k)
∫ l

D
(l − D) dFL(l) (24)

where k > 0 is the loading factor, and

∂πD
∂D

= −(1 + k)[1− FL(D)]. (25)

As argued in Schlesinger (1985), at the agent’s choice of a deductible level D, it is reasonable
to assume

∂πD
∂D

> −1, (26)

which implies that the extra cost of lowering the deductible by 1 unit does not exceed the increase in
final wealth when the realized loss l exceeds D (see Footnote 1 in Schlesinger (1985)).

The DM now faces a kinked payoff function:

w(l, D) =

{
w+ = w0 − πD − l if l ≤ D

w− = w0 − πD − D if l > D
(27)

with

∂w+

∂D
= (1 + k)[1− FL(D)] > 0

∂w−

∂D
= (1 + k)[1− FL(D)]− 1 < 0

(28)

where the last inequality holds at the agent’s choice of a deductible D as a consequence of the condition
expressed by Equation (26).

Based on the reference-dependent utility expressed by Equation (1), the DM chooses the optimal
deductible D∗ by maximizing the expected utility of his/her final payoff:

H(D) = E[v(W(L; D))]

=
∫ lr

0
v(w+)dFL +

∫ D

lr
v(w+)dFL +

∫ l

D
v(w−)dFL

=
∫ lr

0
[(1 + η)u(w+)− ηu(r)]dFL +

∫ D

lr
[(1 + λη)u(w+)− ληu(r)]dFL

+ [1− FL(D)][(1 + λη)u(w−)− ληu(r)]

(29)

where r = w0 − (1 + k)µL is the agent’s reference wealth, as specified in Equation (4), and
lr = w0 − πD − r is the corresponding level of loss, with 0 ≤ lr ≤ D.

Assuming that FL is continuous at lr and D, and denoting the corresponding density function by
fL, we have

H′(D) = [1− FL(D)]

{
(1 + k)

[
(1 + η)

∫ lr

0
u′(w+)dFL

+ (1 + λη)
∫ D

lr
u′(w+)dFL + (1 + λη)(1− FL(D))u′(w−)

]
− (1 + λη)u′(w−)

}
,

(30)
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for any D > 0. After some calculation and rearrangement, this gives the following first-order condition
for EU maximization at an interior point:

H′(D) = [1− FL(D)]
{
(1 + k)E[v′(W(L, D))]− (1 + λη)u′(w−)

}
= 0. (31)

Using Equation (25), Equation (31) can be written as

− ∂πD
∂D

∫ D
0 u′(w+)dFL +

∂πD
∂D

η(λ− 1)
1 + λη

∫ lr

0
u′(w+)dFL︸ ︷︷ ︸

<0

+
(
− ∂πD

∂D − 1
)
[1− FL(D)] u′(w−) = 0. (32)

According to Schlesinger (2013), the first and third term in the above equation can be interpreted,
for an agent with utility function u, as the marginal benefit of premium savings from increasing D
conditional on a loss lower than D, and the marginal cost of a higher deductible given that the loss
exceeds D, respectively. The second addend in Equation (32) is an additional term due to the gain–loss
component of Guo’s model that lowers the marginal benefit when the loss is lower than lr, taking into
account the behavioral parameters λ, η. This extra term depends on the ratio η(λ−1)

1+λη that is increasing in
each parameter η, λ and tends to zero when either η → 0+ or λ → 1+, converging to the case of a
SORA agent with conventional utility u (see Equation (16) in Schlesinger (2013)).

Evaluating H′′(D) at an interior solution D∗r ∈ (0, l) of Equation (31) gives

H′′(D∗r ) = [1− FL(D∗r )]
{
(1 + k)

[
(1 + η)

∫ lr

0
u′′(w+)

∂w+

∂D
dFL+

+ (1 + λη)
∫ D∗r

lr
u′′(w+)

∂w+

∂D
dFL − η(λ− 1)

∂lr

∂D
u′(r) fL(lr)

+ (1 + λη)u′′(w−)
∂w−

∂D
(1− FL(D∗r ))

]
− (1 + λη)u′′(w−)

∂w−

∂D

}
where ∂lr

∂D = (1 + k)[1− FL(D)] > 0. Based on Equation (28) and on the concavity of u, the above
expression is negative if

(1 + k)[1− FL(D∗r )]− 1 < 0 (33)

at all values D∗r ∈ (0, l) that solve the first-order condition expressed by Equation (31). The inequality
in Equation (33) holds at the agent’s choice of an optimal deductible as a consequence of Equation (26).
It follows that any D∗r ∈ (0, l) that solves the first-order condition expressed by Equation (31) identifies
an optimal insurance policy (as guaranteed by Equation (33)).

Proposition 5. Consider a FORA agent with reference-dependent utility expressed by Equation (1) and
reference wealth r = w0 − (1 + k)µL. The agent chooses the optimal level of deductible insurance, D∗r , by
maximizing the expected utility specified in Equation (29). Assume the loading factor k satisfies

0 < k <
q

1− q
(34)

where q = FL(0) = P(L = 0) > 0.
If

1 + λη

1 + η
>

(1 + k)q
1− (1 + k)(1− q)

, (35)

the agent will purchase full insurance coverage, i.e., D∗r = 0. If the inequality in Equation (35) is reversed, then
D∗r > 0.
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Proof. In view of Schlesinger’s condition expressed by Equation (26), it is reasonable to study an
agent’s decision to purchase full coverage when

lim
D→0

∂πD
∂D

= lim
D→0
{−(1 + k)[1− FL(D)]} > −1, (36)

which implies that the agent could still derive an economic benefit when the level of deductible is
lowered to zero. The condition expressed by Equation (36) is satisfied if FL has a point mass q > 0
at 0 and the loading factor k is bounded above as in Equation (34). In this case, taking the limit of
Equation (30) for D → 0 gives

lim
D→0

H′(D) = (1− q)u′[w0 − (1 + k)µL] {(1 + η)(1 + k)q− (1 + λη)[1− (1 + k)(1− q)]} , (37)

which is negative under the condition expressed by Equation (35). Since Equation (36) implies
Equation (33) in (0, l), it follows that D∗r = 0 is a constrained optimum (when overinsurance is prohibited).
If the inequality in the condition expressed by Equation (35) is reversed, the sign of Equation (37) is
positive and D∗r > 0, i.e., partial coverage is preferable.

In the past decade, a number of empirical and experimental studies on insurance-purchasing
decisions have extensively documented that some customers purchase low deductibles despite costs
significantly above fair price. However, fitting these choices to a standard EU model and assuming
that preferences exhibit SORA at all wealth levels yields unrealistic large measures of absolute
risk aversion (Sydnor 2010). This is typically regarded as a major puzzle in insurance economics
(Schmidt 2016).

The result of the above proposition shows that FORA is a plausible explanation of
consumers’ preferences for low deductibles, possibly leading to the purchase of full coverage
even at a loaded price. As shown in the condition expressed by Equation (35), this decision
depends on the loss aversion coefficient (1 + λη)/(1 + η) and on the relative probabilities of
experiencing/not experiencing a loss. The role of these probabilities has already emerged
in a study of insurance demand that Schmidt (2016) has recently carried out by graphical
analyses in a different framework, based on a single-argument value function that is specified
as a power function of gains and losses (as in conventional prospect theory). Interestingly,
Schmidt (2016) also considers the “safe alternative” (i.e., the fully insured position) as a possible
reference point, but restricts attention to binary risks and fair insurance contracts. Differently than
Schmidt (2016), we model reference dependence using a two-argument utility function expressed
by Equation (3) that has no convex portions, and we derive results for a general loss distribution
with a positively loaded insurance premium. Our analysis can thus help explain why, in real-world
circumstances, risk-averse agents may be willing to purchase full coverage even at costs that exceed
the expected value of the insurance contract.

As shown in Equation (32), the presence of FORA in Guo’s model alters the economic trade-off of a
conventional SORA agent by lowering the marginal benefit of increasing the deductible level, given that
the loss is lower than D. The following proposition shows that FORA stimulates insurance demand by
inducing the choice of a lower deductible relative to SORA.

Proposition 6. Denote the optimal deductible for a FORA agent by D∗r with reference-dependent utility
expressed by Equation (3) and reference wealth r = w0 − (1 + k)µL. If the condition expressed by Equation (33)
is verified and H is concave in D, then D∗r ≤ D∗, where D∗ is the optimal deductible implied by a conventional
utility function u(w) that exhibits SORA at all wealth levels.
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Proof. If we consider a twice differentiable utility function u with u′ > 0 and u′′ < 0, the optimal
deductible is found by maximization of the expected utility

U(D) = E[u(W(L, D))] =
∫ D

0
u(w+)dFL + [1− FL(D)]u(w−)

where w+, w− are defined by Equation (27). Since we assume proportional insurance pricing, the
first-order condition

U′(D) = [1− FL(D)]
{
(1 + k)E[u′(W(L, D))]− u′(w−)

}
= 0

identifies a unique global maximizer D∗, which is the optimal deductible for a SORA agent
(cf. Meyer and Ormiston (1999)). It follows that

(1 + η)U′(D∗) = 0. (38)

For a FORA agent with the reference-dependent utility specified in Equation (1), the optimal
deductible is determined by the sign of H′(D) in Equation (30) under the condition expressed by
Equation (33). Evaluating H′ at D∗ and subtracting the LHS of Equation (38) gives, after some
manipulation,

H′(D∗)− (1 + η)U′(D∗)

= η(λ− 1)
{

∂w+

∂D

∫ D∗

lr
u′(w+)dFL +

∂w−

∂D
[1− FL(D∗)]u′(w−)

}
= η(λ− 1)[1− FL(D∗)]

{
(1 + k)

[∫ D∗

lr
u′(w+)dFL + (1− FL(D∗))u′(w−)

]
− u′(w−)

}
.

Since u′(w+) ≤ u′(w−) for all l ∈ [lr, D∗], we have

H′(D∗)− (1 + η)U′(D∗) ≤ η(λ− 1)[1− FL(D∗)]u′(w−) {(1 + k)[1− FL(lr)]− 1} ,

which is negative if
(1 + k)[1− FL(lr)]− 1 < 0. (39)

Since r = w0 − (1 + k)µL implies that 0 ≤ lr ≤ D∗r , the condition expressed by Equation (33)
implies Equation (39). It follows that the optimal deductible D∗r under FORA is lower than the optimal
deductible D∗ under SORA, i.e., FORA stimulates the demand for insurance coverage.

5. Deductible or Proportional?

A cornerstone result in the theory of insurance economics is Arrow’s theorem of the deductible.
The theorem states that a straight deductible policy is the optimal insurance contract for all risk-averse
DMs whenever the insurer’s costs are proportional to the indemnity payment and the insurer is
risk-neutral (Arrow 1974).

In this section, we extend Arrow’s fundamental result to FORA preferences, building on a
stochastic dominance rule for comparing risks in the presence of a reference point that has been
recently proposed by Guo et al. (2016).

Definition 1. (Guo et al. 2016) Consider the reference-dependent utility specified in Equation (1) and assume
u ∈ U 2, where

U 2 =
{

u : (−∞, ∞)→ < | u′ ≥ 0, u′′ < 0
}

.
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Assume η∗ ≥ 0, λ∗ ≥ 1 are pre-specified lower bounds for the parameters η, λ and the reference point
r is given. A random variable W1 is said to second-order-stochastically dominate another random variable W2

relative to r, written as W1 SSDr W2, if

E[v(W1; r, u)] ≥ E[v(W2; r, u)]

for all u ∈ U 2, η ≥ η∗, λ ≥ λ∗.

As proved in Guo et al. (2016), conventional second-order stochastic dominance (SSD) is a
sufficient condition for SSDr relative to a fixed reference point, as illustrated in the following proposition.

Proposition 7. (Guo et al. 2016) Let the reference point r be fixed. For any two random variables W1 and W2,
W1 SSD W2 implies W1 SSDr W2, but the converse is not true.

Based on this result, we now extend the validity of Arrow’s theorem to the reference-dependent
utility model expressed by Equation (1).

Proposition 8. Consider a FORA agent with reference-dependent utility expressed by Equation (1) and a fixed
reference wealth r = w0 − (1 + k)µL, as specified in Equation (4). As a hedge against a potential random loss
L valued in [0, l], the agent selects an insurance contract that stipulates an indemnity I(L) and requires the
payment of a premium π = (1 + k)E[I(L)], with k > 0. If I(l) is non-decreasing and 0 ≤ I(l) ≤ l for all l,
the optimal insurance contract contains a straight deductible D, i.e., I(L) = max(L− D, 0).

Proof. It is well known (see, e.g., Eeckhoudt and Gollier (1992); Gollier and Schlesinger (1996)) that,
for a given insurance premium π = (1 + k)E[I(L)], the indemnity schedule I(L) = max(L− D, 0)
second-order-stochastically dominates any non-negative and non-decreasing indemnity function
Ĩ(L) with the same premium π. By Proposition 7 above, I(L) SSD Ĩ(L) implies that I(L) SSDr Ĩ(L).
Therefore, according to Definition 1, the deductible contract is preferred by all FORA agents with
reference-dependent utility expressed by Equation (1) and a fixed target r specified in Equation (4).
Since we can make this argument for any level π of the insurance premium, this concludes
the proof.

The logic behind deductible insurance is that of concentrating coverage on the states with the
largest losses. Originally, Arrow proved that this logic is optimal for all risk-averse EU-maximizers.
Other authors (see Gollier and Schlesinger (1996), for a detailed overview) have subsequently extended
Arrow’s result beyond the classic EU framework using preference functionals consistent with first-
and second-degree stochastic dominance.

In the above proposition, we prove that the validity of Arrow’s theorem is preserved under FORA
in view of the coherence between the reference-dependent utility function expressed by Equation (3)
and the definition of second-degree stochastic dominance with respect to a fixed reference point
provided in Guo et al. (2016). The question of whether this result could be extended to other types
of reference-dependent preferences (with possibly stochastic reference points) is still an open one,
and we leave it for further research.

6. Discussion and Conclusions

Some decision-makers pay attention not only to their final wealth but also to its position with
respect to a reference value.

Recently, Guo et al. (2016) have suggested an interesting model of choice belonging to that line of
research and they have looked at its implications for the stochastic dominance literature. An interesting
feature of the model above is that it introduces loss aversion and gain loving without affecting the
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local index of risk aversion away from the reference point. In this way, one can better isolate the pure
effect of these attitudes upon optimal choices under risk.

In the present paper, we have examined how insurance demand would behave in such an
environment. It appears that the reference level r adopted by the decision-maker plays a major role.
As recently argued in Schmidt (2016), a possible choice of the reference level is the so-called safe
alternative, i.e., the sure amount of wealth, the decision-maker could obtain if s/he were to select
full insurance. For values of r equal to the safe alternative, we have found that, under a strictly
positive loading, the second component of the utility function besides final wealth always stimulates
insurance demand.

The proposed model yields plausible explanations for a range of consumer choices observed in
real insurance markets. In particular, decision-makers within the reference-dependent utility model of
Guo et al. (2016) will (a) always choose a lower deductible (or a higher coinsurance rate) relative to
classic risk-averse EU-maximizers and (b) be willing to purchase full insurance even at a loaded
price, subject to appropriate conditions on their degree of loss aversion. Interestingly, in the case of
proportional insurance, these conditions are related to the Omega measure, a performance index that
has been widely used in mathematical finance and in the portfolio management literature (see, e.g.,
Bertrand and Prigent (2011) and the references therein).

Whereas the mainstream of literature has focused on binary risks and/or fair insurance contracts
(see, e.g., Schmidt (2016), for a recent contribution and an accurate literature review), in the present
work we have considered a general loss distribution and a positively loaded insurance premium.
Our results are consequently relevant for understanding the characteristics of real insurance markets,
and provide a new perspective on consumers’ tendency to over-insure modest risks (Sydnor 2010).

These findings add to a range of possible explanations that have been suggested in the literature to
rationalize a surprisingly high demand for insurance, such as probability weighting (Jaspersen et al. 2018),
consumption commitments (Chetty 2006), and menu effects (Kamenica 2008).

It is worth mentioning that Guo’s model presumes separability between consumption utility and
gain–loss utility, which adds tractability to the problem. Alternative points of view have been recently
proposed in the literature. In particular, Gollier (2016) integrates consumption utility and regret within
a non-separable model, whereas Andersen et al. (2018) argue in favor of more flexible models that
allow for partial rather full asset integration.

Another specificity of Guo’s model is the assumption that initial wealth is fixed and known to the
agent. This assumption has been discussed and relaxed, for instance, by Barberis et al. (2006), who
have emphasized the role of background risks from extra-experimental income or wealth. However,
when these background risks are independent of the insurable risk, they induce diversification benefits
that may offset first-order risk aversion. A promising direction to develop a model with multiple
sources of risks may be found, for instance, in Dionne and Li (2014), who suggest that foreground
and background risks may not be independent but rather associated in a form of positive/negative
expectation dependence.
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