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Abstract: Utility and risk are two often competing measurements on the investment success. We show
that efficient trade-off between these two measurements for investment portfolios happens, in general,
on a convex curve in the two-dimensional space of utility and risk. This is a rather general pattern.
The modern portfolio theory of Markowitz (1959) and the capital market pricing model Sharpe (1964),
are special cases of our general framework when the risk measure is taken to be the standard deviation
and the utility function is the identity mapping. Using our general framework, we also recover and
extend the results in Rockafellar et al. (2006), which were already an extension of the capital market
pricing model to allow for the use of more general deviation measures. This generalized capital asset
pricing model also applies to e.g., when an approximation of the maximum drawdown is considered
as a risk measure. Furthermore, the consideration of a general utility function allows for going
beyond the “additive” performance measure to a “multiplicative” one of cumulative returns by using
the log utility. As a result, the growth optimal portfolio theory Lintner (1965) and the leverage space
portfolio theory Vince (2009) can also be understood and enhanced under our general framework.
Thus, this general framework allows a unification of several important existing portfolio theories and
goes far beyond. For simplicity of presentation, we phrase all for a finite underlying probability space
and a one period market model, but generalizations to more complex structures are straightforward.

Keywords: convex programming; financial mathematics; risk measure; utility functions; efficient
frontier; Markowitz portfolio theory; capital market pricing model; growth optimal portfolio;
fractional Kelly allocation

MSC: 52A41; 90C25; 91G99

1. Introduction

The modern portfolio theory of Markowitz (1959) pioneered the quantitative analysis of financial
economics. The most important idea proposed in this theory is that one should focus on the
trade-off between expected return and the risk measured by the standard deviation. Mathematically,
the modern portfolio theory leads to a quadratic optimization problem with linear constraints. Using
this simple mathematical structure, Markowitz gave a complete characterization of the efficient
frontier for trade-off of the return and risk. Tobin showed that the efficient portfolios are an affine
function of the expected return Tobin (1958). Markowitz portfolio theory was later generalized by
Lintner (1965), Mossin (1966), Sharpe (1964) and Treynor (1999) in the capital asset pricing model

(CAPM) by involving a riskless bond. In the CAPM model, both the efficient frontier and the related
efficient portfolios are affine in terms of the expected return (Sharpe 1964; Tobin 1958).
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The nice structures of the solutions in the modern portfolio theory and the CAPM model afford
many applications. For example, the CAPM model is designed to provide reasonable equilibrium prices
for risky assets in the market place. Sharpe used the ratio of excess return to risk (called the Sharpe ratio)
to provide a measurement for investment performance (Sharpe 1966). In addition, the affine structure
of the efficient portfolio in terms of the expected return leads to the concept of a market portfolio
as well as the two fund theorem (Tobin 1958) and the one fund theorem (Sharpe 1964; Tobin 1958).
These results provided a theoretical foundation for passive investment strategies.

In many practical portfolio problems, however, one needs to consider more general pairs of reward
and risk. For example, the growth portfolio theory can be viewed as maximizing the log utility of
a portfolio. In order to address the issue that an optimal growth portfolio is usually too risky in practice,
practitioners often have to impose additional restrictions on the risk (MacLean et al. 2009; Vince 2009;
Vince and Zhu 2015). In particular, current drawdown (Maier-Paape 2016), maximum drawdown and
its approximations (De Prado et al. 2013; Maier-Paape 2015; Vince and Zhu 2015), deviation measure
(Rockafellar et al. 2006), as well as conditional value at risk (Rockafellar and Uryasev 2000) and more
abstract coherent risk measures (Artzner et al. 1999) are widely used as risk measures in practice.
Risk, as measured by such criteria, is reduced by diversification. Mathematically, it is to say these
risk measures are convex. For these reasons, considering the trade-off between general risk measures
and expected utilities are crucial in portfolio problems. In particular, including risk measures beyond
positive homogeneous risk measures allows for measuring risk by drawdown (see Maier-Paape and
Zhu (2017)), a concept to which many practitioners are sensitive.

The goal and main results of this paper are to extend the modern portfolio theory into a general
framework under which one can analyze efficient portfolios that trade-off between a convex risk
measure and a reward captured by a concave expected utility (see Section 3). We phrase our primal
problem as a convex portfolio optimization problem of minimizing a convex risk measure subject to
the constraint that the expected utility of the portfolio is above a certain level. Thus, convex duality
plays a crucial role and the structure of the solutions to both the primal and dual problems often
have significant financial implications. We show that, in the space of risk measure and expected
utility, efficient trade-off happens on an increasing concave curve (cf. Proposition 8 and Theorem 4).
We also show that the efficient portfolios continuously depend on the level of the expected utility
(see Theorem 5), and moreover, we can describe the curve of efficient portfolios quantitatively in
a precise manner (cf. Proposition 9 and Corollary 2).

To avoid technical complications, we restrict our analysis to the practical case in which the
status of an underlying economy is represented by a finite sample space. Under this restriction, the
Markowitz modern portfolio theory and the capital asset pricing model are special cases of this general
theory. Markowitz determines portfolios of purely risky assets which provide an efficient trade-off
between expected return and risk measured by the standard deviation (or equivalently the variance).
Mathematically, this is a class of convex programming problems of minimizing the standard deviation
of the portfolio parameterized by the level of the expected returns. The capital asset pricing model, in
essence, extends the Markowitz modern portfolio theory by including a riskless bond in the portfolio.
We observe that the space of the risk-expected return is, in fact, the space corresponding to the dual
of the Markowitz portfolio problem. The shape of the famous Markowitz bullet is a manifestation
of the well known fact that the optimal value function of a convex programming problem is convex
with respect to the level of constraint. As mentioned above, the Markowitz portfolio problem is
a quadratic optimization problem with linear constraint. This special structure of the problem dictates
the affine structure of the optimal portfolio as a function of the expected return (see Theorem 6).
This affine structure leads to the important two fund theorem (cf. Theorem 7) that provides a theoretical
foundation for the passive investment method. For the capital asset pricing model, such an affine
structure appears in both the primal and dual representation of the solutions, which leads to the one
fund theorem in the portfolio space and the capital market line in the dual space of risk-return trade-off
(cf. Theorems 8 and 9).
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The flexibility in choosing different risk measures allows us to extend the analysis of the essentially
quadratic risk measure pioneered by Markowitz to a wider range. For example, when a deviation
measure (Rockafellar et al. 2006) is used as risk measure, which happens e.g., when an approximation
of the current drawdown is considered (see Maier-Paape and Zhu (2017)), and the expected return is
used to gauge the performance, we show that the affine structure of the efficient solution in the classical
capital market pricing model is preserved (cf. Theorem 10 and Corollary 3), recovering and extending
especially the results in Rockafellar et al. (2006). In particular, we can show that the condition in CAPM
that ensures the existence of a market portfolio has a full generalization to portfolio problems with
positive homogeneous risk measures (see Theorem 11). This is significant in that it shows that the
passive investment strategy is justifiable in a wide range of settings.

The consideration of a general utility function, however, allows us to go beyond the “additive”
performance measure in modern portfolio theory to a “multiplicative” one including cumulative
returns when, for example, using the log utility. As a result, the growth optimal portfolio theory
(Lintner 1965) and the leverage space portfolio theory (Vince 2009) can also be understood under our
general framework. The optimal growth portfolio pursues to maximize the expected log utility that
is equivalent to maximize the expected cumulative compound return. It is known that the growth
optimal portfolio is usually too risky. Thus, practitioners often scale back the risky exposure from
a growth optimal portfolio. In our general framework, we consider the portfolio that minimizes a risk
measure given a fixed level of expected log utility. Under reasonable conditions, we show that such
portfolios form a path parameterized by the level of expected log utility in the portfolio space that
connects the optimal growth portfolio and the portfolio of a riskless bond (see Theorem 13). In general,
for different risk measures, we will derive different paths. These paths provide justifications for risk
reducing curves proposed in the leverage space portfolio theory (Vince 2009). The dual problem
projects the efficient trade-off path into a concave curve in the risk-expected log utility space parallel
to the role of Markowitz bullet in the modern portfolio theory and the capital market line in the capital
asset pricing model. Under reasonable assumptions, the efficient frontier for log utility is a bounded
increasing concave curve. The lower left endpoint of the curve corresponds to the portfolio of pure
riskless bond and the upper right endpoint corresponds to the growth optimal portfolio. The increasing
nature of the curve tells us that the more risk we take, the more cumulative return we can expect.
The concavity of the curve indicates, however, that, with the increase of the risk, the marginal increase
of the expected cumulative return will decrease.

Markowitz portfolio theory essentially maximizes a linear expected utility while the growth
optimal portfolio focuses on the log utility. Other utility functions were also considered in portfolio
problems. Our general framework brings them together in a unified way. Besides unifying the several
important results laid out above, the general framework, furthermore, has many new applications.
In this first installment of the paper, we layout the framework, derive the theoretical results of crucial
importance and illustrate them with a few examples. More specific results on drawdown risk measures
will appear in Maier-Paape and Zhu (2017). We arrange the paper as follows: first, we discuss
necessary preliminaries in the next section. Section 3 is devoted to our main result: a framework
to efficient trade-off between risk and utility of portfolios and its properties. In Section 4, we give
a unified treatment of Markowitz portfolio theory and capital asset pricing model using our framework.
Section 5 is devoted to a discussion of positive homogeneous risk measures under which the optimal
trade-off portfolio possesses an affine structure. This situation fully generalizes Markowitz and CAPM
theories and thus many of the conditions in Section 4 find an analog in Section 5. Section 6 discusses
growth optimal portfolio theory and leverage portfolio theory. We conclude in Section 7 pointing to
applications worthy of further investigation.
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2. Preliminaries

2.1. A Portfolio Model

We consider a simple one period financial market model S on an economy with finite states
represented by a sample space Ω = {ω1, ω2, . . . , ωN}. We use a probability space (Ω, 2Ω, P) to
represent the states of the economy and their corresponding probability of occurring, where 2Ω is the
algebra of all subsets of Ω. The space of random variables on (Ω, 2Ω, P) is denoted RV(Ω, 2Ω, P) and it
is used to represent the payoff of risky financial assets. Since the sample space Ω is finite, RV(Ω, 2Ω, P)
is a finite dimensional vector space. We use RV+(Ω, 2Ω, P) to represent of the cone of nonnegative
random variables in RV(Ω, 2Ω, P). Introducing the inner product

〈X, Y〉RV = E[XY], X, Y ∈ RV(Ω, 2Ω, P),

RV(Ω, 2Ω, P) becomes a (finite dimensional) Hilbert space.

Definition 1. (Financial Market) We say that St = (S0
t , S1

t , . . . , SM
t )>, t = 0, 1 is a financial market in a one

period economy provided that S0 ∈ RM+1
+ and S1 ∈ (0, ∞)× RV+(Ω, 2Ω, P)M. Here, S0

0 = 1, S0
1 = R > 0

represents a risk free bond with a positive return when R > 1. The rest of the components Sm
t , m = 1, . . . , M

represent the price of the m-th risky financial asset at time t.

We will use the notation Ŝt = (S1
t , · · · , SM

t )> when we need to focus on the risky assets.
We assume that S0 is a constant vector representing the prices of the assets in this financial market at
t = 0. The risk is modeled by assuming Ŝ1 = (S1

1, . . . , SM
1 )> to be a nonnegative random vector on

the probability space (Ω, 2Ω, P), that is Sm
1 ∈ RV+(Ω, 2Ω, P), m = 1, 2, . . . , M. A portfolio is a column

vector x ∈ RM+1 whose components xm represent the share of the m-th asset in the portfolio and Sm
t xm

is the portion of capital invested in asset m at time t. Hence, x0 corresponds to the investment in the
risk free bond and x̂ = (x1, . . . , xM)> is the risky part.

Remark 1. Restricting to a finite sample space avoids the distraction of technical difficulties. This is also
practical since, in the real world, one can only use a finite quantity of information. Furthermore, we restrict our
presentation to the one period market model. However, more complex sample spaces and market models such as
multi-period financial models should be treatable with a similar approach.

We often need to restrict the selection of portfolios. For example, in many applications, we consider
only portfolios with unit initial cost, i.e., S>0 x = 1. The following definition makes this precise.

Definition 2. (Admissible Portfolio) We say that A ⊂ RM+1 is a set of admissible portfolios provided
that A is a nonempty closed and convex set. We say that A is a set of admissible portfolios with unit initial
price provided that A is a closed convex subset of {x ∈ RM+1 : S>0 x = 1}.

2.2. Convex Programming

The trade-off between convex risks and concave expected utilities yields essentially convex
programming problems. For convenience of the reader, we collect notation and relevant results in
convex analysis, which are important in the discussion below. We omit most of the proofs that can
be found in Borwein and Zhu (2016); Carr and Zhu (forthcoming); Rockafellar (1970). Readers who
know convex programming well can skip this section.

Let X be a finite dimensional Banach space. Recall that a set C ⊂ X is convex if, for any x, y ∈ C
and s ∈ [0, 1], sx + (1− s)y ∈ C. For an extended valued function f : X → R ∪ {+∞}, we define its
domain by

dom( f ) := {x ∈ X : f (x) < ∞}
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and its epigraph by
epi( f ) := {(x, r) ∈ X×R : r ≥ f (x)}.

We say f is lower semi-continuous if epi( f ) is a closed set. The following proposition characterizes
an epigraph of a function.

Proposition 1. (Characterization of Epigraph) Let F be a closed subset of X×R such that inf{r : (x, r) ∈
F} > −∞ for all x ∈ R. Then, F is the epigraph for a lower semi-continuous function f : X → (−∞, ∞], i.e.,
F = epi( f ), if and only if

(x, r) ∈ F ⇒ (x, r + k) ∈ F, ∀k > 0. (1)

Proof. The key is to observe that, for a set F with the structure in (1), a function

f (x) = inf{r : (x, r) ∈ F} (2)

is well defined and then F = epi( f ) holds.

We say a function f is convex if epi( f ) is a convex set. Alternatively, f is convex if and only if,
for any x, y ∈ dom( f ) and s ∈ [0, 1],

f (sx + (1− s)y) ≤ s f (x) + (1− s) f (y).

Consider f : X → [−∞,+∞). We say f is concave when − f is convex and we say f is upper
semi-continuous if − f is lower semi-continuous. Define the hypograph of a function f by

hypo( f ) = {(x, r) ∈ X×R : r ≤ f (x)}.

Then, a symmetric version of Proposition 1 is

Proposition 2. (Characterization of Hypograph) Let F be a closed subset of X × R such that
sup{r : (x, r) ∈ F} < +∞ for all x ∈ R. Then, F is the hypograph of an upper semi-continuous function
f : X → [−∞, ∞), i.e., F = hypo( f ), if and only if

(x, r) ∈ F ⇒ (x, r− k) ∈ F, ∀k > 0. (3)

Moreover, the function f can be defined by

f (x) = sup{r : (x, r) ∈ F}. (4)

Remark 2. The value of the function f in Proposition 1 (Proposition 2) at a given point x cannot assume −∞
(+∞) and therefore {x} ×R 6⊂ F.

Since utility functions are concave and risk measures are usually convex, the analysis of a general
trade-off between utility and risk naturally leads to a convex programming problem. The general form
of such convex programming problems is

v(y, z) := inf
x∈X

[ f (x) : g(x) ≤ y, h(x) = z], for y ∈ RM, z ∈ RN , (5)

where f , g and h satisfy the following assumption.

Assumption 1. Assume that f : X → R∪{+∞} is a lower semi-continuous extended valued convex function,
g : X → RM is a vector valued function with convex components, ≤ signifies componentwise minorization and
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h : X → RN is an affine mapping, for natural numbers M, N. Moreover, at least one of the components of g has
compact sublevel sets.

Convex programming problems have nice properties due to the convex structure. We briefly recall
the pertinent results related to convex programming. First, the optimal value function v is convex.
This is a well-known result that can be found in standard books on convex analysis, e.g., Borwein and
Zhu (2005).

Proposition 3. (Convexity of Optimal Value Function) Let f , g and h satisfy Assumption 1. Then, the
optimal value function v in the convex programming problem (5) is convex and lower semi-continuous.

By and large, there are two (equivalent) general approaches to help solving a convex programming
problem: by using the related dual problem and by using Lagrange multipliers. The two methods are
equivalent in the sense that a solution to the dual problem is exactly a Lagrange multiplier (see Borwein
and Zhu (2016)). Using Lagrange multipliers is more accessible to practitioners outside the special area
of convex analysis. We will take this approach. The Lagrange multipliers method tells us that, under
mild assumptions, we can expect there exists a Lagrange multiplier λ = (λy, λz) ∈ RM ×RN with
λy ≥ 0 such that x̄ is a solution to the convex programming problem (5) if and only if it is a solution to
the unconstrained problem of minimizing

L(x, λ) := f (x) + 〈λ, (g(x)− y, h(x)− z)〉RM×RN (6)

= f (x) + 〈λy, g(x)− y〉RM + 〈λz, h(x)− z〉RN .

The function L(x, λ) is called the Lagrangian. To understand why and when a Lagrange multiplier
exists, we need to recall the definition of the subdifferential.

Definition 3. (Subdifferential) Let X be a finite dimensional Banach space and X∗ its dual space.
The subdifferential of a lower semi-continuous convex function φ : X → R ∪ {+∞} at x ∈ dom(φ) is
defined by

∂φ(x) = {x∗ ∈ X∗ : φ(y)− φ(x) ≥ 〈x∗, y− x〉 ∀y ∈ X}.

Geometrically, an element of the subdifferential gives us the normal vector of a support hyperplane
for the convex function at the relevant point. It turns out that Lagrange multipliers of problem (5) are
simply the negative of elements of the subdifferential of v as summarized in the lemma below.

Theorem 1. (Lagrange Multiplier) Let v : RM × RN → R ∪ {+∞} be the optimal value function of
the constrained optimization problem (5) with f , g and h satisfying Assumption 1. Suppose that, for fixed
(y, z) ∈ RM ×RN , −λ = −(λy, λz) ∈ ∂v(y, z) and x̄ is a solution of (5). Then,

(i) λy ≥ 0,
(ii) the Lagrangian L(x, λ) defined in (6) attains a global minimum at x̄, and
(iii) λ satisfies the complementary slackness condition

〈λ, (g(x̄)− y, h(x̄)− z)〉 = 〈λy, g(x̄)− y〉 = 0, (7)

where 〈·, ·〉 signifies the inner product.

Proof. See (Carr and Zhu forthcoming, Theorem 1.2.15).

Remark 3. By Theorem 1 Lagrange multipliers exist when (5) has a solution x̄ and ∂v(y, z) 6= ∅.
Calculating ∂v(y, z) requires to know the value of v in a neighborhood of (y, z) and is not realistic.
Fortunately, the well-known Fenchel–Rockafellar theorem (see e.g., Borwein and Zhu (2005)) tells us
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when (y, z) belongs to the relative interior of dom(v), then ∂v(y, z) 6= ∅. This is a very useful sufficient
condition. A particularly useful special case is the Slater condition (see also Borwein and Zhu (2005)):
there exists x ∈ dom( f ) such that g(x) < y. Under this condition, ∂v(y) 6= ∅ holds.

3. Efficient Trade-Off between Risk and Utility

We consider the financial market described in Definition 1 and consider a set of admissible
portfolios A ⊂ RM+1 (see Definition 2). The payoff of each portfolio x ∈ A at time t = 1 is S>1 x.
The merit of a portfolio x is often judged by its expected utility E[u(S>1 x)], where u is an increasing
concave utility function. The increasing property of u models the more payoff the better. The concavity
reflects the fact that, with the increase of payoff, its marginal utility to an investor decreases. On the
other hand, investors are often sensitive to the risk of a portfolio that can be gauged by a risk measure.
Because diversification reduces risk, the risk measure should be a convex function.

3.1. Technical Assumptions

Some standard assumptions on the utility and risk functions are often needed in the more technical
discussion below. We collect them here.

Assumption 2. (Conditions on Risk Measure) Consider a continuous risk function r : A → [0,+∞)

where A is a set of admissible portfolios according to Definition 2. We will often refer to some of the
following assumptions:

(r1) (Riskless Asset Contributes No risk) The risk measure r(x) = r̂(x̂) is a function of only the risky part
of the portfolio, where x> = (x0, x̂>).

(r1n) (Normalization) There is at least one portfolio of purely bonds in A. Furthermore, r(x) = 0 if and only
if x contains only riskless bonds, i.e., x> = (x0, 0̂>) for some x0 ∈ R.

(r2) (Diversification Reduces Risk) The risk function r is convex.
(r2s) (Diversification Strictly Reduces Risk) The risk function r̂ is strictly convex.
(r3) (Positive homogeneous) For t > 0, r̂(tx̂) = t̂r(x̂).

(r3s) (Diversification Strictly Reduces Risk on Level Sets) The risk function r̂ satisfies (r3) and, for all
x̂ 6= ŷ with r̂(x̂) = r̂(ŷ) = 1 and α ∈ (0, 1),

r̂(αx̂ + (1− α)ŷ) < αr̂(x̂) + (1− α)̂r(ŷ) = 1.

Condition (r3) precludes (r2s). Thus, condition (r3s) serves as a replacement for (r2s) when the
risk measure satisfies (r3). Moreover, we have the following useful result.

Lemma 1. Assuming a risk measure r satisfies (r1), (r1n) and (r3s). Then,

(a) r satisfies (r2), and
(b) f (x) = f̂ (x̂) = [̂r(x̂)]2 satisfies (r1), (r1n) and (r2s).

Proof. Let α ∈ (0, 1) and x̂ 6= ŷ be given. If x̂ and ŷ lie on the same ray through 0̂, say x̂ = cŷ
for some c ≥ 0, then convexity of r̂ there is clear due to (r3). For x̂ and ŷ not on the same ray and
with x̂/r̂(x̂) 6= ŷ/r̂(ŷ), defining λ := αr̂(x̂)

αr̂(x̂)+(1−α)r̂(ŷ) , we have 1 − λ = (1−α)r̂(ŷ)
αr̂(x̂)+(1−α)r̂(ŷ) , and since

r̂(x̂/r̂(x̂)) = r̂(ŷ/r̂(ŷ)) = 1, by (r3s), we have

1 > r̂(λx̂/r̂(x̂) + (1− λ)ŷ/r̂(ŷ)) = r̂

(
αx̂ + (1− α)ŷ

αr̂(x̂) + (1− α)̂r(ŷ)

)
=

r̂(αx̂ + (1− α)ŷ)
αr̂(x̂) + (1− α)̂r(ŷ)

, (8)

verifying (r2) for r since r(x) = r̂(x̂) depends only on x̂ by (r1).



Risks 2018, 6, 53 8 of 35

Clearly, f̂ (x̂) = [̂r(x̂)]2 has the properties (r1) and (r1n). Squaring (8), we derive

[̂r(αx̂ + (1− α)ŷ)]2 < [αr̂(x̂) + (1− α)̂r(ŷ)]2 ≤ α[̂r(x̂)]2 + (1− α)[̂r(ŷ)]2. (9)

Furthermore, on rays {x̂ | x̂ = cŷ, c ≥ 0} due to (r3), we have f̂ (tŷ) = t2 f̂ (ŷ) and the strict
convexity of f̂ there is clear as well. Hence, the square of the risk measure satisfies (r2s).

Remark 4. (Deviation measure) Our risk measure is described in terms of the portfolio. Assumptions (r1),
(r1n), (r2) and (r3) are equivalent to the axioms of a deviation measure in Rockafellar et al. (2006), which is
described in terms of the random payoff variable generated by the portfolio. Assumption (r1) excludes the widely
used coherent risk measure introduced in Artzner et al. (1999), which requires cash reserve, reduces risk.

Assumption 3. (Conditions on Utility Function) Utility functions u : R → R ∪ {−∞} are upper
semi-continuous functions on their domain dom(u) = {t ∈ R : u(t) > −∞} and are usually assumed
to satisfy some of the following properties:

(u1) (Profit Seeking) The utility function u is an increasing function.
(u2) (Diminishing Marginal Utility) The utility function u is concave.

(u2s) (Strict Diminishing Marginal Utility) The utility function u is strictly concave.
(u3) (Bankrupcy Forbidden) For t < 0, u(t) = −∞.
(u4) (Unlimited Growth) For t→ +∞, we have u(t)→ +∞.

Another important condition that often appears in the financial literature is no arbitrage (see
(Carr and Zhu forthcoming, Definition 3.5)). In the sequel, it is also useful to have two other
related concepts.

Definition 4. Consider a portfolio x ∈ RM+1 on the financial market St.

(a) (No Nontrivial Riskless Portfolio) We say a portfolio x is riskless if

〈S1 − RS0, x〉 ≥ 0.

We say the market has no nontrivial riskless portfolio if there does not exist a riskless portfolio x with
x̂ 6= 0̂.

(b) (No Arbitrage) We say x is an arbitrage if it is riskless and there exists some ω ∈ Ω such that

〈S1(ω)− RS0, x〉 6= 0.

We say market St has no arbitrage if there does not exist any arbitrage portfolio.
(c) (Nontrivial Bond Replicating Portfolio) We say that x> = (x0, x̂>) is a nontrivial bond replicating

portfolio if x̂ 6= 0̂ and
〈S1 − RS0, x〉 = 0.

An arbitrage is a way to make return above the risk free rate without taking any risk of losing
money. If such an opportunity exists, then investors will try to take advantage of it. In this process,
they will bid up the price of the risky assets and cause the arbitrage opportunity to disappear. For this
reason, usually people assume a financial market does not contain any arbitrage. A trivial riskless
portfolio of investing everything in the riskless asset S0

t always exists. A nontrivial riskless portfolio,
however, is not to be expected and we will often use this assumption. It turns out that the difference
between no nontrivial riskless portfolio and no arbitrage is exactly the existence of a nontrivial bond
replicating portfolio. The three conditions in Definition 4 (a), (b) and (c) are related as follows:
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Proposition 4. Consider the financial market St of Definition 1. There is no nontrivial riskless portfolio in St if
and only if St has no arbitrage portfolio and no nontrivial bond replicating portfolio. It follows that no nontrivial
riskless portfolio implies no arbitrage portfolio.

Proof. The conclusion follows directly from Definition 4.

Assuming that the financial market has no arbitrage, then no nontrivial riskless portfolio is
equivalent to no nontrivial bond replicating portfolio and has the following characterization.

Theorem 2. (Characterization of no Nontrivial Bond Replicating Portfolio) Assuming the financial
market St in Definition 1 has no arbitrage. Then, the following assertions are equivalent:

(i) There is no nontrivial bond replicating portfolio.
(ii) For every nontrivial portfolio x with x̂ 6= 0̂, there exists some ω ∈ Ω such that

〈S1(ω)− RS0, x〉 < 0. (10)

(ii*) For every risky portfolio x̂ 6= 0̂, there exists some ω ∈ Ω such that

〈Ŝ1(ω)− RŜ0, x̂〉 < 0. (11)

(iii) The matrix

G :=


S1

1(ω1)− RS1
0 S2

1(ω1)− RS2
0 . . . SM

1 (ω1)− RSM
0

S1
1(ω2)− RS1

0 S2
1(ω2)− RS2

0 . . . SM
1 (ω2)− RSM

0
...

...
...

...
S1

1(ωN)− RS1
0 S2

1(ωN)− RS2
0 . . . SM

1 (ωN)− RSM
0

 ∈ RN×M (12)

has rank M, in particular N ≥ M.

Proof. We use a cyclic proof. (i)→ (ii): If (ii) fails, then 〈S1 − RS0, x〉 ≥ 0 for some nontrivial x. By (i),
x must be an arbitrage, which is a contradiction. (ii)→ (ii*): obvious. (ii*)→ (iii): If (iii) is not true, then
Gx̂ = 0 has a nontrivial solution that is a contradiction to (11). (iii)→ (i): Assume that there exists
a portfolio x∗ with x̂∗ 6= 0̂, which replicates the bond. Then, 〈S1 − RS0, x∗〉 = 0. This implies that
〈Ŝ1 − RŜ0, x̂∗〉 = 0 so that Gx̂∗ = 0, which contradicts (iii).

A rather useful corollary of Theorem 2 is that any of the conditions (i)–(iii) of that theorem ensures
the covariance matrix of the risky assets to be positive definite.

Corollary 1. (Positive Definite Covariance Matrix) Assume the financial market St in Definition 1 has no
nontrivial riskless portfolio. Then, the covariant matrix of the risky assets

Σ := E[(Ŝ1 −E(Ŝ1))(Ŝ1 −E(Ŝ1))
>] = (E[(Si

1 −E(Si
1))(S

j
1 −E(Sj

1))])i,j=1,...,M (13)

is positive definite.

Proof. We note that, under the assumption of the corollary, for any nontrivial risky portfolio x̂, Ŝ>1 x̂
cannot be a constant. Otherwise, 〈Ŝ1 − RŜ0, x̂〉 would be a constant, which contradicts St has no
nontrivial riskless portfolio. It follows that, for any nontrivial risky portfolio x̂,

Var(Ŝ>1 x̂) = x̂>Σx̂ > 0.

Thus, Σ is positive definite.
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Corollary 1 shows that the standard deviation as a risk measure satisfies the properties (r1), (r1n),
(r2) and (r3s) in Assumption 2.

3.2. Efficient Frontier for the Risk-Utility Trade-Off

We note that, to increase the utility, one often has to take on more risk and, as a result, the risk
increases. The converse is also true. For example, if one allocates all the capital to the riskless bond,
then there will be no risk, but the price to pay is that one has to forgo all the opportunities to get a high
payoff on risky assets so as to reduce the expected utility. Thus, the investment decision of selecting
an appropriate portfolio becomes one of trading-off between the portfolio’s expected return and risk.
To understand such a trade-off, we define, for a set of admissible portfolios A ⊂ RM+1 in Definition 2,
the set

G(r, u; A) := {(r, µ) : ∃x ∈ A s.t. r ≥ r(x), µ ≤ E[u(S>1 x)]} ⊂ R2, (14)

on the two-dimensional risk-expected utility space for a given risk measure r and utility u. Given
a financial market St and a portfolio x, we often measure risk by observing S>1 x. The following simple
proposition is useful in linking such observations to the risk measure in Assumption 2.

Proposition 5. (Induced Risk Measure) (a) Fixing a financial market St as in Definition 1. Suppose that
ρ : RV(Ω, 2Ω, P)→ [0,+∞) is a lower semi-continuous, convex and positive homogeneous function. Moreover,
assume that ρ(S>1 x) = ρ(Ŝ>1 x̂). Then, r : A → [0,+∞), r(x) := ρ(S>1 x) is a lower semi-continuous risk
measure satisfying properties (r1), (r2) and (r3) in Assumption 2.

The following are two sufficient conditions ensuring ρ(S>1 x) = ρ(Ŝ>1 x̂) that are easy to verify:

(1) When ρ is invariant under adding constants, i.e., ρ(X) = ρ(X + c), for any X ∈ RV(Ω, 2Ω, P) and
c ∈ R. A useful example is when ρ is the standard deviation.

(2) When ρ is restricted to a set of admissible portfolios A with unit initial cost. In this case, we can see that

r̂(x̂) := ρ(R + (Ŝ1 − RŜ0)
> x̂) = ρ(S>1 x). (15)

(b) If the financial market St has no nontrivial riskless portfolio and ρ is strictly convex, then, for a set A of
admissible portfolios with unit initial cost, r̂ : A→ [0,+∞) satisfies (r2s) in Assumption 2.

Similarly, we are interested in when the expected utility x 7→ E[u(S>1 x)] of S>1 x is strictly concave
in x. Below, we provide a set of sufficient conditions guaranteeing this. The easy proof is left to
the reader.

Proposition 6. (Strict Concavity of Expected Utility) Assume that

(a) the financial market St has no nontrivial riskless portfolio,
(b) the utility function u satisfies condition (u2s) in Assumption 3, and
(c) A is a set of admissible portfolios with unit initial cost as in Definition 2.

Then, the expected utility E[u(S>1 x)] as a function of the portfolio x is upper semi-continuous and strictly
concave on A.

When r(x) = ρ(S>1 x) is induced by ρ as in Proposition 5 we also use the notation G(ρ, u, A).
Clearly, if A′ ⊂ A then G(r, u; A′) ⊂ G(r, u; A). The following assumption will be needed in concrete
applications.

Assumption 4. (Compact Level Sets) Either (a) for each µ ∈ R, {x ∈ RM+1 : µ ≤ E[u(S>1 x)], x ∈ A} is
compact or (b) for each r ∈ R, {x ∈ RM+1 : r ≥ r(x), x ∈ A} is compact.
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Proposition 7. Assume that A is a set of admissible portfolios as in Definition 2. We claim: (a) Assume that
the risk measure r satisfies (r2) in Assumption 2 and the utility function u satisfies (u2) in Assumption 3.
Then, set G(r, u; A) is convex and (r, µ) ∈ G(r, u; A) implies that, for any k > 0, (r + k, µ) ∈ G(r, u; A) and
(r, µ− k) ∈ G(r, u; A). (b) Assume furthermore that Assumption 4 holds. Then, G(r, u; A) is closed.

Proof. (a) The property (r, µ) ∈ G(r, u; A) implies that, for any k > 0, (r + k, µ) ∈ G(r, u; A) and
(r, µ− k) ∈ G(r, u; A) follows directly from the definition of G(r, u; A).

Suppose that (r1, µ1), (r2, µ2) ∈ G(r, u; A) and s ∈ [0, 1]. Then, there exists x1, x2 ∈ A such that

ri ≥ r(xi) and µi ≤ E[u(S>1 xi)], i = 1, 2.

Then, convexity of r in x yields

sr1 + (1− s)r2 ≥ sr(x1) + (1− s)r(x2) ≥ r(sx1 + (1− s)x2),

and (u2) gives

sµ1 + (1− s)µ2 ≤ sE[u(S>1 x1)] + (1− s)E[u(S>1 x2)] ≤ E[u(S>1 (sx1 + (1− s)x2))].

Thus,
s(r1, µ1) + (1− s)(r2, µ2) ∈ G(r, u; A)

so that G(r, u; A) is convex.
(b) Suppose that (rn, µn) → (r, µ), for a sequence in G(r, u; A). Then, there exists a sequence

xn ∈ A such that

rn ≥ r(xn) and µn ≤ E[u(S>1 xn)]. (16)

By Assumption 4, a subsequence of xn (denoted again by xn) converges to, say, x̄ ∈ A.
Taking limits in (16), by the upper semicontinuity of u, we arrive at

r ≥ r(x̄) and µ ≤ E[u(S>1 x̄)]. (17)

Thus, (r, µ) ∈ G(r, u; A) and hence G(r, u; A) is a closed set.

Now, we can represent a portfolio x ∈ A ⊂ RM+1 as a point (r(x),E[u(S>1 x)]) ∈ G(r, u; A) in the
two-dimensional risk-expected utility space. Investors prefer portfolios with lower risk if the expected
utility is the same or with higher expected utility given the same level of risk.

Definition 5. (Efficient Portfolio and Frontier) We say that a portfolio x ∈ A is efficient provided that there
does not exist any portfolio x′ ∈ A such that either

r(x′) ≤ r(x) and E[u(S>1 x′)] > E[u(S>1 x)]

or
r(x′) < r(x) and E[u(S>1 x′)] ≥ E[u(S>1 x)].

We call the set of images of all efficient portfolios in the two-dimensional risk-expected utility space the efficient
frontier and denote it by Ge f f (r, u; A).

The next theorem characterizes efficient portfolios in the risk-expected utility space.
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Theorem 3. (Efficient Frontier) Efficient portfolios represented in the two-dimensional risk-expected utility
space are all located in the (non vertical or horizontal) boundary of the set G(r, u; A). Moreover, consider
admissible portfolios A, B. If B ⊂ A, then

Ge f f (r, u; A) ∩ G(r, u; B) ⊂ Ge f f (r, u; B). (18)

Proof. If a portfolio x represented in the risk-expected utility space as (r, µ) is not on the (non vertical
or horizontal) boundary of the G(r, u; A), then, for ε small enough, we have either (r− ε, µ) ∈ G(r, u; A)

or (r, µ + ε) ∈ G(r, u; A). This means x can be improved. The inclusion (18) directly follows from
G(r, u; B) ⊂ G(r, u; A).

Remark 5. (Empty Efficient Frontier) If (α, 0̂) ∈ A for all α ∈ R and the increasing utility function u has
no upper bound, then for any risk measure r satisfying (r1) and (r1n) in Assumption 2, {0} ×R ⊂ G(r, u; A).
By Proposition 7 [0,+∞) × R ⊂ G(r, u; A), which implies that Ge f f (r, u; A) = ∅. Thus, practically
meaningful G(r, u; A) always correspond to sets of admissible portfolios A such that the initial cost S0 · x
for all x ∈ A is limited. Moreover, if the initial cost has a range and riskless bonds are included in the portfolio,
then we will see a vertical line segment on the µ axis and the efficient portfolio corresponds to the upper bound of
this vertical line segments. Thus, it suffices to consider sets of portfolios A with unit initial cost.

3.3. Representation of Efficient Frontier

In view of Remark 5, in this section, we will consider a set of admissible portfolios A with unit
initial cost as in Definition 2. By Proposition 7, we can view the set G(r, u; A) as an epigraph on the
expected utility-risk space or a hypograph on the risk-expected utility space. By Propositions 1 and 2,
the set G(r, u; A) naturally defines two functions γ : R→ R∪ {+∞} and ν : R→ R∪ {−∞}:

µ 7→ γ(µ) := inf{r : (r, µ) ∈ G(r, u; A)} = inf{r(x) : E[u(S>1 x)] ≥ µ, x ∈ A} ≥ 0, (19)

and

r 7→ ν(r) := sup{µ : (r, µ) ∈ G(r, u; A)} = sup{E[u(S>1 x)] : r(x) ≤ r, x ∈ A}, (20)

where we assume Assumption 4 to ensure ν is well defined, i.e., ν(r) < ∞ for all r ∈ R.

Proposition 8. (Function Related to the Efficient Frontier) Assume that the risk measure r satisfies (r2) in
Assumption 2 and the utility function u satisfies (u2) in Assumption 3. Furthermore, assume that Assumption 4
holds for a set of admissible portfolios A with unit initial cost. Then, the functions µ 7→ γ(µ) and r 7→ ν(r)
are increasing lower semi-continuous convex and increasing upper semi-continuous concave, respectively.
Moreover, for any (r0, µ0) ∈ Ge f f (r, u; A), (−∞, µ0] ⊂ dom(γ) := {µ ∈ R : γ(µ) < ∞} and [r0, ∞) ⊂
dom(ν) := {r ∈ R : ν(r) > −∞}.

Proof. The increasing property of γ and ν follows directly from the second representation in (19)
and (20), respectively.

The properties for the domains of γ and ν follow directly from Proposition 7.
The other properties of γ and ν follow directly from Propositions 1 and 2 since G(r, u; A) is closed

and convex according to Proposition 7.
Alternatively, we can also directly apply Proposition 3 to the second representation in (19) and (20)

to derive the convexity and concavity of γ and ν, respectively.

To describe a representation of the efficient frontier in the next theorem, we will use the exchange
operator P̂ : R2 → R2 defined by P̂(x1, x2) = (x2, x1).
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Theorem 4. (Representation of the Efficient Frontier) Assume that the risk measure r satisfies (r2) in
Assumption 2 and the utility function u satisfies (u2) in Assumption 3. Furthermore, assume that Assumption 4
holds for a set of admissible portfolios A with unit initial cost. Then, the efficient frontier has the following
representation

Ge f f (r, u; A) = P̂[graph(γ)] ∩ graph(ν) (21)

or equivalently

Ge f f (r, u; A) = {(γ(µ), µ) : µ ∈ dom(γ) ⊂ R} ∩ {(r, ν(r)) : r ∈ dom(ν) ⊂ R}. (22)

More specifically, setting

I := dom(ν) ∩ range(γ) = {r ∈ R : ∃µ with (r, µ) ∈ Ge f f (r, u; A)} (23)

and

J := dom(γ) ∩ range(ν) = {µ ∈ R : ∃r with (r, µ) ∈ Ge f f (r, u; A)}, (24)

we find that I and J are intervals and the representation

Ge f f (r, u; A) = P̂[graph(γ |J)] = graph(ν |I) (25)

holds, where γ : J → R and ν : I → R are continuous. Moreover, γ : J → I and ν : I → J are strictly
increasing, bijective and inverse to each other, i.e.,

γ ◦ ν(r) = r ∀r ∈ I and ν ◦ γ(µ) = µ ∀µ ∈ J. (26)

Proof. First, we show that the right-hand side of (21) is a subset of the left-hand side.
Let (r0, µ0) ∈ P̂[graph(γ)]∩ graph(ν). Since P̂[graph(γ)] := {(γ(µ), µ) : µ ∈ R} and graph(ν) =

{(r, ν(r)) : r ∈ R} necessarily (r0, µ0) ∈ R2. Note that, in particular, (22) holds. Using (r0, µ0) ∈ graph(ν),
we get from (20)

µ0 = ν(r0) = sup{E[u(S>1 x)] : r(x) ≤ r0, x ∈ A}. (27)

Similarly, from (19)

r0 = γ(µ0) = inf{r(x) : E[u(S>1 x)] ≥ µ0, x ∈ A}. (28)

With (27), we can select a sequence xn ∈ A such that r(xn) ≤ r0 and E[u(S>1 xn)] ↗ µ0.
By Assumption 4, either {x ∈ A : r(x) ≤ r0} or {x ∈ A : E[u(S>1 x)] ≥ µ0 − 1} is compact. Hence,
without loss of generality, we may assume that xn → x∗ ∈ A with r(x∗) ≤ r0 and E[u(S>1 x∗)] ≥ µ0 by
the upper semicontinuity of x 7→ E[u(S>1 x)]. Note that r(x∗) < r0 would contradict (28). Thus,
r(x∗) = r0, so that (r0, µ0) ∈ G(r, u; A). Now, consider (r1, µ1) ∈ G(r, u; A). If µ1 > µ0 and
r1 ≤ r0, then

ν(r1) := sup{µ : (r1, µ) ∈ G(r, u; A)} ≥ µ1 > µ0 = ν(r0)

contradicting that ν is increasing. On the other hand, if r1 < r0 and µ1 ≥ µ0, then

γ(µ1) := inf{r : (r, µ1) ∈ G(r, u; A)} ≤ r1 < r0 = γ(µ0),

contradicting the increasing property of γ. Thus, (r0, µ0) ∈ Ge f f (r, u; A).
To conclude (21), it remains to show that the left-hand side of (21) is a subset of the right-hand

side. Let (r0, µ0) ∈ Ge f f (r, u; A) ⊂ G(r, u; A) ⊂ R2. Then, there exists some efficient x∗ ∈ A with
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r0 = r(x∗) and µ0 = E[u(S>1 x∗)]. This means both the supremum in (27) and the infimum in (28) are
attained at x∗ so that r0 = γ(µ0) and µ0 = ν(r0). It follows that

(r0, µ0) ∈ P̂[graph(γ)] ∩ graph(ν).

Since, by Proposition 8, ν and γ are convex and concave functions, respectively, they are
continuous in the interior of its domain. When Ge f f (r, u; A) is not a single point, it is therefore
a continuous curve except for the possible finite endpoints. By Proposition 8, if Ge f f (r, u; A) contains
(r, µ), then (−∞, µ] ⊂ dom(γ) and [r, ∞) ⊂ dom(ν). Thus, if Ge f f (r, u; A) has a finite left endpoint,
we can represent it in the form (γ(µe), µe) where µe is in the interior of dom(γ). Thus, for any µ→ µe+,
(γ(µ), µ) → (γ(µe), µe) so that Ge f f (r, u; A) is right continuous. Similarly, if Ge f f (r, u; A) has a finite
right endpoint, then it is left continuous at this endpoint. Finally, representation (22) implies that the
projection of Ge f f (r, u; A) onto the r and µ axises are intervals I and J, respectively, giving (23) and (24).
Moreover, the representations in (25) follow immediately. Furthermore, since Ge f f (r, u; A) contains no
vertical or horizontal lines (see Theorem 3), γ : J → I and ν : I → J are strictly increasing. Thus, both
are injective, and surjectivity follows from (23) and (24). Finally, (26) follows from (22).

3.4. Efficient Portfolios

We now turn to analyze how the corresponding efficient portfolios behave. Ideally, we would
want that each point on the efficient trade-off frontier corresponds to exactly one portfolio. For this
purpose, we need additional assumptions on risk measures and utility functions.

Theorem 5. (Efficient Portfolio Path) Consider a financial market St as defined in Definition 1 and assume
that A is a set of admissible portfolios with unit initial cost as in Definition 2. We also assume Assumption 4
holds and

(c0) there exists some x̄ ∈ A with µ̄ := E[u(S>1 x̄)] and r̄ := r(x̄) finite.

In addition, suppose that one of the following conditions holds:

(c1) The risk measure r satisfies conditions (r1) and (r2s) in Assumption 2 and the utility function satisfies
conditions (u1) and (u2) in Assumption 3.

(c2) The risk measure r satisfies conditions (r1) and (r2) in Assumption 2 and the utility function satisfies
conditions (u1) and (u2s) in Assumption 3.

(c3) The risk measure r satisfies conditions (r1), (r1n) and (r3s) in Assumption 2 and the utility function
satisfies conditions (u1) and (u2) in Assumption 3.

Then, each point (r, µ) ∈ Ge f f (r, u; A) corresponds to a unique efficient portfolio x(r, µ) ∈ A and
the mapping (r, µ) 7→ x(r, µ) is continuous on Ge f f (r, u; A) (onesided continuous at the finite endpoint(s)).
Moreover, efficient portfolios have the continuous representation r 7→ x(r, ν(r)) and µ 7→ x(γ(µ), µ) on
intervals I defined in (23) and J defined in (24), respectively.

Proof. Note that Assumption 4 and condition (c0) ensures that Ge f f (r, u; A) is nonempty.
We first show the uniqueness of the efficient portfolio. Suppose that portfolios x1 6= x2 both

correspond to (r, µ) ∈ Ge f f (r, u; A). We consider only the case when (c1) is satisfied (and the case
when (c2) or (c3) is satisfied can be argued in a similar way). Then, by (r1) and (21), we must have
r = r̂(x̂1) = r̂(x̂2) = r(x1) = r(x2) = γ(µ) and E[u(S>1 xi)] = µ, xi ∈ A, i = 1, 2. Note that because A
has unit initial cost, x̂1 6= x̂2. Since A is convex, x∗ = (x1 + x2)/2 ∈ A. Conditions (r2s) and (u2) imply
that E[u(S>1 x∗)] ≥ µ and due to the strict convexity of r̂ by (r1), r(x∗) = r̂(x̂∗) < γ(µ), a contradiction.
Thus, the efficient portfolio corresponding to (r, µ) ∈ Ge f f (r, u; A) is unique and we denote it by x(r, µ).
The mapping (r, µ)→ x(r, µ) is well defined.

Next, we show the continuity of the mapping (r, µ) → x(r, µ). If Ge f f (r, u; A) is a single point,
there is nothing to prove. When Ge f f (r, u; A) is not a single point by Theorem 4, we can represent
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all the efficient portfolios either as the image of the mapping r 7→ x(r, ν(r)) on I or as the image
of the mapping µ 7→ x(γ(µ), µ) on J. Suppose that x(r, µ) is discontinuous at (r̄, µ̄) ∈ Ge f f (r, u; A).
We first focus on the case when Assumption 4 (a) holds. Then, for a fixed positive number ε0 > 0,
there exist sequences µn → µ̄ (µn ↗ µ̄ if µ̄ = max(J) or µn ↘ µ̄ if µ̄ = min(J)) and such that
‖x(γ(µn), µn)− x(γ(µ̄), µ̄)‖ ≥ ε0 where

E[u(S>1 x(γ(µn), µn))] ≥ µn and r(x(γ(µn), µn)) = r̂(x̂(γ(µn), µn)) = γ(µn). (29)

By Assumption 4 (a), we may assume without loss of generality that x(γ(µn), µn) converges to
some portfolio x∗ with ‖x∗ − x(γ(µ̄), µ̄)‖ ≥ ε0. Furthermore, by Proposition 8, µ 7→ γ(µ) is concave,
and by Theorem 4 continuous on J. Taking limits in (29) and using the upper semicontinuity of
x 7→ E[u(S>1 x)] yields

E[u(S>1 x∗)] ≥ µ̄ and r̂(x̂∗) = γ(µ̄) = r̄. (30)

However, the uniqueness of the efficient portfolio (30) implies that x∗ = x(γ(µ̄), µ̄), which is
a contradiction. If Assumption 4 (b) holds, we can use the mapping r 7→ x(r, ν(r)) on the interval I to
obtain a similar contradiction.

Remark 6. Interval I = dom(ν) ∩ range(γ) is always bounded from below by 0 because the risk measure
is always none negative, other than that, both I = dom(ν) ∩ range(γ) and J = dom(γ) ∩ range(ν) can be
open, closed, half open and half closed. They can be finite or infinite. Although various situations are possible,
we do have a precise characterization of their endpoints in the next proposition.

Proposition 9. Under the conditions of Theorem 5, define

rmin := inf[dom(ν) ∩ range(γ)] = inf I,

rmax := sup[dom(ν) ∩ range(γ)] = sup I,

µmin := inf[dom(γ) ∩ range(ν)] = inf J,

and
µmax := sup[dom(γ) ∩ range(ν)] = sup J.

Then,

rmin = inf{r(x) : E[u(S>1 x)] > −∞, x ∈ A} ≥ 0, (31)

µmax = sup{E[u(S>1 x)], x ∈ A} > −∞, (32)

µmin = lim
r↘rmin

sup{E[u(S>1 x)] : r(x) ≤ r, x ∈ A} ≤ µmax, (33)

and

rmax = lim
µ↗µmax

inf{r(x) : E[u(S>1 x)] ≥ µ, x ∈ A} ≥ rmin. (34)

Proof. We start with (31). Let r̄ := inf{r(x) : E[u(S>1 x)] > −∞, x ∈ A}. It is clear that, for any µ,
r̄ ≤ γ(µ) so that r̄ is a lower bound for I = dom(ν)∩ range(γ), i.e., r̄ ≤ rmin. For any r > r̄, there exist
some finite µ such that

S(µ, r) := {x ∈ A : E[u(S>1 x)] ≥ µ > −∞ and r(x) ≤ r} 6= ∅. (35)
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By Assumption 4, S(µ, r) is compact. Thus, γ(µ) ∈ [r̄, r] is attained by some x∗ ∈ A with
E[u(S>1 x∗)] ≥ µ. It follows that S(µ, γ(µ)) defined in (35) is nonempty and, therefore, compact by
Assumption 4. Thus, ν(γ(µ)) > −∞ implying γ(µ) ∈ dom(ν) ∩ range(γ) = I and hence γ(µ) ≥ rmin.
However, since r > r̄ was arbitrary, γ(µ) can be chosen close to r̄ implying r̄ ≥ rmin and in conclusion
r̄ = rmin.

Note that, since r(x) is always finite, we have

sup{E[u(S>1 x)], x ∈ A} = sup{E[u(S>1 x)], r(x) < ∞, x ∈ A}.

Thus, the proof of (32) is parallel to that of (31). Having determined rmin and µmax, we have
rmax = limµ↗µmax γ(µ) and µmin = limr↘rmin ν(r). Hence, representations (33) and (34) directly follow
from the definitions of ν and γ, respectively.

Corollary 2. Under the conditions of Theorem 5, we have

(a) rmin ∈ I if and only if µmin ∈ J, and rmax ∈ I if and only if µmax ∈ J.
(b) If rmin ∈ I then µmin = ν(rmin) and γ(µmin) = rmin.
(c) If µmax ∈ J then rmax = γ(µmax) and ν(rmax) = µmax.
(d) (i) If rmin ∈ I and µmax ∈ J then I = [rmin, rmax] and J = [µmin, µmax].

(ii) If rmin 6∈ I and µmax ∈ J then I = (rmin, rmax] and J = (−∞, µmax].
(iii) If rmin ∈ I and µmax 6∈ J then I = [rmin, ∞) and J = [µmin, µmax).
(iv) If rmin 6∈ I and µmax 6∈ J then I = (rmin, ∞) and J = (−∞, µmax).

Proof. Let rmin ∈ I ⊂ dom(ν). Then, rmin = γ(µ̄) for some µ̄ ∈ J by Theorem 4. Since γ is an
increasing function, we have µ̄ = min J. Hence, µ̄ = µmin and rmin = γ(µmin). Then, ν(rmin) = µ̄ =

µmin follows since γ ◦ ν = id is the identity mapping on I. The converse and the case for max can be
proved analogously. This proves (a), (b) and (c). Moreover, (d)(i) directly follows from (b) and (c).

If rmin 6∈ I, we show µmin = −∞. In fact, if µmin > −∞, then, for any natural number n, we can
select xn ∈ A such that r(xn) ≤ rmin + 1/n and E[u(S>1 xn)] ≥ µmin. By Assumption 4, we may assume
without loss of generality that xn → x∗ ∈ A. Taking limits as n→ ∞, we conclude that r(x∗) ≤ rmin

and E[u(S>1 x∗)] ≥ µmin and both have to be equality. Thus, (rmin, µmin) ∈ Ge f f (r, u; A), a contradiction.
This shows (d)(ii).

Analogously, one gets that µmax 6∈ J implies rmax = ∞, which shows (d)(iii) and (d)(iv).

Remark 7. Several interesting cases when Ge f f (r, u; A) has finite endpoints are discussed below:
(a) The quantity rmin is always finite and µmin may be finite as well as illustrated in Figure 1. However,

µmin may also be −∞, as Example 1 shows. A typical efficient frontier corresponding to this case is illustrated
in Figure 2.

(b) Suppose µmax is finite and attained at an efficient portfolio x(γ(µmax), µmax). Under the conditions
of Theorem 5, the portfolio κ := x(γ(µmax), µmax) is unique and independent of the risk measure. A graphic
illustration is given in Figure 3.

(c) Trade-off between utility and risk is thus implemented by portfolios x(γ(µ), µ) that trace out a curve
in the so-called leverage space introduced by Vince (2009). Note that the curve x(γ(µ), µ) depends on the risk
measure r as well as the utility function u. This provides a method for systematically selecting portfolios in the
leverage space to reduce risk exposure.

(d) If, in addition, r satisfies (r1n) in Assumption 2 and u(R) > −∞ then rmin = 0, µmin = u(R) and
x(rmin, µmin) = (1, 0̂>)> (see Figure 4).

(e) Unlike in (b), µmax finite can also happen when the efficient frontier is unbounded (see Example 2).
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r

µ

G(r, u; A)

Ge f f (r, u; A)

Figure 1. Efficient frontier with both rmin and µmin are finite and attained.

r

µ

G(r, u; A)

Ge f f (r, u; A)

Figure 2. Efficient frontier with µmin = −∞.

r

µ

G(r, u; A)

Ge f f (r, u; A)

Figure 3. Efficient frontier when rmin > 0 and µmax is finite and attained as maximum.

r

µ

G(r, u; A)

Ge f f (r, u; A)

Figure 4. Efficient frontier with (1, 0̂>)> ∈ A.
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Example 1. (for µmin = −∞) Consider a portfolio problem with the log utility on a financial market that
contains no bond and two risky assests (i.e., M = 2)

ν(r) := sup
x̂∈R2
{E[ln(Ŝ>1 x̂)] : r̂(x̂) ≤ r, Ŝ>0 x̂ = 1}. (36)

The financial market Ŝt = (S1
t , S2

t )
> (since the riskless asset is not involved in (36), it is irrelevant to the

problem) is specified as follows: Ŝ0 = [1, 1]>, Ŝ1 is a random vector on the sample space Ω = {ω1, ω2, ω3}
with P(ω1) = P(ω2) = P(ω3) = 1/3 and a payoff matrix

[Ŝ1(ω1), Ŝ1(ω2), Ŝ1(ω3)] =

[
1 3 0.5

0.5 0.8 1.2

]
. (37)

Note that, for instance with R = 1, this market has no nontrivial riskless portfolio. We use the risk measure

r̂(x̂) :=
√
(x1 − 2x2)2 + 100(2x1 + x2)2, (38)

which satisfies (r1), (r1n) and (r3s) and, therefore, Assumption 4(b) holds. Clearly, ν(̂r([1, 0]>)) > 0 and finite.
Notice that on the feasible set Ŝ>0 x̂ = 1, i.e., x2 = 1− x1. It follows that the risk measure

r̂(x̂) :=
√
(3x1 − 2)2 + 100(x1 + 1)2

attains a minimum rm = 50
109

√
109 at x̂m = (−94/109, 203/109)>. Observing Ŝ>1 (ω2)x̂m < 0, we must

have rmin > rm and
µmin = lim

r↘rmin
ν(r) = −∞.

Example 2. (for µmax < ∞ and rmax = ∞ ) Consider the same risk measure as in the previous example, but
use instead the utility function u(t) = 1− e−t. We analyze

ν(r) := sup
x̂∈R2
{E[u(Ŝ>1 x̂)] : r̂(x̂) ≤ r, Ŝ>0 x̂ = 1}, (39)

where the financial market is defined by

[Ŝ1(ω1), Ŝ1(ω2), Ŝ1(ω3)] =

[
1 3.6 0.5

0.5 1.2 0.3

]
(40)

on the sample space Ω = {ω1, ω2, ω3} with P(ω1) = P(ω2) = P(ω3) = 1/3. Again, on the feasible set
Ŝ>0 x̂ = 1, i.e., x2 = 1− x1. The portfolio as a function of x1 implies

(Ŝ>1 (ωi)[x1, 1− x1]
>)i=1,2,3 = [0.5, 1.2, 0.3] + x1[0.5, 2.4, 0.2].

As x1 → ∞, we can see that r̂(x̂) → ∞ and E[u(Ŝ>1 x̂)] → 1. Hence, rmax = ∞ and µmax = 1 < ∞.
Notice that (40) with, e.g., R = 1, has an arbitrage portfolio x̂∗ = (1,−1)>, but the existence of an arbitrage
seems to be necessary in constructing such an example.

4. Markowitz Portfolio Theory and CAPM Model

Let us now turn to applications of the general theory. We show that the results in the previous
section provide a general unified framework for several familiar portfolio theories. They are Markowitz
portfolio theory, the CAPM model, growth optimal portfolio theory and leverage space portfolio
theory. Of course, when dealing with concrete risk measures and expected utilities related to these
concrete theories, an additional helpful structure in the solutions often emerge. Although many
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different expositions of these theories do already exist in the literature, for the convenience of readers,
we include brief arguments using Lagrange multiplier methods. In this entire section, we will assume
that the market St from Definition 1 has no nontrivial riskless portfolio.

4.1. Markowitz Portfolio Theory

Markowitz portfolio theory that considers only risky assets (see Markowitz (1959)), can be
understood as a special case of the framework discussed in Section 3. The risk measure is the standard
deviation σ and the utility function is the identity function. Thus, we face the problem

min σ(Ŝ>1 x̂) (41)

Subject to E[Ŝ>1 x̂] ≥ µ, Ŝ>0 x̂ = 1.

We assume E[Ŝ1] is not proportional to Ŝ0, that is, for any α ∈ R,

E[Ŝ1] 6= αŜ0. (42)

Since the variance is a monotone increasing function of the standard deviation, we can minimize
half of the variance for convenience:

min
x̂∈RM

r̂(x̂) :=
1
2

Var(Ŝ>1 x̂) =
1
2

σ2(Ŝ>1 x̂) =
1
2

x̂>Σx̂ (43)

Subject to E[Ŝ>1 x̂] ≥ µ, Ŝ>0 x̂ = 1.

Optimization problem (43) is already in the form (19) with A = {x ∈ RM+1 : S>0 x = 1, x0 = 0}.
We can check if condition (c1) in Theorem 5 is satisfied. Moreover, Corollary 1 implies that Σ is positive
definite since St has no nontrivial riskless portfolio. Hence, the risk function r̂ has compact level
sets. Thus, Assumption 4 is satisfied and Theorem 5 is applicable. Let x̂(µ) be the optimal portfolio
corresponding to µ. Consider the Lagrangian

L(x̂, λ) :=
1
2

x̂>Σx̂ + λ1(µ− x̂>E[Ŝ1]) + λ2(1− x̂>Ŝ0), (44)

where λ1 ≥ 0. Thanks to Theorem 1, we have

0 = ∇x̂L = Σx̂(µ)− (λ1E[Ŝ1] + λ2Ŝ0). (45)

In other words,

x̂(µ) = Σ−1(λ1E[Ŝ1] + λ2Ŝ0). (46)

We must have λ1 > 0 because otherwise x̂(µ) would be unrelated to the payoff Ŝ1.
The complementary slackness condition implies that E[Ŝ>1 x̂(µ)] = µ. Left multiplying (45) by x̂>(µ),
we have

σ2(µ) = λ1µ + λ2. (47)

To determine the Lagrange multipliers, we need the numbers α = E[Ŝ1]
>Σ−1E[Ŝ1],

β = E[Ŝ1]
>Σ−1Ŝ0 and γ = Ŝ>0 Σ−1Ŝ0. Left multiplying (46) by E[Ŝ1]

> and Ŝ>0 , we have

µ = λ1α + λ2β (48)
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and

1 = λ1β + λ2γ. (49)

Solving (48) and (49), we derive

λ1 =
γµ− β

αγ− β2 and λ2 =
α− βµ

αγ− β2 , (50)

where

αγ− β2 = det

(
[E[Ŝ>1 ], Ŝ>0 ]Σ−1

[
E[Ŝ1]

Ŝ0

])
> 0, (51)

since Σ−1 is positive definite and condition (42) holds. Substituting (50) into (47), we see that the
efficient frontier is determined by the curve

σ(µ) =

√
γµ2 − 2βµ + α

αγ− β2 =

√
γ

αγ− β2

(
µ− β

γ

)2
+

1
γ
≥ 1√

γ
, (52)

usually referred to as the Markowitz bullet due to its shape. A typical Markowitz bullet is shown in
Figure 5 with an asymptote

µ =
β

γ
+ σ(µ)

√
αγ− β2

γ
. (53)

σ

µ

β/γ

1√
γ

Figure 5. Markowitz Bullet.

Note that G( 1
2 Var, id, {S>0 x = 1, x0 = 0}) = G(σ, id, {S>0 x = 1, x0 = 0}). Thus, relationships (52)

and (53) describe the efficient frontier Ge f f (σ, id, {S>0 x = 1, x0 = 0}) as in Definition 5. In addition,
note that (52) implies that µmin = β/γ and rmin = 1/

√
γ. Thus, as a corollary of Theorem 5, we have

Theorem 6. (Markowitz Portfolio Theorem) Assume that the financial market St has no nontrivial riskless
portfolio and E[Ŝ1] is not proportional to Ŝ0 (see (42)). The Markowitz efficient portfolios of (41) represented in
the (σ, µ)−plane are given by

Ge f f (σ, id; {S>0 x = 1, x0 = 0}).

They correspond to the upper boundary of the Markowitz bullet given by

σ(µ) =

√
γµ2 − 2βµ + α

αγ− β2 , µ ∈
[

β

γ
,+∞

)
.
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The optimal portfolio x̂(µ) can be determined by (46) and (50) as

x̂(µ) = µ
Σ−1(γE[Ŝ1]− βŜ0)

αγ− β2 +
Σ−1(αŜ0 − βE[Ŝ1])

αγ− β2 , (54)

which is affine in µ.

The structure of the optimal portfolio in (54) implies the well known two fund theorem derived
by Tobin (1958).

Theorem 7. (Two Fund Theorem) Select two distinct portfolios on the Markowitz efficient frontier. Then, any
portfolio on the Markowitz efficient frontier can be represented as the linear combination of these two portfolios.

4.2. Capital Asset Pricing Model

The capital asset pricing model (CAPM) is a theoretical equilibrium model independently
proposed by Lintner (1965), Mossin (1966), Sharpe (1964) and Treynor (1999) for pricing a risky
asset according to its expected payoff and market risk, often referred to as the beta. The core of the
capital asset pricing model is including a riskless bond in the Markowitz mean-variance analysis. Thus,
we can apply the general framework in Section 3 with the same setting as in Section 4.1. Similar to the
previous section, we can consider the equivalent problem of

min
x∈RM+1

1
2

σ2(S>1 x) =
1
2

x̂>Σx̂ =: r̂(x̂) (55)

Subject to E[S>1 x] ≥ µ, S>0 x = 1.

Similar to the last section problem (55) is in the form (19) with A = {x ∈ RM+1 : S>0 x = 1}.
We can check that condition (c1) in Theorem 5 is satisfied. Again, the risk function r̂ has compact
level sets since Σ is positive definite. Thus, Assumption 4 is satisfied and Theorem 5 is applicable.
The Lagrangian of this convex programming problem is

L(x, λ) :=
1
2

x̂>Σx̂ + λ1(µ− x>E[S1]) + λ2(1− x>S0), (56)

where λ1 ≥ 0. Again, we have

0 = ∇xL = (0, Σx̂(µ))− (λ1E[S1] + λ2S0). (57)

Using S0
1 = R and S0

0 = 1, the first component of (57) implies

λ2 = −λ1R, (58)

so that (57) becomes

0 = ∇xL = (0, Σx̂(µ))− λ1(E[S1]− RS0). (59)

Clearly, λ1 > 0 for x̂(µ) 6= 0. Using the complementary slackness condition E[S>1 x(µ)] = µ,
we derive

σ2(µ) = x̂>(µ)Σx̂(µ) = λ1(µ− R), (60)

by left multiplying x>(µ) in (59). Solving x̂(µ) from (59), we have

x̂(µ) = λ1Σ−1(E[Ŝ1]− RŜ0). (61)
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Left multiplying with E[Ŝ>1 ] and Ŝ>0 and using the α, β and γ introduced in the previous section,
we derive

µ− x0(µ)R = λ1(α− Rβ) (62)

and

1− x0(µ) = λ1(β− Rγ), (63)

respectively. Multiplying (63) by R and subtracting it from (62), we get

µ− R = λ1(α− 2βR + γR2). (64)

Combining (60) and (64), we arrive at

σ2(µ) =
(µ− R)2

α− 2βR + γR2 . (65)

Clearly, efficient portfolios only occur for µ ≥ R, since, for µ = R, the pure bond portfolio (1, 0̂>)>

is the only efficient (and risk free) portfolio. Relation (65) defines a straight line on the (σ, µ)-plane

σ(µ) =
µ− R√

∆
or µ = R + σ(µ)

√
∆, (66)

where ∆ := α− 2βR + γR2 > 0 if

E[Ŝ1]− RŜ0 6= 0̂, (67)

since Σ is positive definite. The line given in (66) is called the capital market line.
In addition, combining (61), (63) and (64), we have

x>(µ) = ∆−1[α− βR− µ(β− γR), (µ− R)(E[Ŝ>1 ]− RŜ>0 )Σ−1]. (68)

Again, we see the affine structure of the solution. Note that, although the computation is done in
terms of the risk function r̂(x̂) = 1

2 x̂>Σx̂, relationships in (66) are in terms the risk function σ(S>1 x).
Thus, they describe the efficient frontier Ge f f (σ, id; {S>0 x = 1}) as in Definition 5. In summary, we have

Theorem 8. (CAPM) Assume that the financial market St of Definition 1 has no nontrivial riskless portfolio.
Moreover, assume that condition (67) holds. The efficient portfolios for the CAPM model Ge f f (σ, id; {S>0 x = 1})
represented in the (σ, µ)-plane are a straight line passing through (0, R) corresponding to the portfolio of pure
risk free bond. The optimal portfolio x(µ) can be determined by (68), which is affine in µ and can be represented
as points in the (σ, µ)-plane as located on the capital market line

µ = R + σ
√

∆, σ ≥ 0.

In particular, when µ = R and µ = (α− βR)/(β− γR), we derive, respectively, the portfolio
(1, 0̂>)> that contains only the riskless bond and the portfolio (0, (E[Ŝ>1 ]− RŜ>0 )Σ−1/(β− γR))> that
contains only risky assets. We call this portfolio the market portfolio and denote it xM. The market
portfolio corresponds to the coordinates

(σM, µM) =

( √
∆

β− γR
, R +

∆
β− γR

)
. (69)
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Since the risk σ is non negative, we see that the market portfolio exists only when

β− γR > 0.

This condition is

Ŝ>0 Σ−1(E[Ŝ1]− RŜ0) > 0. (70)

By Theorem 3,

(σM, µM) ∈ Ge f f (σ, id; {S>0 x = 1}) ∩ G(σ, id; {S>0 x = 1, x0 = 0}) (71)

⊂ Ge f f (σ, id; {S>0 x = 1, x0 = 0}).

Thus, the market portfolio has to reside on the Markowitz efficient frontier. Moreover, by (68),
we can see that the market portfolio xM is the only portfolio on the CAPM efficient frontier that consists
of purely risky assets. Thus,

Ge f f (σ, id; {S>0 x = 1}) ∩ G(σ, id; {S>0 x = 1, x0 = 0}) = {(σM, µM)}, (72)

so that the capital market line is tangent to the Markowitz bullet at (σM, µM) as illustrated in Figure 6.

σ

µ

(σM, µM)

(0, R)

Figure 6. Capital Market Line and Markowitz Bullet.

Remark 8. Observe that Σ−1(E[Ŝ1]−RŜ0) is proportional to the optimal portfolio in (61). Thus, condition (70)
means that any optimal portfolio should have an positive initial cost. Note that (70) also implies (67).

The affine structure of the solutions is summarized in the following one fund theorem
Sharpe (1964); Tobin (1958).

Theorem 9. (One Fund Theorem) Assume that the financial market St has no nontrivial riskless portfolio.
Moreover, assume that condition (70) holds. All the optimal portfolios in the CAPM model (55) are generalized
convex combinations of the riskless bond and the market portfolio xM = (0, (E[Ŝ>1 ]− RŜ>0 )Σ−1/(β− γR))>,
which corresponds to (σM, µM). The capital market line is tangent to the boundary of the Markowitz bullet at
the coordinates of the market portfolio (σM, µM) and intercepts the µ-axis at (0, R) (see Figure 6).

Alternatively, we can write the slope of the capital market line as

√
∆ =

µM − R
σM

. (73)
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This quantity is called the price of risk and we can rewrite the equation for the capital market
line (66) as

µ = R +
µM − R

σM
σ. (74)

5. Affine Efficient Frontier for Positive Homogeneous Risk Measure

The affine dependence of the efficient portfolio on the return µ observed in the CAPM still holds when
the standard deviation is replaced by the more general deviation measure (see Rockafellar et al. (2006)).
In this section, we derive this affine structure using the general framework discussed in Section 3 and
provide a proof different from that of Rockafellar et al. (2006). Moreover, we provide a sufficient
condition for the existence of the master fund in the one fund theorem generalizing condition
β− Rγ > 0 (see (70)) for the existence of the market portfolio in the CAPM model. We also construct
a counter-example showing that the two fund theorem (Theorem 7) fails in this setting. Let us consider
a risk measure r that satisfies (r1), (r1n), (r2) and (r3) in Assumption 2 and the related problem of
finding efficient portfolios becomes

min
x∈RM+1

r(x) = r̂(x̂) (75)

Subject to E[S>1 x] ≥ µ, S>0 x = 1.

Since, for µ = R, there is an obvious solution x(R) = (1, 0̂>)> corresponding to
r(x(R)) = r̂(0̂) = 0, we have rmin = 0 and µmin = R. In what follows, we will only consider µ > R.
Moreover, we note that for r̂ satisfying the positive homogeneous property (r3) in Assumption 2,
ŷ ∈ ∂r̂(x̂) implies that

r̂(x̂) = 〈ŷ, x̂〉. (76)

In fact, for any t ∈ (−1, 1),

t̂r(x̂) = r̂((1 + t)x̂)− r̂(x̂) ≥ t〈ŷ, x̂〉, (77)

and (76) follows. Now we can state and prove the theorem on affine dependence of the efficient
portfolio on the return µ.

Theorem 10. (Affine Efficient Frontier for Positive Homogeneous Risk Measures) Assume that the risk
measure r satisfies assumptions (r1), (r1n), (r2) and (r3) in Assumption 2 with A = {x ∈ RM+1 : S>0 x = 1}
and Assumption 4 (b) holds. Furthermore, assume

E[Ŝ1]− RŜ0 6= 0̂. (78)

Then, there exists an efficient portfolio x1 corresponding to (r1, µ1) := (r(x1), R + 1) on the efficient frontier for
problem (75) such that the efficient frontier for problem (75) in the risk-expected return space is a straight line that
passes through the points (0,R) corresponding to a portfolio of pure bond (1, 0̂>)> and (r1, µ1) corresponding
to the portfolio x1, respectively. Moreover, the straight line connecting (1, 0̂>)> and x1 in the portfolio space,
namely for µ ≥ R,

x(µ) = (µ1 − µ)(1, 0̂>)> + (µ− R)x1 (79)

represents a set of efficient portfolios for (75) that corresponds to

(γ(µ), µ) = ((µ− R)r1, µ) (80)
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in the risk-expected return space (see Definition 5 and (19)).

Proof. The Lagrangian of this convex programming problem (75) is

L(x, λ) := r(x) + λ1(µ− x>E[S1]) + λ2(1− x>S0), (81)

where λ1 ≥ 0 and λ2 ∈ R.
Condition (78) implies that there exists some m̄ ∈ {1, 2, . . . , M}, such that E[Sm̄

1 ] 6= RSm̄
0 . Hence,

for any µ, there exists a portfolio of the form y = (y0, 0, . . . , 0, ym̄, 0, . . . , 0)> satisfying

[
E[S>1 y]

S>0 y

]
=

[
Ry0 +E[Sm̄

1 ]ym̄

y0 + Sm̄
0 ym̄

]
=

[
R E[Sm̄

1 ]

1 Sm̄
0

] [
y0

ym̄

]
=

[
µ

1

]
(82)

because the matrix in (82) is invertible. Thus, for any µ ≥ R, Assumption 4 (b) with A = {x ∈ RM+1 :
S>0 x = 1} and condition (78) ensure the existence of an optimal solution to problem (75).

Denoting one of those solutions by x(µ) (may not be unique), we have

γ(µ) = r(x(µ)) = r̂(x̂(µ)). (83)

Fixing µ1 = R + 1 > R, denote x1 = x(µ1). Then,

λ1E[S1] + λ2S0 ∈ ∂r(x1). (84)

Since r is independent of x0, we have

λ1E[S0
1] + λ2S0

0 = 0 or λ2 = −λ1R. (85)

Substituting (85) into (84) we have

λ1E[Ŝ1 − RŜ0] ∈ ∂r̂(x̂1) (86)

so that, for all x̂ ∈ RM,

r̂(x̂)− r̂(x̂1) ≥ λ1E[(Ŝ1 − RŜ0)
>(x̂− x̂1)] = λ1(E[(Ŝ1 − RŜ0)

> x̂]− (µ1 − R)) (87)

because, at the optimal solution x̂1, the constraint is binding. Using (r3), it follows from (76) and
(86) that

r̂(x̂1) = λ1E[(Ŝ1 − RŜ0)
> x̂1] = λ1(µ1 − R) = λ1. (88)

Thus, we can write (87) as

r̂(x̂) ≥ r̂(x̂1)E[(Ŝ1 − RŜ0)
> x̂]. (89)

For t ≥ 0, define the homotopy between x0 := (1, 0̂>)> and x1

xt := (tx1
0 + (1− t), tx̂1). (90)

We can verify that S>0 xt = 1 and E[S>1 xt] = R + t so that

E[(S1 − RS0)
>xt] = t. (91)
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On the other hand, it follows from assumptions (r1) and (r3) that

r(xt) = r̂(tx̂1) = t r̂(x̂1). (92)

Thus, for any x satisfying S>0 x = 1 and E[S>1 x] ≥ R + t, it follows from (89) that

r̂(x̂) ≥ r̂(x̂1)t. (93)

For any µ > R, letting tµ := µ − R, we have µ = R + tµ and hence xtµ = x(µ). Thus,
by inequality (93), we have r̂(x̂(µ)) ≥ tµ r̂(x̂1). On the other hand, x(µ) is an efficient portfolio
implies that r̂(x̂(µ)) ≤ r̂(x̂tµ) = tµ r̂(x̂1) yielding equality

γ(µ) = r̂(x̂(µ)) = r̂(x̂tµ) = tµ r̂(x̂1) = (µ− R)̂r(x̂1), for µ ≥ R. (94)

In other words, γ(µ) is an affine function in µ. In addition, we conclude that points (γ(µ), µ) on
this efficient frontier correspond to efficient portfolios

x(µ) = xtµ =
(
(µ− R)x1

0 + µ1 − µ, (µ− R)x̂1
)
= (µ1 − µ)(1, 0̂>)> + (µ− R)x1 (95)

as an affine mapping of the parameter µ into the portfolio space showing (79).
In addition, using r1, we can write (94) as

γ(µ) = r1(µ− R). (96)

That is to say, the efficient frontier of (75) in the risk-expected return space is given by the
parameterized straight line (80).

Corollary 3. In Theorem 10, if instead of (r3) the stronger condition (r3s) holds, then the portfolio x1 constructed
there is unique and, therefore, for each fixed µ ≥ R, the efficient portfolio x(µ) in (79) is unique.

Proof. Apply Theorem 5 with condition (c3).

Theorem 10 and Corollary 3 manifest a full generalization of Theorem 8 on the capital market
pricing model to positive homogeneous risk measures. Note that the necessary conditions on the
financial market in (67) and (78) are the same.

Remark 9. (a) Clearly, xtR corresponds to the portfolio (1, 0̂>)> with γ(R) = r̂(0̂) = 0. If x1
0 < 1, setting

µM := µ1−Rx1
0

1−x1
0

and rM := γ(µM) = r̂(x̂1)/(1− x1
0), we see that (rM, µM) on the efficient frontier corresponds

to a purely risky efficient portfolio of (75)

xM := xtµM =

(
0,

1
1− x1

0
(x̂1)>

)>
. (97)

Since xM belongs to the image of the affine mapping in (95), the family of efficient portfolios as described
by the affine mapping in (95) contains both the pure bond (1, 0̂>)> and the portfolio xM that consists only of
purely risky assets. In fact, we can represent the affine mapping in (95) as a parametrized line passing through
(1, 0̂>)> and xM as

xtµ :=
(

1− µ− R
µM − R

)
(1, 0̂>)> +

µ− R
µM − R

xM, for µ ≥ R, (98)

which is a similar representation of the efficient portfolios as (79). The portfolio xM is called a master fund in
Rockafellar et al. (2006). When r = σ, it is the market portfolio in the CAPM. For a general risk measure r
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satisfying conditions (r1), (r1n), (r2) and (r3) in Assumption 2, the master funds xM are not necessarily unique.
However, all master funds correspond to the same point (rM, µM) in the risk-expected return space.

(b) We can also consider problem (75) on the set of admissible portfolios of purely risky assets, namely
Ge f f (r, id; {S>0 x = 1, x0 = 0}). Then, similar to the relationship between the Markowitz efficient frontier and
the capital market line, it follows from Theorem 10 that

G(r, id; {S>0 x = 1, x0 = 0}) ∩ Ge f f (r, id; {S>0 x = 1}) = {(rM, µM)}, (99)

as illustrated in Figure 7.
(c) If x1

0 = 1, then the efficient portfolios in (79) are related to µ in a much simpler fashion

(1, 0̂>)> + (µ− R)(0, (x̂1)>)>. (100)

There is no master fund as observed in Rockafellar et al. (2006) in this case. In the language of Rockafellar et al. (2006),
the portfolio x1 is called a basic fund. Thus, Theorem 10 recovers the results in Theorem 2 and Theorem 3 in
Rockafellar et al. (2006) with a different proof and a weaker condition (condition (78) is weaker than (A2) on page
752 of Rockafellar et al.). However, Corollary 3 is a significant improvement yielding uniqueness in case (r3s) holds.
This will help below when we derive a sufficient condition for the existence of a master fund, which is solely depending
on the risk measure and the financial market.

r

µ

(rM, µM)

(0, R)

Figure 7. Capital Market Line for (75) when 1− x1
0 > 0.

We see in Remark 9 that the existence of a master fund depends on whether or not x1
0 < 1.

Below, we characterize this condition in terms of f (x̂) := [̂r(x̂)]2/2 and its Fenchel conjugate f ∗ :
RM → R, defined by f ∗(ŷ) := supx̂∈RM{〈ŷ, x̂〉 − f (x̂)}.

Theorem 11. Under the conditions of Corollary 3, assuming that f ∗ is differentiable at E[Ŝ1 − RŜ0], a master
fund exists if and only if Ŝ>0 ∇ f ∗(E[Ŝ1 − RŜ0]) > 0.

Proof. Combining (86) and (88) and using the chain rule, we can see that

[̂r(x̂1)]2E[Ŝ1 − RŜ0] ∈ ∂ f (x̂1). (101)

By virtue of the Fenchel–Young equality (see (Carr and Zhu forthcoming, Proposition 1.3.1)),
we have

f (x̂1) + f ∗([̂r(x̂1)]2E[Ŝ1 − RŜ0]) = 〈[̂r(x̂1)]2E[Ŝ1 − RŜ0], x̂1〉, (102)

and

∇ f ∗([̂r(x̂1)]2E[Ŝ1 − RŜ0]) = x̂1. (103)
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It follows that x1
0 < 1 is equivalent to

0 < 1− x1
0 = Ŝ>0 x̂1 = Ŝ>0 ∇ f ∗([̂r(x̂1)]2E[Ŝ1 − RŜ0]) = [̂r(x̂1)]4Ŝ>0 ∇ f ∗(E[Ŝ1 − RŜ0]). (104)

The last equality is because f (tx̂) = t2 f (x̂) implies f ∗(tŷ) = t2 f ∗(ŷ).

Remark 10. We refer to Borwein and Vanderwerff (2009) for conditions ensuring the differentiability of f ∗ in
Theorem 11. In the CAPM model f (x̂) = 1

2 x̂>Σx̂ and f ∗(ŷ) = 1
2 ŷ>Σ−1ŷ. Thus, the master fund exists if and

only if
β− Rγ = Ŝ>0 Σ−1E[Ŝ1 − RŜ0] > 0,

which exactly recovers the condition in (70) for the existence of a market portfolio in the one fund theorem
(cf. Theorem 9).

In general, for a risk measure with (r1), (r1n) and (r3s), if f (x̂) = [r(x̂)]2/2 is C2, then f (x̂) = 1
2 x̂>Σ̂x̂

where Σ̂ is the Hessian of f at 0̂. Thus, a criterion for the existence of a master fund similar to (70) holds with Σ
replaced by Σ̂.

Another very useful case is r̂(x̂) = ‖x̂‖max. It is not hard to show that the conjugate of f (x̂) = ‖x̂‖2
max/2

is f ∗(ŷ) = ‖ŷ‖2
1/2. In fact, it follows from the Cauchy inequality that ‖x̂‖2

max/2 + ‖ŷ‖2
1/2 ≥ 〈x̂, ŷ〉. Thus,

‖ŷ‖2
1/2 ≥ f ∗(ŷ). (105)

On the other hand, for any ŷ = (y1, . . . , yM)>, defining x̂t := t(sgn(y1), . . . , sgn(yM))>, we have

〈x̂t, ŷ〉 − ‖x̂t‖2
max/2 = t‖ŷ‖1 − t2/2. (106)

The maximum of the expression in (106) as a function of t is ‖ŷ‖2
1/2. It follows that

‖ŷ‖2
1/2 ≤ f ∗(ŷ). (107)

Combining (105) and (107), we arrive at ‖ŷ‖2
1/2 = f ∗(ŷ). This example illustrates that using r̂2/2 and its

conjugate often helps. In fact, f ∗ is differentiable everywhere except for the coordinate axises. However, ‖ · ‖∗max
is an indicator function on the closed set {ŷ : ‖ŷ‖1 ≤ 1} (see (Carr and Zhu forthcoming, Proposition 2.4.2)),
whose derivative is 0 at any differentiable point and, therefore, is not useful for our purpose.

Since the standard deviation satisfies Assumptions (r1), (r1n), (r2) and (r3s), the result above is
a generalization of the relationship between the CAPM model and the Markowitz portfolio theory.
We note that the standard deviation is not the only risk measure that satisfies these assumptions.
For example, some forms of approximation to the expected drawdowns also satisfy these assumptions
(cf. Maier-Paape and Zhu (2017)).

Theorem 10 and Corollary 3 are a full generalization of Theorem 8 on the CAPM and Theorem 11 is
a generalization of the one fund theorem in Theorem 9. On the other hand, in Rockafellar et al. (2006),
footnote 10, it has been noted that a similar generalization of the two fund theorem (Theorem 7) is not to
be expected. We construct a concrete counter-example below.

Example 3. (Counter-example to a Generalized Two Fund Theorem) Let us consider, for example,

min
x̂∈R3

r̂(x̂) (108)

Subject to E[Ŝ>1 x̂] ≥ µ, Ŝ>0 x̂ = 1,

with M = 3.
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Choose all Sm
0 = 1, so that Ŝ>0 x̂ = 1 is x1 + x2 + x3 = 1. Choose the payoff S1 such that E[Ŝ>1 x̂] = x1 so

that x1 = µ at the optimal solution. Finally, let us construct r̂(x̂) so that the optimal solution x̂(µ) is not affine
in µ.

We do so by constructing a convex set G with 0 ∈ intG (interior of G) and then set r̂(x̂) = 1 for x̂ ∈ ∂G
(boundary of G) and extend r̂ to be positive homogeneous. Then, (r1), (r1n), (r2) and (r3) are satisfied.

Now, let us specify G. Take the convex hull of the set [−5, 5]× [−1, 1]× [−1, 1] and five other points.
One point is E = (10, 0, 0)> and the other four points A, B, C and D, are the corner points of a square that lies
in the plane x1 = 9 and has unit side length. To obtain that square, take the standard square with unit side
length in x1 = 9, i.e., the square with corner points (9,±1/2,±1/2)> and rotate this square by 30 degrees
counter clockwise in the x2x3-plane. Doing some calculation, one gets:

A = (9, (−1 +
√

3)/4, (1 +
√

3)/4)>, B = (9, (−1−
√

3)/4, (−1 +
√

3)/4)>,

C = (9, (1−
√

3)/4,−(1 +
√

3)/4))>, D = (9, (1 +
√

3)/4), (1−
√

3)/4))>.

Obviously for µ = 1, the optimal solution is x̂(1) = (1, 0, 0)> with r̂(x̂(1)) = 1/10. For µ = 1 + ε

with ε > 0 small, we have x̂(1 + ε) = (1 + ε, ε
√

3(+1 −
√

3)/6, ε
√

3(−1 −
√

3)/6))> (they lie on
the ray through a point on the convex combination of C and (10, 0, 0)>), and, for µ = 1 + d with
d > 0 large, we have x̂(1 + d) = (1 + d,−d/2,−d/2)> (they lie on the ray through a point on the set
{(x1,−1,−1)> : x1 ∈ (2, 5)}. Therefore, x̂(µ) cannot be affine in µ.

6. Growth Optimal and Leverage Space Portfolio

Growth portfolio theory is proposed by Lintner (1965) and is also related to the work of
Kelly (1956). It is equivalent to maximizing the expected log utility:

max
x∈RM+1

E[ln(S>1 x)] (109)

Subject to S>0 x = 1.

Remark 11. Problem (109) is equivalent to

max
x̂∈RM

E[ln(R + (Ŝ1 − RŜ0)
> x̂)]. (110)

The following theorem establishes the existence of the growth optimal portfolio as a corollary of
our results in Section 3. This theorem reconfirms previous results in Hermes and Maier-Paape (2017)
with somewhat different conditions and a shorter proof.

Theorem 12. (Growth Optimal Portfolio) Assume that the financial market St of Definition 1 has no
nontrivial riskless portfolio. Then, problem (109) has a unique optimal portfolio, which is often referred to as the
growth optimal portfolio and is denoted κ ∈ RM+1.

To prove Theorem 12, we need the following lemma.

Lemma 2. Assume that the financial market St of Definition 1 has no nontrivial riskless portfolio. Let u be
a utility function satisfying (u3) in Assumption 3. Then, for any µ ∈ R,

{x ∈ RM+1 : E[u(S>1 x)] ≥ µ, S>0 x = 1} (111)

is compact (and possibly empty in some cases).
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Proof. Since, by Assumption 3, u is upper semi-continuous, the set in (111) is closed. Thus, we need
only to show it is also bounded. Assume the contrary that there exists a sequence of portfolios xn with

S>0 xn = 1 (112)

and ‖xn‖ → ∞ satisfying

E[u(S>1 xn)] ≥ µ. (113)

Equation (112) implies that ‖x̂n‖ → ∞. Then, without loss of generality, we may assume xn/‖x̂n‖
converges to x∗ = (x∗0 , (x̂∗)>)> where ‖x̂∗‖ = 1. Condition (u3) and (113) for arbitrary µ ∈ R imply
that, for each natural number n,

S>1 xn ≥ 0. (114)

Dividing (112) and (114) by ‖x̂n‖ and taking limits as n→ ∞, we derive S>0 x∗ = 0 and S>1 x∗ ≥ 0.
Thus, we have

(Ŝ1 − RŜ0)
> x̂∗ ≥ 0, (115)

and thus x∗ is a nontrivial riskless portfolio, which is a contradiction.

Proof of Theorem 12. We can verify that the utility function u = ln satisfies conditions (u1), (u2s),
(u3) and (u4). In addition, {x : E[ln(S>1 x)] ≥ ln(R), S>0 x = 1} 6= ∅ because it contains (1, 0̂>)>. Thus,
Lemma 2 implies that problem (109) has at least one solution and

µmax = max
x∈RM+1

{E[ln(S>1 x)] : S>0 x = 1}

is finite. By Proposition 6, x 7→ E[ln(S>1 x)] is strictly concave. Thus, problem (109) has a unique
optimal portfolio.

Assuming one repeatedly invests in the identical one period financial market, the growth
optimal portfolio has the nice property that it provides the fastest compounded growth of the
capital. By Remark 7(b), it is independent of any risk measures. In the special case that all the
risky assets are representing a certain gaming outcome, κ is the Kelly allocation in Kelly (1956).
However, the growth portfolio is seldomly used in investment practice for being too risky. The book
(MacLean et al. 2009) provides an excellent collection of papers with chronological research on this
subject. These observations motivated Vince (2009) to introduce his leverage space portfolio to scale
back from the growth optimal portfolio. Recently, De Prado et al. (2013); Vince and Zhu (2015) further
introduce systematical methods to scale back from the growth optimal portfolio by, among other ideas,
explicitly accounting for limiting a certain risk measure. The analysis in Vince and Zhu (2015) and
De Prado et al. (2013) can be phrased as solving

γ(µ) := inf{r(x) = r̂(x̂) : E[ln(S>1 x)] ≥ µ, S>0 x = 1}, (116)

where r is a risk measure that satisfies conditions (r1) and (r2). Alternatively, to derive the efficient
frontier, we can also consider

ν(r) := sup{E[ln(S>1 x)] : r(x) = r̂(x̂) ≤ r, S>0 x = 1}. (117)

Applying Proposition 8, Theorem 5 and Remark 7 to the set of admissible portfolios
A = {x ∈ RM+1 : S>0 x = 1}, we derive:
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Theorem 13. (Leverage Space Portfolio and Risk Measure) We assume that the financial market St in
Definition 1 has no nontrivial riskless portfolio and that the risk measure r satisfies conditions (r1), (r1n) and
(r2). Then, the problem

sup
x∈RM+1

E[ln(S>1 x)] (118)

subject to r(x) = r̂(x̂) ≤ r, S>0 x = 1

has a bounded efficient frontier that can be parameterized as follows:
(a) problem (116) defines γ(µ) : [ln(R), µκ ]→ R as a continuous increasing convex function, where µκ :=

E[ln(S>1 κ)] and κ is the optimal growth portfolio. Moreover, problem (116) has a continuous path of unique
solutions z(µ) := x(γ(µ), µ) that maps the interval [ln(R), µκ ] into a curve in the leverage portfolio space
RM+1. Finally, z(ln(R)) = (1, 0̂>)>, z(µκ)) = κ, γ(ln(R)) = r̂(0̂) = 0 and γ(µκ) = r(κ).

(b) problem (117) defines ν(r) : [0, r(κ)]→ R as a continuous increasing concave function, where κ is the
optimal growth portfolio. Moreover, problem (117) has a continuous path of unique solutions y(r) := x(r, ν(r))
that maps the interval [0, r(κ)] into a curve in the leverage portfolio space RM+1. Finally, y(0) = (1, 0̂>)>,
y(r(κ)) = κ, ν(0) = ln(R) and ν(r(κ)) = µκ .

Proof. Note that Assumption 4 (a) holds due to Lemma 2 and (c2) in Theorem 5 is also satisfied.
Then, (a) follows straightforwardly from Theorem 5, where µmax = µκ and µmin = ln(R) are finite and
attained and (b) follows from Theorem 5 with rmin = 0 and rmax = r(κ).

Remark 12. Theorem 13 relates the leverage portfolio space theory to the framework setup in Section 3.
It becomes clear that each risk measure satisfying conditions (r1), (r1n) and (r2) generates a path in the
leverage portfolio space connecting the portfolio of a pure riskless bond to the growth optimal portfolio.
Theorem 13 also tells us that different risk measures usually correspond to different paths in the portfolio
space. Many commonly used risk measures satisfy conditions (r1) and (r2). The curve z(µ) provides a pathway
to reduce risk exposure along the efficient frontier in the risk-expected log utility space. As observed in
De Prado et al. (2013); Vince and Zhu (2015), when investments have only a finite time horizon, then there are
additional interesting points along the path z(µ) such as the inflection point and the point that maximizes the
return/risk ratio. Both of which provide further landmarks for investors.

Similar to the previous sections, we can also consider the related problem of using only portfolios
involving risky assets, i.e.,

max
x̂∈RM

E[ln(Ŝ>1 x̂)] (119)

subject to Ŝ>0 x̂ = 1.

Theorem 14. (Existence of Solutions) Suppose that

Si
1(ω) > 0, ∀ω ∈ Ω, i = 1, . . . , M. (120)

Then, problem (119) has a solution.

Proof. As in the proof of Theorem 13, we can see that Assumption 4 (a) holds due to Lemma 2.
Observe that, for x̂∗ = (1/M, 1/M, . . . , 1/M)>, we get from (120) that E[ln(Ŝ>1 x̂∗)] is finite. Then,
we can directly apply Theorem 5 with A = {x ∈ RM+1 : S>0 x = 1, x0 = 0}.
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With the help of Theorem 14, we can conclude that problem

sup
x̂∈RM

E[ln(Ŝ>1 x̂)] (121)

subject to r̂(x̂) ≤ r, Ŝ>0 x̂ = 1

generates an efficient frontier as well (comparable to the Markowitz bullet for u = id). However,
due to the involvement of the log utility function, the relative location of efficient frontiers stemming
from (118) and (121) may have several different configurations. The following is an example.

Example 4. Let M = 1. Consider a sample space Ω = {0, 1} with probability P(0) = 0.45 and P(1) = 0.55
and a financial market involving a riskless bond with R = 1 and one risky asset specified by S1

0 = 1, S1
1(0) = 0.5

and S1
1(1) = 1 + α with α > 9/22 so that E[S1

1] > S1
0. Use the risk measure r1(x0, x1) = |x1| (which is an

approximation of the drawdown cf. Vince and Zhu (2015)). Then, it is easy to calculate that the efficient frontier
corresponding to (118) is

ν(r) = 0.55 ln(1 + αr) + 0.45 ln(1− 0.5r), r ∈ [0, rα
max], (122)

where rα
max = (22α− 9)/20α. On the other hand, the efficient frontier stemming from (121) is a single point

{(1, ν(1))}, where ν(1) = 0.55 ln(1 + α)− 0.45 ln(2).
When α ∈ (9/22, 9/2), the two efficient frontiers corresponding to (118) and (121) have no common

points (see Figure 8). However, when α ≥ 9/2, Ge f f (r1, ln; {S>0 x = 1, x0 = 0}) ⊂ Ge f f (r1, ln; {S>0 x = 1})
(see Figure 9). In particular, when α = 9/2, Ge f f (r1, ln; {S>0 x = 1, x0 = 0}) coincides with the point on
Ge f f (r1, ln; {S>0 x = 1}) corresponding to the growth optimal portfolio as illustrated in Figure 10.

In fact, a far more common restriction to the set of admissible portfolios are limits of risk. For this example,
if, for instance, we restrict the risk by r1(x) ≤ 0.5, then we will create a shared efficient frontier from (118) when
r is a priori restricted (see Figure 11).

r

µ

G(r1, ln; {S>0 x = 1}) G(r1, ln; {S>0 x = 1, x0 = 0})

Figure 8. Separated efficient frontiers.

r

µ

G(r1, ln; {S0 · x = 1})

G(r1, ln; {S0 · x = 1, x0 = 0})

Figure 9. Touching efficient frontiers.
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r

µ

G(r1, ln; {S>0 x = 1})

G(r1, ln; {S>0 x = 1, x0 = 0})

Figure 10. Touching efficient frontiers at growth optimal.

r

µ

G(r1, ln; {S>0 x = 1})

G(r1, ln; {S>0 x = 1, r1(x) ≤ 0.5})

Figure 11. Shared efficient frontiers.

Remark 13. (Efficiency Index) Although the growth optimal portfolio is usually not implemented as an
investment strategy, the maximum utility µmax corresponding to the growth optimal portfolio κ, empirically
estimated using historical performance data, can be used as a measure to compare different investment strategies.
This is proposed in Zhu (2007) and called the efficiency index. When the only risky asset is the payoff of
a game with two outcomes following a given playing strategy, the efficiency coefficient coincides with Shannon’s
information rate (see Kelly (1956); Shannon and Weaver (1949); Zhu (2007)). In this sense, the efficiency index
gauges the useful information contained in the investment strategy it measures.

7. Conclusions

Following the pioneering idea of Markowitz to trade-off the expected return and standard
deviation of a portfolio, we consider a general framework to efficiently trade-off between a concave
expected utility and a convex risk measure for portfolios. Under reasonable assumptions, we show
that (i) the efficient frontier in such a trade-off is a convex curve in the expected utility-risk space,
(ii) the optimal portfolio corresponding to each level of the expected utility is unique and (iii) the
optimal portfolios continuously depend on the level of the expected utility. Moreover, we provide an
alternative treatment and enhancement of the results in Rockafellar et al. (2006) showing that the one
fund theorem (Theorem 9) holds in the trade-off between a deviation measure and the expected return
(Theorem 11) and construct a counter-example illustrating that the two fund theorem (Theorem 7) fails
in such a general setting. Furthermore, the efficiency curve in the leverage space is supposedly an
economic way to scale back risk from the growth optimal portfolio (Theorem 13).

This general framework unifies a group of well known portfolio theories. They are Markowitz
portfolio theory, capital asset pricing model, the growth optimal portfolio theory, and the leverage
portfolio theory. It also extends these portfolio theories to more general settings.
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The new framework also leads to many questions of practical significance worthy of further
explorations. For example, quantities related to portfolio theories such as the Sharpe ratio and efficiency
index can be used to measure investment performances. What other performance measurements can
be derived using the general framework in Section 3? Portfolio theory can also inform us about pricing
mechanisms such as those discussed in the capital asset pricing model and the fundamental theorem
of asset pricing (see (Carr and Zhu forthcoming, Section 2.3). What additional pricing tools can be
derived from our general framework?

Clearly, for the purpose of applications, we need to focus on certain special cases. Drawdown
related risk measures coupled with the log utility attracts much attention in practice. In Part II of
this series Maier-Paape and Zhu (2017), several drawdown related risk measures are constructed
and analyzed.
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