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Abstract: Due to the advanced technology associated with Big Data, data availability and computing
power, most banks or lending institutions are renewing their business models. Credit risk predictions,
monitoring, model reliability and effective loan processing are key to decision-making and
transparency. In this work, we build binary classifiers based on machine and deep learning models on
real data in predicting loan default probability. The top 10 important features from these models are
selected and then used in the modeling process to test the stability of binary classifiers by comparing
their performance on separate data. We observe that the tree-based models are more stable than the
models based on multilayer artificial neural networks. This opens several questions relative to the
intensive use of deep learning systems in enterprises.

Keywords: credit risk; financial regulation; data science; Big Data; deep learning

1. Introduction

The use of algorithms raises many ethical questions. Beyond the technical skills required to
understand them, algorithms require referrals to the various discussions that occurred in the past
years regarding the use of personal data and all the problems related to Big Data, particularly the
General Data Protection Regulation (GDPR) directive (GDPR (2016)) arriving 25 May 2018. During
the year 2017, a public consultation by the Commission Nationale de L’informatique et des Libertés
CNIL (2017), in France, on the use and the development of algorithms was addressed, which led to
many conferences and public meetings on artificial intelligence in France. What exactly is the problem?
People are afraid of the use of personal data and do not exactly understand the role of the algorithms
due to the fear that those algorithms will have decisional power instead of people. These questions
and the debates around these ideas are legitimate.

In this paper, we will focus on the algorithms that are used to make these decisions. Algorithms
are used in different domains with different objectives. For instance, they are used in enterprises to
recruit persons suitable for the profile proposed. Algorithms can simplify the process, make it quicker
and more fluid, etc. Nevertheless, algorithms are a set of codes with specific objectives to attain certain
objectives. For instance, in the process of recruitment, it can introduce discrimination or a specific
profile, and then, “format” the persons working in the enterprise. It is the same in the case of loan
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provisions, from a bank to an enterprise, where the decision depends on the algorithm used. Thus, it is
important to understand these kinds of abuses and to find ways to control the use of the algorithms.
Indeed, in this paper, we illustrate the fact that there exist several algorithms that can be used in
parallel to answering a question, for instance, to provide a loan to an enterprise. We observe that
there exist several strategies to attain our objective of finding the choice of the variables (or features),
the criteria and the algorithm that provide an answer to the question.

In this new digital and Big Data era, transparency is necessary; it should be one that does not
stand in the way of innovation, but allows for transformation and progress. The terms associated
with this field must be ethical, transparent, well known and clear. To contribute to these objectives,
some strategic choices are necessary for the training of data experts on the use of machine learning
and deep learning algorithms, and the limitations on their usage. This paper attempts to highlight the
importance of the choice of algorithms, the choice of the parameters, the selection of relevant variables
(features), the role of the evaluation criteria and the importance of humans when it comes to the final
decision.

The novelty of this paper lies in addressing some specific questions we encounter when we want to
use Big Data and algorithms. We focus mainly on the questions related to the use of the algorithms to
solve or attain an objective. The paper Khandani et al. (2010) is the most like ours in applying machine
learning models to a large financial dataset with a focus on a single bank. Our paper is differentiated
from Khandani et al. (2010) in significant ways. The first is that, unlike Khandani et al. (2010), who focus
on the creation of a cardinal measure for consumer credit default and delinquency using a generalized
classification and regression trees (CART)-like algorithm, we focus on credit risk scoring where we
examine the impact of the choice of different machine learning and deep learning models to identify
defaults by enterprises. On the other hand, we do study the stability of these models relative to a choice
of subset of variables selected by the models.

Related approaches have been used by Butaru et al. (2016), which investigates consumers
delinquency using C4.5 decision trees, logistic regression and random forest with data from six
different banks. The work in Galindo and Tamayo (2000) tests CART decision-tree algorithms on
mortgage-loan data to detect defaults, and also they compare their results to the k-nearest neighbor
(KNN), ANN and probit models. The work in Huang et al. (2004) provides a survey of these models
and other related studies.

Although it is unclear how banks decide who to give loans to, the use of classical linear models
is well known in the banking sector. Thus, in the present exercise, we use the elastic net approach
Zhou and Hastie (2005) as a benchmark, and we compare its fitting and decision rule based on the area
under the curve (AUC), as well as root-mean-square error (RMSE) criteria with other non-parametric
models classified as machine learning and deep learning in recent literature. We have retained six
approaches: a random forest model, a gradient boosting machine and four deep learning models. We
specify the models and the choice retained (after optimization procedures) for the parameters of each
model. Besides the choice of the model, another question that arises is concerned with the choice of
the variables (or features) to decide if an enterprise is eligible for a loan or not. We have used data
provided by a European bank (thus, nothing is arbitrary in our further discussion) to analyze the way
in which the algorithms used or retained the variables.

This exercise exhibits three key points: the necessity to use (i) several models, (ii) several sets of
data (making them change to quantify their impact) and, lastly, (iii) several criteria. We observe that
the choices of the features are determinant as are the criteria: they permit one to show the difficulty of
getting a unique or “exact” answer and the necessity of analyzing all the results in detail or introducing
new information before making any decision. One very important point is the fact that the deep
learning model does not necessarily provide very interesting results. Finally, we find that tree-based
algorithms have high performances on the binary classification of problems compared to the deep
learning models considered in our analysis.
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This paper is organized as follows: In Section 2, a unified description of the algorithms that we
use is given. Section 3 discusses the criteria used to classify our results, and imbalanced datasets are
discussed. The parameters and criteria used for each model are given in Section 4 with the results,
and we use them analyze how the algorithms are used to provide a loan to a company. We also analyze
in detail the choice of the features retained by each algorithm and their impact on the final results.
Section 5 provides the conclusion.

2. A Unified Presentation of Models

The models we use in our application are now presented. We make the presentation as uniform
as possible to be able to specify, for each model, the different choices we are confronted with in (i)
parameters, (ii) stopping criteria and (iii) activation functions. References are provided for more details.

2.1. Elastic Net

Linear regression is a very well-known approach. It has several extensions; one is the Lasso
representation Tibschirani (1996), and another one includes the elastic net approach with a penalty term
that is part l1 or l2 Zhou and Hastie (2005).1 In their paper Friedman et al. (2010), describe algorithms
for the carrying out of related Lasso models: they propose fast algorithms for fitting generalized linear
models with the elastic net penalty. This methodology can be useful for big datasets as soon as the
algorithm is built to outperform execution speed. The regression modeling can be linear, logistic or
multinomial. The objective is prediction and the minimization of the predictions error, improving both
the choice of the model and the estimation procedure.

Denoting Y as the response variable and X the predictors (centered and standardized)
and considering a dataset (xi, yi), i = 1, · · · , N, the elastic net approach solves the following problem
for a given λ:

minβ0,β[
1

2N

N

∑
i=1

(yi − β0 − xT
i β)2 + λPα(β)] (1)

where the elastic net penalty is determined by the value of α:

Pα(β) = (1− α)
1
2
‖β‖2

l2 + α ‖β‖l1 (2)

Thus,

Pα(β) =
p

∑
j=1

[
1
2
(1− α)β2

j + α|β j|]. (3)

Pα(β) is the elastic-net penalty term and is a compromise between the ridge regression (α = 0) and
the Lasso penalty (α = 1): the constraint for minimization is that Pα(β) < t for some t. The parameter
p is the number of parameters. Historically, this method has been developed when p is very large
compared to N. The ridge method is known to shrink the coefficients of the correlated predictors
towards each other, borrowing strength from each other. Lasso is indifferent to correlated predictors.
Thus, the role of α is determinant: in the presence of the correlation, we expect α close to one (α = 1− ε,
for small ε). There also exists some link between λ and α. Generally, a grid is considered for λ as soon
as α is fixed. A lq (1 < q < 2) penalty term could also be considered for prediction.

The algorithm also proposes a way to update the computation, optimizing the number of
operations that need to be done. It is possible to associate a weight with each observation, which does

1 There exist a lot of other references concerning Lasso models; thus, this introduction does not consider all the problems that
have been investigated concerning this model. We provide some more references noting that most of them do not have the
same objectives as ours. The reader can read with interest Fan and Li (2001), Zhou (2006) and Tibschirani (2011).
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not increase the computational cost of the algorithm as long as the weights remain fixed. The previous
approach works for several models:

• Linear regression: The response belongs to R. Thus, we use the model (1). In that case,
the parameter of interest is α, and another set of parameters to be estimated is λ, βi. The existence
of correlation must be considered to verify if the values used for those parameters are efficient
or not.

• Logistic regression: The response is binary (0 or 1). In that case, the logistic regression
represents the conditional probabilities p(xi) through a nonlinear function of the predictors
where p(xi) = P(Y = 1|xi) =

1
1+e−(β0+xi βi)

, then we solve:

minβ0,β[
1
N

N

∑
i=1

I(yi = 1)logp(xi) + I(yi = 0)log(1− p(xi))− λPα(β)]. (4)

• Multinomial regression: The response has K > 2 possibilities. In that case, the conditional
probability is2:

P(Y = l|x) = e−(β0l+xT βl)

∑K
k=1 e−(β0k+xT βk)

. (5)

For estimation, the parameter α must be chosen first, then the simple least squares estimates can
be used for linear regression, but a soft threshold is introduced to consider the penalty term, through
the decrementing of the parameter λ using loops. In the case of logistic regression, a least square
approach is also considered. In the case of the multinomial regression, constraints are necessary for the
use of the regularized maximum likelihood. In any case, the Newton algorithm is implemented.

2.2. Random Forest Modeling

Random forests are a scheme proposed by Breiman (2000); Breiman (2004) to build a predictor
ensemble with a set of decision trees that grows in randomly-selected subspaces of data; see Biau (2012);
Geurts et al. (2006), and for a review, see Genuer et al. (2008). A random forest is a classifier consisting
of a collection of tree-structured classifiers rN(x, βk), k = 1, ... where the βk are independent identically
distributed random variables used to determine how the successive cuts are performed when building
the individual trees. The accuracy of a random forest depends on the strength of the individual tree
classifiers and the measure of the dependence between them. For each input X, the procedure will be
able to predict, with the optimal number of trees, the output value one or zero. A stopping criteria will
be used to minimize the error of the prediction.

More precisely, the random trees are constructed in the following way: all nodes of the trees are
associated with rectangular cells such that at each step of the construction of the tree, the collection
of the cells associated with the leaves of the tree (external nodes) forms a partition of [0, 1]d, (d ≤ N).
The procedure is repeated many times: (i) at each node, a coordinate of the input is selected with the
j-th feature having a probability pj ∈ (0, 1) of being selected; (ii) at each node, once the coordinate is
selected, the split is at the midpoint of the chosen side. At each node, randomness is introduced by
selecting a small group of input features to split on and choosing to cut the cell along the coordinate.

2 Here, T stands for transpose
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Each randomized output tree rN is the average over all the output observations yi for which
the corresponding variables xj fall in the same cell of the random partition as X. Denoting AN(X, β),
the rectangular cell of the random partition containing X, we obtain:

rN(X, β) =
∑N

i=1 yi1xj∈AN(X,β)

∑N
i=1 1xj∈AN(X,β)

1LN

where LN = ∑N
i=1 1xj∈AN(X,β) 6= 0. We take the expectation of the rN with respect to the parameter

β to obtain the estimate of rN . In practice, the expectation is evaluated by Monte Carlo simulation,
that is by generating M (usually large) random trees and taking the average of the individual outcomes.
The randomized variables βk, k > 1 are used to determine how the successive cuts are performed
when building the individual trees.

If X has a uniform distribution on [0, 1]d, then the response of the model is:

Y = ∑
j∈S

β jxj + ε,

where S is a non-empty subset of d features. With this model, we choose the following parameters:
the number of trees and the stopping criteria (called the threshold in the literature) used to choose
among the most significant variables. Depending on the context and the selection procedure,
the informative probability pj ∈ (0, 1) may obey certain constraints such as positiveness and
∑j∈S pj = 1. The number M of trees can be chosen. It is known that for randomized methods,
the behavior of prediction error is a monotonically decreasing function of M; so, in principle, the higher
the value of M, the better it is from the accuracy point of view. In practice, in our exercise, we will fit
the following non-parametric function fb on the variables to get the response Y:

Y =
1
B

B

∑
b=1

fb(X), (6)

where B is the number of trees, and a stopping criteria 10−p is used, for which p has to be chosen.

2.3. A Gradient Boosting Machine

We now consider a more global approach for which the previous one can be considered as a special
case. Using the previous notations, Y for outputs and X for different N input variables, we estimate a
function f mapping X to Y, minimizing the expected value of some specified loss function L(Y, f ).
This loss function L(Y, f ) can include squared error (Y − f )2/2, absolute error |Y − f |, for Y ∈ R1,
negative binomial likelihood log(1 + e−2Y f ) when Y ∈ (−1, 1), M-regression considering outliers
L(Y, f ) = (Y − f )2/2 if |Y − f | < δ, L(Y, f ) = δ(|Y − f | − δ/2) if |Y − f | > δ with δ a transition
point and logistic binomial log-likelihood: L(Y, f ) = log(1 + exp(−2Y f )). A general representation
could be:

f (X, (βi, ai)1,...p) =
p

∑
i=1

βih(X, ai) (7)

where the function h(X, ai) is a parametric or a non-parametric function of the input X characterized
by the parameters ai.

For estimation purpose, as soon as we work with a finite sample, the parameter optimization is
obtained using a greedy stage-wise approach solving:

(βl , al) = argminβ,a

N

∑
i=1

(L(yi, fl−1(xi) + βih(X, ai)1,...p)). (8)
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Thus:
fl = fl−1(X) + βlh(X, , al). (9)

Equations (8) and (9) are called boosting when y ∈ (−1, 1) and L(Y, f ) are either an exponential
loss function e−Y f or a negative binomial log-likelihood. The function h(X, a) is usually a classification
tree. The smoothness constraint defined in (8) can be difficult to minimize and is replaced by a gradient
boosting procedure (steepest-descent procedure) detailed in Friedman (2001) or Friedman et al. (2001).

2.4. Deep Learning

Neural networks have been around even longer, since early supervised neural networks were
essentially variants of linear regression methods going back at least to the early 1800s. Thus, while
learning, networks with numerous non-linear layers date back to at least 1965; also, explicit deep
learning research results have been published since at least 1991. The expression “deep learning” was
actually coined around 2006, when unsupervised pre-training of deep learning appeared through
gradient enhancements and automatic learning rate adjustments during the stochastic gradient descent.

A standard neural network consists of many simple, connected processors called neurons,
each producing a sequence of real-valued activations. Input neurons get activated through sensors
perceiving the environment; other neurons get activated through weighted connections from previously
active neurons. An efficient gradient descent method for teacher-based supervised learning in discrete,
differentiable networks of arbitrary depth, called backpropagation, was developed in the 1960s and
1970s, and applied to neural networks in 1981. Deep learning models became practically feasible
to some extent through the help of unsupervised learning. The 1990s and 2000s also saw many
improvements of purely supervised deep learning. In the new millennium, deep neural networks have
finally attracted wide-spread attention, mainly by outperforming alternative machine learning methods
such as kernel machines Vapnik (1995); Schölkopf et al. (1998) in numerous important applications.
Deep neural networks have become relevant for the more general field of reinforcement learning where
there is no supervising teacher.

Deep learning approaches consist of adding multiple layers to a neural network, though these
layers can be repeated. Discussing the matter, most deep learning strategies rely on the following
four types of architectures: (i) convolutional neural networks, which, in essence, are standard neural
networks that have been extended across space using shared weights; (ii) recurrent neural networks,
which are standard neural networks that have been extended across time by having edges that feed into
the next time step instead of into the next layer in the same time step; (iii) recursive neural networks,
which are apparently hierarchical networks where there is no time aspect to the input sequence, but
inputs have to be processed hierarchically as in a tree; and finally, (iv) standard deep neural networks,
which are a combination of layers of different types without any repetition or particular order. It is this
last type that has been implemented in this paper.

In all these approaches, several specific techniques that we do not detail here are used. They
concern (i) backpropagation, which is a method to compute the partial derivatives, i.e., the gradient of
a function. In this paper, we use the stochastic gradient descent, which is a stochastic approximation
of the gradient descent optimization and iterative method for minimizing an objective function that
is written as a sum of differentiable functions. Adapting the learning rate for the stochastic gradient
descent optimization procedure can increase performance and reduce training time. The simplest and
perhaps most used adaptations of learning rate during training are techniques that reduce the learning
rate over time. (ii) Regularization in deep learning: This approach consists of randomly dropping
units (along with their connections) from the neural network during training. This prevents units
from co-adapting too much. During training, dropout has been shown to improve the performance of
neural networks on supervised learning tasks in vision, speech recognition, document classification
and computational biology, obtaining state-of-the-art results on many benchmark datasets. It has
shown no interest in our exercise. (iii) Dimensionality reduction is usually necessary for implementing
deep learning strategies. Max pooling can be used for this objective. This was not pertinent in
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our exercise. For further reading, one can look at Siegelmann and Sontag (1991); Balzer (1985);
Deville and Lau (1994); and Hinton and Salakhutdinov (2006). For a complete and recent review,
we refer to Schmidhuber (2014); Angelini et al. (2008); Bahrammirzaee (2010); Sirignan et al. (2018).

The neural networks’ behavior or program is determined by a set of real-valued parameters or
weights β j. To represent it in a uniform way, we focus on a single finite episode or epoch of information
processing and activation spreading, without learning through weight changes. During an episode,
there is a partially causal sequence xj, j = 1, ..., N of real values called events. Each xj is an input,
or the activation of a unit that may directly depend on other xi, i < j through the current neural
network. Let the function f encode information and map events to weight indexes. The function f
is any nonlinear function. Thus, a classical neural network layer performs a convolution on a given
sequence X, outputting another sequence Y, the value of which at time t is as follows:

y(t) =
N

∑
j=1

f (β j, xj(t)) + ε(t)

where β j are the parameters of the layer trained by backpropagation. In our exercise, along with
backpropagation, we have used hierarchical representation learning, weight pattern replication and
sub-sampling mechanisms. We make use of the gradient descent method for optimization convergence.
The parameters we can choose are the number of layers and the stopping criteria. In the case of
an unsupervised deep learning system, regularization functions are added as activation functions.
We specify them when we analyze the datasets and the results.

3. The Criteria

There are several performance measures to compare the performance of the models including
AUC, Gini, RMSE and Akaike information criterion (AIC); in addition to different metrics like the
F-score, the recall and the precision. In this paper, we will mainly present results on the AUC and
RMSE criteria, although the results of the other metrics can be made available.

The Gini index was introduced by Gastwirth (1972) and extended by Yitzhaki (1983) and
Lerman and Yitzhaki (1984). This index, in essence, permits one to compare several algorithms. It is
based on the decision tree methodology and entropy measure. The work in Raileanu and Stoffel (2004)
discussed the possibility to compare algorithms using classification systems. From the empirical point
of view, this problem has been discussed greatly. It seems that no feature selection rule is consistently
superior to another and that Gini can be used to compare the algorithms; nevertheless, we will not
use it in the paper, focusing on the ROC curve for which the interpretation in terms of risks is more
efficient3.

For each company, we build the ROC curve. An ROC curve is then used to evaluate the quality
of the model. The ROC approach can be often associated with the computation of an error from a
statistical point of view. If we want to associate the AUC value (coming from the ROC building)
to Type I and Type II errors, we need to specify the test we consider and, thus, to determine the
hypotheses, the statistics, the level and the power of the test. In our case, the objective is to know if a
bank can provide a loan to the enterprise, in the sense that the enterprise will not default. To answer
this question, we use several models or algorithms, and the idea is to find the algorithm that permits
answering this question with accuracy. The AUC criteria are used to do it; here, we explain why.
To analyze, in a robust way, the results obtained with this indicator, we specify the risks associated
with it. When a bank provides a loan to an enterprise, it faces two types of errors: (1) to refuse a loan
to a company whose probability of default is much lower than the one obtained with the model (Type
I error); (2) to agree to provide a loan to a company whose probability of default is much higher than

3 As soon as the AUC is known, the Gini index can be obtained under specific assumptions
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the value obtained with the selected model (Type II error). We want these two errors to be as small as
possible. We compute the probability of the corresponding events under the null and the alternative
hypotheses. We assume that a bank provides a loan, and the null hypothesis is H0 : The company can
reimburse the loan, α = P[the bank does not provide a loan | the company can reimburse it] = PH0 [the
bank does not provide a loan]; this is the Type I error; thus, the alternative is H1 : The company does
not reimburse the loan, and β = P[the bank provides a loan | the company cannot pay it back] = PH1 [the
bank provides a loan]; this is the Type II error.

Considering the dataset, the bank could provide a loan as the probability of default of the target
company is sufficiently low (the model outcome has the value of one) or the bank could decide not
to provide a loan as the probability of default of the target company is not low enough (the outcome
is now zero). These outcomes, one or zero, depend on many variables that we use to compute the
risks α or β. Note that to build the ROC curve, we make α varying (it is not fixed as it is in the general
context of statistical tests). When we build the ROC, on the x-axis, we represent 1− α, also called
specificity (in some literature). We want this number close to one4. On the y-axis, we represent 1− β,
which corresponds to the power of the test, and we want it to be close to one. It is usually referred
to as sensitivity5. In practice, when the ROC curve is built, all the codes are done under two kinds
of assumptions on the data: the data are independent, and the distributions under the null and the
alternative are Gaussian; these assumptions can be far from reality in most cases. From the ROC curve,
an AUC is built. The AUC represents the area under the curve. How can we interpret its value? If the
curve corresponds to the diagonal, then the AUC is equal to 0.5; we have one chance out of two to
make a mistake. If the curve is above the diagonal, the value will be superior to 0.5, and if it attains
the horizontal at one, for all (1− α), the optimal value of one is obtained. Thus, as soon as the AUC
value increases from 0.5–1, it means that we have less and less chance to make a mistake, whatever the
value of (1− α) between zero and one (which means that the Type I error diminishes). It is assumed
that the test becomes more and more powerful as the probability for the bank to provide a loan to an
enterprise that does not default is very high. Each algorithm provides a value of AUC. To be able to
compare the results between the algorithms, we need to verify that we use the same variables to get
the outputs one or zero. If that is not the case, the comparison will be difficult and could be biased
Seetharaman et al. (2017).

Another question affects the quality of the results: it concerns imbalanced data. The presence
of a strong imbalance in the distribution of the response (which is the case for our exercise) creates a
bias in the results and weakens the estimation procedure and accuracy of the evaluation of the results.
A dataset is imbalanced if the classification categories are not approximately equally represented.
Examples of imbalanced datasets have been encountered in many fields, and some references are
Mladenic and Grobelnik (1999) or Kubat et al. (1999), among others. Several approaches are used
to create balanced datasets, either by over-sampling the minority class and under-sampling the
majority class (Kubat and Marvin (1997) or Ling and Li (1998)); diverse forms of over-sampling can
be used such as the Synthetic Minority Over-sampling Technique (SMOTE) algorithm developed
by Chawla et al. (2002). In this paper, the latter methodology has been implemented, blending
under-sampling of the majority class with a special form of over-sampling of the minority class
associated with a naive Bayes classifier, improving the re-sampling, modifying the loss ratio and class
prior approaches; see also Menardi and Torelli (2011).

The approach that we use, the SMOTE algorithm, proposes an over-sampling approach in which
the minority class is over-sampled by creating “synthetic” examples rather than by over-sampling
with replacement. The synthetic examples are generated by operating in “feature space” rather
than in “data space”. The minority class is over-sampled by taking each minority class sample and

4 In medicine, it corresponds to the probability of the true negative
5 In medicine, corresponding to the probability of the true positive
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introducing synthetic examples along the line segments joining any/all the k minority class neighbors
randomly chosen. To generate the synthetic examples, we proceed on the following path: we take
the difference between the feature vector under consideration and its nearest neighbor. We multiply
this difference by a random number between zero and on and add it to the feature vector under
consideration. This causes the selection of a random point along the line segment between two specific
features. This approach effectively forces the decision region of the minority class to become more
general. The majority class is under-sampled by randomly removing samples from the majority class
population until the minority class becomes some specified percentage of the majority class. This forces
the learner to experience varying degrees of under-sampling; and at higher degrees of under-sampling,
the minority class has a large presence in the training set. In our exercise, the rare events, n, correspond
to less than 2% of the whole sample N (n = 1731, and N = 117,019).

4. Data and Models

In this section6, we provide an overview of the data structure and models and then present the
results of model performance.

4.1. The Data

The information set contains 117,019 lines, each of them representing either a default or not a
default (binary value) of an enterprise when they ask for a loan from a bank. Default and good health
are characterized by the same 235 labeled variables that are directly obtained from the companies:
financial statements, balance sheets, income statements and cash flows= statements where the values
are considered at the lowest level of granularity. In the year 2016/2017, 115,288 lines represented
companies in good health and 1731 represented companies in default. Because of the bias created by
imbalanced data, in this exercise, we provide only results with balanced training data of the binary
classes, following the method recalled in Section 3.

After importing the data, we cleaned the variables and removed features with no pertinent
information (same value for all the enterprises; sign with no available entries like ‘NaN’ (Not a
Number), for instance) and were left with 181 variables. Then, we split the data into three subsets,
considering 80% of the data (60% for the fitting and 20% for the cross-validation), and then 20% of
these data was used for test purposes. The validation performance permits one to improve the training
approach, and we use it to provide prediction performance on the test set. In the training set, we
verify if it is a balanced dataset or not. Here it is: the value of zero represents 98.5% and the value of
one 1.5%. Therefore, the extreme events are less than 2%. Using the SMOTEalgorithm described in
Chawla et al. (2002), we obtain a balanced set with 46% zero and 53% one.

4.2. The Models

The models we use have been detailed in the previous section. We focus on seven models: elastic
net (logistic regression with regularization), a random forest, a gradient boosting modeling and a
neural network approach with four different complexities. To rank the models with respect to the
companies’ credit worthiness, the ROC curve and AUC criteria as RMSE criteria are used. An analysis
of the main variables is provided: first, we use the 181 variables (54 variables have been removed);
then, we use the first 10 variables selected by each model, comparing their performance with respect
to the models we use. An analysis of these variables completes the study.

6 The code implementation in this section was done in ‘R’. The principal package used is H2o.ai Arno et al. (2015). The codes
for replication and implementation are available at https://github.com/brainy749/CreditRiskPaper.

https://www.h2o.ai
https://github.com/brainy749/CreditRiskPaper
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4.2.1. Precisions on the Parameters Used to Calibrate the Models

To have a benchmark for comparison and replication of the results, a fixed seed is set. The models
have been fitted using the balanced training dataset.

• The Logistic regression model M1: To fit the logistic regression modeling, we use the elastic net:
logistic regression and regularization functions. This means that the parameter in Equation (1)
and Equation (2) can change. In our exercise, α = 0.5 in Equation (3) (the fitting with α = 0.7
provides the same results) and λ = 1.9210−6 (this very small value means that we have privileged
the ridge modeling) are used.

• The random forest model M2: Using Equation (6) to model the random forest approach,
we choose the number of trees B = 120 (this choice permits testing the total number of features),
and the stopping criterion is equal to 10−3. If the process converges quicker than expected,
the algorithm stops, and we use a smaller number of trees.

• The gradient boosting model M3: To fit this algorithm, we use the logistic binomial log-likelihood
function: L(y, f ) = log(1 + exp(−2y f )), B = 120 for classification, and the stopping criterion is
equal to 10−3. We need a learning rate that is equal to 0.3. At each step, we use a sample rate
corresponding to 70% of the training set used to fit each tree.

• Deep learning: Four versions of the deep learning neural networks models with stochastic gradient
descent have been tested.

1. D1: For this model, two hidden layers and 120 neurons have been implemented. This number
depends on the number of features, and we take 2/3 of this number. It corresponds also to
the number used a priori with the random forest model and gives us a more comfortable
design for comparing the results.

2. D2: Three hidden layers have been used, each composed of 40 neurons, and a stopping
criteria equal to 10−3 has been added.

3. D3: Three hidden layers with 120 neurons each have been tested. A stopping criteria equal
to 10−3 and the `1 and `2 regularization functions have been used.

4. D4: Given that there are many parameters that can impact the model’s accuracy,
hyper-parameter tuning is especially important for deep learning. Therefore, in this model,
a grid of hyper-parameters has been specified to select the best model. The hyper0parameters
include the drop out ratio, the activation functions, the `1 and `2 regularization functions
and the hidden layers. We also use a stopping criterion. The best model’s parameters yields
a dropout ratio of 0, `1 = 6, 8.10−5, `2 = 6, 4.10−5, hidden layers = [50, 50], and the activation
function is the rectifier ( f (x) = 0 if x < 0, if not f (x) = x).

We remark that regularization penalties are introduced to the model-building process to avoid
over-fitting, reduce the variance of the prediction error and handle correlated predictors. In addition,
we include early stopping criteria to avoid the issue of overfitting.

4.2.2. Results

Using 181 features, the seven models (M1 corresponding to the logistic regression, M2 to the
random forest, M3 to the boosting approach and D1, D2, D3 and D4 for the different deep learning
models) provide the ROC curve with the AUC criteria, and we also compute the RMSE criteria for
each model.

Analyzing Tables 1 and 2 using 181 variables, we observe that there exists a certain competition
between the approaches relying on the random forest (M2) and the one relying on gradient boosting
(M3). The interesting point is that the complex deep learning in which we have tried to maximize the
use of optimization functions does not provide the best models.
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Table 1. Models’ performances on the validation dataset with 181 variables using AUC and RMSE
values for the seven models.

Models AUC RMSE

M1 0.842937 0.247955
M2 0.993271 0.097403
M3 0.994206 0.041999
D1 0.902242 0.120964
D2 0.812946 0.124695
D3 0.979357 0.320543
D4 0.877501 0.121133

Table 2. Models’ performances on the test dataset with 181 variables using AUC and RMSE values for
the seven models.

Models AUC RMSE

M1 0.876280 0.245231
M2 0.993066 0.096683
M3 0.994803 0.044277
D1 0.904914 0.114487
D2 0.841172 0.116625
D3 0.975266 0.323504
D4 0.897737 0.113269

On the validation set, we observe that the AUC criteria have the highest value with model M3,
then model M2, then model D3, and for the four last places, the model D1, then D4, M1 and D2. If we
consider the RMSE criteria, the model M3 provides the smallest error, then the model M2, then D1 and
D4 and, finally, D2, M1 and D3. Thus, the model D3 has the highest error. We observe that the ranking
of the performance metric is not the same using the AUC and RMSE criteria.

On the test set, we observe the same ranking for the AUC and for RMSE as with the training set,
except for D1 and D4 that switch between the third and the fourth place. D3 provides the highest AUC
among the deep learning models; however, it yields the highest error.

If the gradient boosting model remains the best fit (using the AUC) with the smallest error,
we observe the stability of models on both the validation and test sets. In all scenarios, we observe that
the deep learning models do not outperform the tree-based models (M2, M3). The comparison between
the results obtained with the AUC criteria and the RMSE criteria indicate that a unique criterion is
not sufficient.

The ROC curves corresponding to these results are provided in Figures 1–4: they illustrate the
speed at which the ROC curve attains the value of one on the y-axis with respect to the value of the
specificity. The best curve can be observed on the second row and first column for the validation set in
Figure 1 and for the test in Figure 3, which corresponds to the model M3.
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Figure 1. ROC curves for the models M1, M2, M3, D1, D2 and D3 using 181 variables using the
validation set.

Figure 2. ROC curve for the model D4 using 181 variables using the validation set.
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Figure 3. ROC curves for the models M1, M2, M3, D1, D2 and D3 using 181 variables with the test set.

Figure 4. ROC curve for the model D4 using 181 variables with the test set.

Models M1–M3 and D1–D4 have all used the same 181 variables for fittings. In terms of variable
importance, we do not obtain the same top 10 variables for all the models Gedeon (1997). The top
10 variables’ importance for the models are presented in Table 3 and correspond to 57 different variables.
We refer to them as A1, ...A57 (they represent a subset of the original variables (X1, . . . , X181). Some
variables are used by several algorithms, but in not more than three occurrences. Table 4 provides a
brief description of some of the variables.
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Table 3. Top 10 variables selected by the seven models.

M1 M2 M3 D1 D2 D3 D4

X1 A1 A11 A11 A25 A11 A41 A50
X2 A2 A5 A6 A6 A32 A42 A7
X3 A3 A2 A17 A 26 A33 A43 A51
X4 A4 A1 A18 A27 A34 A25 A52
X5 A5 A9 A19 A7 A35 A44 A53
X6 A6 A12 A20 A28 A36 A45 A54
X7 A7 A13 A21 A29 A37 A46 A55
X8 A8 A14 A22 A1 A38 A47 A56
X9 A9 A15 A23 A30 A39 A48 A57

X10 A10 A16 A24 A31 A40 A49 A44

Table 4. Example of variables used in the models, where ’EBITDA’ denotes Earnings Before
Interest, Taxes, Depreciation and Amortization; ’ABS’ denotes Absolute Value function; ’LN’ denotes
Natural logarithm.

TYPE METRIC

EBITDA

EBITDA/FINACIAL EXPENSES
EBITDA/Total ASSETS

EBITDA/EQUITY
EBITDA/SALES

EQUITY
EQUITY/TOTAL ASSETS
EQUITY/FIXED ASSETS

EQUITY/LIABILITIES

LIABILITIES
LONG-TERM LIABILITIES/TOTAL ASSETS

LIABILITIES/TOTAL ASSETS
LONG TERM FUNDS/FIXED ASSETS

RAW FINANCIALS
LN (NET INCOME)
LN(TOTAL ASSETS)

LN (SALES)

CASH-FLOWS
CASH-FLOW/EQUITY

CASH-FLOW/TOTAL ASSETS
CASH-FLOW/SALES

PROFIT

GROSS PROFIT/SALES
NET PROFIT/SALES

NET PROFIT/TOTAL ASSETS
NET PROFIT/EQUITY

NET PROFIT/EMPLOYEES

FLOWS

(SALES (t) −SALES (t−1))/ABS(SALES (t−1))
(EBITDA (t) −EBITDA (t−1))/ABS(EBITDA (t−1))

(CASH-FLOW (t) −CASH-FLOW (t−1))/ABS(CASH-FLOW (t−1))
(EQUITY (t) − EQUITY (t−1))/ABS(EQUITY (t−1))

We now investigate the performance of these algorithms using only the 10 variables selected by
each algorithm. We do then the same for the seven models. The results for the criteria AUC and RMSE
are provided in Tables 5–11. Only the results obtained with the test set are provided.

All the tables showed similar results. The M2 and M3 models performed significantly
bettercompared to the other five models in terms of the AUC. The deep learning models and the based
logistic model poorly performed on these new datasets. Now, looking at the RMSE for the two best
models, M3 is the best in all cases. The highest AUC and lowest RMSE among the seven models on
these datasets is provided by the M3 model using the M3 top variables (Table 7).
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Comparing the results provided by the best model using only the top 10 variables with the model
fitted using the whole variable set (181 variables), we observe that the M3 model is the best in terms of
highest AUC and smallest RMSE. The tree-based models provide stable results, whatever the number
of variables used, which is not the case when we fit the deep learning models. Indeed, if we look at
their performance when they use their top ten variables, this one is very poor: refer to Line 4 in Table 8,
Line 5 in Table 9, Line 6 in Table 10 and Line 7 in Table 11.

Table 5. Performance for the seven models using the top 10 features from model M1 on the test dataset.

Models AUC RMSE

M1 0.638738 0.296555
M2 0.98458 0.152238
M3 0.975619 0.132364
D1 0.660371 0.117126
D2 0.707802 0.119424
D3 0.640448 0.117151
D4 0.661925 0.117167

Table 6. Performance for the seven models using the top 10 features from model M2 on the test dataset.

Models AUC RMSE

M1 0.595919 0.296551
M2 0.983867 0.123936
M3 0.983377 0.089072
D1 0.596515 0.116444
D2 0.553320 0.117119
D3 0.585993 0.116545
D4 0.622177 0.878704

Table 7. Performance for the seven models using the top 10 features from model M3 on the test dataset.

Models AUC RMSE

M1 0.667479 0.311934
M2 0.988521 0.101909
M3 0.992349 0.077407
D1 0.732356 0.137137
D2 0.701672 0.116130
D3 0.621228 0.122152
D4 0.726558 0.120833

Table 8. Performance for the seven models using the top 10 features from model D1 on the test dataset.

Models AUC RMSE

M1 0.669498 0.308062
M2 0.981920 0.131938
M3 0.981107 0.083457
D1 0.647392 0.119056
D2 0.667277 0.116790
D3 0.6074986 0.116886
D4 0.661554 0.116312
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Table 9. Performance for the seven models using the top 10 features from model D2 on the test dataset.

Models AUC RMSE

M1 0.669964 0.328974
M2 0.989488 0.120352
M3 0.983411 0.088718
D1 0.672673 0.121265
D2 0.706265 0.118287
D3 0.611325 0.117237
D4 0.573700 0.116588

Table 10. Performance for the seven models using the top 10 features from model D3 on the test dataset.

Models AUC RMSE

M1 0.640431 0.459820
M2 0.980599 0.179471
M3 0.985183 0.112334
D1 0.712025 0.158077
D2 0.838344 0.120950
D3 0.753037 0.117660
D4 0.711824 0.814445

Table 11. Performance for the seven models using the top 10 features from model D4 on the test dataset.

Models AUC RMSE

M1 0.650105 0.396886
M2 0.985096 0.128967
M3 0.984594 0.089097
D1 0.668186 0.116838
D2 0.827911 0.401133
D3 0.763055 0.205981
D4 0.698505 0.118343

In summary, the class of tree-based algorithms (M2 and M3) outperforms. In terms of the AUC
and RMSE, the logistic regression model (M1) and the multilayer neural network models (deep
learning D1–D4)) considered in this study in both the validation and test datasets using all 181 features,
we observe that the gradient boosting model (M3) demonstrated high performance for the binary
classification problem compared to the random forest model (M2), given the lower RMSE values.

Upon the selection of the top 10 variables from each model to be used for modeling, we obtain the
same conclusion of higher performance with models M2 and M3, with M3 as the best classifier in terms
of both the AUC and RMSE. The gradient boosting model (M3) recorded the highest performance on
the test dataset in the top 10 variables selected out of the 181 variables by this model M3.

Now, we look at the profile of the top 10 variables selected by each model. We denote
Ai, i = 1, · · · A57, the variables chosen by the models among the 181 original variables; we refer
to Tables 3 and 4. In this last table, we provide information on the variables that have been selected for
this exercise. For instance, model M2 selects three variables already provided by model M1. Model
M3 selects only one variable provided by model M1. The model D1 uses three variables of model M1.
The model D2 selects one variable selected by model M2. Model D3 selects one variable used by model
D1. The model D4 selects one variable selected by M1.

The classification of the variables used by each model is as follows: the variables A1, ..., A10 of the
model M1 correspond to flow data and aggregated balance sheets (assets and liabilities). As concerns
financial statement data, the model M2 selects financial statement data and detailed financial statements
(equities and debt). The model M3 selects detailed financial statements (equities and debt). The model
D1 selects financial statement data and at the lowest level of granularity of financial statement data
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(long-term bank debt). The models D2 and D3 select an even lower level of granularity of financial
statement data (short-term bank debt and leasing). The model D4 has selected the most granular data,
for instance the ratio between elements as the financial statements.

Thus, we observe an important difference in the way the models select and work with the data
they consider for scoring a company and as a result accepting to provide them with a loan. The model
M1 selects more global and aggregated financial variables. The models M2 and M3 select detailed
financial variables. The models relying on deep learning select more granular financial variables, which
provide more detailed information on the customer. There is no appropriate discrimination among the
deep learning models of selected variables and associated performance on the test set. It appears that
the model M3 is capable of distinguishing the information provided by the data and only retains the
information that improves the fit of the model. The tree-based models, M2 and M3, turn out to be the
best and stable binary classifiers as they properly create split directions, thus keeping only the efficient
information. From an economic stand point, the profile of the selected top 10 variables from the model
M3 will be essential in deciding whether to provide a loan or not.

5. Conclusions

The rise of Big Data and data science approaches, such as machine learning and deep learning
models, does have a significant role in credit risk modeling. In this exercise, we have showed that
it is important to make checks on data quality (in the preparation and cleaning process to omit
redundant variables), and it is important to deal with an imbalanced training dataset to avoid bias to a
majority class.

We have also indicated that the choice of the features to respond to a business objective (In our
case, should a loan be awarded to an enterprise? Can we use few variables to save time in this decision
making?) and the choice of the algorithm used to make the decision (whether the enterprise makes
defaults) are two important keys in the decision management processing when issuing a loan (here,
the bank). These decisions can have an important impact on the real economy or the social world;
thus, regular and frequent training of employees in this new field is crucial to be able to adapt to
and properly use these new techniques. As such, it is important that regulators and policy-makers
make quick decisions to regulate the use of data science techniques to boost performance, avoid
discrimination in terms of wrong decisions proposed by algorithms and to understand the limits of
some of these algorithms.

Additionally, we have shown that it is important to consider a pool of models that match the data
and business problem. This is clearly deduced by looking at the difference in performance metrics.
Note that we did not consider a combination of the different models. Data experts or data scientists
need to be knowledgeable about the model structures (in terms of the choice of hyper-parameters,
estimation, convergence criteria and performance metrics) in the modeling process. We recommend
that performance metrics should not be only limited to one criterion like the AUC to enhance the
transparency of the modeling process (see Kenett and Salini (2011)). It is important to note that
standard criteria like the AIC, Bayesian information criterion (BIC) and R2 are not always suitable for
the comparison of model performance, given the types of model classes (regression based, classification
based, etc.). We also noticed that the use of more hyper-parameters, as in the grid deep learning model,
does not outperform the tree-based models on the test dataset. Thus, practitioners need to be very
skilled in modeling techniques and careful while using some black-box tools.

We have shown that the selection of the 10 top variables, based on the variable importance
of models, does not necessarily yield stable results given the underlying model. Our strategy of
re-checking model performance on these top variables can help data experts validate the choice of
models and variables selected. In practice, requesting a few lists of variables from clients can help
speed up the time to deliver a decision on a loan request.
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We have seen that algorithms based on artificial neural networks do not necessarily provide the
best performance and that regulators need also to ensure the transparency of decision algorithms to
avoid discrimination in and a possible negative impact on the industry.
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