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Abstract: Under state-dependent preferences, probabilities and units of scale of state-dependent
utilities are not separately identified. In standard models, only their products matter to decisions.
Separate identification has been studied under implicit actions by Drèze or under explicit actions and
observations by Karni. This paper complements both approaches and relates them when conditional
preferences for final outcomes are independent of actions and observations. That special case permits
drastic technical simplification while remaining open to some natural extensions.
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1. Introduction

This paper offers a modest contribution to the theme of separately identifying probabilities and utility
scales in the expected-utility analysis of individual decisions under uncertainty with state-dependent
preferences. For a background discussion, see the survey in Drèze and Rustichini (2004). The basic
issue is that probabilities and state-dependent utility scales enter as products in expected utility
calculations—hence they are not separately identified from observed decisions. Yet, there are situations
where separate identification is highly desirable. For instance, it is often claimed that medical decisions
should reflect the probabilities of the doctor and the utility of the patient.

In order to achieve separate identification, one can (sometimes) rely on expected utilities evaluated
under alternative probabilities. How do alternative probabilities enter the model? There are two routes:
(i) actions of the decision-maker affecting the likelihood of events (e.g., diet); and (ii) new information
modifying the probabilities of given events (e.g., medical tests).

Route (i) carries the limitation of being applicable only to those events that are potentially subject
to influence by the decision maker.2 It calls for a specification of the actions through which that
influence is exercised, and their properties, such as: are these actions observable? Are they costly? Do
they affect preferences, and if so how?

Route (ii) has potentially wider application; but its implementation requires evaluation of the
probabilities with which specific information may become available. This may impose on the decision
maker the unwieldy task of assessing the probabilities of occurrences that lie outside the decision
problem at hand. The present paper avoids that difficulty by restricting attention to information with

1 Paper prepared for the “International Conference in Memory of Jean-François Mertens: Games and Collective Decisions”
held in Jerusalem in June 2013. I am grateful to Peter Wakker for helpful comments on a first draft; and exceptionally
grateful to Edi Karni for constructive exchanges without which this paper could not have been written.

2 Indeed, influence by others comes naturally under the heading of new information.
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exogenous probabilities—coming from statistical sources, expert evaluations and the like. That does
not exhaust the topic, but has the advantage of transparency.

Route (i) was followed for the first time (in so far as I know) in Drèze (1958)—my unpublished
PhD dissertation, written under the precious guidance of William Vickrey. The complete model came
out in Drèze (1987a), with a preview in French (Drèze 1961). In that model, actions are not observable,
only their influence on state probabilities comes in. Observable actions appear in Karni (2011, 2013).

Route (ii) was introduced, and integrated with route (i), by Karni (2011), extending some of his
earlier work; it is pursued by Karni (2013)—the most general treatment to date.

The papers by Drèze and Karni are technically demanding—the more so when the model and
assumptions are very general. One motivation of the present paper is to provide a transparent analysis
for a model that is less general—while retaining applicability to a meaningful set of circumstances.
Two limitations are introduced: (i) actions are assumed observable; they may carry some cost or
disutility; but they do not affect conditional preferences; this corresponds to the specification in
Karni (2011), generalised to action-dependent preferences in Karni (2013); it carries the limitation
that separate identification of probabilities and utility scales is obtained for the set of representations
with action-independent conditional utility functions;3 (ii) information carries exogenous probabilities;
again, this is generalised by Karni (2011, 2013).

Yet, I do not rely on constant utility bets as defined in Karni (2011) or strings of such bets as
defined in Karni (2013). I rely instead on the less restrictive notion of pairs of bets with constant utility
differences.4 This extension is important in many real situations—including life insurance, risky jobs,
and so on—where the ranges of conditional utilities are unlikely to overlap.

Restrictive assumptions may sometimes be interpreted as characteristics of the class of decision
problems under study (as with exogenous probabilities for information), sometimes as characteristics
of preferences (as for constant utility bets), and sometimes either way (as for action-independent
conditional preferences). Restricting attention to a class of decision problems entails no restriction on
preferences. It is standard practice in decision theory where the models often cover decision problems
that are not encountered in daily life (like betting on arbitrary events). However, one should remain
conscious of the fact that representations derived from restrictive assumptions may admit alternatives.

The present paper illustrates how route (i) and route (ii) combine, in a simple additive manner,
to generate the desired variation in probabilities—in a formal model that is developed as a natural
extension of the standard model with state-independent preferences, namely the model of Savage (1954)
then Anscombe and Aumann (1963). In particular, I rely exclusively on naturally observable choices.

The logic of the argument in this paper is straightforward. First, I extend the Savage–
Anscombe–Aumann model to allow for state-dependent preferences, successively with a single action
(Theorem 1), then with multiple actions (Corollary 1). Next, I introduce the new concept of “strong
separability”, which characterizes situations where preferences over state-dependent utility gains are
revealed invariant to the choice of action. This property opens the way towards separate identification
of probabilities and state-dependent utility scales (Theorem 2). Next, I introduce observations and
define “observational separability”, a parallel (Corollary 2) or complementary (Theorem 3) avenue
towards separate identification. The respective contributions of routes (i) and (ii) are found to be of
the same nature; they are measured by the rank of the matrix of state probabilities with which they
are compatible—first separately, then jointly. This common nature is a useful explicitation—with the
additional merit of being technically transparent.

A simple example may help intuition. A sailor plans to cross from Bermuda to the Azores on
his way back to work in Portugal. Listening to weather forecasts, he hears that a major storm is
building up on the Atlantic. If the storm heads north, it will cross the sailor’s route, with possibly

3 A comparable limitation is also present in the model of Savage (1954) where the probabilities and utilities are identified in
the set of representations with state-independent utility functions. See further comments in Section 4 below.

4 Such pairs are mentioned in footnote 12 of Karni (2011).
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severe implications, ranging from minor boat damages to dismasting. But perhaps the storm will
head west and stay off the planned route. The ensuing developments (states) may be summarized
as: (θ) no storm, safe crossing; (θ’) storm, minor damages; (θ”) storm, dismasting. With these three
states, the sailor could associate subjective probabilities, as well as state-dependent utilities. To that
end, he consults a decision theorist, who: (i) elicits his preferences over a set (B) of bets (b), with
state-dependent monetary payoffs (z); but (ii) concludes that he cannot, on that basis, separately
identify the sailor’s probabilities and state-dependent utility scales.

Besides immediate departure (a), the sailor has access to an alternative action, (a’): take on board
a volunteer crew, whose assistance would reduce the risk of dismasting5, thereby modifying the
relative probabilities of states (θ’, θ”). The sailor could also adopt the strategy (f) of postponing his
choice between (a) and (a’) until hearing tomorrow’s weather forecast. That strategy involves new
information, hence a new probability for (θ). Processing the implications of alternative actions or new
information for the separate identification of probabilities and state-dependent utility scales is the
subject matter of this paper. In my example, the decision theorist could achieve separate identification
by combining the choice of action with the new information (as explained below).

The paper is organized as follows. Section 2 introduces basic concepts and notation. Analytical
developments are then divided in two parts: Part I considers actions with no observations, and Part II
combines actions and observations. Each part consists of an introduction and two sections: (i) a single
action (Sections 3 and 5); and (ii) multiple actions (Sections 4 and 6). Section 7 concludes.

2. Basic Concepts and Notation

Starting from the Savage–Anscombe–Aumann framework, let:
Θ be a finite set of T states (θ, θ’ . . . )6;
Z be a given set of outcomes (z, z’ . . . ) defined as probability distributions on a finite set of

primary outcomes (money in the above example).
A bet b ∈ B is a mapping b: Θ→ Z that assigns an outcome to every state.
In addition, let A be a finite set of M actions (a, a’ . . . ); and let a consequence c ∈ C: = Z × A × Θ

be a triplet (z, a, θ), equivalently denoted (b, a, θ).
A decision d ∈ D is a pair (a, b) ∈ (A × B), or more generally a lottery l ∈ L: = ∆(D)7 over such

pairs. A lottery involving a single action reduces to a bet.8,9

Starting from a bet b, to replace b(θ) by b’(θ) for some θ, I write bb’(θ).
Preferences (%, <, ≈) are defined over lotteries. They throughout satisfy the von Neumann

Morgenstern axioms:
(A.1) Weak Order: < on L is complete and transitive.
(A.2) Independence: for all d, d’, d” in D and all α ∈ (0, 1], d < d’ if and only if
αd + (1 − α)d” < αd’ + (1 − α)d”.
(A.3) Continuity: for all d, d’, d” in D, if d � d’ � d”, then there exist
(α,β) ∈ (0, 1)2 such that αd + (1 − α)d” � d’ � βd + (1 − β)d”.
I also assume throughout:
(A.4) Non-triviality: for each a in A, there exist b, b’ in B such that (a, b) � (a, b’).

5 Two men on board take turns supervising the course, whereas lone sailors must sleep part of the time . . .
6 “States” are labeled “effects” in Karni (2011, 2013).
7 ∆(D) is the set of probability distributions over D.
8 Indeed, ‘outcomes’ are themselves probability distributions.
9 In my example, there are three states and two actions. The decision theorist defines bets (b) with random monetary payoffs

conditional on states (θ, θ’); he then observes the sailor’s preferences among such bets under action (a), that is, preferences
among decisions (a,b), (a,b’) . . . and so on.
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Part I: Actions (No Observations)

This part complements the earlier work of Drèze (1961, 1987a) by (i) treating actions as observable,
instead of implicit, choices; and by (ii) letting actions affect preferences directly in addition to via their
impact on the likelihood of events. Still, conditional preferences for outcomes given a final state are
assumed independent of actions.

3. Single Action: A = (a)

This section is an extension of Anscombe and Aumann (1963—hereafter AA) to state-dependent
preferences. Beyond (A.1)–(A.4), AA use two assumptions: « conditional preferences » (their
‘monotonicity’) and « reversal of order ». I relax their conditional preferences to allow
for state-dependence.

Definition 1. (State-dependent conditional preferences):

b < b’ given a and θ (b <a,θb’) iff, for some b* ∈ B, (a, b*b(θ))< (a, b*b’(θ)) (1)

(A.5) Conditional preferences: for all (a, θ, b, b’), if b <a,θ b’, then there does not exist b*’ such that
(a, b*’b(θ))≺a,θ (a, b*’b’(θ)).

Under assumptions (A.1)–(A.5), the conditional preferences over bets can be represented by
expected utilities of their outcomes.

Definition 2. (Reversal of order): With a single given action, a lottery over decisions is a lottery over
bets, hence is itself a bet. If it is a matter of indifference to the decision-maker that the random drawing
takes place before or after the state is revealed, reversal of order holds.

With a single action, early information about the outcome of the bet is modeled as worthless, in
this abstract model: no decision depends on that outcome.10 Hence the assumption that the drawing
of the lottery choosing a bet may indifferently be drawn before or after observing the state:

(A.6) Reversal of order: every lottery l in L assigning probability 1 to action a and probabilities µ
(b/l) to elements of B is indifferent to the decision (a, (µ(b/l))).

Not surprisingly, probabilities and units of scale of conditional utilities are not separately
identified, in this model; only their products are identified. I record this property by stating that
probabilities and utilities are “jointly, but not separately, identified”.

Theorem 1. (AA, as per Theorem 4.9 in Drèze and Rustichini (2004)).
Let A = (a). Under (A.1)–(A.6), there exists a family of probability measures π(θ/a) and a family

of utility functions u(b, a, θ) such that

(a, b) < (a, b’) iff ∑θπ(θ/a).[u(b, a, θ) − u(b’, a, θ)] ≥ 0;

the probabilities and utilities are jointly, but not separately, identified.

Thus, the model of this section places no numerical restrictions on admissible probabilities—as
initially concluded by the decision theorist in my example . . .

10 There are, of course, many real life situations where this property does not hold, because time elapses before the state
obtains, and the decision maker may be adverse to “living under uncertainty”—a theme repeatedly explored by Robin Pope
since 1983 (Pope 1983).manuscript
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4. Multiple Actions

With multiple actions, the developments under 3 can be repeated for each a ε A. However,
assumption (A.5) for conditional preferences must be extended to actions.

(A.7) Extended conditional preferences: for all a in A and θ in Θ, if
(a, b*b(θ)) < (a, b*b’(θ)), then there do not exist (a’, b*’) in (A × B) such that
(a’, b*’b(θ))≺ (a’, b*’b’(θ)).
That is, u(b, a, θ) and u(b, a’, θ) are positive linear transformations of each other, conditionally

on θ. Since the units of scale of these utilities are undefined under Theorem 1, they may be chosen
identical—with natural implications for probabilities—yielding an action-independent representation
of conditional preferences. One then says that the functions {u(b, a, θ)}a∈A are related by a cardinal
unit-comparable transformation (are ‘jointly cardinal’); and one obtains the following result:

Corollary 1. Under (A.1)–(A.4) and (A.7), there exist a family of probability measures π(θ/a), a family
of utility functions u(b, θ) and a function v(a) such that

(a, b) < (a’, b’) iff ∑θπ(θ/a)u(b, θ) + v(a) ≥∑θπ(θ/a’)u(b’, θ) + v(a’), (2)

where:

- the probabilities and utilities are jointly, but not separately, identified;
- the functions {u(b, θ)}θ in Θ and v(a) are jointly cardinal.

Remark 1. In the representation (2), the action (a) does not appear as an argument of u(b, θ) in view
of (A.7); but (2) does not rule out that v(a) = ∑θ v(a/θ), reflecting indeterminacy of the origins of the
conditional utility functions.11

Multiple actions imply restrictions on relative units of scale of the state-dependent utilities.
In Drèze (1987a), the analysis of these restrictions rests on the concept of equipotence,12 geared to
(unobservable) actions for which v(a) = 0. In the model of this paper, I introduce instead the following
central concept:

Definition 3. (Strong separability):
Define B2 ⊂ B × B as the set of pairs of bets (b, b’) such that, for all a, a’ in A, the lottery l assigning

equal probabilities to the decisions (a, b) and (a’, b’) is indifferent to the otherwise identical lottery l’
assigning equal probabilities to (a’, b) and (a, b’).

In view of Corollary 1, the bets (b, b’) in B2 are such that the expected utility gain

∑θπ(θ/a).[u(b, θ) − u(b’, θ)] is independent of a.13,14 (3)

11 In the example, the presence of the volunteer crew may affect the pleasure of the crossing, hence the origins of the conditional
utilities; but it may not affect the conditional betting preferences.

12 Two games are “equipotent” if lotteries among them verify reversal of order; see Section 6 in Drèze and Rustichini (2004).
13 The equal probabilities in Definition 3 are crucial: they entail irrelevance of states whose probabilities are identical under a

and a’. The condition that l and l’ be ‘otherwise identical’ allows for equal probabilities lower than 1/2.
14 The property (3) holds for equipotent bets in Drèze (1987a), where in addition v(a) = 0. The step from equipotence to strong

separability aims precisely at allowing for v(a) > 0.
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If the set of actions A is so rich that there exist T linearly independent probability vectors π (θ/a),
in other words, if the set of actions allows the decision-maker to affect the probability of every single
state, then conditions (3) imply that the utility differences

[
u
(

b, θ
)
− u

(
b′ , θ

)]
, are independent of

θ—so that relative units of scale of state-dependent utilities are uniquely identified. Indeed, denoting
by Π the T × T matrix of these probability vectors, and by τ the T × 1 vector of 1’s, we have: Π.τ = τ
=Π−1.τ, so that

Π.[u(b, θ) − u(b’, θ)] = k.τ implies [u(b, θ) − u(b’, θ)] = kτ. (4)

Definition 4. (Strictness):
A pair of bets

(
b, b′

)
in B2 is unique up to replacement of its coordinates by equivalent outcomes

if there does not exist another pair (b*, b′ ) in B2 with the property that b*(θ) is indifferent to b (θ) for
some but not all θ’s.

The set B2 is said to be strict if each of its constituent pairs is unique up to replacement of its
coordinates by equivalent outcomes.

If B2 is strict, it consists of pairs of bets with constant utility differences.15

Theorem 2. If B2 is strict, the probabilities and units of scale of utilities in Theorem 1 are separately
identified in the set of representations with action-independent conditional utility functions.

Proof of Theorem 2. Any state-dependent rescaling of the conditional utilities

u(b, θ) would lead to violate the conditions
[
u
(

b, θ
)
− u

(
b′ , θ

)]
= kτ. (5)

In my example, no action affects the probability of θ (no storm) relative to the probability of
θ’∪θ” (storm); but a’ (hosting a crew) entails relative probabilities for θ’ (no dismasting) versus θ”
(dismasting) that are different from those entailed by a (sailing alone). Condition (3) then boils down to

u
(

b, θ′
)
− u

(
b′ , θ′

)
= u

(
b, θ”

)
− u

(
b′ , θ”

)
(6)

That is, the utility difference between b and b’ in B2 is the same under θ’ as under θ”, thereby
identifying the relative units of scale of the associated conditional utilities.

The concept of strong separability is thus meaningful, and elements of B2 are readily identified.
However, with three states and two actions, strictness is excluded.

Part II: Actions and Observations

Let E be a set of N mutually exclusive and collectively exhaustive observations Ei of given
probabilities π(Ei) > 0. Treating π(Ei) as a primitive is restrictive (see Section 7), but natural in the case
of statistical observations or official (e.g., weather) forecasts.

In my example, an observation corresponds to the report tomorrow about the path of the
storm (west or north); that path is not influenced by the sailor’s actions; and the probabilities about
tomorrow’s path come from the weather office—hence are given to the sailor.

E × Θ defines an event tree with elements (Ei, θ) and 3 dates (0, E, Θ): = (0, 1, 2).16

15 This is a weaker property than “constant utilities”, as discussed in Drèze (1987a) and assumed in Karni (2011, 2013)—a
condition that requires overlapping ranges for conditional utilities.

16 In my example, date 0 is today; date 1 is tomorrow, when a new weather report is issued; and date 2 is whenever the storm
does (or would) cross the sailor’s route. There are two events at date 1 (‘west’ or ‘north’); the three final states at date 2
are unchanged.
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A strategy is a function f ∈ F: E → D = A × B that assigns a decision to each observation17.
I extend assumptions (A.1)–(A.4) and (A.7) from decisions or lotteries to strategies.

In Theorem 1 and Corollary 1, one may then replace π(θ/a) by ∑i π(Ei). π(θ/Ei, a).
With π(Ei) given, it is possible to construct, through randomization, a set E* of equiprobable

observations Ei*. Thus, letting EN denote an observation such that π(Ei) ≥ π(EN) for all i, define Ei* as
the product of Ei with a random drawing of probability π(EN)/π(Ei); then π(Ei*): = π(EN) > 0 for all i18.

A counterpart of strong separability is readily defined for E*. I do so in two steps: first under a
given action a, then across actions. Indeed, the first step is of independent interest.

5. Single Action

As noted in Definition 2, with a single action, strategies reduce to bets.
Write b’b(E*i) for the bet b’ modified conditionally on E*I so as to coincide there with b.

Definition 5. (Observational separability):
Let B2

a be the set of pairs of bets (b, b’) such that (a, b’b(E*i)) ~(a, b’b(E*j)) for all i,j.
The pairs of bets in B2

a are readily seen to satisfy

∑θπ(θ/Ei*, a).[u(a, b’, θ) − u(a, b, θ)] is independent of i. (7)

Applying to B2
a the definition of strictness introduced above for B2, we obtain19:

Corollary 2. If B2
a is strict, the probabilities and the units of scale of state-dependent utilities in

Theorem 1 are separately identified.

Corollary 3. If B2
a is strict, the origins of the state-dependent utilities in Theorem 1 are uniquely

defined, up to a common additive constant.

In my example, assume for transparency that π(θ) = π(E1) = 1
2 with π(θ/E1) = 1. Then, condition

(4) imposes that the gain in utility from replacing b’(θ) by b(θ) be the same as the gain in expected
utility from replacing b’ by b on θ’∪θ”, under action a. The concept of observational separability
is thus meaningful, and elements of B2

a are readily identified. However, with three states and two
observations, strictness is excluded.

Proof of Corollary 2. If B2
a is strict, the N× T matrix with elements π(θ/a, Ei*) owns a TxT (sub)matrix

Πa of full rank T. Accordingly,

Πa.[u(b, a, θ) − u(b’, a, θ)] = kτ for some k > 0 and [u(b, a, θ) − u(b’, a, θ)] = kτ. (8)

The relative units of scale of utilities are thus identified uniquely, entailing the same property for
the probabilities. QED

Proof of Corollary 3. Write u(b, a, θ) in Theorem 1 as cw(b, a, θ) + da (θ). Then: ∑θ[π(θ/a, Ei*) −
π(θ/a, Ej*)]ya(θ) is independent of i and j. If Πa has full rank, this places T-1 constraints on da. QED

17 This concept of strategy is used in Karni (2011).
18 The sum over i of π(Ei*) is thus less than 1—but that is immaterial, as noted in footnote 13 above, for pairs of strategies that

are “otherwise identical”.
19 Note that strictness of B2

a requires N ≥ T; see Section 7.
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6. Multiple Actions

Definition 6. (Global separability):
Let B2* be the set of pairs of bets (b*, b*’) ε ∩ a in A B2

a that satisfy strong separability conditionally
on Ei* for all Ei* in E*.

It is readily verified that every pair of bets in B2* satisfies

∑θπ(θ/Ei*, a).[u(b’, θ) − u(b, θ)] is independent of i and a. (9)

Theorem 3. If B2* is strict, the probabilities and units of scale in Theorem 2 are separately identified in
the set of representations with action-independent conditional utility functions.

The proof of Theorem 3 is parallel to that of Corollary 2.
In my example, strategies call for deciding whether or not to host a crew after hearing tomorrow’s

weather report. Preferences over strategies permit relating the units of scale of utility conditional
on ‘no storm’ to the units of scale of expected utility conditional on ‘storm’—Equation (4). Also,
preferences over actions permit relating the units of scale of utility conditional on ‘no dismasting’ to
those conditional on ‘dismasting’—Equation (4). Accordingly, B2* is strict, and Theorem 3 applies.
The complementarity between actions and observations towards separate identification of probabilities
and utility scales stands out neatly.

Remark 2. If B2* is not strict, but admits k < T − 1 degrees of freedom20, then the probabilities and
units of scale of state-dependent utilities are only partly identified, with T − k − 1 remaining degrees
of freedom.

7. Concluding Comments

First, we could conclude that B2* being strict is indeed a ‘strict’ condition, unlikely to be verified
in many (most!) situations. My purpose is to elucidate the requirements underlying separate
identification, not to assume them.

Yet, strictness of B2* is much less demanding than strictness of B2, or of B2
a for some a. It will

often be the case that observations impact probabilities in different domains than actions do—as my
example clearly illustrates.21 There may exist specific interactions between observations and actions,
reflected in the probabilities π(θ/a, Ei). With N potential observations and M actions, there is scope for
NM conditional probability vectors, of which one could hope that T be linearly independent. Starting
from the number of linearly independent probability vectors associated with actions in absence of
observations, one may quantify the respective contributions of actions and observations to separate
identification of probabilities and utility scales under action-independent utilities.

It is also important to note that this paper rests on observations with given
(exogenous) probabilities.

That feature is used only in constructing the ‘equiprobable observations’ underlying conditions
(4) and (5). It seems natural to conjecture that the analysis here could be extended to a model where
equiprobable observations are based on subjective probabilities of primitive observations—as in
Karni (2011, 2013). However, elicitation of these subjective probabilities is not immediate, because the
observations affect the (action-dependent) subjective probabilities of the states.

20 That is, the condition in Definition 4 that a bet be “unique up to replacement of its coordinates by equivalent outcomes”
does not hold for k out of T coordinates.

21 In the example, strictness of B2* results from the combination of 2 constraints on probabilities—one coming from (3bis)
(multiple actions), the other from (4) (observation).
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Similarly, one would like to relax assumption (A.7) and allow for action-dependent conditional
preferences, but the implication (3) of strong separability would then be lost. I have not found a
reformulation of strong separability retaining implication (3). Whether that could be achieved without
relying on constant-utility bets is an interesting open question.
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