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Abstract: Audit mechanisms frequently take place in the context of repeated relationships between
auditor and auditee. This paper focuses attention on the insurance fraud problem in a setting
where insurers repeatedly verify claims satisfied by service providers (e.g., affiliated car repairers or
members of managed care networks). We highlight a learning bias that leads insurers to over-audit
service providers at the beginning of their relationship. The paper builds a bridge between the
literature on optimal audit in insurance and the exploitation/exploration trade-off in multi-armed
bandit problems.
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1. Introduction

Claim fraud represents a serious threat to insurance markets: by artificially inflating the frequency
and the cost of reported losses, defrauders lead to higher insurance premiums and they contribute to
jeopardizing the efficiency of risk sharing mechanisms. Besides the free-riding problem that it poses,
large scale fraud may even endanger the sustainability of the insurance markets that are prone to fraud.

Insurance claim fraud is sometimes referred to as a form of ex-post moral hazard in that it
occurs after an (alleged) accident—for example when policyholders build up their claim or when they
announce accidents that never actually happened. It essentially differs from ex-ante moral hazard
through the associated timing (before/after the accident) and the modus operandi of addressing
these inefficiencies: while principals tend to rely on a contract design approach to distort the agent’s
incentives in an ex-ante context (without being able to monitor the agent’s effort), the ex-post situation
is usually addressed through costly auditing in order to check what actually occurred.

The economic literature has mainly examined these issues through the lens of thecostly state
verification approach, whose foundations were laid by the seminal papers of Townsend (1979) and
Gale and Hellwig (1985). Within this setting, it is assumed that the insurer can verify the true value of
claims by incurring an audit cost.1 The audit may be either deterministic, random or guided by signals
perceived by the insurer. In particular, Mookherjee and Png (1989) establish that random auditing
dominates deterministic auditing, while Dionne et al. (2008) build a scoring methodology to show
how audits are triggered by signals observed by the insurer. In one way or another, an optimal claim
monitoring strategy achieves a trade-off between the additional costs of more frequent audits and the
advantages of a more efficient fraud detection. The deterrence effect highlighted by Dionne et al. (2008)
is an example of such an advantage: they consider a setting where more frequent audits reduce the

1 Crocker and Morgan (1997) develop the costly state falsification approach, where it is the defrauder who may incur some
expenses to misrepresent her loss.
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frequency of fraud, and they show that some individually unprofitable audits should be performed
because of this deterrence effect.

Audits may also play an important role in gathering evidence about the auditee (e.g., does he
seem to have a penchant for dishonest behavior?), information that may be useful at later stages.
Indeed, claimants (or service providers with whom they collude) may have some intrinsic and hard to
observe characteristics that affect their propensity to defraud. Audits may help the insurer to mitigate
this informational asymmetry about claimants’ type.2

The learning dimension is particularly relevant when it comes to repeated audits. Consider,
for instance, the health insurance fraud case when there is a third party involved beside the insurer and
the policyholders. Health service providers (doctors, opticians, pharmacists, etc.) play a central role
since collusion between providers and policyholders is usually a necessary condition for fraud to take
place. Furthermore, health care providers interact on a regular basis with the insurer, as they provide
services to many policyholders and during several periods. Because of this repeated interaction, health
insurers’ anti-fraud efforts often focus on service providers as much as on policyholders. The same
logic applies to property insurance, when insurers interact with car repairers or construction companies,
sometimes within a network of affiliated service providers.

The purpose of the present paper is to investigate how such repeated interactions affect the
optimal audit strategy. We will show that the insurer may find it optimal to perform unprofitable
audits because of a learning effect. In short, auditing is a way to gather information that can be used
at later stages of the auditor–auditee interaction. This learning dimension may lead the insurer to
perform audits beyond what would be optimal from a purely instantaneous standpoint.

To highlight this effect, we will rely on a simple model with two types of service providers
(honest and dishonest) and where the likelihood of submitting an invalid claim is exogenous and
type-dependent. Thus, we abstain from analyzing the strategic interaction between the insurer and
policyholders. We focus attention on the role of service providers as mandatory intermediaries who
certify claims, without examining the collusion process between providers and claimants.3 Dishonest
providers may certify invalid claims on purpose, while honest providers may only do it unintentionally.
The insurer has beliefs about the type of each service provider and his decision consists of choosing the
probability with which he audits each provider over the course of two consecutive periods. Auditing a
claim allows the insurer to discover whether it is valid or invalid, but, in the latter case, it does not
reveal if the misbehavior was done on purpose or unintentionally. Auditing a claim allows the insurer
to update his belief about the type of the service provider.

We find that, in the first period, the insurer has an incentive to perform some unprofitable audits,
in order to improve his information about the service providers’ type, and this additional information
will allow him to more efficiently focus his auditing strategy at the second period. Ultimately,
deviating from a strategy that would be guided by instantaneous expected gains proves to be profitable.
It corresponds to insisting on preliminary investigations early in the relationship to better monitor the
agents later on.

This conclusion reveals an exploration/exploitation dilemma analogous to the multi-armed
bandit problem in machine learning.4 In this approach, a player is repeatedly facing a slot machine
with multiple arms. He must choose an arm at each period, each arm providing a random payoff
with an imperfectly known stationary distribution. The player faces a trade-off between playing the
most profitable arm according to early beliefs, and playing different arms in order to refine his beliefs.

2 Dionne et al. (2008) introduce this hidden heterogeneity under the form of a cost reflecting the policyholder’s moral sense
that affects the probability of defrauding. Still, this cost remains unobservable by the insurer and does not come into play to
assess the probability of a claim being fraudulent.

3 Bourgeon et al. (2008) analyze the collusion between service providers and policyholders when insurers have networks of
affiliated providers.

4 See Sutton and Barto (1998) and Bergemann and Valimaki (2006).



Risks 2018, 6, 15 3 of 22

Exploring new arms induces an opportunity cost of not exploiting the arm that is the most profitable
according to the current information, but this may allow the player to discover that other arms are in
fact more profitable. Similarly, in our model, by trading current revenue for information, the better
informed insurer gets a higher future payoff that compensates the initial loss.

The rest of the paper is organized as follows. In Section 2, as a preliminary stage, we consider a
single period model where audits are not repeated and we characterize the corresponding optimal
auditing strategy. In Section 3, we extend our model to account for repeated audits. We exhibit the
competing roles of auditing as sources of revenue and information, and we define the insurer’s dynamic
optimization problem that will be solved by backward induction. Hence, we start by characterizing
how available information is used at the second period and, in a second stage, we deduce how the first
period audit should be performed. We show that the learning effect leads the insurer to audit more at
the beginning of the relationship, with the magnitude depending on the informativeness of the audit
and on the degree of short-sightedness of the insurer. In Sections 2 and 3, we restrain ourselves to a
simple model where all claims have the same value. Section 4 extends our results to a more general
setting with variable claim values. The final section concludes. Proofs are in the Appendix A.

2. Single Period Auditing

2.1. Setting

Let us start by considering an insurer who interacts with a population of service providers (SPs)
during a single period. SPs are mandatory intermediaries between insurer and insured. In particular,
they certify the claims filed by policyholders, which means that they attest that the claims actually
correspond to the value of the services paid by the policyholders following the event covered by the
insurance policy. Each SP transmits exactly one claim with a value normalized to 1 to the insurer, with
the claim being either valid or invalid. Invalid claims should not lead to insurance payments. They
may be transmitted either in good faith (for instance because the SP makes an error due to imperfect
information about the circumstances of the loss) or in bad faith with the intention of defrauding.

SPs are heterogeneous when it comes to their propensity to transmit invalid claims. There are
many possible determinants of this propensity, among which is the sense of moral values, which
is negatively correlated with the propensity to defraud or the ability to build complex defrauding
schemes.5 Hereafter, we consider that each SP may be either honest (H) or dishonest (D). Honest
SPs only transmit invalid claims by error (they are always in good faith), while dishonest SPs may
transmit invalid claims either by error or intentionally (they may be in bad faith). Hence, a type H is
less likely to transmit invalid claims than a type D. We include this aspect by defining probabilities
P(Inv|H) = pH and P(Inv|D) = pD of submitting an invalid claim by type H and type D, respectively,
such that pH < pD.

There is a continuum of SPs with mass 1 and the insurer has initial belief π ∈ [0, 1] for each SP
that represents the a priori probability that the SP is of type D. The prior π is distributed in [0, 1]
with density f (π) and cumulative distribution function (c.d.f.) F(π) in the population of SPs. While
we consider this prior as given, we may consider that it has been induced by signals (including the
outcome of audits) that have been previously perceived by the insurer about each SP. These beliefs
may be biased or not among SPs, i.e., the expected value

∫ 1
0 π f (π)dπ may or may not be equal to the

true proportion of dishonest SPs in the continuum.

5 While defrauding in plain sight may occur (hoping for inattention of the insurer), it usually takes some effort to construct a
defrauding scheme. For example, some opticians may provide sunglasses to their clients, but they certify that they have
delivered regular glasses.
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Each claim may be audited and, in that case, the insurer observes whether it is valid or invalid.
The audit is costly and represents the fundamental constraint that the insurer faces when it comes to
choosing audit targets. It costs c to investigate a claim, with pH < c < pD.

Claims found to be invalid are not paid, inducing a net proceed of 1− c. No penalty is paid to the
insurer by SPs whose invalid claims are detected by the audit. Hence, auditing a claim is profitable
(in expected terms) only when it has been certified by a dishonest SP. From the insurer’s point of
view, an SP with prior π transmits invalid claims with probability p̄(π) = pDπ + pH(1− π) and the
corresponding expected net proceed of auditing is p̄(π)− c.

2.2. Auditing Strategy, Objective Function and Optimization Problem

For each SP, the insurer must decide whether an audit will be performed or not. We define an
auditing strategy as a function x(·) : [0, 1]→ [0, 1] that assigns a probability x(π) of being audited to
each SP with belief π. For a given auditing strategy, the net expected proceed of audits is written as

Ω(x(·)) =
∫ 1

0

[
p̄(π)− c

]
x(π) f (π)dπ.

The optimization problem of the insurer is written as

max
x(·)

Ω(x(·))

s.t. 0 ≤x(π) ≤ 1 ∀π ∈ [0, 1].

Lemma 1. The single period optimal auditing strategy x∗(π) consists in auditing all claims transmitted by
SPs with associated beliefs π ≥ π∗ and not auditing claims when π < π∗, i.e.,

x∗(π) =

{
1 if π ∈ [π∗, 1]
0 if π ∈ [0, π∗)

}
= 1{π≥π∗},

where the threshold π∗ is
π∗ =

c− pH
pD − pH

with p̄(π∗)− c = 0.

Lemma 1 is unsurprising: one should only perform audits that are individually profitable, which
amounts to focusing audits on SPs with π such that p̄(π)− c ≥ 0.

3. Two-Period Auditing: The Learning Effect

Because SPs take care of many policyholders, they repeatedly interact with the insurer. For the sake
of simplicity, we assume that this interaction takes place during two consecutive periods i = 0, 1. There
are different beliefs at the beginning of each period and the insurer’s strategy is based on these beliefs.
From now on, variables of interest will be indexed by the corresponding periods (πi, xi, Ωi)i∈{0,1}.
The insurer’s inter-temporal objective function depends on both period specific objective functions Ω0

and Ω1, the latter being weighted by γ > 0.6 His optimization problem is written as

max
x0(·),x1(·)

Ω0 + γE0[Ω1],

s.t. 0 ≤ x0(π0) ≤ 1 ∀π0 ∈ [0, 1],

s.t. 0 ≤ x1(π1) ≤ 1 ∀π1 ∈ [0, 1],

6 If γ ∈ (0, 1) it can be simply interpreted as a discount factor. Period 1 can also be viewed as the aggregation of all future
proceeds without restriction about the value of γ.
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where E0 corresponds to the expected value operator at the beginning of period 0, i.e., before
performing audits during this period.

3.1. Auditing as a Source of Information

Period 0 audits allow the insurer to update his belief at the beginning of period 1. Depending on
whether an audit has been performed and, if it has been, whether the claim was valid or invalid (Val
and Inv, respectively), the updated beliefs π̃1 are deduced from initial beliefs π0 through Bayes’ Law:

π̃1 =



P(D|audit, Inv) = A(π0) =
pDπ0
p̄(π0)

,

P(D|audit, Val) = B(π0) =
(1−pD)π0
1− p̄(π0)

,

P(D|no audit) = π0,

(1)

with

B(π0) < π0 < A(π0),

A′ > 0, A′′ < 0,

B′ > 0, B′′ > 0.

Hence, A(π0) and B(π0) are the probabilities that the SP is dishonest if a period 0 audit revealed
that the claim was invalid or valid, respectively. In particular, an invalid claim detected by audit leads
the insurer to increase his beliefs that the SP is dishonest, i.e., A(π0) > π0, and it is the other way
around if an audit reveals that the claim was valid, i.e., B(π0) < π0. Of course, beliefs are unchanged
if there is no audit.

For illustrative purposes, Figures 1 and 2 describe the degree of informativeness of an audit as a
function of parameters pH and pD. In Figure 1, the graphs of functions A(·) and B(·) are symmetric on
each side of the 45◦ line. This is due to the specific condition pH + pD = 1. Maintaining this assumption,
Figure 2a shows that bringing pH and pD closer makes both learning curves less concave/convex and
closer to the 45◦ line, underlining the fact that the audit is less informative in this case. Figure 2b,c
illustrate the extreme case where the audit is, respectively, totally informative (pH = 0 and pD = 1)
and not informative at all (pH = pD, both types behave the same way). Relaxing the pH + pD = 1
assumption, Figure 2d–f exemplify the asymmetry of informativeness between invalidity and validity
of a claim: in Figure 2d, both probabilities of defrauding are rather low, so stumbling upon a valid
claim does not say much, while finding a claim to be invalid induces a stronger change in the belief.
The opposite happens in Figure 2e where both types defraud often, with the validity status becoming
more informative.

This aspect of auditing suggests some influence of period 0 auditing outcomes on period 1
auditing decisions. The information revealed at period 0 may lead to an expected efficiency gain at

period 1. To express this idea, let us denote ω(π1, x1) =
[

p̄(π1)− c
]

x1 the expected gain of an audit
performed at period 1 with probability x1 under belief π1.

Proposition 1. The optimal period 1 optimal audit strategy x∗1(·) is such that

E0[ω(π̃1, x∗1(π̃1))|π0, x0(π0)] ≥ ω(π0, x∗1(π0)) ∀π0 ∈ [0, 1]

with a strict inequality if π1 ∈ [0, 1] exists such that x∗1(π1) 6= x∗1(π0) and P(π̃1 = π1|π0) > 0.
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Proposition 1 implies that period 0 auditing increases the insurer’s period 1 expected payoff if it
affects the period 1 auditing strategy: its informational value translates into an increase in period 1 net
proceeds besides its period 0 income maximization value.

Figure 1. Updating priors according to the auditing status (pD = 0.9, pH = 0.1).

(a) pD = 0.6, pH = 0.4 (b) pD = 1, pH = 0

Figure 2. Cont.
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(c) pD = pH (d) pD = 0.12, pH = 0.08

(e) pD = 0.92, pH = 0.88 (f) pD = 0.98, pH = 0.88

Figure 2. Updating functions for different parameters.

Let π̃1 be the updated belief. This is a random variable defined by Equation (1) whose distribution
depends on initial beliefs π0 and on the period 0 auditing probability x0(π0).

3.2. Inter-Temporal Optimization Problem

Period 0 expected auditing profit is written as

Ω0(x0(·)) =
∫ 1

0

[
p̄(π0)− c

]
x0(π0) f0(π0)dπ0,

where f0(π0) is the density of prior beliefs.
The updating process corresponds to a mapping of period 0 beliefs into period 1 beliefs, thus

changing the latter’s distribution depending on the chosen period 0 strategy. Let f1(·) be the density of
period 1 updated beliefs. It depends on period 0 auditing strategy and then it is written as f1(π1|x0(·)).
Period 1 expected auditing profit is written as

Ω1(x0(·), x1(·)) =
∫ 1

0

[
p̄(π1)− c

]
x1(π1) f1(π1|x0(.))dπ1.

The inter-temporal optimal auditing strategy of the insurer can now be characterized by backward
induction. At period 1, the insurer follows the optimal single period strategy x∗1(·) characterized by
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Lemma 1. Hence, the optimal period 1 expected net proceed of auditing Ω∗1(x0(·)) = Ω1(x0(·), x∗1(·))
is written as

Ω∗1(x0(·)) =
∫ 1

0

[
p̄(π1)− c

]
1{π≥π∗} f1(π1|x0(.))dπ1

=
∫ 1

π∗

[
p̄(π1)− c

]
f1(π1|x0(.))dπ1.

Given this period 1 optimal strategy, the period 0 optimal strategy x∗0(·) is an optimal solution to

max
x0(·)

Ω0(x0(·)) + γE0[Ω∗1(x0(·))]

s.t. 0 ≤ x0(π0) ≤ 1 ∀π0 ∈ [0, 1].

3.3. Effect of Period 0 Audit on the Audit Decision in Period 1

In order to show how period 0 audit affects the decision to audit at period 1, let us define πa and
πb by

A(πa) = π∗, πa =
π∗pH

π∗pH + (1− π∗)pD
,

B(πb) = π∗, πb =
π∗(1− pH)

π∗(1− pH) + (1− π∗)(1− pD)
.

One easily checks that
0 < πa < π∗ < πb < 1.

We have A(π) ≥ π∗ if and only if π ≥ πa and B(π) ≥ π∗ if and only if π ≥ πb. Hence, πa is the
lowest belief such that, if found invalid at period 0, the SP will be audited at period 1 and πb is the
highest belief such that, if found valid at period 0, the SP will be not be audited at period 1.

These thresholds lead us to Lemma 2 in which we express the probability of auditing at period 1
as a function of the period 0 belief and auditing outcomes.

Lemma 2. The effect of period 0 audit on the audit decision x1 at period 1 is characterized by Table 1.

Table 1. Period 1 audit decision x1 as a function of period 0 beliefs and audit outcomes.

π0 ∈ [0, πa) [πa, π∗) [π∗, πb) [πb, 1]

Audit and Valid 0 0 0 1
No Audit 0 0 1 1

Audit and Invalid 0 1 1 1

Figures 3 and 4 illustrate this relationship between the outcomes of the period 0 audit and the
obtained posteriors.
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Figure 3. Period 0 priors and period 1 auditing.

Figure 4. Period 1 beliefs as a consequence of Period 0 audit outcomes.

Lemma 2 directly yields the probability of being audited at period 1 conditionally on π0 and
x0(π0). This is written as

P(π1 ≥ π∗|π0 ∈ [0, πa)) = 0,

P(π1 ≥ π∗|π0 ∈ [πa, π∗)) = p̄(π0)x0(π0),

P(π1 ≥ π∗|π0 ∈ [π∗, πb)) = p̄(π0)x0(π0) + 1− x0(π0),

P(π1 ≥ π∗|π0 ∈ [πb, 1]) = p̄(π0)x0(π0) + 1− x0(π0) + (1− p̄(π0))x0(π0) = 1.

For instance, when π0 ∈ [π∗, πb), there will be an audit at period 1 either if, at period 0, an audit
revealed an invalid claim or if there was no audit, which occurs with probability p̄(π0)x0(π0) and
1− x0(π0), respectively. The other cases can be interpreted similarly.
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Lemma 3. The inter-temporal objective function can be rewritten as

Ω0(x0(·)) + γE0[Ω∗1(x0(·))] =
∫ 1

0

[
C(π0) + K(π0)x0(π0)

]
f0(π0)dπ0,

where functions C(·) and H(·) are defined in Table 2 and K(π0) = p̄(π0)− c + γH(π0). In particular, K(π0)

is a continuous piecewise linear function such that

K(π0) < 0 if π0 ≤ πa and K(π0) > 0 if π0 > π∗,

K(π0) = p̄(π0)− c for π0 ∈ (0, πa) ∪ (πb, 1),

K(π0) > p̄(π0)− c for π0 ∈ (πa, πb).

Table 2. Definition of C(·) and H(·).

π0 C(π0) H(π0)

[0, πa) 0 0
[πa, π∗) 0 p2

Dπ0 + p2
H(1− π0)− p̄(π0)c

[π∗, πb) γ
[

p̄(π0)− c
]

p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− [ p̄(π0)− c]

[πb, 1] γ
[

p̄(π0)− c
]

0

Lemma 3 decomposes the inter-temporal objective function into components that make explicit
the impact of x0(·) on current and future audit proceeds. C(π0) represents the proceeds of period 1
audits when the SP is not audited at period 0, and thus this term is not affected by x0(π0). Beliefs
π0 in [0, πa) and [πa, π∗) are smaller than π∗, and, thus, if the corresponding SPs are not audited at
period 0, neither will they be at period 1. Hence, any benefit/loss from these beliefs is necessarily
the consequence of being audited at period 0, which gives C(π0) = 0. This is different for beliefs
in [π∗, πb) and [πb, 1] because they correspond to cases where initial beliefs π0 are higher than π∗.
Consequently, the SPs will be audited at period 1 and there are some proceeds from period 1 that do
not depend on x0(·), hence the presence of γ in C(·).

K(π0) represents the proceeds over the two periods that are affected by period 0 audit. p̄(π0)− c
in K(π0) represents the period 0 proceeds resulting from being audited at that period, while H(π0)

corresponds to the period 1 proceeds that are affected by period 0 audits through the belief updating
process. For instance, an SP with π0 ∈ [πa, π∗) will be audited at period 1 if an audit revealed an
invalid claim at period 0 (because π1 ≥ π∗ in that case) and the term p2

Dπ0 + p2
H(1− π0)− p̄(π0)c

corresponds to the expected net proceeds. H(π0) = 0 in [0, πa) and [πb, 1], although for different
reasons: in [0, πa), regardless of the outcome of the audit, updated beliefs will remain below π∗ and
will never be audited at period 1, while, in [πb, 1], whatever happens at period 0, all beliefs remain
above π∗ and the claim will always be audited at period 1. Function K(π0) is illustrated in Figure 5.
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Figure 5. K(π0) for (pD = 0.9, pH = 0.1, c = 0.5, γ = 1).

3.4. Inter-Temporal Optimal Auditing Strategy

Proposition 2. An optimal period 0 strategy x∗0(·) is characterized by π∗∗ ∈ (πa, π∗) such that

x∗0(π0) = 0 if π0 ∈ [0, π∗∗),

x∗0(π0) ∈ [0, 1] if π0 = π∗∗,

x∗0(π0) = 1 if π0 ∈ (π∗∗, 1].

The threshold π∗∗ is given by

π∗∗ = π∗
1 + γpH

1 + γpH + γ(pD − c)
< π∗,

and is such that
K(π∗∗) = 0 and p̄(π0)− c < 0 ∀π0 ∈ [π∗∗, π∗). (2)

Proposition 2 shows that, accounting for the impact of period 0 auditing on period 1, posterior
beliefs lead the insurer to audit a higher number of SPs at period 0 than in the instantaneous audit
problem analyzed in Section 2. The belief threshold above which claims should be audited is now
π∗∗ instead π∗, with π∗∗ < π∗. An interesting aspect is that these additional auditees π0 ∈ [π∗∗, π∗)

are such that the corresponding individual expect net proceeds of audit are negative (Equation (2)):
in other words, in spite of the negative impact on period 0 audit proceeds, the information gathered
generates enough (discounted) profit at period 1 to compensate for this initial loss. Figure 6 illustrates
this deviation from the single period myopic auditing and Figure 7 shows in orange the additional
period 1 positive net proceeds γ

∫
H(π0) f0(π0)dπ0 that come from auditing down to π∗∗.7

7 This result shows some similarity with the analysis of the deterrence effect by Dionne et al. (2008). They show that some
claim should be audited although the corresponding expected gain is negative. This is due to the deterrence effect of
auditing: more intense monitoring discourages fraud and it should lead the insurer to audit below the individual claim
profitability threshold.
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(a) Learning effect at t = 0. (b) Myopic at t = 0.

Figure 6. Learning vs. myopic.

Figure 7. x0(π0)K(π0) for (pD = 0.9, pH = 0.1, c = 0.5, γ = 1).

The extent of the informational value of auditing is illustrated by the comparative statics properties
of π∗∗. If γ = 0, i.e., if the insurer at time 0 does not care about period 1, then π∗∗ = π∗ since the
informational value of auditing at t = 0 serves no purpose. If γ→ +∞, i.e., if the insurer only cares
about period 1 profit, then π∗∗ → πa and he seeks to get the maximum information from period 0.
Of course, there is no point in having π∗∗ lower than πa as the additional information would not be
useful at period 1. The new auditing limit, like the myopic one, also depends on c: if c = pH , then
π∗∗ = π∗ = 0 and, if c = pD, then π∗∗ = π∗ = 1, as in both cases there is no more trade-off between
information and revenue. Finally, if we write c = αpD + (1− α)pH with α ∈ (0, 1), then π∗ = α and
π∗∗ → π∗ when pD −→ pH . When pD comes closer to pH , the separating power of the audit decreases
until it becomes uninformative, and, at the limit pD = pH , there is no more distinction between types
D and H.

4. Variable Claim Value

A large part of the economic analysis of insurance fraud has focused attention on optimal auditing
strategies when policyholders may file smaller or larger claims, and, on the way, the insurer’s audit
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strategy depends on the size of the claim.8 Let us consider how this approach may be affected by the
learning mechanism.

4.1. Deterministic Value

As a preliminary step, let us consider the case where the size of all claims takes some arbitrary
value ` ∈ R+. This size is still fixed, but not necessarily equal to 1. The belief threshold π∗ now
depends on ` and is defined by

π∗ = 1 if ` ≤ c
pD

,

p̄(π∗)`− c = 0 if
c

pD
< ` <

c
pH

,

π∗ = 0 if
c

pH
≤ `.

Therefore,

π∗(`) = max
{

0, min
{

1,
c/`− pH
pD − pH

}}
.

Equivalently, we may define a threshold `∗ for the claim size

`∗(π) =
c

pH + (pD − pH)π
=

c
p̄(π)

∀π ∈ [0, 1],

and, for beliefs π, auditing is profitable if ` ≥ `∗(π).
A straightforward extension of the results of Section 3, with the same claim size ` at each period,

shows that the first period optimal auditing threshold becomes

π∗∗(`) = π∗(`)× 1 + γpH
1 + γpH + γ(pD − c/`)

.

As π∗∗(·) is strictly decreasing from ( c
pD

, c
pH

) to (0, 1), we can also define a function
`∗∗(·) : [0, 1] −→ [ c

pD
, c

pH
] as

`∗∗(0) =
c

pH
,

`∗∗(π) = (π∗∗)−1(π) for π ∈ (0, 1),

`∗∗(1) =
c

pD
.

In the two period setting, a claim ` certified by an SP with associated belief π0 will be audited if
` ≥ `∗∗(π0).

The set of claims ∆∗ for which audit is profitable within a single period setting (with belief π and
claim size `) is defined by

∆∗ = {(π, `)|π∗(`) ≤ π ≤ 1} = {(π, `)|`∗(π) ≤ `}.

8 See Picard (2013) for a survey.
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In a two period setting, with claim size ` at both periods, claims should be audited at period 0 if
(π0, `) ∈ ∆∗∗, where

∆∗∗ = {(π0, `)|π∗∗(`) ≤ π0 ≤ 1} = {(π0, `)|`∗∗(π0) ≤ `},

with ∆∗ ⊂ ∆∗∗. These sets are illustrated in Figure 8.

Figure 8. Auditing thresholds π∗(`) and π∗∗(`) with a variable claim value `.

4.2. Random Homogeneous Value

Let us move on now to the more interesting case where the size of the claims is a random variable
drawn from a known distribution at the beginning of each period. Let ˜̀i denote this random variable
with density gi(·) and c.d.f. Gi(·) on [0, Li] for i = 0, 1. For simplicity, we assume that ˜̀i has the
same probability distribution for both types of SPs, and thus ˜̀i and π0 are independently distributed.
The value of a claim is observed at each period before deciding to audit or not. Now, an audit strategy
is written as xi(πi, `i) at period i = 0, 1.

Lemma 4. The inter-temporal objective function can be written as

Ω0(x0(·, ·)) + γE0

[
Ω∗1(x0(·, ·))

]
=
∫
[0,1]

∫
[0,L0]

[
C(π0) + K(π0, `0)x0(π0, `0)

]
g0(`0) f0(π0)d`0dπ0, (3)

where

K(π0, `0) = p̄(π0)`0 − c + γH(π0),

H(π0) = p̄(π0)Φ(A(π0)) + (1− p̄(π0))Φ(B(π0))−Φ(π0),

C(π0) = γΦ(π0),

with H(π0) > 0 if π0 ∈ (0, 1) and H(0) = H(1) = 0, and

Φ(π) =
∫ L1

`∗(π)

[
p̄(π)`1 − c

]
g1(`1)d`1,
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where `∗(π) = c
p̄(π)

.

Lemmas 3 and 4 are similar and can be interpreted the same way. In particular, the two terms
in the integral of Equation (3) correspond to the parts of cumulated expected proceeds according to
whether they are affected by period 0 audit or not.

Proposition 3. The optimal period 0 auditing strategy x∗0(π0, `0) is such that

x∗0(π0, l0) = 1 if π0 > π∗∗(`0),

where π∗∗(·) : [0, L0] −→ [0, 1], with π∗∗(`0) < π∗(`0) for all `0 ∈ [0, L0].9

Proposition 3 extends Proposition 2 to the case of claims with variable size, and its interpretation
is similar. In an instantaneous setting, where learning effects would be ignored, an audit should be
performed if the belief π0 is larger than π∗(π0). The threshold is decreasing with `0 because the larger
the claim, the larger the potential gain from auditing. When learning effects are taken into account,
the threshold decreases. Claim (π0, `0) should be audited at period 0 when π∗∗(`0) < π0 < π∗(`0),
although such audit is not profitable in expected terms.

5. Conclusions

This article aimed at characterizing the learning dimension of auditing when there is a repeated
interaction between auditor and auditee. The insurance claim fraud problem with potentially dishonest
service providers was an application example, but the same question arises in many other settings, such
as tax audits and, more generally, the verification of compliance with law. In our model, the insurer has
imperfect information about the service providers’ type, and, as in the machine learning multi-armed
bandit approach, he extends his audit activity beyond the desire for immediate short-term gain.
Compared to a myopic strategy only focusing on short term profit, the longsighted insurer faces
an inter-temporal trade-off between the immediate gain from fraud detection, and the future profit
made possible by more intense auditing. This learning effect leads the longsighted insurer to increase
his monitoring efforts and to put some individually unprofitable claims under scrutiny. This result
remains valid when the setting is extended to a more general framework with claims of varying size:
the learning effect shifts the frontier in the belief-claim size space, beyond which an audit should be
performed.

These results may be extended in many directions that would be worth exploring. Firstly, we
have limited ourselves to a simple two-period model. Extending our analysis to an arbitrary number
of periods would allow us to take into account the possibility to exclude and replace service providers
when their dishonesty becomes very probable, and also to analyze the convergence features of our
model when the number of periods is large. A parallel could also be drawn between our problem and
the so-called greedy/ε-greedy strategies in bandit problems, when the latter outperform the former
in the long-run (see Chapter 2 in Sutton and Barto (1998)). Another interesting issue would consist
in considering the case where service providers are concerned by multiple claims at each period.
The auditing strategy would have to specify how many claims will be monitored. Audit costs may
also reflect a potential source of heterogeneity between claims that could lead the insurer to abstain
from auditing some claims with high audit costs. Furthermore, strategic defrauders could resort
to manipulation of auditing costs as a protective device against auditing (see Picard (2000)). Most
importantly, our model postulates an exogenous fraud rate reflected in the frequency of invalid claims
for honest and dishonest service providers. Endogenizing the frequency of invalid claims would be

9 Proposition 3 only states that π∗∗(`0) < π∗(`0) for all `0. Additional assumptions would allow us to show that K(π0) is
monotonous and thus that claims should not be audited when π0 < π∗∗(`0).
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of particular interest, in order to study the strategic interaction between insurers, service providers
and claimants, in a setting where learning and deterrence effects would coexist. Finally, the paper
highlights the relevance of more intense investigations during the first stages of repeated interactions
between principal and agent, and this conclusion is far more general than the insurance fraud problem.
Analyzing whether this conclusion fits with actual monitoring processes is an empirical extension that
would be worth exploring, for better understanding the behavior of insurers facing claim fraud and in
other contexts.
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Appendix A

Proof of Lemma 1. Let us write the expected profit from the auditing strategy x(.) at a single period

Ω =
∫ 1

0

[
p̄(π)− c

]
x(π) f (π)dπ.

The corresponding problem has a point-wise maximization structure, therefore:

x(π) = 1 if π > π∗,

x(π) ∈ [0, 1] if π = π∗,

x(π) = 0 if π < π∗,

where

π∗ =
c− pH

pD − pH
.

Proof of Proposition 1. Let π̃1(π0) be the period 1 belief as a function of prior belief π0. It is a random
variable defined by

π̃1(π0) =


π1a = A(π0) with probability qa = x0(π0) p̄(π0),
π1b = B(π0) with probability qb = x0(π0)(1− p̄(π0)),
π1c = π0 with probability qc = 1− x0(π0),

with E0[π̃1(π0)] = qaπ1a + qbπb + qcπ1c = π0.
By a point-wise maximization argument, for all π1, the optimal auditing strategy x∗1(π1)

maximizes

x1[p(π1)− c]

s.t. 0 ≤ x1 ≤ 1,

and thus we have
x∗1(π1i)[p(π1i)− c] ≥ x∗1(π0)[p(π1i)− c] for i = a, b, c.
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Therefore,

E0[ω(π̃1, x∗1(·))|π0] = ∑
i=a,b,c

qix∗1(π1i)[p(π1i)− c]

≥ x∗1(π0) ∑
i=a,b,c

qi[p(π1i)− c]

= x∗1(π0)
[

p
(

∑
i=a,b,c

qiπ1i

)
− c
]

= x∗1(π0)[p(π0)− c]

= ω(π0, x∗1(π0)).

This inequality is strict if x∗1(π1i) 6= x∗1(π0) for some i = a and/or i = b.

Proof of Lemma 2. We have π1 ∈ {B(π0), π0, A(π0)} depending on the period 0 scenario.

1. If 0 ≤ π0 < πa

(a) In all cases: B(π0) ≤ π0 ≤ A(π0) < A(πa) = π∗ =⇒ π1 < π∗.

2. If πa ≤ π0 < π∗

(a) Invalid claim: π1 = A(π0) ≥ A(πa) = π∗ =⇒ π1 ≥ π∗.
(b) Valid or No Audit

i. π1 = B(π0) < π0 < π∗ =⇒ π1 < π∗.
ii. π1 = π0 < π∗ =⇒ π1 < π∗.

3. If π∗ ≤ π0 < πb

(a) Invalid or No Audit

i. π1 = A(π0) > π0 ≥ π∗ =⇒ π1 ≥ π∗.
ii. π1 = π0 ≥ π∗ =⇒ π1 ≥ π∗.

(b) Valid claim:

i. π1 = B(π0) < B(πb) = π∗ =⇒ π1 < π∗.

4. If πb ≤ π0 ≤ 1

(a) In all cases: B(πb) = π∗ ≤ B(π0) ≤ π0 ≤ A(π0) =⇒ π1 ≥ π∗.

The period 1 audit decision represented in Table 1 follows from the fact that there is an audit at period 1
if and only if π1 ≥ π∗.

Proof of Lemma 3. Let Π0(π0) be the expected inter-temporal net proceeds of auditing an SP of
type π0. Let (the random variable) π̃1 be the updated belief at period 1. We have

Π0(π0) = x0(π0)
[

p̄(π0)− c
]
+ γE0

[
x∗1(π̃1)

(
p̄(π̃1)− c

)
|π0

]
= x0(π0)

[
p̄(π0)− c

]
+ γE0

[
1{π̃1≥π∗}

(
p̄(π̃1)− c

)
|π0

]
.

If π0 ∈ [0, πa), we always have π̃1 < π∗ and

Π0(π0) = x0(π0)
[

p̄(π0)− c
]
.
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If π0 ∈ [πa, π∗), then π̃1 ≥ π∗ if an audit reveals an invalid claim (i.e., π̃1(π0) = A(π0)), which
happens with probability p̄(π0)x0(π0). Thus, in that case, we have

Π0(π0) = x0(π0)
[

p̄(π0)− c
]
+ γ p̄(π0)x0(π0)

[
p̄(A(π0))− c

]
= x0(π0)

[
p̄(π0)− c

]
+ γ p̄(π0)x0(π0)

[
p2

D
π0

p̄(π0)
+ p2

H
1− π0

p̄(π0)
− c
]

= x0(π0)
[

p̄(π0)− c
]
+ γx0(π0)

[
p2

Dπ0 + p2
H(1− π0)− p̄(π0)c

]
= x0(π0)

[
p̄(π0)− c + γ

[
p2

Dπ0 + p2
H(1− π0)− p̄(π0)c

]]
.

If π0 ∈ [π∗, πb), then π̃1 ≥ π∗ if an audit reveals an invalid claim (i.e., π̃1(π0) = A(π0) with
probability p̄(π0)x0(π0)) or if there is no audit (i.e., π̃1(π0) = π0 with probability 1− x0(π0)). Hence,

Π0(π0) = x0(π0)
[

p̄(π0)− c
]
+ γ

[
p̄(π0)x0(π0)

[
p̄(A(π0))− c

]
+ (1− x0(π0))

[
p̄(π0)− c

]]
= x0(π0)

[
p̄(π0)− c

]
+ γ

[
p̄(π0)− c

]
+ γx0(π0)

[
p2

Dπ0 + p2
H(1− π0)− p̄(π0)c− p̄(π0) + c

]
= γ

[
p̄(π0)− c

]
+ x0(π0)

(
p̄(π0)− c + γ

[
p2

Dπ0 + p2
H(1− π0)− p̄(π0)c− p̄(π0) + c

])
.

If π0 ∈ [πb, 1], then we always have π̃1 ≥ π∗, and thus

Π0(π0) = γ
[

p̄(π0)− c
]
+ x0(π0)

[
p̄(π0)− c

]
.

The expected net proceeds for an SP of type π0 can therefore be written as:

Π0(π0) = C(π0) + x0(π0)K(π0),

where
K(π0) = p̄(π0)− c + γH(π0),

and functions C(·) and H(·) are given in Table A1.

Table A1. Definition of C(·) and H(·).

π0 C(π0) H(π0)

[0, πa) 0 0
[πa, π∗) 0 p2

Dπ0 + p2
H(1− π0)− p̄(π0)c

[π∗, πb) γ
[

p̄(π0)− c
]

p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− [ p̄(π0)− c]

[πb, 1] γ
[

p̄(π0)− c
]

0

We obtain

Ω0(x0(·)) + γΩ∗1(x0(·)) =
∫ 1

0
Π0(π0) f0(π0)dπ0

=
∫ 1

0

[
C(π0) + K(π0)x0(π0)

]
f0(π0)dπ0.



Risks 2018, 6, 15 19 of 22

The piecewise linearity of K(π0) comes from the fact that p̄(π0) is linear in π0. In addition,

H(πa) = p2
Dπa + p2

H(1− πa)− p̄(πa)c,

= p̄(πa)
[

p̄(A(πa))− c
]
,

= p̄(πa)
[

p̄(π∗)− c
]
,

= 0.

Thus,

K(πa) = p̄(πa)− c = lim
π→π−a

K(π).

Notice also that

K(π∗) = p2
Dπ∗ + p2

H(1− π∗)− p̄(π∗)c− [ p̄(π∗)− c]

= p2
Dπ∗ + p2

H(1− π∗)− p̄(π∗)c

= lim
π→π∗−

K(π).

Finally, by definition of π∗ = B(πb), we have

c = p̄(B(πb))

= pD
(1− pD)πb
1− p̄(πb)

+ pH

(
1− (1− pD)πb

1− p̄(πb)

)
,

and

p2
Dπb + p2

H(1− πb)− p̄(πb)c = ( p̄(πb)− c).

This implies

K(πb) = p̄(πb)− c = lim
π→π−b

K(π),

which proves that K(·) is continuous. Finally, from the definition of K(·),

∀π0 ∈ [0, 1] K(π0) = p̄(π0)− c + γH(π0)

≥ p̄(π0)− c.

We also have

∀π0 > π∗ K(π0) ≥ p̄(π0)− c > 0,

and

∀π0 ≤ πa K(π0) = p̄(π0)− c < 0.
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Proof of Proposition 2. Point-wise maximization yields

x∗0(π0) = 0 if K(π0) < 0,

x∗0(π0) ∈ [0, 1] if K(π0) = 0,

x∗0(π0) = 1 if K(π0) > 0.

Therefore, the threshold π∗∗ ∈ [πa, π∗) satisfies K(π∗∗) = 0 and

K(π∗∗) = p̄(π∗∗)− c + γH(π∗∗)

=
(

1 + γ(pD + pH − c)
)
(pD − pH)π

∗∗ + (pH − c)
(

1 + γpH

)
.

Using K(π∗∗) = 0 gives

π∗∗ = π∗
1 + γpH

1 + γpH + γ(pD − c)
< π∗.

Proof of Lemma 4. Let ∆ = [0, 1]× [0, L1]. The optimal strategy at period 1 defined by x∗1(·, ·) : ∆ −→ [0, 1]
is such that

x∗(π1, `1) =

{
1 if (π1, `1) ∈ ∆∗,
0 otherwise.

The associated period 1 objective function is

Ω1(x0(·, ·), x∗1(·, ·)) = Ω∗1(x0(·, ·)),

and thus the inter-temporal objective is written as a function of x0(·, ·)

Ω0(x0(·, ·)) + γE0

[
Ω∗1(x0(·, ·))

]
.

Since the random variable ˜̀i is independent of the type, we may write

Ω0(x0(·, ·)) =
∫ ∫

(π0,`0)∈∆

[
p̄(π0)`0 − c

]
x0(π0, l0) f0(π0)g0(`0)d`0dπ0.

There is an audit at period 1 if (π1, `1) ∈ ∆∗, and thus we have

Ω∗1(x0(·, ·)) =
∫ ∫

(π1,`1)∈∆

[
p̄(π1)`1 − c

]
x∗(π1, `1)g1(`1) f1(π1|x0(·, ·))dπ1d`1

=
∫

π1∈[0,1]

∫ L1

`∗(π1)

[
p̄(π1)`1 − c

]
g1(`1) f1(π1|x0(·, ·))d`1dπ1

=
∫

π1∈[0,1]
Φ(π1) f1(π1|x0(·, ·))dπ1,

where `∗(π1) = c/ p̄(π1) and

Φ(π1) =
∫ L1

`∗(π1)

[
p̄(π1)`1 − c

]
g1(`1)d`1.
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Note that Φ(π1) is the expected net proceeds at period 1 of auditing an SP with belief π1. Therefore,
by analogy with Section 3 and using a point-wise maximization argument, the inter-temporal expected
net proceeds of an SP characterized by (π0, `0) are written as

Π0(π0, `0) = x0(π0, `0)
[

p̄(π0)`0 − c
]
+ γ

[
x0(π0, `0) p̄(π0)Φ(A(π0))...

...+x0(π0, `0)(1− p̄(π0))Φ(B(π0))...

...+(1− x0(π0))Φ(π0)
]
.

Rearranging the terms in Π0(π0, `0) yields

Π0(π0, `0) = C(π0) + K(π0, `0)x0(π0, `0),

where

K(π0, `0) = p̄(π0)`0 − c + γH(π0),

H(π0) = p̄(π0)Φ(A(π0)) + (1− p̄(π0))Φ(B(π0))−Φ(π0),

C(π0) = γΦ(π0).

Simple calculations give

Φ′(π1) = (pD − pH)
∫ L1

c
p̄(π1)

`1g1(`1)d`1 > 0,

and

Φ′′(π1) = (pD − pH)
2 c2

p̄(π1)3 g1

( c
p̄(π1)

)
> 0.

Thus, Φ(·) is increasing and convex. Using p̄(π0)A(π0) + (1− p̄(π0))B(π0) = π0 gives H(π0) > 0 if
π0 ∈ (0, 1). In addition, A(1) = B(1) = 1 and A(0) = B(0) = 0 imply H(0) = H(1) = 0.

Proof of Proposition 3. Lemma 4 shows that x∗0(π0, `0) = 1 if K(π0, `0) > 0 and that x∗0(π0, `0) = 0
if K(π0, `0) < 0. Let π0 ∈ (π∗(`0), 1). Since H(π0) > 0 and p̄(π0)`0 − c ≥ 0, and H(1) = 0 and
p̄(1)`0 − c > 0, we have

K(π0, `0) > 0.

This implies that ∆∗ is included in the optimal auditing set at period 0. In addition, K(π∗(`0), `0) > 0
implies, by continuity of K(·), that there exists π∗∗(`0) smaller than π∗(`0) such that

K(π0, `0) > 0 ∀π0 ∈ (π∗∗(`0), π∗(`0)).

We deduce that

x∗0(π0, l0) = 1 if π0 > π∗∗(`0).

References

Bergemann, Dirk, and Juuso Valimaki. 2006. Bandit Problems. Cowles Foundation Discussion Paper No. 1551.
Available online: https://ssrn.com/abstract=877173 (accessed on 27 February 2018).

Bourgeon, Jean-Marc, Pierre Picard, and Jerome Pouyet. 2008. Providers’ Affiliation, Insurance and Collusion.
Journal of Banking & Finance 32: 170–86.

https://ssrn.com/abstract=877173


Risks 2018, 6, 15 22 of 22

Crocker, Keith J., and John Morgan. 1997. Is honesty the best policy? Curtailing insurance fraud through optimal
incentive contracts. Journal of Political Economy 106: 355–75.

Dionne, Georges, Florence Giuliano, and Pierre Picard. 2008. Optimal Auditing with Scoring: Theory and
Application to Insurance Fraud. Management Science 55: 58–70.

Gale, Douglas, and Martin Hellwig. 1985. Incentive-Compatible Debt Contracts: The One-Period Problem.
Review of Economic Studies 52: 647–63.

Mookherjee, Dilip, and Ivan Png. 1989. Optimal Auditing, Insurance, and Redistribution. The Quarterly Journal of
Economics 104: 399–415.

Picard, Pierre. 2000. On the Design of Optimal Insurance Policies Under Manipulation of Audit Cost. International
Economic Review 41: 1049–71.

Picard, Pierre. 2013. Economic Analysis of Insurance Fraud. In Handbook of Insurance. Edited by G. Dionne.
Dordrecht: Springer, pp. 349–95.

Sutton, Richard S., and Andrew G. Barto. 1998. Reinforcement Learning: An Introduction. Cambridge: MIT Press.
Townsend, Robert. 1979. Optimal Contracts and Competitive Markets with Costly State Verification. Journal of

Economic Theory 21: 265–93.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Single Period Auditing
	Setting
	Auditing Strategy, Objective Function and Optimization Problem

	Two-Period Auditing: The Learning Effect
	Auditing as a Source of Information 
	Inter-Temporal Optimization Problem
	Effect of Period 0 Audit on the Audit Decision in Period 1
	Inter-Temporal Optimal Auditing Strategy

	Variable Claim Value
	Deterministic Value
	Random Homogeneous Value

	Conclusions
	
	References

