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Abstract: Diffusions are widely used in finance due to their tractability. Driftless diffusions are
needed to describe ratios of asset prices under a martingale measure. We provide a simple example
of a tractable driftless diffusion which also has a bounded state space.
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1. Introduction

Standard Brownian motion (SBM) is the most widely studied stochastic process because it serves
as a highly tractable model of both a martingale and a Markov process. In finance, the martingale
property describes asset prices relative to some numeraire under the assumption of no arbitrage.
The Markov property can also describe some asset prices when markets for them are thought to be
semi-strong form efficient. However, for limited liability assets, such as stocks, it is well known that
SBM cannot describe their prices because prices are non-negative, while the state space of an SBM is
the whole real line.

The observation lead Samuelson and Osborne to propose that arbitrage-free asset prices, relative to
a numeraire, be modeled as a geometric Brownian martingale (GBM). As is well known, this Markovian
martingale is obtained from standard Brownian motion by exponentiating. The convexity of the
exponential introduces a positive drift, so one can restore martingality by introducing time decay.
One can alternatively create a GBM by starting from a linear Brownian motion with constant drift and
then evaluating the scale function of the drifting Brownian motion on the drifting Brownian motion.
The resulting GBM has state space (0, ∞), making it suitable to describe arbitrage-free prices of a
limited liability asset relative to a numeraire.

While the use of a GBM addresses the lower bound constraint imposed by limited liability,
it does not address the upper bound. SBM and GBM can both achieve arbitrarily high positive values.
This renders them unsuitable to describe the prices of assets with a finite number of payouts, each of
which is bounded above. Examples would include coupon bonds and derivative securities with a finite
number of bounded payouts (e.g., a binary option). Exchange rates describe the price of one currency
in terms of another and are often legally manipulated by governments to lie between two positive
bounds. One may also wish to describe a financial concept other than a price with a stochastic process.
For example, stochastic processes are used to describe interest rates, variance rates, and hazard rates.
Historical data on these observables is typically confined to a band, which often leads to the imposition
of mean reversion in the dynamics. However, it would not be unreasonable to use the historical band
as a guide to setting a future band that these rates cannot escape.

Many concepts in probability have evolved into financial concepts. For example, a probability
can be used to describe the price of a binary option Taleb (2017), while a correlation is used to describe
the swap rate in a correlation swap Jacquier and Slaoui (2010). Since both of these probability concepts
are bounded, it becomes natural to consider bounded processes to describe all of these concepts.
In this paper, we construct a stochastic process S with the following properties:
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1. The process S is obtained by evaluating the scale function of a mean-repelling Ornstein Uhlenbeck
(OU) process. As a result, S is a time-homogeneous driftless diffusion. Furthermore, since the
scale function can be evaluated in closed form, the transition probabilities of S are known in
closed form.

2. The state space of the process S is (0, H), for some H > 0. In words, the process S is bounded
below and above and its natural boundaries are zero and a positive constant H. Since S has zero
drift and can’t explode, it is a martingale.

3. The diffusion coefficient of S is positive and bounded above by a positive constant h.
4. Aside from its starting value S0 ∈ (0, H), the process S has two free parameters H and h which

respectively describe the maximum value and maximum (normal) volatility of S.

Analogous with the term geometric Brownian motion, we christen this process “bounded
Brownian motion”.

2. Applications

2.1. Managed Currency

Consider a forward exchange rate in a setting when a monetary authority is able to manage the
money supply or interest rates such that a given exchange rate stays between two positive barriers
over the life of the forward contract. By adding a positive constant to the bounded Brownian motion S,
we synthesize the risk-neutral dynamics of the forward exchange rate process. Papers modeling the
spot FX process between bands include Carr and Kakuschadze (2017), Hui et al. (2008), Ingersoll (1997),
and Rady (1997).

2.2. Correlation Swap

In its simplest form, a correlation swap designates two underlying assets and a fixed maturity date.
At maturity, the dollar payoff is affine in the realized correlation of returns between two underlying
assets. The slope of this affine relation is the notional of the correlation swap which is determined at
inception. The ratio of the intercept to this notional is the correlation swap rate for maturity T, which
is also determined at inception. As we move through calendar time, the conditional expected value
of the floating leg of a seasoned correlation swap is a martingale fluctuating in the interval [−1, 1].
By multiplying S by 2

H and subtracting one, we obtain such a process.

2.3. Protection Leg of CDO

The protection leg of a CDO has a nonnegative value that fluctuates in the interval [0, H]. The value
before the maturity date T is in (0, H], while the value at T is in [0, H]. The dynamics presented here
fluctuate in the interval (0, H). However, we will show a way to change the domain to (0, H].

3. Genesis

Fix a probability space (Ω,F ,Q). We will refer to Q as the risk-neutral measure. Let X0 ∈ R and
for positive constants H and h, consider the following1 mean-repelling OU process:

dXt =
2πh2

H2 Xtdt + hdWt, t ≥ 0, (1)

where W is a Q standard Brownian motion.

1 The scaling factor 2π in the drift of X is entirely optional, but is inserted here so that the volatility of the bounded Brownian
motion can later be expressed in terms of an un-normalized Gaussian function, rather than a normalized one.
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Let S(x) : R 7→ R be a C2 function which solves the linear second order ordinary differential
equation (ODE):

h2

2
S′′(x) +

2πh2

H2 xS′(x) = 0, x ∈ R. (2)

As this is a linear first order ODE in S′(x), the general solution is given by:

S(x) =
∫ x

a
exp

[
−
∫ y

b

2π

H2 zdz
]

dy, (3)

where the lower integral limits a and b are arbitrary. Since S is increasing in x, it is generally referred
to as a scale function of the diffusion process X.

Let SH(x) denote the particular increasing function obtained when a = −∞ and b = 0:

SH(x) ≡
∫ x

−∞
exp

[
−
∫ y

0

2π

H2 zdz
]

dy. (4)

Some easy calculus gives:

SH(x) =
∫ x

−∞
exp

[
−1

2
2πy2

H2

]
dy

= H
∫ √

2πx
H

−∞

exp[− z2

2 ]√
2π

dz

= HN

(√
2πx
H

)
, t ≥ 0, (5)

where N(d) : R 7→ (0, 1) is the standard normal cumulative distribution function (CDF). Since N maps
R to (0, 1), (5) implies that SH maps R to (0, H).

Let {St; t ≥ 0} be the stochastic process obtained by evaluating the scale function SH on the OU
process X:

St ≡ SH(Xt) = HN

(√
2πXt

H

)
, (6)

from (5). It is well known that S is a time-homogeneous driftless diffusion. Since the range of the
function SH(·) is bounded, it is clear from (6) that the process S takes values on (0, H). Since S is
bounded, it is clearly a martingale and not just a local martingale.

4. Valuing Perpetual Claims Without Knowing Volatility

Consider perpetual claims written on the path of a single underlying asset. In this section,
we show that we can value several such claims without knowing the volatility of the underlying asset.
The price of the underlying asset will be a continuous martingale, but it need not be the particular
continuous martingale S introduced in the last section. To distinguish general results applying to
continuous martingales from particular results applying to the driftless bounded diffusion S defined
by (6), we will denote the former process by M. We being with some observations about hitting
probabilities of S and then generalize to M.

Let ` and r be two real-valued constants satisfying:

−∞ < ` < X0 < r < ∞. (7)
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In words, ` and r are finite and bracket X0. Let σ` and σr respectively denote the first passage
times of X to ` and r. Let S0 ∈ (0, H) be the initial value of the S process:

S0 ≡ SH(X0) = HN

(√
2πX0

H

)
, (8)

from (6). Let D and U be defined by:

D ≡ SH(`) U ≡ SH(r). (9)

Since SH(·) is increasing, (7) implies that D and U satisfy:

0 < D < S0 < U < H. (10)

In words, D and U are both in (0, H) and bracket S0. Let τu and τd respectively denote the first
passage times of S to U and D. Since S is a process in natural scale, the probability that S hits U before
D starting from S0 is given by:

Q{τu < τd|S0 = S} = S− D
U − D

, S ∈ (D, U). (11)

In fact, (11) is a standard result that holds for any continuous martingale with unbounded
quadratic variation. We will soon discuss results for such processes, but, for now, we confine our
explorations to the driftless bounded diffusion S defined by (6).

Consider a claim that pays one dollar if the process S hits U before D and zero otherwise. If interest
rates are zero, then (11) gives the value of such a claim as a function of the starting point S of the
underlying. Notice that given a direct observation of the starting value S, this value is invariant to the
volatility of the process S. Since σ` = τd and σr = τu, we can make the corresponding statements for
hitting probabilities and claim values when X is the underlying.

In fact, the affine form of the hitting probabilities of S generalize to any continuous martingale M,
whose quadratic variation becomes infinite as the horizon become infinite:

lim
T↑∞
〈M〉T = ∞. (12)

This condition is needed to rule out continuous martingales which absorb at spatial boundaries
placed between the starting value and the barrier of interest. Let (−∞, ∞) be the state space of the
continuous martingale. Suppose again that D and U are both in (−∞, ∞) and bracket M0:

−∞ < D < M0 < U < ∞. (13)

Consider the random payoff from a “perpetual” claim on M that pays Rd at time τd if M hits
D first and Ru at time τu if M hits U first. Assuming zero interest rates and no dividends from the
underlying asset before the first exit, the initial value of this claim is:

V0 =
M0 − D
U − D

Ru +
U −M0

U − D
Rd. (14)

By setting Rd = 0 and Ru = 1, one obtains the following generalization of (11):

Q{τu < τd|F0} =
M0 − D
U − D

, (15)
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where we assume that the initial filtration F0 contains M0. By setting Rd = D and Ru = U,
one can interpret Rd and Ru as liquidating dividends from the asset whose price is M. In this case,
no assumption on interest rates is needed since the replicating strategy just holds one share.

For the above claims, monitoring of the barriers begins at time t = 0. Consider instead a more
general claim where monitoring of the exit barriers starts from some fixed time T ≥ 0. We claim
that static positions in European options maturing at T can be used to span this payoff. In particular,
consider a butterfly spread with strikes D, K, and U where −∞ < D < K < U < ∞. Suppose that the
positions in European options are chosen so that the butterfly spread pays off one dollar if ST = K at T.
Then we claim the value of this butterfly spread on M is the joint risk-neutral probability that M hits K
after T before it hits D or U after T.

Butterfly spreads can be synthesized using puts or calls. We will use puts and hence let P0(K, T)
denote the initial price of a European put of strike K ∈ R and maturity T ≥ 0. Consider the following
butterfly spread payoff:

BST =
(U −MT)

+ − (K−MT)
+

U − K
− (K−MT)

+ − (D−MT)
+

K− D
. (16)

The initial cost of forming this butterfly spread is:

BS0 =
P0(U, T)− P0(K, T)

U − K
− P0(K, T)− P0(D, T)

K− D
. (17)

Since the payoff in (16) is bounded between 0 and 1, no arbitrage forces the value in (17) to also
be bounded between 0 and 1.

Let τT
B be the first time after T that the continuous martingale M touches a barrier B. If the

martingale never touches B after T, then τT
B = ∞. Let τT

DU ≡ τT
D ∧ τT

U be the first time after T that the
martingale touches either D or U. If the martingale never touches D or U after T, then τT

DU = ∞.

Theorem 1. No arbitrage and zero interest rates implies:

BS0 = Q{τT
K < τT

DU}. (18)

Proof. We need to show that BS0 is the initial cost of a strategy that pays one dollar if τT
K < τT

DU and
which pays zero otherwise. Consider the following trading strategy. At time 0, the investor buys the
butterfly spread by:

1. buying 1
U−K puts struck at U

2. selling 1
U−K + 1

K−D puts struck at K
3. buying 1

K−D puts struck at L.

The net cost is given in (17). The put portfolio is held static to T. If ST < D or ST > U, then the
portfolio expires worthless. This matches the payoff of the desired claim since if ST < D, then we must
have τT

K ≥ τT
D = τT

DU and similarly, if ST > U, then we must have τT
K ≥ τT

U = τT
DU .

If ST ∈ (D, U), then use the payoff from the portfolio to finance the following positions:

1. if ST ∈ (D, K) buy 1
K−D shares and borrow D

K−D dollars.
2. if ST ∈ (K, U) short 1

U−K shares and lend U
U−K dollars.

If τT
K > τT

DU , then at the first exit time τT
DU of the corridor (D, U), liquidate the stock bond portfolio

for zero. Otherwise, if τT
K < τT

DU , then at the hitting time τT
K , liquidate the stock bond portfolio for one

dollar. Since the quadratic variation of M grows without bound, the risk-neutral probability that τT
K

and τT
DU are both infinite is zero. This concludes the proof. Q.E.D.
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There is a second kind of butterfly spread with a probabilistic interpretation. We first consider
the simpler spot starting case. Consider a perpetual claim written on the continuous martingale M
satisfying both (12) and (13). Suppose again that the claim pays off at τDU . For K ∈ (D, U), suppose
that the payoff at time τDU is the Local Time of M at time τDU . Loosely speaking, the payoff at τDU
accumulates over time twice the instantaneous variance experienced by the process M at K until τDU :

LM
τDU

(K) ≡ 2
∫ τDU

0
δ(Mt − K)d〈M〉t. (19)

From the Tanaka Meyer formula, the cost of creating this payoff is:

Ĝ(M, K) =

{
2 (M−D)(U−K)

U−D , −∞ < D < M < K < U < ∞

2 (K−D)(U−M)
U−D , −∞ < D < K < M < U < ∞.

(20)

This can be written much more succinctly as:

Ĝ(M, K) = 2
[(M ∧ K)− D]+[U − (K ∨M)]+

U − D
. (21)

when graphed against either M or K, the function Ĝ is flat at zero outside (D, U) and triangular in
between. When graphed against M, the kinks are at D,K, and U and the change in slope of Ĝ at K is
two. Again, it is remarkable that the claim can be valued without knowledge of the volatility of M.

To value the forward-start version of the above claim, i.e., the claim paying:

2
∫ τT

DU

T
δ(Mt − K)d〈M〉t (22)

at τT
DU , consider the following butterfly spread payoff:

BST = 2
[(MT ∧ K)− D]+[U − (K ∨MT)]

+

U − D
. (23)

This payoff can be synthesized by:

1. buying 2 U−K
U−D puts struck at D

2. selling two puts struck at K
3. buying 2 K−D

U−D puts struck at U.

The initial cost of forming this butterfly spread is:

BS0 = 2
U − K
K− D

P0(D, T)− 2P0(K, T) + 2
K− D
U − K

P0(U, T). (24)

Suppose that this butterfly spread is held static to maturity. If MT < D or MT > U, then the
butterfly spread expires worthless. This matches the payoff since we already know at T that local time
at K cannot increase from zero without M first hitting D or U.

If MT ∈ (D, U), then the payoff at T finances the initial position in the following trading strategy
in stocks and bonds conducted over the period (T, τT

DU).

1. if MT ∈ (D, K], be long 2 U−K
U−D shares and borrow 2 U−K

U−D D dollars
2. if MT ∈ (K, U), be short 2 K−D

U−D shares and lend 2 K−D
U−D U dollars.

This strategy is self-financing except when the stock price is near the intermediate strike K.
Using the Tanaka Meyer formula, one can show that this strategy generates the increase in the local
time from T to τT

DU .
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5. Diffusion Coefficient

So far we have been able to value various perpetual claims relative to either the price of the
underlying asset or relative to European options written on that asset. For these claims, we have
not needed to know the diffusion coefficient of the underlying asset. To value other kinds of claims
(e.g., finite lived ones), it will be useful to examine the diffusion coefficient of S as we will show that it
appears in the Jacobian when we develop the transition PDF of S.

To obtain the diffusion coefficient of S, we use Itô’s formula on (6):

dSt =
√

2πN′
(√

2πXt

H

)
hdWt, t ≥ 0, (25)

as we already know that S is driftless. Since N′(·) and h are positive, so is the diffusion coefficient of S.
Evaluating (5) at Xt and inverting implies:

√
2πXt

H
= N−1

(
St

H

)
, (26)

where N−1(p) : (0, 1) 7→ R is the inverse of the standard normal CDF. Substituting (26) in (25) gives
the SDE followed by S:

dSt = a(St)dWt, t ≥ 0, (27)

where the diffusion coefficient (normal volatility) of S is given by:

a(S) ≡
√

2πN′
(

N−1
(

S
H

))
h = e−

[N−1( S
H )]

2

2 h. (28)

We note from (27) that S is indeed a time-homogeneous driftless diffusion. The diffusion
coefficient given in (28) is proportional to a standard Gaussian function of N−1

(
S
H

)
. As a consequence,

movements in S become more certain when S is near 0 or H:

lim
S↓0

a(S) = 0 lim
S↑H

a(S) = 0. (29)

Besides its starting value S0 ∈ (0, H), the process S has two free parameters H and h. We have
already seen that H defines the right end point of the domain of S. As S fluctuates through (0, H), its
volatility

√
2πN′

(
N−1

(
St
H

))
h evolves as a positive stochastic process. We now show that h defines

the right end point of the latter process’ domain.
The standard normal density function N′(·) achieves its maximum value when its argument

vanishes. The inverse normal CDF N−1(p) vanishes when its argument is 1
2 . Hence, we conclude that

volatility is maximized when St =
H
2 , i.e., at the midpoint of its domain (0, H). The maximum value of

volatility achieved is:
√

2πN′
(

N−1
(

1
2

))
h = h. (30)

Now the standard normal probability density function (PDF) is even about zero which implies
that its integral, N(·) is the sum of 1/2 and a function which is odd about zero. It follows that N−1(·) is
odd about 1/2. Since diffusion coefficient of S is proportional to the composition of the even function
N′(·) with the function N−1(M

H ) of S which is odd about H
2 , the diffusion coefficient of S is symmetric

about H
2 .
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The speed density of a diffusion with scale density s(x) and variance rate σ2(x) is 1
σ2(x)s(x) . Since

S is a process in natural scale, s(x) = 1 and its speed density is simply the reciprocal of its variance
rate. Hence, (27) implies that the speed density of S is given by:

m(S) ≡ 1

2π
[

N′
(

N−1
(

S
H

))]2
h2

=
e[N

−1( S
H )]

2

h2 , S ∈ (0, H). (31)

Let τDU be the first time that S exits the interval [D, U]. Suppose we consider how the mean of
the random variable τDU behaves in the limit as we set D = S− ε, U = S + ε and let ε > 0 shrink
down to zero. Clearly, the mean exit time approaches zero, but the question is at what speed. For a
process in natural scale such as S, Karlin and Taylor (1981) show on page 197 that the mean exit time
E[τ(S−ε,S+ε)|S0 = S] approaches zero like O(ε2), where the coefficient is given by the speed function
m(S), i.e.,

m(S) = lim
ε↓0

E[τ(S−ε,S+ε)|S0 = S]
ε2 . (32)

This is the likely origin of the term “speed density”. We note that the higher the diffusion
coefficient of a process in natural scale, the lower its speed density. This observation prompted
Rogers and Williams (1994) to jestingly suggest that m(·) alternatively be called a “sloth density”.
As indicated in (31), the speed density of the S process is inversely proportional to a Gaussian function
of N−1

(
S
H

)
. As a consequence, S exits intervals much more slowly on average when it is near zero or

H than when it is near H/2.
Recall the rough interpretation of the local time of a continuous martingale as the amount of

quadratic variation occurring at a point. More precisely, local time captures the stochastic rate at
which the quadratic variation experienced below some point in space increases as we increase the
point. Loosely speaking, the speed density of a time homogeneous one dimensional diffusion can be
interpreted as the expected calendar time spent at a point, until the first time that the diffusion exits an
interval. This rough interpretation is meant to be contrasted with the expected quadratic variation spent
at a point until the first exit. Thus the speed density is used to convert the expected local time of a
stochastic process into twice the spatial density of the occupation time.

To illustrate these points, let M now denote a time homogeneous one dimensional
diffusion martingale:

dMt = a(Mt)dWt, t ≥ 0. (33)

From (19), the local time at K evaluated at the random time τDU is:

LM
τDU

(K) ≡ 2
∫ τDU

0
δ(Mt − K)a2(K)dt. (34)

In contrast, twice the density of the occupation time at K until τDU is:

2
∫ τDU

0
δ(Mt − K)dt. (35)

From the Tanaka Meyer formula, the cost of creating the payoff in (35) is:

G(M, K) =

{
2 (M−D)(U−K)

U−D m(K), −∞ < D < M < K < U < ∞

2 (K−D)(U−M)
U−D m(K), −∞ < D < K < M < U < ∞.

(36)
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Itô and McKean (1974) refer to this function as the Green’s function. One can generalize by
starting with a drifting process, but we do not explore that here. For the bounded Brownian Motion S,
substituting (31) in (36) implies:

GS(S, K) =

2 (S−D)(U−K)
U−D

exp
{
[N−1( S

H )]
2}

h2 , −∞ < D < S < K < U < ∞

2 (K−D)(U−S)
U−D

exp
{
[N−1( S

H )]
2}

h2 , −∞ < D < K < S < U < ∞.
(37)

6. Transition Density

To obtain the transition PDF of the time-homogeneous Markov process S, we first obtain the
transition PDF of the process X. Suppose that we write the stochastic differential equation (SDE) (1) as:

dXt = gXtdt + hdWt, t ≥ 0, (38)

where:

g ≡ 2πh2

H2 ≥ 0 (39)

is the expected relative growth rate in X. By standard calculations, one can show that XT is Gaussian
with mean:

EQ
0 XT = X0egT , (40)

and variance:

Vx = h2 e2gT − 1
2g

. (41)

We note that both the mean and the variance of X explode as T ↑ ∞. Both results are a consequence
of the fact that the process is mean-repelling, i.e., g > 0.

To obtain the PDF of ST , first recall that the scale function SH(x) is defined in (5) as an increasing
map from R to (0, H). Let x(S) be the inverse map from (0, H) to R:

x(S) ≡ H√
2π

N−1
(

S
H

)
, S ∈ (0, H). (42)

Since SH(·) is increasing, so is x(·). In fact, from the inverse function theorem:

x′(S) =
1

S′H(x)
=

1
√

2πN′
(√

2πx
H

) =
1

√
2πN′

(
N−1

(
S
H

)) , (43)

from (5). Using the definition of the standard normal density function N′(·), (43) simplifies to:

x′(S) = exp

{
1
2

[
N−1

(
S
H

)]2
}

, (44)

for S ∈ (0, H).
Let:

q(S0, S; T) ≡ Q{ST ∈ dS|S0}
dS

, S ∈ (0, H), (45)

be the transition PDF of ST . Also let:

g(X0, x; T) ≡ Q{XT ∈ dx}
dx

=
e−

[x−X0egT ]2

2Vx
√

2πVx
, x ∈ R, (46)
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be the transition PDF of XT . By the change of variables theorem for densities:

q(S0, S; T) = g(X0, x(S); T)|x′(S)|, S ∈ (0, H). (47)

Substituting (46) and (44) in (47) implies that the PDF of ST is known in closed form:

q(S0, S; T) =
e−

[x(m)−X0egT ]2

2Vx
√

2πVx
e

1
2 [N

−1( S
H )]

2

=
e−

H2
4πVx

[
N−1( m

H )−N−1
(

S0
H

)
egT
]2
+ 1

2 [N
−1( S

H )]
2

√
2πVx

, S ∈ (0, H), (48)

from (42), where g and Vx are given in (39) and (41) respectively. Not surprisingly, the horizon length
T enters the PDF of ST only through the mean and variance of XT .

The future level S enters the PDF of ST only through the variable N−1
(

S
H

)
. When the PDF of ST

is considered as a function of this latter variable, (48) indicates that it is proportional to the ratio of two
Gaussian densities. The mean and standard deviation of the numerator Gaussian both increase with T,
while the denominator Gaussian is a standard normal PDF. At short maturities, the graph of q against
N−1

(
S
H

)
is dominated by the numerator Gaussian. Hence, the graph of q against S is an upside down

U. As T increases, the numerator Gaussian tends to a uniform density. Hence, as T increases, the graph
of q against N−1

(
S
H

)
tends to the reciprocal of a standard normal PDF.

An abrupt change in the shape of the PDF occurs at the maturity for which:

H2

4πVx
=

1
2

. (49)

Using (41), this critical level of T is easily found to be:

T∗ =
1

2g
ln
(

1 +
gH2

πh2

)
. (50)

For T < T∗, the net coefficient of the quadratic in the argument of the exponential is negative.
As a result, the graph of q against N−1

(
S
H

)
is Gaussian while the graph of q against S is an upside

down U. When T = T∗, the coefficient on the quadratic vanishes and the PDF becomes exponential in
the variable N−1

(
S
H

)
rather than Gaussian. When T > T∗, the coefficient on the quadratic becomes

positive. As a result, the graph of q against N−1
(

S
H

)
is the reciprocal of a Gaussian while the graph of

q against S is U shaped.
Consider a movie of the graph of the PDF q against the forward spatial variable S. As T increases,

all of the probability mass moves out from around S0 to around zero and around H. Intuitively, since
S is a martingale, the mean of ST must remain constant at S0 while the variance of ST must increase
with the horizon length T. Since S is bounded, the only way its PDF can accommodate this behavior is
to become U shaped in the interior.

Suppose one starts the martingale away from H/2 and stops it when it first hits H/2. When
S0 = H/2, the PDF of S is even in S about H/2. As a result, one knows the PDF and absorption
probability of the stopped martingale. Hence if one wants a tractable bounded process with a lower
natural barrier at zero and an absorbing upper barrier, simply start S in (0, H/2) and stop it when
it first hits H/2. This would describe the value of the protection leg of a CDO. Conversely, if one
wants a tractable bounded process with an upper natural barrier and an absorbing lower barrier,
simply start S in (H/2, H) and stop it when it first hits H/2. This could describe a variation on the
Black and Cox (1976) model for describing the dynamics of the value of a firm’s assets when default is
possible. Let S be the firm’s asset value and suppose that H is a natural upper boundary. As in Black
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and Cox, we also suppose that default and liquidation occur at the first time that S hits H/2. It would
be straightforward to value contingent claims written on the stopped process.

It is interesting to compare q with the lognormal PDF. If S is lognormally distributed, then in
the lognormal PDF, ln(S/1) plays the same role as N−1

(
S
H

)
in q. The log function maps R+ to R,

while N−1(·) maps (0, 1) to R. Both functions asymptote to ±∞ at the endpoints of their domain.
The standard parametrization of the PDF of geometric Brownian motion expresses the lognormal
PDF in terms of the mean and variance of the corresponding drifting Brownian motion. Analogously,
the above parametrization of the PDF of bounded Brownian motion expresses the PDF in terms of the
mean and variance of the corresponding OU process.

A geometric Brownian martingale has a stability property. Specifically, the probability that
the terminal level of the process is below any given positive level approaches one as the time
horizon becomes arbitrarily large. We speculate that for bounded Brownian motion, the almost
sure convergence is to the union of the two sets (0, ε) and (H − ε) for any ε > 0.

Acknowledgments: I thank two anonymous referees at Risks, the editor Albert Cohen, and Roy Demeo,
David Eliezer, Alexey Polischuk, Nassim Taleb, and Arun Verma, for comments. They are not responsible
for any errors.

Conflicts of Interest: The author declares no conflict of interest.

References

Black, Fischer, and John C. Cox. 1976. Valuing corporate securities: Some effects of bond indenture provisions.
Journal of Finance 31: 351–67.

Carr, Peter P., and Zura Kakushadze. 2017. FX options in target zones. Quantitative Finance 10: 1477–86.
Hui, Cho-Hoi, Chi-Fai Lo, Vincent Yeung, and Laurence Fung. 2008. Valuing foreign currency options with a

mean-reverting process: A study of the Hong Kong dollar. International Journal of Finance and Economics 13:
118–34.

Ingersoll, Jonathan. 1997. Valuing foreign exchange rate derivatives with a bounded exchange process. Review of
Derivatives Research 1: 159–81.

Itô, Kiyosi, and Henry McKean. 1974. Diffusion Processes and Their Sample Paths. Berlin: Springer.
Jacquier, Antoine, and Saad Slaoui. 2010. Variance dispersion and correlation swaps. arXiv. arXiv:1004.0125.
Karlin, Samuel, and Howard Taylor. 1981. A Second Course in Stochastic Processes. New York: Academic Press.
Rady, Sven. 1997. Option pricing in the presence of natural boundaries and a quadratic diffusion term. Finance

and Stochastics 1: 331–44.
Rogers, L. Chris G., and David Williams. 1994. Diffusions, Markov Processes and Martingales, 2nd ed. New York:

John Wiley & Sons, vol. I.
Taleb, Nassim Nicholas. 2017. Election Predictions as Martingales: An Arbitrage Approach. NYU Tandon School

Working Paper. New York, NY, USA: New York University.

c© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Applications
	Managed Currency
	Correlation Swap
	Protection Leg of CDO

	Genesis
	Valuing Perpetual Claims Without Knowing Volatility
	Diffusion Coefficient
	Transition Density
	References

