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Abstract: Generalized linear models might not be appropriate when the probability of extreme
events is higher than that implied by the normal distribution. Extending the method for estimating
the parameters of a double Pareto lognormal distribution (DPLN) in Reed and Jorgensen (2004),
we develop an EM algorithm for the heavy-tailed Double-Pareto-lognormal generalized linear model.
The DPLN distribution is obtained as a mixture of a lognormal distribution with a double Pareto
distribution. In this paper the associated generalized linear model has the location parameter
equal to a linear predictor which is used to model insurance claim amounts for various data
sets. The performance is compared with those of the generalized beta (of the second kind) and
lognorma distributions.

Keywords: insurance claim; double Pareto lognormal distribution; heavy-tailed; generalized beta
distribution of the second kind; EM algorithm

1. Introduction

Heavy-tailed distributions are an important tool for actuaries working in insurance where many
insurable events have low likelihoods and high severities and the associated insurance policies require
adequate pricing and reserving. In such cases the four-parameter generalized beta distribution of
the second kind (GB2) and the three-parameter generalized gamma distribution fulfil this purpose,
as demonstrated in McDonald (1990), Wills et al. (2006), Frees and Valdez (2008), Wills et al. (2006),
Frees et al. (2014a) and Chapter 9 of Frees et al. (2014b). In fact, the set of possible distributions that
could be used for long-tail analyses is much broader than suggested here and good references for these
are Chapter 10 of Frees et al. (2014a), Chapter 9 of Frees et al. (2014b) and Section 4.11 of Kleiber and
Kotz (2003). We propose in this article the use of the double Pareto lognormal (DPLN) distribution as
an alternative model for heavy-tailed events.

The DPLN distribution was introduced by Reed (2003) to model the distribution of incomes.
It occurs as the distribution of the stopped wealth where the wealth process is geometric Brownian
motion, the initial wealth is lognormally distributed and the random stopping time is exponentially
distributed. This parametric model exhibits Paretian behaviour in both tails, among other suitable
theoretical properties, and there is favourable evidence of its fit to data in various applications,
as demonstrated in Colombi (1990), Reed (2003), Reed and Jorgensen (2004) and Hajargasht and
Griffiths (2013) for income data and Giesen et al. (2010) for settlement size data. Particular
applications of the DPLN distribution to insurance and actuarial science have previously been given
in Ramírez-Cobo et al. (2010) and Hürlimann (2014).

In this paper, the DPLN generalized linear model (GLM) is introduced by setting the location
parameter equal to a linear predictor, i.e., ν = β>x, where β ∈ Rd is a vector of regression coefficients
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and x is a vector of explanatory variables. Then the mean of the DPLN GLM is proportional to some
exponential transformation of the linear predictor. Then an EM algorithm is developed which solves
for the regression parameters.

Particular applications of the DPLN distribution to insurance and actuarial science have previously
been given in Ramírez-Cobo et al. (2010) and Hürlimann (2014). However, another practical application
of the DPLN GLM, beyond what is demonstrated in this article, is assessing variability of survival
rates of employment, as done in Yamaguchi (1992).

Applying this generalized linear model, we model the claim severity for private passenger
automobile insurance and claim amounts due to bodily injuries sustained in car accidents, the data
sets of which are supplied in Frees et al. (2014a). We compare this predictive model with the generalized
linear model derived from the generalized beta distribution of the second kind (GB2), which has been
employed in modelling incomes, for example by McDonald (1990), and in modelling insurance claims,
for example by Wills et al. (2006) and Frees and Valdez (2008). The EM algorithm has previously been
applied to insurance data, for example in Kocović et al. (2015) , where it is used to explain losses of a
fire insurance portfolio in Serbia.

The rest of the paper is organized as follows. Section 2 explains how the DPLN model is applied
to regression by setting the location parameter equal to a linear predictor. In Section 3, details of
parameter estimation by the method of maximum likelihood using the related normal skew-Laplace
(NSL) distribution are provided, where we develop an EM algorithm for such a purpose. Section 4 gives
numerical applications of the models to two insurance-related data sets and makes comparisons of fits
with the LN and GB2 distributions using the likelihood ratio test and another test for non-nested models
due to Vuong (1989). Out-of-sample performances of the models in regards to capital requirements of
an insurer are also provided. Section 5 concludes.

2. DPLN Generalized Linear Model

As mentioned previously, the DPLN distribution can be obtained as a randomly stopped geometric
Brownian motion whose initial value is lognormally distributed. Therefore, without any mathematical
analysis, stopping the geometric Brownian motion at the initial time with probability one will give
the lognormal distribution. If the diffusion coefficient of the geometric Brownian motion is set to
zero, we have a deterministic geometric motion which is stopped at an exponentially distributed time,
giving the PLN distribution. If also the drift coefficient of the geometric Brownian motion is set to
zero then the lognormal distribution results. Another degenerate case emerges when the initial value
is constant, that is, when its variance is zero, giving the Pareto distribution. This gives us a sensible
intuition on the mathematical derivations in this section.

Formally, given a filtered probability space (Ω,F , (Ft)t≥0, P), where Ω is the sample space, F is
the σ-algebra of events, (Ft)t≥0 is the filtration of sub-σ-algebras of F and P is a probability measure,
we consider the adapted stochastic process Y specified by the following stochastic differential equation
(SDE), for t ≥ 0,

dYt = (µ− 1
2

σ2)dt + σdWt, (1)

where µ and σ ≥ 0 are constants and W is a Wiener process adapted to the filtration (F )t≥0.
Then for a fixed time t ≥ 0, the random variable Yt can be written as

Yt = Y0 + (µ− 1
2

σ2)t + σWt. (2)

Now if Y0 is a random variable, dependent upon the vector of predictor variables
x = (x1, x2, . . . , xd)

> ∈ Rd, such that Y0 ∼ N(ν, τ2), where ν = β>x, and if we stop the process Y
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randomly at time t = T, where T ∼ Exp(λ), then YT is a normal skew Laplace (NSL) distributed
random variable regressed on the vector of predictors x, that is

YT ∼ NSL(ν, τ2, λ1, λ2), (3)

the exponential of which is a DPLN distributed random variable VT (see Reed and Jorgensen (2004)
for more details) dependent on the same predictors, namely

VT = exp(YT) ∼ DPLN(ν, τ2, λ1, λ2), (4)

where ν = β>x. As indicated previously, the particular case of the PLN distribution arises when σ = 0
in (1) and the case of the lognormal distribution (LN) arises when µ = 0 and σ = 0 in (1).

The moment generating function (MGF) of YT is

MGFYT (s) = MGFlog X0(s) MGFT1−T2(s), (5)

where T1 ∼ Exp(λ1) and T2 ∼ Exp(λ2) are exponentially distributed random variables with

λ1 =
1
σ2

[√
(µ− 1

2 σ2)2 + 2λσ2 − (µ−
1
2

σ2)

]
,

λ2 =
1
σ2

[√
(µ− 1

2 σ2)2 + 2λσ2 + (µ−
1
2

σ2)

]
,

(6)

as given in Reed and Jorgensen (2004). This product of MGFs demonstrates that the NSL distributed
random variable YT can be expressed as the sum

YT = log X0 + T1 − T2, (7)

where log X0 ∼ N(ν, τ2) and T1 and T2 are as above.
The probability density function (PDF) of VT = exp(YT), as in (4), is given by

fVT (x) =
λ1λ2

λ1 + λ2

1
x

[
exp

{1
2

τ2λ2
1 − λ1(log x− ν)

}
Φ
( log x− τ2λ1 − ν

τ

)
+ exp

{1
2

τ2λ2
2 − λ2(ν− log x)

}
Φc
(

log x+τ2λ2−ν
τ

)]
,

(8)

also given in Reed (2003). Because we will work with logarithms of DPLN variates we will make use
of the PDF of YT given by

fYT (y) =
λ1λ2

λ1 + λ2

[
exp

{1
2

τ2λ2
1 − λ1(y− ν)

}
Φ
(y− τ2λ1 − ν

τ

)
+ exp

{1
2

τ2λ2
2 − λ2(ν− y)

}
Φc
(y + τ2λ2 − ν

τ

)]
,

(9)

where Φ(·) and Φc(·) represent the cumulative distribution function and survival function of the
standard normal distribution respectively.

Additional properties concerning the moments of the DPLN and asymptotic tail behaviour can be
found in Reed (2003). When we incorporate a vector of explanatory variables (or covariates) x ∈ Rd

in our model, the location parameter ν is set equal to β>x, where β ∈ Rd is a vector of regression
coefficients, and the mean of the response variable is given by

E[VT |x] =
λ1λ2

(λ1 − 1)(λ2 + 1)
exp{β>x + 1

2 τ2}, (10)
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where τ, λ2 > 0 and λ1 > 1. Each regression coefficient can be interpreted as a proportional change in
the mean of the response variable per unit change in the corresponding covariate.

For a random sample coming from VT

v1, v2, . . . , vn (11)

and corresponding vectors of covariates x(1), x(2), . . . , x(n), we will use the maximum likelihood
estimation described in the following section to compute the parameters of the DPLN distribution.

3. Maximum Likelihood Estimation of Parameters

3.1. Methods of Estimation

Given the random sample in (11) and corresponding vectors of covariates, there are several ways
of estimating parameters, such as moment matching, where such moments exist, and maximum
likelihood estimation (MLE). As we are dealing with heavy-tailed distributions, moment matching
may not be possible and we therefore resort to maximum likelihood estimation. Maximum likelihood
estimators are also preferable since for large samples the estimators are unbiased, efficient and normally
distributed. The EM algorithm of Dempster et al. (1977) is one approach to performing MLE of
parameters, which we describe in the next section. Another approach is based on the gradient ascent
method which we discuss in a subsequent section.

3.2. Application of the EM Algorithm to DPLN Generalized Linear Model

3.2.1. The EM Algorithm for the DPLN GLM

Our task is to obtain maximum likelihood estimates of the parameters of the model
DPLN(ν, τ2, λ1, λ2) using the EM algorithm, which was developed in Dempster et al. (1977).
Because an NSL random variable is the logarithm of a DPLN random variable, fitting a DPLN
distribution to the observations in (11) is the same as fitting the NSL distribution to the logarithms
y1, y2, . . . , yn of these observations. The EM algorithm starts from an initial estimate of parameter
values and sequentially computes refined estimates which increase the value of the log-likelihood
function. In the following paragraphs we explain how it is applied to the DPLN distribution.

Suppose that θ = (β, τ2, λ1, λ2) is an initial estimate of the parameters of the distribution of the
random variable Y whose density function is fY, given in (9). Let θ′ denote a refined estimate of the
parameters of the distribution , that is, an estimate for which the log-likelihood function ` exceeds that
of the initial estimate θ. In what follows, we demonstrate how to generate a refined estimate for the
DPLN GLM. For the refined estimate θ′, we can write the log-likelihood function as

`(θ′) =
n

∑
i=1

log fY(yi; θ′) =
n

∑
i=1

log
∫ ∞

−∞
fY,Z(yi, z; θ′) dz, (12)

where fY(y) is the PDF of the random variable Y, fY,Z(y, z) is the joint density function of the
random variables (Y, Z) and where the random variable Z is latent and therefore unobserved. In our
case, the random variable Z is a normally distributed random variable having parameters ν and τ2,
as indicated by the random variable log X0 in (7).

We now give the probability density function gi, for each i = 1, 2, . . . , n, for the conditional
random variable Z|Y = yi which only depends on the initial estimate θ of parameters, and not on
θ′, namely

gi(z) = fY,Z(yi, z; θ)/ fY(yi; θ) = fZ|Y=yi
(z). (13)
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We then rewrite (12) as

`(θ′) = ∑n
i=1 log

∫ ∞
−∞ fY,Z(yi, z; θ′) dz

= ∑n
i=1 log

∫ ∞
−∞

fY,Z(yi, z; θ′)

gi(z)
gi(z) dz

(14)

and applying Jensen’s inequality log E[X] ≥ E[log X] gives

`(θ′) = ∑n
i=1 log

∫ ∞
−∞

fY,Z(yi ,z;θ′)
gi(z)

gi(z) dz

≥ ∑n
i=1
∫ ∞
−∞ log

{
fY,Z(yi ,z;θ′)

gi(z)

}
gi(z) dz

= ∑n
i=1
∫ ∞
−∞ log

{
fY,Z(yi, z; θ′)

}
gi(z) dz

−∑n
i=1
∫ ∞
−∞ log

{
gi(z)

}
gi(z) dz.

(15)

So our maximization of likelihood amounts to maximizing

n

∑
i=1

∫ ∞

−∞
log
{

fY,Z(yi, z; θ′)
}

gi(z) dz (16)

with respect to θ′, which is the M-step or maximization-step of the EM algorithm.
In practice, there is an E-step or expectations-step of the algorithm which is performed prior to the

M-step, however we continue with the M-step in the next section because this identifies the variables
whose expectations are to be computed in the E-step.

3.2.2. M-Step

So we need to maximize (16) with respect to the parameter θ′. We show how this is done for the
double Pareto lognormal distribution by expanding out the terms in (16), giving

∑n
i=1
∫ ∞
−∞ log

{
fY,Z(yi, z; θ′)

}
gi(z) dz

= ∑n
i=1
∫ ∞
−∞ log

[
1√

2π(τ′)2
exp

(
− (z−ν′i )

2

2(τ′)2

)
×

λ′1λ′2
λ′1 + λ′2

{
exp(λ′2(yi − z)), if z > yi

exp(−λ′1(yi − z)), if z ≤ yi

]
gi(z) dz,

(17)

which becomes

n log
(

1√
2π(τ′)2

)
−

1
2(τ′)2 ∑n

i=1 z(2)i + 1
(τ′)2 ∑n

i=1 zi ν′i −
1

2(τ′)2 ∑n
i=1(ν

′
i )

2

+n log
λ′1λ′2

λ′1 + λ′2
+ λ′2 ∑n

i=1 w−i − λ′1 ∑n
i=1 w+

i ,

(18)

where
zi =

∫ ∞
−∞ z gi(z) dz, z(2)i =

∫ ∞
−∞ z2 gi(z) dz,

w+
i =

∫ log xi
−∞ (log xi − z) gi(z) dz, w−i =

∫ ∞
log xi

(log xi − z) gi(z) dz.
(19)

We arrive at the following Theorem giving the optimum parameter vector θ′ and whose
proof follows the reasoning for the simpler case without explanatory variables given in
Reed and Jorgensen (2004).
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Theorem 1. The components of the parameter vector θ′ which maximise (16) are

β′ = (XX>)−1XZ, (τ′)2 = 1
n

(
1>Z(2) − Z>X>(XX>)−1XZ

)
,

λ′1 = 1
P′+
√

P′Q′
, λ′2 = 1

Q′+
√

P′Q′
,

(20)

where

P′ =
1
n

n

∑
i=1

w+
i , Q′ = − 1

n

n

∑
i=1

w−i , (21)

Z = (z1, z2, . . . , zn)
>, Z(2) = (z(2)1 , z(2)2 , . . . , z(2)n )> (22)

and X is the matrix of predictor variables

X =
(

x(1) x(2) . . . x(n)
)

. (23)

Proof. See Appendix A.1.

3.2.3. E-Step

Here we compute the conditional distributions which are used in the E-step. For the set of n
logarithms y1, . . . , yn of observations, the maximum likelihood estimates of the parameters can be
obtained using the EM algorithm with as follows,

gi(z) =
fZ(z; θ) fW(yi − z; θ)

fY(yi; θ)
, (24)

where the density functions fZ, fW and fY are defined as

fZ(z; θ) =
1

√
2πτ2

exp
{
−

1
2τ2(z− ν)2

}
,

fW(w; θ) =
λ1λ2

λ1 + λ2

{
exp(λ2w) w < 0

exp(−λ1w) w ≥ 0
fY(y; θ) = φ

(
(y− ν)/τ

){
R(λ1τ − (y− ν)/τ) + R(λ2τ + (y− ν)/τ)

}
.

(25)

For this choice of gi, log fY,Z(yi, z; θ′) in (16) becomes

log fY,Z(yi, z; θ′) = log fZ(z; θ′) + log fW(yi − z; θ′). (26)

Our E-step of the EM algorithm is given in the following Theorem, most of the equations of which
are mentioned in Reed and Jorgensen (2004) but for which we supply explicit proofs.

Theorem 2. The expectations in our E-step are as follows

zi =
∫ ∞
−∞ z gi(z) dz = ν + τ2 λ1R(pi)− λ2R(qi)

R(pi) + R(qi)
,

z(2)i =
∫ ∞
−∞ z2 gi(z) dz = ν2 + τ2 − τ2 pi + qi

R(pi) + R(qi)

+τ2 (2νλ1 + λ2
1τ2)R(pi) + (λ2

2τ2 − 2νλ2)R(qi)

R(pi) + R(qi)
,

w+
i =

∫ yi
−∞(yi − z) gi(z) dz = τ

− piR(pi) + 1
R(pi) + R(qi)

,

w−i =
∫ ∞

yi
(yi − z) gi(z) dz = τ

qiR(qi)− 1
R(pi) + R(qi)

,

(27)
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where pi = −(yi − ν)/τ + λ1τ and qi = (yi − ν)/τ + λ2τ.

Proof. See Appendix A.2.

3.2.4. Standard Errors

The standard errors of the estimates θ̂ = (β̂>, τ̂2, λ̂1, λ̂2) can be estimated in the last iteration of
the EM algorithm, as shown in Louis (1982). The observed Fisher information matrix evaluated at θ̂

based on the observations {vi}n
i=1 can be approximated by

I(θ̂; vi) ≈
n

∑
i=1

∂

∂θ
log fY(log vi; θ̂)

[
∂

∂θ
log fY(log vi; θ̂)

]>
, (28)

where fY is as in (9). Since E
[

∂
∂θ log fY(yi; θ)

∣∣∣yi; θ̂
]
= ∂

∂θ log fY(yi; θ̂), (28) is equivalent to

n

∑
i=1

∂

∂θ
E
[
log fY(yi; θ)

∣∣∣yi; θ̂
] ( ∂

∂θ
E
[
log fY(yi; θ)

∣∣∣yi; θ̂
])>

.

In particular,

∂

∂θ
E [log fY(yi; θ)]

=

(
∂E
[
log f (ui; νi, τ)|yi; θ̂

]
∂(β, τ)>

,
∂E
[
log fY(wi; λ1, λ2)|yi; θ̂

]
∂(λ1, λ2)>

)>
,

and therefore these expressions are available in the last iteration of the EM algorithm.

3.3. Gradient Ascent Method

The gradient ascent method is applied to the likelihood function of the normal skew Laplace
distribution in this subsection. Let be y = (y1, ..., yn) be a random sample of size n from a NSL
distribution. Its log-likelihood function is:

`(y; β, τ2, λ1, λ2) = n log λ1 + n log λ2 − n log(λ1 + λ2) (29)

+
n

∑
i=1

log
( Φ

(
yi−τ2λ1−νi

τ

)
exp{− 1

2 λ1τ2 + λ1(yi − νi)}
+

1−Φ
(

yi+τ2λ2−νi
τ

)
exp{− 1

2 λ2τ2 + λ2(νi − yi)}

)
.

The solutions of the d + 3 score equations that are shown in the Appendix, provide the maximum
likelihood estimates of λ1, λ2, τ and {β j}j=1,...,d, which can be obtained by numerical methods such
as Newton-Raphson algorithm. Alternatively, parameter estimates can be obtained directly via a
grid search for the global maximum of the log-likelihood surface given by (29), or equivalently by
maximizing the log-likelihood function derived from the expression (8). We have used FindMaximum
function of Mathematica software package v.11.0. Since the global maximum of the log-likelihood
surface is not guaranteed, different initial values of the parametric space can be considered as seed
point using different methods of maximization, such as Newton–Raphson method, Principal Axis
method and the Broyden–Fletcher–Goldfarb–Shanno algorithm (BGGS), among others. The standard
errors of the estimates have been approximated by inverting the Hessian matrix and the relevant
partial derivatives can be approximated well by finite differences.
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4. Numerical Applications

In this section, two well-known data sets in the actuarial literature that can be downloaded from
Professor E. Frees’ personal website1 will be considered to test the practical performance of the DPLN
generalized linear model. For the two data sets considered, the EM algorithm for the DPLN GLM
was stopped when the relative change of the log-likelihood function was smaller than 1 × 10−10.
The initial values were calculated by using the estimates of the lognormal GLM and the estimates of
the parameters λ1 and λ2 for the model without covariates.

Because we are comparing the DPLN generalized linear model with the GB2 GLM, we give
here some rudimentary facts concerning the GB2 distribution. Let Z be a random variable having
the Beta(p, q) distribution, for p, q ∈ (0, ∞), as defined in Chapter 6 of Kleiber and Kotz (2003). Then,
for ν ∈ (−∞, ∞) and τ ∈ (0, ∞), the random variable

V = exp(ν)(Z/(1− Z))τ (30)

has the GB2 distribution and its probability density function can be written as

fV(v) =
exp{ p(log v−ν)

τ }
v τ B(p, q)[1 + exp{ (log v−ν)

τ }]p+q
, (31)

where v ∈ (0, ∞), ν is a location parameter, τ > 0 is a scale parameter, p > 0 and q > 0 are shape
parameters and

B(p, q) =
∫ 1

0
zp−1(1− z)q−1 dz = Γ(p)Γ(q)/Γ(p + q)

is the Beta function. As for the aformentioned distributions, to include explanatory variables in the
model, we let the location parameter be a linear function of covariates, i.e., ν = β>x. The k-th moment
is easily seen to be

E[Vk] = exp(kν)
B(p + kτ, q− kτ)

B(p, q)
, (32)

where k ∈ (−p/τ, q/τ), and looking at the case k = 1 we can interpret each of the regression
coefficients βi, i = 1, . . . , d, as being the proportional sensitivity of the mean to the corresponding
covariate. Further details of this model can be found in Frees et al. (2014a). Parameter estimation for the
GB2 GLM has been performed via a grid search for the global maximum of the log-likelihood surface
associated to this model. We have used FindMaximum function of Mathematica software package v.11.0.

4.1. Example 1: Automobile Insurance

The first data set pertains to claims experience from a large midwestern (US) property and casualty
insurer for private passenger automobile insurance.

The dependent variable is the amount paid on a closed claim, in US$. The sample includes
6773 claims. The following explanatory variables have been considered to explain the claims amount:

• GENDER, gender of operator, takes the value 1 if female and 0 otherwise;
• AGE, age of operator;
• CLASS rating class of operator as coded in Table 1.

In the top part of Figure 1 the histogram of the Automobile insurance claims is exhibited in
logarithmic scale. This dataset is quite symmetrical but it presents a slightly longer lower tail. For that
reason the DPLN distribution seems suitable to explain this dataset.

1 http://instruction.bus.wisc.edu/jfrees/jfreesbooks/RegressionModeling/BookWebDec2010/data.htm.

 http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression Modeling/BookWebDec2010/data.htm
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Table 1. Parameter estimates, standard errors (S.E.) and p-values of the t-test for automobile insurance
claims dataset under lognormal distribution (LN), generalized beta distribution of the second kind
(GB2) and double Pareto lognormal distribution (DPLN) generalized linear models.

Generalized Linear Model

Estimate (S.E.) LN GB2 DPLN

INTERCEPT 7.184 (0.150) 7.234 (0.163) 7.260 (0.080)
p-value <0.0001 <0.0001 <0.0001

GENDER −0.035 (0.027) −0.012 (0.027) −0.039 (0.014)
p-value 0.1918 0.6604 0.0073

AGE −0.004 (0.002) −0.004 (0.002) −0.005 (0.001)
p-value 0.0167 0.0110 <0.0001

C1 0.018 (0.118) −0.002 (0.115) 0.017 (0.063)
p-value 0.8760 0.9877 0.7889

C11 0.063 (0.116) 0.021 (0.114) 0.063 (0.062)
p-value 0.5853 0.8567 0.3146

C1A −0.076 (0.165) −0.047 (0.161) −0.085 (0.088)
p-value 0.6453 0.7687 0.3389

C1B 0.057 (0.122) 0.008 (0.120) 0.055 (0.066)
p-value 0.6411 0.9471 0.4045

C1C −0.164 (0.206) −0.154 (0.203) −0.1392 (0.110)
p-value 0.4267 0.4498 0.2075

C2 −0.134 (0.176) 0.034 (0.170) −0.132 (0.094)
p-value 0.4450 0.8407 0.1626

C6 0.070 (0.120) 0.033 (0.118) 0.086 (0.065)
p-value 0.5594 0.7767 0.1815

C7 −0.030 (0.116) −0.028 (0.114) −0.033 (0.062)
p-value 0.7983 0.8071 0.5960

C71 0.018 (0.115) −0.029 (0.113) 0.013 (0.062)
p-value 0.8725 0.7941 0.8380

C72 0.239 (0.160) 0.036 (0.157) 0.226 (0.086)
p-value 0.1367 0.8203 0.0087

C7A 0.127 (0.150) 0.225 (0.147) 0.123 (0.080)
p-value 0.3965 0.1249 0.1248

C7B 0.128 (0.118) 0.091 (0.116) 0.129 (0.063)
p-value 0.2806 0.4313 0.042

C7C 0.282 (0.162) 0.173 (0.158) 0.270 (0.087)
p-value 0.0824 0.2735 0.0020

F1 0.103 (0.228) −0.134 (0.222) 0.132 (0.122)
p-value 0.6499 0.5462 0.2785

F11 −0.087 (0.203) −0.177 (0.202) −0.099 (0.109)
p-value 0.6675 0.3798 0.3623

F6 0.058 (0.144) 0.069 (0.142) 0.090 (0.077)
p-value 0.6880 0.6300 0.2434

F7 −0.347 (0.178) −0.382 (0.172) −0.351 (0.095)
p-value 0.0508 0.0266 0.0002

τ 1.068 (0.009) 0.968 (0.111) 0.810 (0.006)
p-value <0.0001 <0.0001 <0.0001

p or λ1 2.083 (0.371) 2.127 (0.032)
p-value <0.0001 <0.0001

q or λ2 2.109 (0.427) 1.952 (0.029)
p-value 0.0001 <0.0001

NLL 57,164.4 57,145.2 57,139.3

AIC 11,4370.7 11,4336.6 11,4324.6

BIC 114,513.9 114,493.2 114,481.6

CT 3.0108 95.4570 91.1358
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Figure 1. Empirical distribution of the logarithm of automobile insurance claims (above) and logarithm
of automobile bodily injury claims (below). The log transformation of the LN (N, black), DPLN (normal
skew-Laplace (NSL), red) and GB2 (LogGB2, blue) distributions have been superimposed.

4.1.1. Model Without Covariates

Here, for comparison purposes only, the lognormal, DPLN and GB2 distributions will be used to
describe the total losses (e.g., when explanatory variables are not considered). Firstly, the automobile
insurance claims dataset is examined. Table 2 summarizes parameters estimates obtained by maximum
likelihood with corresponding standard errors (in brackets) for the aforementioned distributions.

In respect of model selection, we also provide the negative of the maximum of the log-likelihood
(NLL), Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) results in the
table. Note that for all three measures of model validation, smaller values indicate a better fit of the
model to the empirical data. As expected, the lognormal distribution exhibits the worst performance in
terms of all three measures of model validation. In the top part of Figure 2, we have superimposed the
log transformation of these three distributions to the empirical distribution of the log of the claims sizes
to test the fit in both tails. It is evident that the log transformation of the lognormal distribution (black
curve), i.e., Normal distribution (N), provides the worst fit due to asymmetry of the data. The logGB2
(blue curve) and NSL distributions (red curve) give better fit to data as measured by the NLL, AIC
and BIC, although the latter model adheres closely to the data. Although it is not shown in Table 2,
the PLN distribution, replicates the fit of the LN distribution and the value of the shape parameter that
controls the right tail tends to infinity. The computing times (CT) in seconds to estimate the maximum
likelihood estimates by directly maximizing the log-likelihood surface for these distributions are
shown in the last row of the table. The computing time of the EM algorithm for the DPLN GLM was
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1145.86 s using the stopping criterion that the relative change of the log-likelihood function be less
than 1× 10−4.

Table 2. Model fitting results of the LN, GB2 and DPLN distributions regarding automobile
insurance claims.

Distribution

Estimate (S.E.) LN GB2 DPLN

ν 6.956 (0.013) 6.945 (0.074) 7.009 (0.007)

τ 1.071 (0.009) 0.916 (0.089) 0.824 (0.006)

p or λ1 1.914 (0.289) 2.191 (0.033)

q or λ2 1.897 (0.316) 1.961 (0.029)

NLL 57,185.1 57,162.5 57,161.5

AIC 114,374 114,333 114,331

BIC 114,390 114,360 114,358

CT 0.2340 3.8376 12.5113
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Figure 2. QQ-plots of the log-residuals for LN (above), GB2 (middle) and DPLN (below) generalized
linear models for automobile insurance claims data (left panel) and automobile bodily injury claims
(right panel).
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4.1.2. Comparison of Estimation from Simulations

In this section we compare the methods of estimating parameters by conducting the following
simulation experiment. For the lognormal, DPLN and GB2 distributions, we simulate values based
on the corresponding parameter estimates given in Table 2, and then, using as appropriate either
standard formulae or the EM algorithm, compute parameter estimates from the 1000 simulated data
sets of size N = 100, 200, 300, 400, 500, 1000. The results are shown in Table 3, where it is evident
that increasing the sample size increases the accuracy of the parameter estimate. Of course, the true
parameter values are given in Table 2, and these are the limits of the estimates as the sample size N
increases. Importantly, the standard errors of the parameter estimates in Table 3 are noticeably smaller
for the DPLN distribution, highlighting the consistency of the parameter estimation for the DPLN
model. It is noteworthy to observe that the parameter estimates of the GB2 distribution are unstable
for small sample sizes, which is not the case for the DPLN model. This highlights an advantage of the
DPLN model over the GB2 in this case.

Table 3. Results of the simulation experiment involving 1000 simulations of data sets of size N, with
standard errors shown in brackets.

Distribution

Sample Size N LN DPLN GB2

100 ν̂ = 6.9551 (0.1017) ν̂ = 7.0095 (0.1401) ν̂ = 7.0670 (2.1561)
τ̂ = 1.0599 (0.0779) τ̂ = 0.8091 (0.1063) τ̂ = 1.3188 (6.6295)

λ̂1 = 2.3715 (0.5056) p̂ = 146.9750 (2403.6500)
λ̂2 = 2.1121 (0.4517) q̂ = 180.7270 (3075.6600)

200 ν̂ = 6.9565 (0.0763) ν̂ = 7.0098 (0.1015) ν̂ = 6.9789 (0.5097)
τ̂ = 1.0684 (0.0540) τ̂ = 0.8176 (0.0750) τ̂ = 0.5591 (1.7972)

λ̂1 = 2.3024 (0.3785) p̂ = 11.3055 (204.7950)
λ̂2 = 2.0471 (0.3450) q̂ = 12.6484 (231.6380)

300 ν̂ = 6.9569 (0.0610) ν̂ = 7.0038 (0.0859) ν̂ = 6.9602 (0.5468)
τ̂ = 1.0668 (0.0445) τ̂ = 0.8235 (0.0636) τ̂ = 0.3635 (0.3605)

λ̂1 = 2.2636 (0.3131) p̂ = 1.0887 (5.1770)
λ̂2 = 2.0389 (0.2892) q̂ = 1.7380 (26.1729)

400 ν̂ = 6.9578 (0.0531) ν̂ = 7.0031 (0.0772) ν̂ = 6.9411 (0.2291)
τ̂ = 1.0695 (0.0368) τ̂ = 0.8211 (0.0560) τ̂ = 0.3052 (0.2085)

λ̂1 = 2.2368 (0.2761) p̂ = 0.7963 (4.7610)
λ̂2 = 2.0189 (0.2553) q̂ = 0.6528 (0.7841)

500 ν̂ = 6.9555 (0.0465) ν̂ = 7.0104 (0.0665) ν̂ = 6.9409 (0.0843)
τ̂ = 1.0709 (0.0333) τ̂ = 0.8208 (0.0489) τ̂ = 0.2941 (0.1768)

λ̂1 = 2.2289 (0.2450) p̂ = 0.6268 (0.4547)
λ̂2 = 1.9930 (0.2162) q̂ = 0.6036 (0.4101)

1000 ν̂ = 6.9553 (0.0335) ν̂ = 7.0077 (0.0488) ν̂ = 6.9493 (0.0526)
τ̂ = 1.0699 (0.0242) τ̂ = 0.8208 (0.0358) τ̂ = 0.2680 (0.1085)

λ̂1 = 2.2055 (0.1776) p̂ = 0.5409 (0.2539)
λ̂2 = 1.9722 (0.1558) q̂ = 0.5344 (0.2460)

4.1.3. Including Explanatory Variables

Making use of the above additional information, we aim to better explain the total losses in terms
of the set of covariates by using the DPLN generalized linear model. For the purpose of comparison,
we have also fitted the lognormal and GB2 generalized linear models. Here, we choose the identity
link function for the location parameter.

From left to right in Table 1, the parameter estimates, standard errors (S.E.) and the corresponding
p-values calculated based on the t-Wald statistics for the LN, GB2 and DPLN generalized linear
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models are displayed for the automobile insurance claims dataset. The AIC and BIC values for each
model are provided in the last two rows of the table. For the i-th claimant, the number of total amount
yi follows (10) whose mean depends on the above set of covariates through the identity link function.
The exponential of INTERCEPT coefficient 7.260 is proportional to the predicted loss amount when
the values of the other explanatory variables are equal to 0. This estimate is statistically significant
at the usual significance levels, i.e., 5% and 1%. In total, the estimates of 10 out of 23 parameters for
the DPLN generalized linear models are statistically significant at the usual levels (i.e., 5% and 1%)
including the scale and shape parameters. The results for the LN and GB2 generalized linear model
are also exhibited in Table 1 to compare their behaviour with DPLN generalized linear model. As it
can be seen the fit provided by the DPLN generalized linear model improves the one provided by
GB2. For the DPLN generalized linear model, parameters were estimated by the method of maximum
likelihood by maximizing the log-likelihood surface. The same estimates were achieved by the EM
algorithm described in Section 3.2. The standard errors of the parameter estimates for the DPLN GLM
were computed from the last iteration of the EM algorithm and also approximated by inverting the
Hessian matrix. Similar values were obtained. The computing times in seconds to estimate the
maximum likelihood estimates by directly maximizing the log-likelihood surface for these generalized
linear models are shown in the last row of the table. The DPLN GLM shows a better performance than
the GB2 counterpart. The computing time of the EM algorithm for the DPLN GLM was 2239.24 s using
the stopping criterion that the relative change of the log-likelihood function be less than 1× 10−4.

4.1.4. Model Validation

Now, we analyze model validation from a practical perspective. In this regard, LN generalized
linear model can be seen as a limiting case of DPLN generalized linear model when both λ1 and λ2

tend to infinity. We are interested, by means of the likelihood ratio test, in determining whether the
LN generalized linear model (null hypothesis) is preferable to DPLN generalized linear model
(alternative hypothesis) in describing these datasets. The test statistic is T = 2 (`LN − `DPLN)

where `LN and `DPLN represent the maximum of the log-likelihood function for the LN and DPLN
generalized linear models respectively. Asymptotically, under certain regularity conditions (see for
example Lehmann and Casella (1998)) T follows a chi-square distribution with two degrees of freedom.
We have that T = 2 (−57179.69 + 57155.87) = 50.02, therefore the larger model (DPLN) is preferable
to the smaller (LN) generalized linear model at the usual significance levels, i.e., 5% and 1% (p-value
less than 0.0001).

Next, the likelihood ratio test proposed by Vuong (1989) for non-nested models will be considered
as a tool for model diagnostic. The test statistic is

T =
1

ω
√

n

(
` f (θ̂1)− `g(θ̂2)− log n

(n f

2
−

ng

2

))
,

where

ω2 =
1
n

n

∑
i=1

[
log

(
f (θ̂1)

g(θ̂2)

)]2

−
[

1
n

n

∑
i=1

log

(
f (θ̂1)

g(θ̂2)

)]2

is the sample variance of the pointwise log-likelihood ratios and f and g represent the probability
density function (pdf) of two different non–nested models, θ̂1 and θ̂2 are the maximum likelihood
estimates of θ1 and θ2 and n f and ng are the number of estimated coefficients in the model with pdf f
and g respectively. Note that the Vuong’s statistic is sensitive to the number of estimated parameters
in each model and therefore the test must be corrected for dimensionality. Under the null hypotheses,
H0 : E[` f (θ̂1)− `g(θ̂2)] = 0 and T is asymptotically normally distributed. At the 5% significance level,
the rejection region for this test in favor of the alternative hypothesis occurs when T > 1.96.
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Now we compare the GB2 and DPLN generalized linear models in terms of Vuong’s test. Under
the null hypothesis the two models are equally close to the true but unknown specification. For our
data set, the value of the test statistic is T = 1.00 and we fail to reject H0, and therefore differences
between these two models do not exist.

4.2. Example 2: Automobile Bodily Injury Claims

The second data set deals with automobile bodily injury claims sourced from the Insurance
Research Council (IRC), a division of the American Institute for Chartered Property Casualty
Underwriters and the Insurance Institute of America. The data, collected in 2002, contains demographic
information about the claimants, attorney involvement and the economic losses (in thousands of US$),
among other variables. As some of these explanatory variables contain missing observations, we only
consider those data items having no missing values, resulting in a sample of 1,091 losses from a single
state. We use as the response variable the claimant’s total economic loss. Also, additional information is
available to explain the claimants’ total economic losses. We employ the following factors as covariates
in our model fitting:

• ATTORNEY, takes the value 1 if the claimant is represented by an attorney and 0 otherwise;
• CLMSEX, takes the value 1 if the claimant is male and 0 otherwise;
• MARRIED, takes the value 1 if the claimant is married and 0 otherwise;
• SINGLE, takes the value 1 if the claimant is single and 0 otherwise;
• WIDOWED, takes the value 1 if the claimant is widowed and 0 otherwise;
• CLMINSUR, whether or not the claimant’s vehicle was uninsured (= 1 if yes and 0 otherwise);
• SEATBELT, whether or not the claimant was wearing the seatbelt/child restraint ing belt’s vehicle

was uninsured (= 1 if yes and 0 otherwise);
• CLMAGE, claimant’s age.

The empirical distribution of this variable combines losses of small, moderate and large sizes
which makes it suitable for fitting heavy-tailed distributions. It has other features such as unimodality,
skewness and a long upper tail, indicating a high likelihood of extremely expensive events. In the
bottom part of Figure 1 the histogram of the response variable of this data set is shown again in
logarithmic scale. A heavy lower tail is evident when this scale is used.

4.2.1. Model Without Covariates

The results for the bodily injury claims data are shown in Table 4. The GB2 and DPLN distributions
give the best fit to data as measured by these three measures of model selection. As expected, the LN
distribution has the worst performance due to the asymmetry of the data. Again, although it is not
shown in Table 4, the three-parameter PLN model replicates the LN distribution. This is due to the
fact that the former model is a limiting case of the latter when shape parameter λ1 tends to infinity.
These results are also supported by the bottom part of Figure 1, where it can be seen that the log
transformation of the GB2 distribution LogGB2 (blue curve) and the NSL distribution (red curve)
provide almost an identical fit to data. The MLEs for the DPLN distribution were obtained by using the
EM algorithm whose starting parameter values λ1, λ2, ν and τ are those obtained by moment-matching
the first four cumulants. These MLEs were confirmed by those obtained directly from maximizing the
log-likelihood surface. The computing times in seconds to estimate the maximum likelihood estimates
by directly maximizing the log-likelihood surface for these distributions are shown in the last row of
the table. The computing time of the EM algorithm for the DPLN GLM was 1,322.81 seconds using the
stopping criterion that the relative change of the log-likelihood function be less than 1× 10−4.
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Table 4. Results of fitting the LN, GB2 and DPLN distributions to automobile bodily injury claims data.

Distribution

Estimate (S.E.) LN GB2 DPLN

ν 0.620 (0.044) 1.204 (0.052) 1.200 (0.040)

τ 1.445 (0.031) 0.022 (0.186) 0.047 (0.150)

p or λ1 0.017 (0.140) 1.324 (0.068)

q or λ2 0.030 (0.247) 0.749 (0.025)

NLL 2626.74 2573.47 2573.47

AIC 5257.48 5154.94 5154.94

BIC 5267.47 5174.92 5174.92

CT 0.1716 3.4476 3.0888

4.2.2. Comparison of Estimation from Simulations

In this section we compare the methods of estimating parameters by conducting the following
simulation experiment. For the lognormal and DPLN distributions, we simulate values based on the
corresponding parameter estimates given in Table 4, and then, using as appropriate either standard
formulae or the EM algorithm, compute parameter estimates from the 1000 simulated data sets of size
N = 100, 200, 300, 400, 500, 1000. The results are shown in Table 5, where it is evident that increasing
the sample size increases the accuracy of the parameter estimate. Of course, the true parameter
values are given in Table 4, and these are the limits of the estimates as the sample size N increases.
Importantly, the standard errors of the parameter estimates in Table 5 are noticeably smaller for the
DPLN distribution, highlighting the consistency of the parameter estimation for the DPLN model.
However, in attempting to simulate values from the GB2 distribution, calculation of the inverse CDF
via the expression in (30) is highly unstable for simulated values of the Beta(p, q) random variable Z
which are close to unity.

Table 5. Results of the simulation experiment involving 1000 simulations of data sets of size N,
with standard errors shown in brackets.

Distribution

Sample Size N LN DPLN

100 ν̂ = 0.6220 (0.1442) ν̂ = 1.2001 (0.0028)
τ̂ = 1.4336 (0.1054) τ̂ = 0.0470 (0.0004)

λ̂1 = 1.3611 (0.1934)
λ̂2 = 0.7663 (0.0861)

200 ν̂ = 0.6214 (0.0995) ν̂ = 1.2001 (0.0020)
τ̂ = 1.4397 (0.0714) τ̂ = 0.0470 (0.0002)

λ̂1 = 1.3472 (0.1379)
λ̂2 = 0.7581 (0.0606)

300 ν̂ = 0.6189 (0.0820) ν̂ = 1.2000 (0.0016)
τ̂ = 1.4430 (0.0580) τ̂ = 0.0470 (0.0002)

λ̂1 = 1.3348 (0.1076)
λ̂2 = 0.7537 (0.0483)

400 ν̂ = 0.6201 (0.0737) ν̂ = 1.2000 (0.0015)
τ̂ = 1.4377 (0.0507) τ̂ = 0.0470 (0.0002)

λ̂1 = 1.3332 (0.0921)
λ̂2 = 0.7509 (0.0419)

500 ν̂ = 0.6223 (0.0627) ν̂ = 1.2000 (0.0013)
τ̂ = 1.4430 (0.0440) τ̂ = 0.0470 (0.0002)

λ̂1 = 1.3335 (0.0848)
λ̂2 = 0.7520 (0.0383)

1000 ν̂ = 0.6210 (0.0449) ν̂ = 1.2000 (0.0009)
τ̂ = 1.4434 (0.0329) τ̂ = 0.0470 (0.0001)

λ̂1 = 1.3273 (0.0581)
λ̂2 = 0.7486 (0.0273)
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4.2.3. Including Explanatory Variables

Table 6, displays the same results for the automobile injury claims dataset. For the i-th policyholder,
the number of total amount yi follows (10) whose mean depends on the above set of covariates through
the identity link function. The exponential of INTERCEPT coefficient 1.023 is proportional to the
predicted loss amount when the values of the other explanatory variables are equal to 0. In view of its
low p-value, this estimate is statistically significant at the usual significance levels, 5% and 1%. On the
other hand, the indicator ATTORNEY is statistically significant at the usual nominal levels, whereas
the gender and marital status of the claimant, except that the explanatory variable SINGLE, are not
significant at the 5% significance level. Similarly, the fact that the vehicle was uninsured is not relevant
in the investigation. Both claimant’s age and usage of seatbelt/child restraint are highly significant.
Three more parameters affect the calculation of the predicted mean: the parameter τ, which is also
highly significant, and shape parameters λ1 and λ2. All these three parameters are highly statistically
significant at the usual nominal levels, 5% and 1%. For the sake of comparison the results for the LN
and GB2 generalized linear model are displayed in Table 6. As it can be observed the fit provided by
the GB2 generalized linear model is only marginally better than the DPLN generalized linear model.
For the DPLN generalized linear model, parameters were estimated by the method of maximum
likelihood by using log-transformed data and the NSL distribution. The maximum of the log-likelihood
function was −1753.07 and it was achieved after considering different initial values of likelihood
surface by using the FindMaximum function of Mathematica software package v.11.0. Similar estimates
were obtained by means of the EM algorithm described in Section 3.2. In this case the same value was
obtained for the maximum of the log-likelihood function of the NSL GLM. The standard errors of the
parameter estimates for the DPLN GLM have been approximated by inverting the Hessian matrix and
also from the last iteration of the EM algorithm. Similar values were obtained. The computing times
in seconds to estimate the maximum likelihood estimates by directly maximizing the log-likelihood
surface for these generalized linear models are shown in the last row of the table. The DPLN GLM
shows a better performance than the GB2 counterpart. The computing time of the EM algorithm
for the DPLN GLM was 142.57 seconds using the stopping criterion that the relative change of the
log-likelihood function be less than 1× 10−4.

Table 6. Parameter estimates, standard errors (S.E.) and p-values of the t-test for automobile bodily
injury claims dataset under LN, GB2 and DPLN generalized linear models.

Generalized Linear Model

Estimate (S.E.) LN GB2 DPLN

INTERCEPT 0.764 (0.382) 1.083 (0.383) 1.023 (0.376)
p-value 0.0458 0.0048 0.0067

ATTORNEY 1.368 (0.075) 1.215 (0.079) 1.213 (0.075)
p-value <0.0001 <0.0001 <0.0001

CLMSEX −0.103 (0.076) −0.135 (0.070) −0.135 (0.069)
p-value 0.1757 0.0524 0.0516

MARRIED −0.221 (0.235) −0.350 (0.233) −0.352 (0.234)
p-value 0.3464 0.1340 0.1320

SINGLE −0.378 (0.241) −0.494 (0.237) −0.498 (0.237)
p-value 0.1171 0.0374 0.0360

WIDOWED −0.887 (0.430) −0.748 (0.417) −0.744 (0.419)
p-value 0.0393 0.0730 0.0763

CLMINSUR −0.009 (0.127) −0.043 (0.116) −0.041 (0.115)
p-value 0.9448 0.7091 0.7218

SEATBELT −0.996 (0.278) −0.785 (0.272) −0.768 (0.272)
p-value 0.0015 0.0040 0.0048
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Table 6. Cont.

Generalized Linear Model

Estimate (S.E.) LN GB2 DPLN

CLMAGE 0.014 (0.003) 0.013 (0.003) 0.013 (0.003)
p-value 0.0010 <0.0001 <0.0001

τ 1.230 (0.026) 0.448 (0.129) 0.538 (0.110)
p-value <0.0001 0.0006 <0.0001

p or λ1 0.513 (0.185) 1.458 (0.139)
p-value 0.0055 <0.0001

q or λ2 0.670 (0.252) 1.112 (0.085)
p-value 0.0079 <0.0001

NLL 2450.54 2429.59 2430.02

AIC 4921.09 4883.18 4884.05

BIC 4971.04 4943.12 4943.98

CT 0.4524 6.2556 3.2488

4.2.4. Model Validation

As done for our first example, we analyze model validation from a practical perspective. The test
statistic is T = 2 (`LN − `DPLN) where `LN and `DPLN represent the maximum of the log-likelihood
function for the LN and DPLN generalized linear models respectively and T asymptotically follows
a chi-square distribution with two degree of freedom. For the automobile bodily injury claims data
set, it is verified that T = 2 (−2450.54 + 2430.02) = 20.52. Then, at the usual significance levels
(i.e., p-value is less than 0.0001), the null hypothesis is clearly rejected and consequently, the smaller
regression (LN) is rejected in favour of the model based on the DPLN distribution.

Also, as done for our first example, Vuong’s test statistic is T = 1.00 for our second data set and
we fail to reject H0, and therefore differences between these two models do not exist.

4.3. Log-Residuals for Assessing Goodness-of-Fit

In the following we consider the log-residuals for assessing the goodness-of-fit of the proposed
models for the two datasets considered. As the population moments of order higher than two cannot
be derived neither for the DPLN (i.e., λ1 < 2) nor the GB2 (i.e., the condition p < 2τ < q is not
satisfied in none of the datasets) distribution for the automobile bodily injury claims dataset, we have
not examined the Pearson’s type residual. In Figure 2, one can see the QQ-plot of the log-residuals
for LN, GB2 and DPLN generalized linear models for the automobile insurance claims (left hand
side) automobile bodily injure claims data set (right hand side). The alignment along the 45-degree
line is better in both the DPLN and GB2 generalized linear models in the central part and both tails
of the distribution of the residuals as compared to the LN generalized linear model for the two
datasets analyzed.

4.4. Out-of-Sample Validation of Models

We demonstrate the abilities of the models to predict portfolio losses out-of-sample with
probability-probability plots shown in Figure 3. The data set {v1, v2, . . . , vn} is partitioned into
two halves by sorting the claim sizes ascendingly, that is, we write the data set as

vi1 < vi2 < vi3 < . . . < vin , (33)

where i1, . . . , in ∈ {1, 2, . . . , n}, and then two data sets are formed, A = {vi1 , vi3 , vi5 , . . .} and
B = {vi2 , vi4 , vi6 , . . .}, alternating the data set to which each claim data item in the ordered data
set is allocated. In this way the second data set is a good representation of the first data set in respect of
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claim distribution, but not necessarily in respect of the corresponding covariates, i.e., {x(i2), x(i4), . . .}
may not be representative of {x(i1), x(i3), . . .}. The data set A is used for fitting the models, whereas
the data set B is used for graphing the probability-probability plots. In Figures 4 and 5 we focus on
the lower and upper tails of the distributions respectively, where it is evident that the DPLN and GB2
models provide the best fit and are almost indistiguishable.

In Figure 6 the net losses under the various models are shown, where, as before, we have used
half of the data for fitting the models and the other half for computing the net losses and maximum
probable losses based on the 99.5-th percentile. It is evident that the DPLN and GB2 models give a
higher computed maximum probable loss than for the LN distribution, and thus illustrates the ability
of these models to provide adequate solvency levels when extreme claims are experienced by the
insurer’s portfolio.
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Figure 3. Probability-probability plot (out-of-sample).
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Figure 5. Probability-probability plots of upper tail (out-of-sample).
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Figure 6. Net losses on a portfolio of automobile bodily injury claims for various models
(out-of-sample).

5. Conclusions

In this paper, the DPLN generalized linear model was developed and fitted to two data sets,
these being private passenger automobile insurance claims data and automobile bodily injury claims
data. Several covariates pertaining to various attributes of insurance claimants were combined in the
linear predictor of the location parameter ν, and were chosen because of their anticipated effect on
claim size. This model exhibits Paretian behaviour in both tails and it is shown to provide fits to the
two data sets which are comparable to those of the GB2 distribution.
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The parameters of the DPLN generalized linear model were estimated via the EM algorithm
and independently confirmed by maximizing the log-likelihood surface of the closely related Normal
Laplace generalized linear model. The performance of the DPLN model has been compared with the
lognormal distribution, a limiting case of the DPLN distribution, and the GB2 generalized linear model
according to different model selection criteria. In view of the results obtained, we have found that
the proposed DPLN generalized linear model is a valid alternative to other parametric heavy-tailed
generalized linear models such as the GB2 GLM.

Potential practical applications of the DPLN GLM, beyond what is demonstrated in this article,
include predicting mortality rates for lives where the covariates of the GLM are age, sex, occupation,
etc. and predicting hazard rates in reduced-form credit risk models. These will be considered in
further work.
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Appendix A

Appendix A.1. Proof of Theorem 1

Looking at (18) we see that the expression separates into two parts, as mentioned in Reed and
Jorgensen (2004), the first being dependent upon β′ and τ′ and the second being dependent upon λ′1
and λ′2. The first part

n log
(

1√
2π(τ′)2

)
− 1

2(τ′)2

n

∑
i=1

z(2)i +
1

(τ′)2

n

∑
i=1

zi ν′i −
1

2(τ′)2

n

∑
i=1

(ν′i )
2 (A1)

can be rewritten using matrix notation as

n log
(

1√
2π(τ′)2

)
− 1

2(τ′)2 (1
>Z(2) − 2Z>X>β′ + β′>XX>β′). (A2)

Viewed as a quadratic form in β′, the optimum value of β′ is

β′ = (XX>)−1XZ (A3)

and the first part becomes

n log
(

1√
2π(τ′)2

)
− 1

2(τ′)2 (1
>Z(2) − Z>X>(XX>)−1XZ), (A4)

which is to be maximized with respect to τ′. Differentiating this with respect to τ′ and equating to
zero gives the update for τ′.

The second part

n log
λ′1λ′2

λ′1 + λ′2
+ λ′2

n

∑
i=1

w−i − λ′1

n

∑
i=1

w+
i (A5)

can be rewritten as

n
(

log
λ′1λ′2

λ′1 + λ′2
− λ′2Q′ − λ′1P′

)
, (A6)
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where

P′ =
1
n

n

∑
i=1

w+
i , Q′ = − 1

n

n

∑
i=1

w−i . (A7)

The optimum values of λ′1 and λ′2 are solved by equating the first order partial derivatives to zero
with closed-form solutions

λ′1 =
1

P′ +
√

P′Q′
, λ′2 =

1
Q′ +

√
P′Q′

.

Appendix A.2. Proof of Theorem 2

The first expectation is computed as follows

zi =
∫ ∞
−∞ z gi(z) dz

=
1

fY(yi; θ)

∫ ∞
−∞ z

1
√

2πτ2
exp

{
−

1
2τ2(z− ν)2

}
×

λ1λ2

λ1 + λ2

{
exp(λ2(yi − z)) , yi − z < 0

exp(−λ1(yi − z)) , yi − z ≥ 0
dz

=
1

fY(yi; θ)

λ1λ2

λ1 + λ2

×
{ ∫ ∞
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z

1
√

2πτ2
exp
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−

1
2τ2(z− ν)2

}
exp(λ2(yi − z)) dz

+
∫ yi
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1
√

2πτ2
exp

{
−

1
2τ2(z− ν)2

}
exp(−λ1(yi − z)) dz

}
=

1
fY(yi; θ)

λ1λ2

λ1 + λ2

×
{ ∫ ∞

yi
z

1
√

2πτ2
exp

{
−

1
2τ2(z

2 + ν2 − 2νz + 2τ2λ2z− 2τ2λ2yi)

}
dz

+
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1
√

2πτ2
exp

{
−

1
2τ2(z

2 + ν2 − 2νz− 2τ2λ1z + 2τ2λ1yi)
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(A8)

The first of these integrals simplifies as

exp
{
−

1
2τ2(ν

2 − (−ν + τ2λ2)
2 − 2τ2λ2yi)

}
×
∫ ∞

yi
z

1
√

2πτ2
exp

{
−

1
2τ2(z + (−ν + τ2λ2))

2
}

dz

= φ((yi − ν)/τ)/φ(qi)×
∫ ∞

yi
z

1
τ

φ((z− (ν− τ2λ2))/τ) dz

= φ((yi − ν)/τ)/φ(qi)×
{
(ν− τ2λ2)Φc((yi − (ν− τ2λ2))/τ)

+τφ((yi − (ν− τ2λ2))/τ)

}
= φ((yi − ν)/τ)×
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(ν− τ2λ2)R(qi) + τ

}
.

(A9)
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The second of these integrals simplifies as

exp
{
−

1
2τ2(ν

2 − (−ν− τ2λ1)
2 + 2τ2λ1yi)

}
×
∫ yi
−∞ z

1
√

2πτ2
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2τ2(z

2 + (−νz− 2τ2λ1))
2
}

dz
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= φ((yi − ν)/τ)/φ(pi)×
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1
τ

φ((z− (νz + 2τ2λ1))/τ) dz
}

= φ((yi − ν)/τ)/φ(pi)×
{
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−τφ((yi − (νz + 2τ2λ1))/τ)

}
= φ((yi − ν)/τ)/φ(pi)×

{
(νz + 2τ2λ1)R(pi)− τ

}
.

(A10)

Combining both integrals in the simplified formula for zi gives

zi = ν + τ2 λ1R(pi)− λ2R(qi)

R(pi) + R(qi)
. (A11)

The second expectation is computed as follows

z(2)i =
∫ ∞
−∞ z2 gi(z) dz

=
1

fY(yi; θ)
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−∞ z2 1

√
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(A12)

The third expectation is computed as follows
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1
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The fourth expectation is computed as follows
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(A14)
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Appendix A.3. Score Equations

The score equations to be solved for calculation of the maximum likelihood estimates are given by

∂`(y; β, τ2, λ1, λ2)

∂λ1
=

n
λ1
− n

λ1 + λ2
+

n

∑
i=1

2A1(yi, νi)
(√

π(τ2 + 2νi − 2yi)Φ( yi−λ1τ2−νi
τ )−

√
2B1(yi, νi)

)
√

π
(
A1(yi, νi)Φ( yi−λ1τ2−νi

τ ) + C1(yi, νi)Φc( yi+λ2τ2−νi
τ )

) = 0,

with A1(yi, νi) = exp
{

λ2yi + λ1νi +
λ1τ2

2

}
, B1(yi, νi) = exp

{
− (λ1τ2+νi−yi)

2

2τ2

}
and C1(yi, νi) =

exp
{

λ1yi + λ2νi +
λ2τ2

2

}
.

∂`(y; β, τ2, λ1, λ2)

∂λ2
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n

∑
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2
πB2(yi, νi)

)
A2(yi, νi)Φ( yi−λ1τ2−νi

τ ) + C2(yi, νi)Φc( yi+λ2τ2−νi
τ )

= 0,
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.

∂`(y; β, τ2, λ1, λ2)
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}
and
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.

∂`(y; β, τ2, λ1, λ2)
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