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Abstract: In this paper, we investigate the impact of the accident reporting strategy of drivers, within a
Bonus-Malus system. We exhibit the induced modification of the corresponding class level transition
matrix and derive the optimal reporting strategy for rational drivers. The hunger for bonuses induces
optimal thresholds under which, drivers do not claim their losses. Mathematical properties of the
induced level class process are studied. A convergent numerical algorithm is provided for computing
such thresholds and realistic numerical applications are discussed.
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1. Introduction

Bonus-Malus systems are well established tools used in motor insurance pricing based on past
experience of drivers. A Bonus—a premium discount (with some lower bound)—is guaranteed by
the policy when the driver reports no accident during a predetermined period of time. A Malus—
an additional charge to the premium (with some upper bound)—is required when accidents are
reported. The obvious purpose of this mechanism is to penalize the bad (or unlucky) drivers and to
provide incentives for drivers to try to reduce their claims frequency, as discussed in Franckx (1960)
or Hey (1985). From a mathematical perspective, standard Bonus-Malus systems are convenient
because they might be modeled using Markov Chains (see Lemaire (1994) and Lemaire (1995b) for
a description of various existing systems). Markov Chains properties (and associated invariant
measures) can be used to describe the long term equilibrium of the system. But, as a by-product,
this mechanism also generates some hunger for bonuses (as described in Lemaire (1977)): drivers
might overtake small accidents and not report them to their insurance companies, in order to obtain
a reduced premium (and avoid also the additional charge)1. From an empirical perspective, the fact
that some accidents might not be reported might be confirmed by the fact that, in many countries
with Bonus-Malus schemes, zero-inflated models have a significant ‘zero-component’, as discussed
in Boucher et al. (2009), with too many people that do not report claims. In this paper, we exhibit
the optimal reporting strategy and address the problem of updating the Markov Chain transition
probability of class levels, in order to take into account the probability of not reporting an accident.

1 Note that we will not address any legal aspects here (in various contries, it might be compulsory to report all accidents),
but we focus on incentives modeling issues, and related mathematical aspects.
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1.1. Discrete Bonus-Malus System

The optimal claiming strategy for insured drivers was already addressed in Zachs and Levikson (2004),
where a continuous time version of k-class Bonus-Malus systems was considered: drivers are switched
to a lower class if no claim were filed during a period T (that might depend on the previous class), while
whenever a claim is filed, the insured is immediately switched to a higher level (as in De Pril (1979)). Here,
we want to integrate this realistic feature in the more standard approach based on Markov Chains modeling
on a finite number of classes, discussed e.g., in Lemaire (1995a), with discrete time (since premium is revised
on an annual basis). Here, we intend to incorporate the optimal strategy for drivers not to report a loss
whenever the considered amount is too small.

Nevertheless, in a discrete model, if the transition is based on the number of accidents, and not
the occurrence (or not) of accidents within a given period (usually one year), modeling hunger for
bonus is much more complex. Intuitively, the optimal decision to report and claim a loss is not the
same if the policy renewal (and associated premium level update) is either in 360 days, or only in
5 days. Moreover, insured drivers may (and often should) choose to regroup several minor claims and
declare them as a large one. In order to avoid those issues and stick to a simple and easily interpretable
model, we assume that only one accident per year might occur.

1.2. Advantages of a Discrete Bonus-Malus System

The continuous-time model described in Zachs and Levikson (2004) has nice mathematical
properties, but on the other hand discrete-time Bonus-Malus systems are interesting since they are
easily interpretable, and can naturally be formalized via Markov Chains. In order to illustrate this our
model, let consider a benchmark very simple Bonus-Malus system, with 3 classes, similar to the one
discussed in Section 6 of Zachs and Levikson (2004). A different premium Pi is associated to each class
i = 1, 2, 3, with P3 > P2 > P1. If no claim occurs during one year, a driver is upgraded from class i to
class i− 1, as long as i ≥ 2. In case of claim report, the driver is downgraded from class i to class i + 1,
as long as i ≤ 2. See Table 1 for a description of that scheme.

Table 1. Transition rules for the 3 class Bonus-Malus system.

Class Premium Claim No Claim

3 P3 3 2
2 P2 3 1
1 P1 2 1

Suppose that accident occurrence is driven by an homogeneous Poisson process, with intensity λ,
given some initial class at time t = 0, as in standard actuarial models. Then the trajectory of classes for
the driver can be described by a discrete Markov process. If p := e−λ denote the probability to have no
accident over a year, the transition probability matrix of the Markov Chain is given by

M =

p 1− p 0
p 0 1− p
0 p 1− p


for the classes 1, 2 and 3 (in that order).

Based on this transition probability matrix, a quantitative figure of interest is the corresponding
stationary distribution, describing the repartition of drivers within the classes in a stationary regime.
Given this stationary distribution, one can then compute the corresponding average premium in
the (long term) stationary state, see e.g., Lemaire (1995b) and related studies. But, unfortunately,
this (standard) study of Bonus-Malus schemes is almost always based on the unrealistic assumption
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that all car accidents are reported to the insurance company. However, it might not be optimal for a
client to claim all losses.

For instance, suppose that an insured in class 2 suffers a loss of level `. Then,

• if the loss is claimed, next year premium will be P3 as he will downgrade from class 2 to class 3;
• if the loss is not claimed, he will loose ` and next year premium will be P1, as he will upgrade

from class 2 to class 1.

So a basic short term economic reasoning indicates here that it is rational to not to claim a loss
as soon as P3 > `+ P1, i.e., ` < P3 − P1. It is common knowledge that this type of reasoning is even
suggested by the insurance company, as soon as a driver intends to report a small loss. It indeed
happened recently to one of the authors of the paper.

1.3. Towards an Optimal Claiming Strategy

This ‘hunger for bonus’, as defined in Franckx (1960) or Lemaire (1977), can be mathematically
formulated as an ‘optimal claiming strategies’, as discussed in Walhin and Paris (1999), Walhin and
Paris (2000) and Denuit et al. (2007)—where Chapter 5 is dedicated to that issue.

An over-naive approach sometimes suggested in rather serious newspapers consists in taking
into account the impact on all the following years of deciding today to report or not a given accident.
Such strategy consists in comparing the sum of all discounted premia, associated to both possible
starting class level, depending if the accident is claimed or not. This naive approach does not take into
account the set of all possible scenarios associated to the possible random trajectories of the Markov
process (St) on the class set S . A driver can not be assumed a deterministic trajectory for future
Bonus-Malus classes and related premia.

In order to take into account the occurrence of new accidents in the following years, one needs to
associate to each class level s and time t, a value combining all the possible future accident scenario
costs, whenever starting in class level s at time t. To take into account future scenarios, consider a
(discrete) discount rate r ≥ 0. Namely, a rational decision is to avoid declaring the accident whenever
in class s, as soon as

` ≤ 1
1 + r

(Vt+1(s + 1)−Vt+1(s)) , (1)

where the function Vt+1(k) represents the expected value of all future discounted claims and premia
for the driver, whenever he starts from class k at time t + 1. This function V must integrate the
occurrence of accidents in the future, as well as the corresponding probabilistic evolution of the
class-level Markov Chain (St+h)h≥1 given St, considering that the driver sticks to the optimal reporting
strategy designed by (1).

Hence, the optimal claiming strategy rewrites as the solution of an optimal switching control
problem, where a driver needs to decide at each time step, if he should claim a possibly occurred
accident or not. As detailed above, this decision simply characterizes in terms of the lag between
the 2 values assigned to the both possible reachable class level. Claiming an accident will be
optimal whenever the cost of the accident exceeds the corresponding so-called implied deductible,
as in Braun et al. (2006) and Chappell and Norman (2003).

1.4. Agenda

The main purpose of this paper is to identify the optimal strategy for reporting losses and derive
its main mathematical properties as well as a convergent approximating numerical scheme. Applying
this optimal reporting strategy, we observe that the corresponding level class process (St)t remains a
Markov chain, with modified transition probabilities. In Section 2, we formalize the problem of interest
and describe the related Markov chains. In Section 3, we derive and characterize the optimal reporting
strategy of the driver and provide a simple algorithmic routine to approximate it. The algorithm will
in particular be tested in a 5-state Spanish Bonus-Malus scheme, see Section 4. Extensions including
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the addition of deductibles, as well as the consideration of heterogeneous, or risk adverse, drivers are
presented in Section 5.

2. Problem Formulation

2.1. Bonus-Malus Based on Loss Occurrence

Classical Bonus-Malus transition probabilities are usually computed under the assumption that
every accident is reported, as in e.g., Lemaire (1995b). This gives rise to a Markov Chain dynamics
for the class level of any driver. For example, a standard model for accident occurrence is the
Poisson process. With an homogeneous Poisson process, with intensity λ, the Markov process is
also homogenous.

Consider for instance the classical 3-classe Bonus-Malus scheme described in Section 1.2 above.
Recall that, in such system,a driver is upgraded whenever no accident occurs and is downgraded
at the arrival of any claimed accident, see Table 1. As soon as all losses are claimed to the insurance
company, the level-class Markov Chain associated to such Bonus-Malus system has the following
transition matrix

M =

p 1− p 0
p 0 1− p
0 p 1− p

,

where p denotes the probability to have no accident on a one year period. Observe that the probability
that a loss occurs does not depend on the class level s. This classical feature is due to the no-memory
property of the Poisson process.

In a stationary regime, the invariant probability measure µ characterizing the repartition of the
drivers within the 3 classes is given by

µ :=
1

κ2 + κ + 1
(κ2; κ; 1)T, where κ :=

p
1− p

.

In addition, we deduce the average premium in the stationary regime, which is given by

P̄ :=
κ2P1 + κP2 + P3

κ2 + κ + 1
.

In the numerical illustration, this asymptotic premium is used in order to enforce actuarial
equilibrium between the driver and the insurer in the sense that

P̄ = (1− p)×E(L),

where L denotes the (random) loss amount of an accident.

2.2. Impact of Claim Reporting Strategies

Observe that the previous stationary distribution of drivers within classes only depends on the
frequency of the loss, via the probability parameter p. In particular, it is not connected to the levels
of the premiums (Pk)k or the possible severity of the accident. This feature relies on the fact that we
unfortunately did not take into account the economic behavior of drivers, and in particular the fact
that they may choose not to report small losses. They shall do this whenever the gain from reporting
an accident does not compensate the impact of the class level downgrade on the future premia.

A loss reporting strategy for a driver is hereby given by a collection of thresholds ds, associated to
any class s. Let A denote the collection of such strategies, i.e.,

A := {(ds)s∈S , with ds ≥ 0, for any s ∈ S},
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where S denotes the collection of class levels. A driver will decide to report a claim while in class s,
if and only if the severity of the loss ` exceeds the threshold ds, i.e., if and only if ` > ds.

The choice of the reporting strategy d ∈ A for the driver has an important impact on the trajectory
of his associated class level Markov Chain, that we denote (Sd

t )t. This can be precisely quantified, as the
reporting strategy directly impacts the transition probabilities of the class level Markov Chain (Sd).
Let indeed denote by πd

s the probability to report a loss (that indeed occurred) for a driver in class
s ∈ S , whenever he follows a reporting strategy d ∈ A. Then, πd is given by

πd
s := P[L > ds], s ∈ S , d ∈ A,

where L is the level of the random loss. Focusing again on the classical 3-class Bonus-Malus scheme
described above, the transition matrix of the class level Markov chain is modified in the following way

Md =

p + (1− p)(1− πd
1) (1− p)πd

1 0
p + (1− p)(1− πd

2) 0 (1− p)πd
2

0 p + (1− p)(1− πd
3) (1− p)πd

3

, d ∈ A.

In order to interpret this matrix, focus for the example on the first entry of the matrix Md.
The probability to remain in class 1 for a driver in class 1, is the sum of two disjoint probabilities: the one
of not facing a accident equal to p, and the one of having a loss and not reporting it, i.e., (1− p)(1−πd

1).
Since the transition probabilities of the Markov Chain are affected, the stationary distribution of

driver within class will automatically also be modified. For instance, in the 3 class Bonus-Malus scheme
of interest, we obtain the corresponding stationnary repartition within classes, for any given d ∈ A:

µd ∝

(
κ + (1− πd

2); πd
1 ;

πd
1πd

2

κ + (1− πd
3)

)T

.

The reporting strategy of agents of course has a huge impact on the business model of the insurer
as the new average premium rewrites

P̄d = Kd

(
(κ + (1− πd

2))P1 + πd
1 P2 +

πd
1πd

2

κ + (1− πd
3)

P3

)
, d ∈ A,

where the renormalizing constant Kd is given by

Kd :=
κ + (1− πd

3)

(κ + (1− πd
2 + πd

1))(κ + (1− πd
3)) + πd

1πd
2

, d ∈ A.

A numerical application, to illustrate those quantities, is detailed in Section 4.

2.3. Towards an Optimal Claim Reporting Strategy

Now that the impact of the claim reporting strategy of the drivers has been clearly established
and quantified from the insurer point of view, let’s turn to the search of the optimal reporting strategy
for drivers.

We assume that all the drivers are rational and risk-neutral. Their objective is to minimize the
global cost of the insurance policy, which is characterized by the combination of all premia and non
reported losses. These expenses are reported up to a chosen fixed time horizon T, which may be
considered to be +∞, in particular if r is large. For ease of presentation, we do not consider here the
addition of a deductible payment, but this question will be discussed in Section 5 below.
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The discounting rate of the representative driver is denoted by r and we recall that the class-level
Markov Chain associated to reporting strategy d ∈ A is denoted Sd. Hence, starting at time 0 in a class
level s, the representative driver needs to solve at time 0 the following stochastic control problem

V0(s) = inf
d∈A

E
[

T

∑
t=0

1
(1 + r)t

(
PSd

t
+

1
1 + r

Lt1Lt≤d
Sd

t

)∣∣∣Sd
0 = s

]
, (2)

where Lt denotes the loss occurred on the year t, which is simply valued 0 whenever no accident
happens on this period, and is only reported whenever it exceeds the chosen threshold strategy (ds)s.
We assume that the premia are paid at the beginning of each period, whereas the unreported losses are
due at the end of the period.

The purpose of the next section is the resolution of this control problem and the numerical
derivation of the optimal threshold d?, corresponding optimal reporting strategy.

3. Derivation of the Optimal Loss Reporting Strategy

3.1. A Dynamic Programming Approach

In order to solve the control problem (2), the easiest way is to focus on its dynamic version and to
introduce the value function at any date t = 0, . . . , T given by

Vt(s) = inf
d∈A

E

 T

∑
k=t

1
(1 + r)k−t

PSd
k
+

Lk1Lk≤d
Sd

k

1 + r

∣∣∣Sd
t = s

, t = 0, . . . , T. (3)

In order to characterize the value function V, let focus on one arbitrary interval [t, t + 1] and
suppose that a driver starts in class s ∈ S at time t. We denote by s the new class in case of upgrade
(i.e., no loss reported) and s̄ the new class in case of downgrade. In order to decide wether he should
or note report the claim, the economically rational driver will compare Vt+1(s̄) and Vt+1(s). He should
report the claim if and only if the difference between the value functions exceeds the loss (which is
also paid at time t + 1). This gives rise to the so-called implied deductible optimal strategy (d?s )s∈S and
the associated probability of reporting a claim (π?

s )s∈S , where

d?s := Vt+1(s)−Vt+1(s) and π?
s = P[L ≥ d?s ], s ∈ S .

On the time interval [t, t + 1], the driver may or not encounter a loss, and then may choose to
report it or not, depending on his threshold reporting strategy d?. This gives rise to the following
representation of the value function at time t in terms of the value function at time t + 1.

Lemma 1. The value function of the driver is given by VT(s) = Ps together with

Vt(s) = (1− p)× π?
s ×

Vt+1(s)
1 + r︸ ︷︷ ︸

(1)

+ p× Vt+1(s)
1 + r︸ ︷︷ ︸
(2)

+ (1− p)(1− π?
s )×

(
E[L|L ≤ d?s ]

1 + r
+

Vt+1(s)
1 + r

)
︸ ︷︷ ︸

(3)

+ Ps︸︷︷︸
(4)

,

for t < T. The first part (1) is the probability to get a loss, and to claim it, with probability π?
s , and downgrade

to class s; the second part (2) is the probability to get no loss and to upgrade to class s; the third part (3) is
the probability to get a loss and not to claim it. The expected loss is then E[L|L ≤ d?s ] where d?s is the implied
deductible. And as discussed above

d?s = Vt+1(s)−Vt+1(s)

The last part (4) is the premium paid at time t.
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Proof. At terminal date T, it is always optimal to report an accident as upgrading or downgrading
classes is not important anymore. Hence, a driver always reports a claim, leading to the enhanced
terminal condition VT . The expression relating Vt and Vt+1 follows from the application of a dynamic
programming principle in its simplest form. It indeed suffices to study separately the 3 different cases.
If no accident occured (with probability p), the driver is upgraded to s and we obtain

p× Vt+1(s)
1 + r

.

If an accident occurs with probability (1− p) and the driver chooses to report it, because it is too
large, i.e., with probability π?

s , he faces no immediate cost but is downgraded to level s̄. This gives rise
to the term

(1− p)× π?
s ×

Vt+1(s)
1 + r

Finally, the term (3) follows from the occurrence of a loss L which is too small to be claimed.
This happens with probability (1− p)(1− π?

s ). Then, the driver pays the loss and is upgraded to s.
Hence we obtain

(1− p)(1− π?
s )×

(
E[L|L ≤ d?s ]

1 + r
+

Vt+1(s)
1 + r

)

Recall that the implied deductible d? is defined in terms of the value function V itself. Hence,
the characterization of V is not complete yet. Besides, the attentive reader would have noticed that the
implied deductible d? depends on time in its current form, since it defines at any time t in terms of the
difference between the value functions at time t + 1. In order to bypass this issue, one simply needs
to focus on the stationary version of this problem, for which T = ∞. In this case, the value function
does not depend on time anymore and neither does the implied deductible d?. We simply denote by
V the stationary value function associated to the infinite horizon valuation problem. We deduce the
following characterization of V.

Proposition 1. In a stationary framework, the value function of the driver is given by

V(s) = (1− p)× [1− F(V(s)−V(s))]× V(s)−V(s)
1 + r

+
V(s)
1 + r

+
(1− p)× F(V(s)−V(s))× G(V(s)−V(s))

1 + r
+ Ps,

for any s ∈ S , where F is the cumulative distribution function of the loss L and

G : d 7→ E[L|L ≤ d].

Proof. For any horizon T and intermediate date t ≤ T, the value function of the driver given
in (3) satisfies

Vt(s) ≤ V0(s) ≤
(
||P||∞ +

m
1 + r

) ∞

∑
k=0

1
(1 + r)k = (1 + r)||P||∞ +

m
r

,

where m = E[L] and ||P||∞ is the maximal possible value for the premium. This upper bound
corresponds to the case where the driver is always paying the highest premium, while never reporting
any claim. Besides, the value function of the driver is obviously increasing with the maturity T, so that
the previous upper bound implies its convergence as T goes to +∞. Hence, the value function (Vt)t

enters a stationary framework so that, at the limit, Vt does not depend on time t anymore.
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Recalling the expression of (d?s )s∈S given in Lemma 1 and recalling that π?
s = 1− F(d?s ), a direct

reformulation of the expression for V in Lemma 1 provides the announced result.

3.2. Comparison to Lemaire’s Algorithm

It is worth noticing that Lemaire (1995a) considered a rather similar model, as well as introduced
an algorithm in order to derive optimal implied deductible d?. This algorithm is also described in
Denuit et al. (2007), and we will use the notations used in Section 5.4.3 of this book, and compare
them with ours. In this model, the underlying process for accident occurrence is a Poisson process.
For annual frequency ϑ (the equivalent of probability p in our model) and level ` for the bonus scale
(our s), let rl(`, ϑ) denote the optimal retention for a policyholder (our d?). In both models, the retention
is a constant (that should be determined). In our model, we consider that only a single accident with
loss x might occur at time t, and is immediately reported. The probability of not reporting an accident is

p`(ϑ) =
∫ rl(`,ϑ)

y=0
f (y)dy

which is denoted πd?
s in our model. Accident occurrence is driven by a Poisson process, of intensity ϑ,

and the probability to report exactly k losses is q̄`(k|ϑ) given by2

q̄`(k|ϑ) = ∑
h≥k

e−ϑ ϑh

h!

(
h
k

)
[1− p`(ϑ)]k[p`(ϑ)]h−k .

Besides, ϑ̄` denotes the average number of accidents reported (by a policyholder in level `), and m`

is the expected cost of a non-reported accident. The interpretation of that formula is that, somehow,
the insured waits until the end of the year, and among the h losses, he selects how many should be
reported. The use of the Binomial distribution, given that h accident occured during the year also
suggests that the order of the accidents will not impact claims reporting: having a loss of 100 and
then 10,000 (later on) is the same as having 10,000 and then 100. Here everything is done as if all
information is available (hence decision is made when we know that h accidents actually occurred, and
there is time consideration), as discussed in the introduction. This models seems more general than our
approach, with only one possible accident, but it is quite unrealistic to assume that the insured wait
to have all information to take a decision. The difficult part in a true Poisson model is that decision
should be taken after each accident, which is not the case here. Nevertheless, in the case where only
one accident might occur (h = 1), the two models are rather close.

If b` is the premium in level ` (denoted Ps), the average annual total cost borne by a policyholder
in level ` is

CT(rl(`, ϑ)) = b` + ν
1
2 m`(ϑ)[ϑ− ϑ̄`]

This equation can be related to the component

Ps +
1

1 + r
E[L1L≤ds ]

in the Equation (2) or

Ps +
1

1 + r
(1− p)(1− πs)E[L|L ≤ d?s ]

2 There is a typo in Denuit et al. (2007) where the Poisson probability should be based on h, not k.
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in Lemma 1. Equation (5.8) obtained in Denuit et al. (2007) give the present value V`(ϑ) of all payments
made by a policyholder, which should satisfy

V`(ϑ)) = CT(rl(`, ϑ)) + ν ∑
k≥0

q̄`(k|ϑ)VTk(`)
(ϑ).

In the case where the driver can have only one accident, it becomes

V`(ϑ)) = CT(rl(`, ϑ))︸ ︷︷ ︸
(1)

+ν
[

q̄`(0|ϑ)V`+(ϑ)︸ ︷︷ ︸
(2)

+ q̄`(1|ϑ)V`−(ϑ))︸ ︷︷ ︸
(3)

]
,

where q̄`(0|ϑ) is the probability to claim no loss (and then to get an upgrade from class ` to class `+)
and q̄`(1|ϑ) is the probability to claim a loss (and then to get an downgrade from class ` to class `−).
This equation can be related to the one obtained in Lemma 1. The later can be written

Vt(s) = Ps +
(1− p)(1− πs)

1 + r
E[L|L ≤ d?s ]︸ ︷︷ ︸

(1)

+
1

1 + r

(1− p)πs ·Vs︸ ︷︷ ︸
(2)

+ [p + (1− p)(1− πs)] ·Vs︸ ︷︷ ︸
(3)

.

Hence, the model presented here shows a strong connection to the one of Lemaire (1995a), in the
realistic treatable case where one accident occurs per period. The main contribution of our paper is
to offer a clean and clear mathematical treatment of such approach, providing the Markov property
associated to the updated transition probabilities as well as the convergence of the approximating
algorithm, as detailed in the following sections.

3.3. Numerical Resolution

Observe that equations obtained in Proposition 2 yield a nonlinear system of |S| equations. It may
rewrite in the form V = H(V), where V is the collection of the (V(s))s∈S . A solution—defined as an
optimal strategy—is a fixed point of that system of equations.

In order to obtain a fixed point for such system, we consider some starting values V(0) = (V(s))s∈S
and set, at step i + 1, V(i+1) = H(V(i)), i.e., V(i+1) is the solution of the linear system

V(i+1)(s) = (1− p)× [1− F(V(i)(s)−V(i)(s))]×
V(i)(s)−V(i)(s)

1 + r

+
V(i)(s)
1 + r

+ Ps +
(1− p)
1 + r

× F(V(i)(s)−V(i)(s))× G(V(i)(s)−V(i)(s)),

Starting values can for example be the myopic ones obtained as discussed in Section 1.3,

V(0)(s) =
∞

∑
k=1

Pmax{s−k,1}
(1 + r)k ,

where, starting from class s, we assume that no claims are reported in the future.

Proposition 2. The sequence of value functions (V(n))n∈N constructed by the above algorithm converges to the
stationary value function V of the driver, as described in Proposition 1.
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Proof. Observe that the algorithm presented above is built in such a way that the nth value function
V(n) has a nice re-interpretation in terms of solution to a stochastic control problem.
Fix n ∈ N. Consider a driver with horizon T = n and trying to solve

V̄n
0 (s) := inf

d∈A
E

n−1

∑
k=0

1
(1 + r)k

PSd
k
+

Lk1Lk≥d
Sd

k

1 + r

+ V(0)(S
d
n)
∣∣∣Sd

0 = s

, s ∈ S .

Then, according to Lemma 1 and the constructing algorithm for V(n), the value function V̄n
0 at time

0 exactly coincides with V(n). Besides, following the same reasoning as in Proposition 1, V̄n
0 converges

to the stationary limit V as n goes to infinity, since the horizon hereby converges to infinity and the
terminal condition V(0) has no impact on the limit. Therefore, the algorithm produces a sequence of
functions (V(n))n∈N which converges to the stationary limit V of interest.

3.4. Reformulation of the Algorithm for Some Parametric Loss Distributions

In order to provide a numerical illustration of the algorithm, an important quantity that we need
to compute is G(V(s)−V(s)), based on the loss distribution. For convenience, let us consider some
(standard) parametric loss distribution. Recall that for numerical applications, m = E(L) = P̄/(1− p).

If L has an exponential distribution with mean m, the cumulative density function F is given by
F(`) = 1− e−`/m when ` > 0. In that case, we compute

G : d 7→ m− d× e−d/m

1− e−d/m .

If L has a Gamma distribution with shape parameter α and β, then its average is valued m = αβ,
and its density is given by

f : x 7→ xα−1

Γ(α)βα
e−

x
β .

In that case, we can compute

E[X1X<d] =
∫ d

0

xα

Γ(α)βα
e−

x
β dx =

βdα

Γ(α)βα
e−

d
β +

∫ d

0

αβ

Γ(α)βα
xα−1e−

x
β dx

=
β1−αdα

Γ(α)
e−

d
β + αβF(d).

And we deduce from the expression of the cumulative density function F that

G : d 7→ β1−αdα

Γ(α, d/β)
e−

d
β + αβ.

where Γ : (a, z) 7→
∫ z

0
ta−1e−tdt denotes the Gamma incomplete function (denoted γ(a, x) in

Abramowitz and Stegun (1965), Equation (6.5.2)).

3.5. Update of the Markov Property

An important feature of the class evolution process provided by the optimal reporting claim
strategy of the insured, is that the Markov property of the process (St)t is still valid, when the insured
reports optimally the only losses above thresholds d?s ’s. More precisely, the following property holds.

Proposition 3. If M denotes the transition matrix of the Markov Chain associated with (St)t when reporting
losses is compulsory, then (St)t remains an homogeneous Markov Chain when driver report only losses exceeding
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d?s . The transition matrix Md? is obtained from M by substituting, on each row i, (1− p) by (1− p)πd?
i and p

by p + (1− p)(1− πd?
i ), where πd?

i = P[L > d?i ].

Proof. For a given optimal strategy d?, the new transition effects are driven by the following rules:
Whenever the losses exceeds the threshold d?. it will be reported, and it won’t be otherwise. Hence,
the new transition probabilities whenever in state i require to replace (1− p) by (1− p)πd?

i and p
by p + (1 − p)(1 − πd?

i ) in any row i. Of course, the two boundary lines need to be treated in a
clear specific manner, related to the design of each Bonus-Malus system. According to this rewriting,
the Markov property of the class level (St)t will automatically be satisfied.

4. Illustration on the ‘Spanish Bonus-Malus’ System

In order to provide a realistic illustration of our methodology, we consider the ‘Spanish
Bonus-Malus’ scheme, as described in Lemaire (1995a), Appendix B-183. In this scheme, each driver is
highly penalized in case of reported claims as they automatically downgrade to the worst possible class,
independently of their current premium. This is summarized in the following transition rules table:

Therefore, the associated transition is matrix is given by

M =


p 0 0 0 1− p
p 0 0 0 1− p
0 p 0 0 1− p
0 0 p 0 1− p
0 0 0 p 1− p


where p denotes the probabity to have no-loss over a year. The associated Markov Chain has a
(unique) invariant probability measure µ that can be obtained numerically. For instance, when accident
occurrence is driven by an homogeneous Poisson process, with intensity λ = 0.08, we compute
p = 92.6% transition probabilities are

M =


0.926 0 0 0 0.074
0.926 0 0 0 0.074

0 0.926 0 0 0.074
0 0 0.926 0 0.074
0 0 0 0.926 0.074

 (4)

and the stationary measure whenever every driver reports his claims is given by(
0.735 0.059 0.063 0.069 0.074

)
.

Based on the premiums given in Table 2, this leads to a stationary average premium P̄ = 76.13.

Table 2. Transition rules for the ‘Spanish Bonus-Malus’ scheme.

Class Premium Class after 0 Claim Class after 1 Claim

5 100 4 5
4 100 3 5
3 90 2 5
2 80 1 5
1 70 1 5

3 This system is no longer in force, and is mainly used for its pedagogical intuition
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The stationary distribution of the drivers together with the evolution of P̄, for different choices of
λ are respectively given in Figure 1. As expected, for higher values of λ, more drivers are present in
higher order classes. On the contrary, for λ = 0.04, we even have more than 90% of the population in
the best class, numbered 1. Similarly, the level of the average stationary premium P̄ increases with λ,
as shown on Figure 1.
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Figure 1. Invariant probability measure and symptotic premium P̄, as a function of λ, with p = e−λ.

Recall that, in order to enforce the actuarial equilibrium, we chose for numerical applications to
pick the average level of loss amount m as

m = E(L) = P̄/(1− p).

Hence, from λ and P̄, we can derive m, as well as the function G, and apply our numerical
algorithm in order to compute the stationary value function associated to each class as well as the
optimal reporting strategy, characterized by the implied deductible d?.

In Table 3, V(0) is the discounted value of future premiums under the naive assumption that no
accident will occur in the future. V∞ is the stationary discounted value of future premium when the
optimal strategy is considered. d? is the implied deductible, and P(L ≤ d?) is the probability to declare
no loss. Here m = 993 and future values are discounted with either a 5% discount rate (on the left) or
a 2% discount rate (on the right) Deductibles are expressed as percentage of the (annual) premium.

Table 3. Impact of the optimal reporting strategy, Exponential losses, λ = 8% and r = 5% or 2%.

Class Premium V(0) V∞ d∗ P(L ≤ d?)

r = 5% r = 2% r = 5% r = 2% r = 5% r = 2% r = 5% r = 2%

1 100 1481 3586 1553 3128 84 (83.6%) 97 (96.5%) 8.1% 9.3%
2 100 1455 3558 1527 3094 84 (83.6%) 97 (96.5%) 8.1% 9.3%
3 90 1428 3529 1499 3062 74 (81.8%) 87 (96.1%) 7.2% 8.4%
4 80 1410 3510 1480 3042 54 (68.0%) 66 (82.6%) 5.3% 6.5%
5 70 1400 3500 1470 3032 27 (37.9%) 34 (49.2%) 2.6% 3.4%

Observe that the deductible d?s is increasing with the class level s ∈ S . A driver with a high
premium will be more likely to declare any loss, while a driver with a low premium will try to keep
his (good) bonus and will avoid declaring losses on purpose.

The evolution of d?s as a function of the discount rate r, when λ = 8% and for exponentially
distributed losses can be visualized on Figure 2. As the interest rate increases, the rational driver
will minimize the impact of a reported claim on his future costs, so that he will be eager to declare
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more accidents, even with smaller levels. Indeed, we observe that the implied deductible d?(s) is a
decreasing function of r, for any class level s ∈ S .
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Figure 2. Value of the Deductibles, d?s (expressed as a percentage of the premium Ps) and probability
not to declare an accident, 1− π?

s = P[L < d?s ] as a function of the discount rate r.

The evolution of d?s as a function of the accident frequency intensity λ, when r = 5% and loss
severity is exponentially distributed can be visualized on Figure 3. Le minimal level for claim reporting
slowly increases with the frequency λ of the accident.
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Figure 3. Value of the Deductibles, d?s (expressed as a percentage of the premium Ps) and probability
not to declare an accident, 1− π?

s = P[L < d?s ] as a function of annual accidents frequency λ (in %).

Whenever the interest rate r is fixed at 5% and the frequency of accidents is fixed by λ = 8%,
Figure 4 shows the evolution of d?s as a function of the coefficient of variation of losses,

√
Var[X]/E[X],

for Gamma distributed losses. We observe that high and low variance factors lead to higher deductible
levels, meaning that a too small or too large uncertainty on the possible level of loss, provides incitations
for the driver not to declare losses of small level.
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Figure 4. Value of the Deductibles, d?s (expressed as a percentage of the premium Ps) and probability
not to declare an accident, 1− π?

s = P[L < d?s ] as a function of losses coefficient of variation (with a
Gamma distribution).

Finally, as proved in Proposition 3, this optimal claiming strategy yields an updated Markov
Chain for bonus classes. More specifically, transition matrix becomes

M =


0.930 0 0 0 0.070
0.930 0 0 0 0.070

0 0.929 0 0 0.071
0 0 0.928 0 0.072
0 0 0 0.926 0.074

 (5)

with a 2% discount rate, and the stationary measure whenever every driver reports his claims is
given by (

0.745 0.057 0.061 0.066 0.071
)

(6)

and the stationnary average premium is 75.8. The evolution of the invariante measure and the average
premium, as a function of the coefficient of variation (with Gamma losses) can be visualized on
Figure 5.
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Figure 5. Proportion in each bonus class (stationary invariante measure) on the left, and stationnary
average premium (as a percentage of the classical case where all claims are reported), as a function of
losses coefficient of variation (with a Gamma distribution).
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5. Possible Extensions

The model considered so far has on purpose been chosen in its simplest form in order to emphasize
the effect of a rationally optimal claim reporting strategy. We now discuss several extension possibilities,
which can be encompassed in our framework of study.

5.1. Addition of Deductibles

In order for the model to be more realistic, one should take into account that any driver
also has to pay a deductible, whenever a loss is reported, see e.g., Zachs and Levikson (2004).
The level of deductible D depends on the current class level s and will be denoted Ds. In such a case,
the optimization problem of the agent is replaced by

V0(s) = inf
d∈A

E
[

T

∑
t=0

1
(1 + r)t

(
PSd

t
+

1
1 + r

DSd
t
1Lt>d

Sd
t
+

1
1 + r

Lt1Lt≤d
Sd

t

)∣∣∣Sd
0 = s

]
,

where the extra term takes into account that one should pay the deductible DSd
t

whenever a loss is
reported at time t.

This new formulation gives rise to an optimal strategy which takes the similar form as the one
obtained in the no-deductible case:

d?s = Vt+1(s)−Vt+1(s),

the only difference relying on the previous modification of the definition of the value function.
The characterization for the solution presented in Proposition 1 as well as the approximating algorithm
considered in Section 3.3 can be adapted to this setting in a straightforward manner.

5.2. Consideration of Risk Averse Drivers

In the previous setting, the representative driver is considered to be risk neutral, namely he is
neither afraid nor eager to take some risk. The rational behavior of the driver may also be represented
using a utility function characterizing his choices under uncertainty. In this framework, the new
optimization problem of the agent is given by

V0(s) = inf
d∈A

E
[

T

∑
t=0

1
(1 + r)t U

(
PSd

t
+

1
1 + r

Lt1Lt≤d
Sd

t

)∣∣∣Sd
0 = s

]
,

where U is the chosen risk adverse utility function of the agent. In such a case, once again, the implied
deductible is characterized in a similar fashion and only the computation scheme for the value function
is modified. Nevertheless, the dynamic programming principal allows us once again to characterize
the value function of the agent as the solution to a non linear system of equations. The only difference
is that each payment is computed via its utility value instead of solely its monetary one.

5.3. Consideration of Heterogeneous Agents

A tempting extension is to try to incorporate heterogeneity in the driver economic behavior. It is
quite classical to consider that drivers may have different probabilities of accident occurrence and
severity but less in the actuarial literature to incorporate different economic behavior for agents. In our
framework, we could consider a collection of driver types x ∈ X , so that each type x of driver is
characterized by its own utility function Ux together with his interest rate rx. In such a case, a driver of
type x will solve the problem

V0(s) = inf
d∈A

E
[

T

∑
t=0

1
(1 + rx)t Ux

(
PSd

t
+

1
1 + r

Lt1Lt≤d
Sd

t

)∣∣∣Sd
0 = s

]
.
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Hence, one can solve these problems separately of any x ∈ X and deduce the corresponding collection
of implied deductibles (d?s (x))s∈S ,x∈X . Then, one can directly compute the corresponding stationary
distribution (νx

s )s∈S associated to any class x ∈ X . Hence, the average premium should by derivedby
aggregating all the driver types and computing

P̄ =
∫

x∈X
∑
s∈S

Psνx(s) f (x)dx,

where f represents the density function of the types in the population.

6. Conclusions

We have seen in this paper how hunger for bonus can be incorporated in order to obtain the
‘true’ transition matrix for class levels, not only based on accidents occurrence, but considering the
probability to report losses. The dynamic programming problem does not have simple and explicit
solutions, but a simple numerical algorithms can be used in order to approximate the solution. We have
observed the impact of the hunger bonus in the context of a simplistic Bonus-Malus scheme, but it can
be extended easily to more complex ones, as discussed in particular in Section 5. The most difficult
remaining task is clearly to obtain the extension to the case where the Bonus-Malus scheme takes
into account the number of reported claims within a period. A way to solve it is to assume that the
driver waits until the date of renewal, to decide how many losses are reported (and which ones), but if
equations can be explicitly written (and solved), this approach is not realistic. This is clearly a difficult
task for future research.

We chose in this paper not to consider the ex post or ex-ante moral hazard topics associated to the
design of optimal insurance policy. The main reason is that, as long as the Bonus-Malus policy is clearly
announced in advance by the insurance company, the rational driver should not have any reason
to dissimulate his driving skills, other than the economic one presented above. Finally, our model
lacks realism since we assume that any driver is rational, able to take economies decisions as the one
described above, and only wishes to make his claim reporting on based on solely economic reasoning,
instead of e.g., more ethical ones. A natural extension of for such study would be to consider a chosen
distribution of ’rationally reporting’ type of drivers in the population. Finally, the most difficult part is
probably that λ is usually unknown by drivers, and this (possibly heterogenous) ambiguity will indice
an additional bias.
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