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Abstract: This paper considers an alternative way of structuring stochastic variables in a dynamic
programming framework where the model structure dictates that numerical methods of solution
are necessary. Rather than estimating integrals within a Bellman equation using quadrature nodes,
we use nodes directly from the underlying data. An example of the application of this approach is
presented using individual lifetime financial modelling. The results show that data-driven methods
lead to the least losses in result accuracy compared to quadrature and Quasi-Monte Carlo approaches,
using historical data as a base. These results hold for both a single stochastic variable and multiple
stochastic variables. The results are significant for improving the computational accuracy of lifetime
financial models and other models that employ stochastic dynamic programming.

Keywords: data-driven; quadrature; Quasi-Monte Carlo; retirement

1. Introduction

Dynamic programming is a widely used tool in solving problems that incorporate sequential decision
making. As per the seminal work of Merton (1969) and Samuelson (1969), dynamic programming has
been widely used in the lifetime modelling of individual financial decision making. In particular, under the
discrete-time case à la Samuelson (1969), dynamic programming is used to make sequential financial
decisions regarding asset allocation, consumption levels, etc., in optimizing a known objective function.
The underlying assumption is that this objective function is time-separable and hence can be optimized by
an appropriately-defined Bellman equation.

Much of the work in this area employs an analytical approach to define the solution of the problem.
See for example, Samuelson (1969), Haberman and Vigna (2002) and Gerrard et al. (2006). Further,
the desire investigate more interesting and realistic problems has led to an expansion beyond those
problems that can be solved analytically. Examples include the introduction of different investment
products in the decision making process (Hanewald et al. 2013; Horneff et al. 2015), and the desire to
use more complicated assumptions (Hulley et al. 2013; Michaelides and Zhang 2015). Shapiro (2010)
gives a detailed literature review on decision making in preparing for and during retirement.

Despite the wide variety of different assumptions, products and problem structures in the
literature, the stochastic models underlying the problem development have typically been defined
in simple parametric terms. Samuelson (1969) assumes the risky asset return in a given year is
a discrete distribution with only two possible returns, and is independent and identically distributed
in sequential years. Other examples of asset return distributions for single risky assets are the normal
distribution (Gerrard et al. 2006, using Brownian motion in a continuous-time framework), lognormal
distribution (Horneff et al. 2015) and lognormal with mean reversion (Pirvu and Zhang 2012, using
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geometric Brownian motion with drift in a continuous-time framework). Papers which have included
multiple risky asset classes have assumptions such as normal with a constant variance/covariance
matrix (Haberman and Vigna 2002), or a structured relationship and normal error terms to allow for
correlation between risky asset returns and labour income changes (Blake et al. 2013).

There is much evidence that these parametric structures may be significant simplifications
of the distribution of these variables (see for example Fama 1965; Poterba and Summers 1988).
Some papers have attempted to tackle this issue by using more “realistic” distributions. For example
both Korn et al. (2011) and Zou and Cadenillas (2014) allow for regime switching structures of returns.
However, the structure of the modelling still remains parametric in nature.

Where analytical solutions to the model are not possible, a numerical approach is adopted.
In the numerical models, stochastic economic assumptions are commonly represented via quadrature
approaches, which typically use weighted nodes based on the parametric assumptions to estimate
unknown integrals in the dynamic programming framework. The purpose of this paper is to introduce
and demonstrate the effectiveness of an alternative way of structuring the stochastic variables in the
numerical framework. Our goal is to maintain the computational benefits of quadrature approaches
whilst relaxing the assumption that the financial models must be parameterized by instead using
percentiles from historical data. The advantage of this approach is that the underlying data structure
(including non-parametric shape) is maintained, but with no additional computational intensity.

The results in the paper are very promising. Compared to a base scenario where all historical
data is used, determining nodes directly from the data provides results far closer to the base scenario
than determining nodes from fitted parametric distributions. When using multiple stochastic variables
this comes with an additional benefit of using far less nodes than a quadrature approach, as areas of
the data without observations are simply ignored rather than being given very small probabilities
as in a quadrature approach. Whilst this data-driven approach will be demonstrated using optimal
individual financial decision making as a context, we believe the approach is likely to be applicable
to many dynamic programming problems requiring stochastic assumptions and numerical methods
of solution.

The structure of the paper is as follows. In Section 2, the basic model is presented and explained.
Section 3 describes the approach in a single stochastic asset setting and provides relevant results.
Section 4 does the same as Section 3 but in a multiple stochastic asset setting. In Section 4 we also
introduce a comparison to quasi-Monte Carlo approaches (which have been effectively used in multiple
asset class settings, see for example Boyle et al. 2002), in addition to the comparison with quadrature
approaches. Section 5 concludes the paper and discusses potential future research.

2. The Basic Model

Our starting point for the model is the work in Butt and Khemka (2015), although half-year cash
flow timings have been removed for simplicity. An individual is assumed to have utility Ux consistent
with a constant relative risk aversion (CRRA) of consumption:

Ux =

∑109−x
t=0

(Cx+t)
1−ρ

1−ρ (t px) x = 25, 26, . . . , 109

0 x = 110
(1)

where Cx is the consumption at age x, ρ is the coefficient of risk aversion and is assumed to be 5
for the purposes of this analysis (as per Horneff et al. 2015), t px is the probability that an individual
aged x will be alive at age x + t. Mortality rates are calculated as the male rates in the Australian
Life Tables 2010–12 (Australian Government Actuary 2014). Mortality improvement is not allowed
for. Unlike Butt and Khemka (2015) mortality is allowed before age 65, and no utility discounting for
intertemporal consumption is allowed for apart from mortality expectations (see Yaari 1987).

An individual is assumed to work whilst aged 25 through 64, and then immediately retire upon
turning age 65. Results are independent or proportional to the salary level of the individual, although
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for ease of understanding we assume an individual earns a pre-retirement salary of $85,000 (this is
broadly consistent with the annual income from Average Weekly Earnings (AWE), calculated by
the Australian Bureau of Statistics, Catalogue No. 6302.0, plus compulsory Australian retirement
savings account contributions). The modelling is performed on a real basis with respect to salary
(see Sections 3 and 4) and no further adjustment is made to salary (i.e., no promotional increases are
allowed for). No other assets are allowed for. No tax, fees or social security are allowed for.

The retirement savings account, Ax+1, at exact age x + 1, is defined as:

Ax+1 =

{
(Ax + 85, 000− Cx)× (1 + ix)) x = 25, 26, . . . , 64

(Ax − Cx)× (1 + ix)) x = 65, 66, . . . , 108
(2)

where ix is the effective investment rate of return over the period—age x to x + 1, and is described in
Sections 3 and 4 (see Equations (5) and (8)).

The optimal decisions at each age are determined recursively from Equation (1) (noting that
U110 = 0), in the following Bellman equation (Bellman 1957), by maximising the the expected utility
with respect to the control variables ix and Cx, to obtain the value function Vx:

Vx = max [Ex[Ux]] = max
[

Ex

[
(Cx)1−ρ

1− ρ
+ (1 px) Ex [Vx+1]

]]
(3)

For the non-parametric scenarios in Sections 3 and 4 an explicit solution for Vx in terms of Ax

does not exist due to the Ex [Vx+1] term, and hence, like Butt and Khemka (2015), Ax is discretized
into 21 equally spaced nodes with a minimum 0 and a maximum S(Ax) in calculating Vx. S(Ax) is
calculated as follows:

S(Ax) =


85, 000 x = 109

85, 000 + S(Ax+1)/(1 + d) x = 65, 66, . . . , 108

S(Ax+1)/(1 + d) x = 25, 26, . . . , 64

(4)

where d is calculated from a portfolio invested in 60% cash and 40% equities (consistent with the
retirement-age allocations in Section 3.2), earning the real mean rates of return described in Section 3.

The calculation of Ex [Vx+1] in Equation (3) is the focus of this paper and this, along with the
control variables and constraints for optimal decisions, is discussed in Sections 3 and 4. Since Vx+1

values are only calculated for the Ax+1 nodes described above, interpolation of Vx+1 between node
values of Ax+1 is necessary and is calculated by linear interpolation of transformed (and effectively
linearized) Vx+1 values, the transformation of which is calculated as (Vx+1(1− ρ))1/(1−ρ).

All calculations performed in the paper were undertaken using R, using the DEoptim package for
optimisation. We note that it is possible to solve the model using the endogenous grid point method
of (Carroll 2006), and whilst this removes the need for optimisation it does not change the need to
estimate expectations and thus does not change the results of our analysis. Hence, we maintain the
optimisation method for consistency with more recent and complex work in this area that cannot be
solved using the endogenous grid point method.

3. The Single Stochastic Asset Setting

The individual in the model is assumed to have a choice between equities and a risk-free asset,
which is assumed to earn a constant real rate of return of 1.60% per annum (based on the mean real
return on the UBS AU Bank Bill All Maturities Index over the data period described below). Hence ix

from Equation (2) is calculated as follows:

ix = θx × j + (1− θx)× 1.60% (5)
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where j is the stochastic equity return and θx is the proportion of assets allocated to equities at age
x. The optimisation problem in Equation (3) is controlled upon θx and Cx, and is constrained upon
0 ≤ θx ≤ 1, and, for x = 25, 26, . . . , 64, Cx ≤ 85, 000.

In this paper we wish to compare parametric and non-parametric structures of j, both calibrated
with reference to historical data. This historical data structure is based on Australian data and
is the daily, rolling annual returns on the S&P/ASX200 Accumulation Index from 1 January 1993
to 31 December 2015. The historical data, therefore, has 5566 overlapping observations. Like in
Butt and Khemka (2015), these are expressed in real terms relative to Australian Average Weekly
Earnings (AWE).

The advantage of using overlapping return data is that the range of possible annual returns
depending on the annual calendar point when decisions are made is captured. However, a consequence
of using overlapping data is that the individual observations in Figure 1 are not independent of each
other. Whilst this will not bias the summary statistics estimates (with the exception that daily returns
in the first and last years of the sample will not appear in the rolling annual return data with the same
frequency as other years), it does mean that the distribution of returns will not be truly representative of
a full 5566 independent observations. This is only likely to be noticeable in the tails of the distribution,
with extremely rare events unlikely to be representative of independent observations. However, since
we are not trying to fit econometric models to this overlapping data (see for example Lyon et al. 1999),
and are more interested in expectations than in the tail of the distribution, this is not a particularly big
issue. A histogram of the data is presented in Figure 1.

Figure 1. Histogram of real domestic equity returns from the historical data.

3.1. Alternative Calculations of Ex [Vx+1]

As a baseline, we assume that a value of Ex [Vx+1] from Equation (3), based on the mean Vx+1

from all 5566 observations of the equity return, is our target. Of course, using all 5566 observations to
determine Ex [Vx+1] is computationally prohibitive for more complex problems, in general, but not for
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the simple model used in this paper. We will call this the Base (B) scenario and give all other scenarios
below appropriate labels. This Base scenario Ex [Vx+1] can be approximated as an average:

Ex [Vx+1] =
∫ ∞

j=−∞
f (j)Vx+1(j)dj ≈ 1

5566

5566

∑
B(k)=1

Vx+1

(
jB(k)

)
(6)

where f (j) is the density function for a functional form of the equity return distribution, and Vx+1(j)
is the value of the objective when the equity return is j. In the estimation of the integral jB(k) is the
equity return for the kth observation from the data. Vx+1(j) can be determined by calculating Ax+1

from Equation (2) and using the previously calculated Vx+1 values in the recursive process (using
interpolation between Ax+1 values—see Section 2).

Our goal is to find the method of estimating Ex [Vx+1] that gives results closest to Base.
All approaches use the following basic structure, with S representing the scenario being tested, jS(k)
representing the kth observed equity return from that scenario, and ωS(k) representing the weight
attached to that observed equity return:

Ex [Vx+1] ≈
n

∑
k=1

ω
(

jS(k)
)

Vx+1

(
jS(k)

)
(7)

We now describe the scenarios to be tested. Similarly to Blake et al. (2013), a value of n = 9 is used
(i.e., 9 nodes are used). We complete the subsection with Tables 1 and 2, which outline the equity return
nodes, weights and summary statistics respectively for the Ex [Vx+1] calculations described below.
Note that the Base results in Table 2 provide the summary statistics from the histogram in Figure 1.

3.1.1. Normal Distribution Quadrature (NQ)

The NQ scenario assumes f (j) from Equation (6) is normal with mean µ = 6.92% and σ = 14.46%,
as estimated from the historical real equity return data (unrounded numbers are used in all modelling in
the paper). A Gauss-Hermite process is used to determine jNQ and ωjNQ values, noting that, in this and
other relevant scenarios, the 1/

√
π component of the weights typically associated with Gauss-Hermite

processes has been rolled into ωjNQ in order to provide a consistent comparison between scenarios.

3.1.2. Lognormal Distribution Quadrature (LQ)

The approach here is essentially the same as NQ, although the normal distribution is fitted to
the continuously compounded log(1 + j), leading to µ = 5.66% and σ = 14.86% in the lognormal
distribution. Again a Gauss-Hermite process is used to determine jLQ (converted back to effective
rates) and ωjLQ values.

3.1.3. Data-Driven with Equal-Interval Nodes (DE)

Given that ωjDE in Equation (7) is analogous to f (j), it makes sense to treat ωjDE as estimates of
the relative frequency for which each jDE occurs in the data. This can be easily done by splitting the
equity return data between the minimum and maximum equity return into n clusters of equal-interval,
with ωjDE representing the proportion of the 5566 equity return observations in that cluster. The jDE
values are calculated as the mean return of the equity return observations in that cluster. The estimation
is hence being treated as a Riemann integral (otherwise known as the infinite limit of a sum of
rectangular rule approximations). We did consider allowing jDE to be the mid-point of the cluster
observations rather than the mean, but found the results in Section 3.2 to be inferior. One attractive
feature of using the mean of cluster observations is that it ensures the weighted mean of the jDE values
is equal to the mean of the data.
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3.1.4. Data-Driven with Unequal-Interval Nodes (DU)

We would like to investigate whether using nodes of unequal-interval, as done in NQ,
in combination with historical data, has a positive impact on results compared to DE above.
In determining jDU , we first identify jNQ from Equation (7) and then set the boundaries defining
the clusters by which the ωjDU proportion values are calculated to be halfway between consecutive
jNQ values (and setting the minimum and maximum boundaries for the first and last nodes as −∞
and +∞ respectively). Like for DE above, we then set jDU to be equal to the mean return of the equity
return observations in each cluster.

Table 1. Equity return nodes and weights for Ex[Vx+1] calculations.

Number NQ LQ DE DU
jNQ ωjNQ jLQ ωjLQ jDE ωjDE jDU ωjDU

1 −58.34% 0.00002 −45.89% 0.00002 −41.35% 0.01563 N/A* 0.00000
2 −39.43% 0.00279 −34.29% 0.00279 −32.25% 0.01671 −38.37% 0.02641
3 −23.11% 0.04992 −22.28% 0.04992 −19.33% 0.02911 −21.11% 0.03414
4 −7.88% 0.24410 −9.11% 0.24410 −9.27% 0.13223 −7.00% 0.19817
5 6.92% 0.40635 5.82% 0.40635 1.84% 0.23733 7.46% 0.41197
6 21.71% 0.24410 23.20% 0.24410 12.16% 0.34765 19.74% 0.30004
7 36.95% 0.04992 44.09% 0.04992 21.63% 0.18829 34.29% 0.02641
8 53.26% 0.00279 70.40% 0.00279 32.55% 0.02695 47.84% 0.00287
9 72.17% 0.00002 106.95% 0.00002 45.13% 0.00611 N/A * 0.00000

* No data was observed in clusters 1 and 9 for DU, and so the effective number of nodes in DU is only 7.

Table 2. Summary statistics of real equity returns from the Ex[Vx+1] calculations.

Statistic Base NQ LQ DE DU

Arithmetic mean (p.a.) 6.92% 6.92% 6.99% 6.92% 6.92%
Standard deviation (p.a.) 14.46% 14.46% 15.99% 14.14% 13.91%
Skewness −0.8023 0.0000 0.4517 −0.8619 −0.8801
Kurtosis (Excess) 1.3743 0.0000 0.3649 1.5314 1.5602

Note: p.a. stands for per annum.

3.2. Results

We start by looking at the optimal allocation to equities at age 55 for the Base and other scenarios,
as shown in Figure 2.

The shape of the equity allocations at age 55 are consistent with Butt and Khemka (2015), with the
100% equity allocation constraint applying at smaller balances and then a decreasing equity allocation
as balance increases. The decreasing equity allocation is due to future labour income being effectively
a risk-free asset, and hence a higher balance requires a lower allocation to equities to maintain
a consistent portfolio risk (see Bodie et al. 1992).

Asset allocations for other ages are not shown, although it can be noted that as age increases
from age 55 the proportion of balance allocated to equities falls for a given balance until reaching the
asymptotic values of 43.3%, 51.3%, 46.8%, 44.7%, and 45.9%, for scenarios Base, NQ, LQ, DE, and DU
respectively, which are maintained for all ages from age 65 onwards (with minor decreases with age
due to the maximum age 110), as per Samuelson (1969). This trend is due to future labour income
dropping to zero at age 65.
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Figure 2. Equity allocation for age 55.

Interestingly the Base scenario has the lowest equity allocation of all scenarios, with data-driven
scenarios DE and DU being closest to Base, and normal quadrature (NQ) having up to 15% higher
allocation to equities for age 55. The lack of excess kurtosis in the normal distribution as compared to
the data appears to be a significant factor in this difference.

We will now consider optimal consumption decisions. As per Samuelson (1969), consumption for
an individual without labour income (i.e., from age 65 onwards) is a fixed proportion of balance, with
the proportion for the Base scenario being 4.37%, 5.55%, 7.76%, and 11.80% for ages 65, 75, 85, and 95
respectively). For the Base scenario at age 55 and balance zero it is optimal to consume $28,311 of the
$85,000 salary (the remainder being contributed to the balance), with optimal consumption increasing
by an almost linear $0.0369 for every $1 of increase in balance (the number is slightly larger than this
when the 100% (no borrowing) constraint for equity allocation applies).

Figure 3 shows the proportional differences in consumption for the other scenarios compared to
the Base scenario for age 55. Consistent with the equity allocation results in Figure 2 the consumption
levels are higher as a proportion of balance for all scenarios compared to Base, with NQ being the
highest and consuming 2.10% higher than Base at age 55 when the 100% equity allocation constraint
does not apply. However, the order of level of consumption is not the same as the order of level of
equity allocation, with LQ having almost identical consumption to Base, whilst having the second
highest equity allocation in Figure 2. Differences between Base and other scenarios vary at other ages,
with the difference tending to be increasing at younger ages, before decreasing from around age 45–50,
although the order of the scenarios described above is maintained.
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Figure 3. Consumption comparisons between Base and other scenarios for age 55.

Whilst the above results are interesting in of themselves, due to the interaction between optimal
equity allocation and consumption (e.g., LQ as described in the previous paragraph), they do not give
us sufficient information to determine which scenario gives us the closest results to Base. In order
to determine this, we now perform a forward looking simulation exercise using 556,600 simulations,
with utility in a given simulation calculated as per Equation (1), and using the optimal decisions for
each scenario as described above. Linear interpolation is used to determine optimal equity allocations
and consumption amounts between the balance nodes, with linear extrapolation of the final two
nodes being used where the simulated balance exceeds the maximum balance node. Constraints on
consumption and asset allocation as per the optimal decisions are applied. In generating the equity
returns for the simulations, the 5566 equity return observations of the Base scenario are replicated
100 times, giving 556,600 observations, which are then random allocated without replacement to the
556,600 simulations, with this procedure being performed separately for each age. This ensures that
the distribution of equity returns for the simulation exercise is identical to the Base equity return
data at each age, although in any given simulation the distribution of equity returns across ages will
depend on which observations are selected for each age for that simulation. The exercise is performed
separately for starting ages from 25–64, with the starting balance assumed to be zero for each age.
The expected utility for a given scenario is calculated as the mean utility across 556,600 simulations.

Since the simulations are based on equity return data consistent with the Base scenario, the Base
decisions give the best utility outcomes. Figure 4 presents a comparison of the proportionate difference
in utility outcomes for the other scenario decisions as compared to Base, for each age from 25–64 all
starting from a zero balance. Scenarios which give values closest to Base (i.e., closest to zero in Figure 4)
represent the best scenarios to use.
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Figure 4. Utility comparisons between Base and other scenarios for an initial balance of zero.

It is clear from Figure 4 that the data-driven approaches perform better than quadrature
approaches in maximising utility as compared with the Base scenario, with equal-interval nodes
DE having a utility only 0.09% worse than Base for age 25 and initial balance zero, compared to 0.27%
for DU, 0.48% for LQ and 1.92% for NQ. This is quite an exciting result, with the reduction from
5566 equity return observations to 9 equity return nodes giving almost no loss in utility. Despite the
unequal-interval approach DU having only 7 effective nodes (see Section 3.1) it still performs better
than either of the quadrature approaches. The poor performance of NQ is unsurprising given it gave
the greatest difference in optimal decisions in Figures 2 and 3. Trends with age in utility outcomes
compared to Base can be explained by two factors. Firstly, the impact of the 100% equity allocation
means that for much of the pre-retirement for younger starting ages equity allocations under all
scenarios are 100%, giving a smaller utility difference for these starting ages. However, at very young
starting ages the balance increases to a large enough amount that the large differences seen in equity
allocations for larger balances in Figure 2 start applying, explaining the very slight downward trend
at younger ages for LQ. Secondly, the reduction in the moderating influence of future salaries as age
increases tends to increase the difference between Base and the other scenarios.

Finally, in addition to the results described above, each of the above scenarios was tested for n = 5
and n = 15 nodes. Whilst detailed results are not presented here for reasons of brevity, the utility
difference compared to Base for age 25 initial balance zero for n = 5 nodes is 1.92%, 0.48%, 0.62%,
and 0.70%, and for n = 15 nodes is 1.92%, 0.48%, 0.02%, and 0.12%, for scenarios NQ, LQ, DE, and DU
respectively. This shows that 5 nodes is sufficient for no further change in quadrature results with
additional nodes (and in fact LQ performs better than data-driven approaches for only 5 nodes), whilst
data-driven approaches move even closer to Base with more nodes.
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4. The Multiple Stochastic Asset Setting

The individual in the model is assumed to have a choice between four stochastic assets, namely
domestic equities, international equities, domestic bonds and international bonds. Hence ix from
Equation (2) is now calculated as follows:

ix =θx(ed)× j(ed) + θx(ei)× j(ei) + θx( f d)× j( f d)

+ (1− θx(ed)− θx(ei)− θx( f d))× j( f i)
(8)

where j(ed), j(ei), j( f d) and j( f i) are the stochastic equity returns for domestic equities, international
equities, domestic fixed interest and international fixed interest, respectively, and θx(ed), θx(ei),
θx( f d) and (1− θx(ed)− θx(ei)− θx( f d)), are the equivalent asset allocation proportions at age x.
The optimisation problem in Equation (3) is now controlled upon θx(ed), θx(ei), θx( f d) and Cx,
and is constrained upon 0 ≤ θx(ed), θx(ei), θx( f d) ≤ 1 (i.e., no short selling or borrowing constraint),
0 ≤ θx(ed) + θx(ei) + θx( f d) ≤ 1, and, for x = 25, 26, ..., 64, Cx ≤ 85, 000.

In determining historical data structures on which to base the four asset class return structures,
we initially used international equity (MSCI Developed World Equity Index), fixed interest (Bloomberg
Australia Bond Composite 0+ Year Index) and cash (UBS AU Bank Bill All Maturities Index) returns,
in addition to the domestic equity returns from Section 3. However, we discovered that using these
asset classes tended to lead to optimal decision making dominated by domestic equities and fixed
interest allocations, with essentially zero allocation to international equity (which had lower mean
returns and higher standard deviation than domestic equities) and cash (which had much lower mean
returns which failed to compensate for the lower standard deviation compared to fixed interest).

Given the purpose of this paper, we felt it would be beneficial to select asset classes that gave
non-trivial optimal allocations to each of the four asset classes. This proved to be more challenging
than we expected, with a number of candidate asset classes being investigated before settling on U.S.
domestic equities (S&P 500 Equity Index), Australian Equities as international equities (S&P/ASX200
Accumulation Index unhedged in $US), U.S. domestic fixed interest (US Government Bond Indices >
1 Year total returns) and Italian Government bonds as international fixed interest (Italian Government
Bond Indices > 1 Year total return unhedged in $US). Again real (with respect to the US Personal
Income Index) daily, rolling annual returns from 1 January 1993 to 31 December 2015 were used to
give us 5522 observations across four assets (the number of observations is reduced from the 5566 in
Section 3 due to public holidays needing to be taken into account for three countries rather than one).
Some summary statistics of the data are presented in Table 3.

Table 3. Summary statistics of real returns from the historical data.

Statistic Arithmetic Standard Skewness Kurtosis
Mean (p.a.) Deviation (p.a.) (Excess)

Domestic Equities (ed) 5.76% 16.52% −0.4437 0.3886
International Equities (ei) 7.66% 23.00% 0.7391 3.5079
Domestic Fixed Interest (fd) 0.94% 5.02% 0.3106 −0.3217
International Fixed Interest (fi) 2.99% 11.90% 0.0464 −0.2338

Note: p.a. stands for per annum.
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4.1. Alternative Calculations of Ex [Vx+1]

Like in Section 3.1, we set Ex [Vx+1] from Equation (3) in the Base (B) scenario to be the mean Vx+1

from all 5522 observations of the four assets. This Base scenario is expressed as:

Ex [Vx+1] =

∞∫
j( f i)=−∞

∞∫
j( f d)=−∞

∞∫
j(ei)=−∞

∞∫
j(ed)=−∞

 f (j(ed), j(ei), j( f d), j( f i))×
Vx+1 (j(ed), j(ei), j( f d), j( f i))
dj(ed)dj(ei)dj( f d)dj( f i)


≈ 1

5522

5522

∑
k=1

Vx+1(jB(k))

(9)

In Equation (9), f (j(ed), j(ei), j( f d), j( f i)) is the multivariate density function for a functional
form of the domestic equity (j(ed)), international equity (j(ei)), domestic fixed interest (j( f d)) and
international fixed interest (j( f i)) return distribution, and Vx+1 (j(ed), j(ei), j( f d), j( f i)) is the value of
the objective when the returns are j(ed), j(ei), j( f d) and j( f i). In the estimation of the integral jB(k)
is now the vector of returns for the kth observation from the data. Vx+1 (j(ed), j(ei), j( f d), j( f i)) is
calculated in the equivalent way as in Section 3. Note that this approach maintains cross-correlation
between assets but not autocorrelation across time in the model (a topic for future research; see
Section 5). Again our goal is to find the method of estimating Ex [Vx+1] that gives results closest
to Base.

4.1.1. Weighted Nodes—Quadrature

We will start with quadrature approaches like we did in Section 3, with S representing the scenario
being tested and other notation consistent with Section 3 and above:

Ex [Vx+1] ≈
n( f i)

∑
n=1

n( f d)

∑
m=1

n(ei)

∑
l=1

n(ed)

∑
k=1

 ωjS(k)(ed) ×ωjS(l)(ei) ×ωjS(m)( f d) ×ωjS(n)( f i)×
Vx+1

(
jS(k)(ed), jS(l)(ei), jS(m)( f d), jS(n)( f i)

)  (10)

However, were we to allow for the intersection of 9 nodes across four variables, this would give us
6561 summation elements, which is more than the 5522 historical data points, and so is not of interest
as it would be more computationally intensive than Base.

We wish to use more nodes for assets with higher volatility and so we choose n(ed) = 9, n(ei) = 9,
n( f d) = 5 and n( f i) = 5 as the number of nodes used. This gives a multiplied total of 2025 nodes. For
reasons of brevity, unlike the single stochastic asset formulation in Section 3.1 no summary statistics
will be provided for the approaches described in this section, although they can obtained from the
authors on request.

Weighted Nodes—Normal Distribution Quadrature (WN-NQ)

We start by considering a normal distribution quadrature version of this approach (WN − NQ).
In order to allow for correlation between the asset classes, we perform a Cholesky decomposition of
the variance/covariance matrix of the 5522 historical data points, as per Cai and Judd (2010), giving us
an independent normal distribution for the residuals of each asset class. The calculation of Ex [Vx+1] is
a product Gauss-Hermite quadrature to determine the jNQ and ωjNQ values from Equation (10), as per
Cai and Judd (2010).

Weighted Nodes—Lognormal Distribution Quadrature (WN-LQ)

The lognormal distribution quadrature version of this approach (WN − LQ) is essentially the
same as WN−NQ, although in this case the Cholesky decomposition is performed on the continuously
compounded log(1 + j) for each asset class. Again a product Gauss-Hermite process is used to
determine the jLQ (converted back to effective rates) and ωjLQ values from Equation (10).
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4.1.2. Weighted Nodes—Data-Driven

An alternative to Equation (10) is needed for data-driven approaches. Instead of the correlations
between asset classes being represented by a Cholesky decomposition, we create joint clusters of the
data and use the varying proportions of data in the joint clusters to represent the correlation. This is
represented as follows:

Ex [Vx+1] ≈
n( f i)

∑
n=1

n( f d)

∑
m=1

n(ei)

∑
l=1

n(ed)

∑
k=1

 ωjS(k)(ed),jS(l)(ei),jS(m)( f d),jS(n)( f i)×
Vx+1

(
jS(k)(ed), jS(l)(ei), jS(m)( f d), jS(n)( f i)

)  (11)

where ωjS(ed),jS(ei),jS( f d),jS( f i) represents the proportion of the 5522 observations in that joint cluster
across the four asset classes, whilst (jS(ed),jS(ei),jS( f d),jS( f i)) represents the vector of mean returns
of the observations of the four asset classes in that joint cluster. We now need to decide how to define
the joint clusters upon which ωjS(ed),jS(ei),jS( f d),jS( f i) and (jS(ed),jS(ei),jS( f d),jS( f i)) are to be based.

Weighted Nodes—Data-Driven and Equal-Interval Grid (WN-DE-G)

For WN − DE− G we will start with equal-interval clusters in a way consistent to what we did
in Section 3.1, using a naïve grid-based approach.Independently for each asset class we now split the
return data between the minimum return and maximum returns into equal-interval clusters, giving
n(ed)× n(ei)× n( f d)× n( f i) joint clusters.

Structuring the grid in this way means that 1773 of the 2025 joint clusters contain no data
(i.e., ω = 0 for many joint clusters), with the result that the effective number of nodes in WN-DE-G is
only 252.

Weighted Nodes—Data-Driven and Equal-Interval Hierarchy (WN-DE-H)

An alternative approach to the naïve grid-based approach described above is to cluster using
a divisive hierarchy (see Fraley and Raftery 1998). We start with all 5522 observations in a single
cluster, and then separate the data into n(ed) clusters based on the equal-interval approach described
above applied to the ed observed returns only (i.e., the cluster is not dependent on the other asset class
returns in any way). Then we split each of the n(ed) ed-based clusters into n(ei) clusters based on ei
returns only, performing the equal-interval approach separately for each of the n(ed) ed-based clusters
(i.e., the range of ei data in the n(ei) equal-interval clusters differs depending on the ei data in each
of the n(ed) ed-based clusters). Similarly, we then split each of the n(ed)× n(ei) ed-ei-based clusters
into n( f d) clusters, and then split each of the n(ed)× n(ei)× n( f d) ed-ei- f d-based clusters into n( f i)
clusters, giving n(ed)× n(ei)× n( f d)× n( f i) joint clusters.

Similarly to WN−DE− G, in WN−DE− H 1077 of the 2025 joint clusters contain no data, with
the result that the effective number of nodes in WN − DE− H is only 948. The much larger number
of effective nodes is due to the hierarchical clustering setting different cluster ranges tailored to data
location. Note that the hierarchy order could be different to that described above, although based on
the results in Section 4.2 we don’t believe this would have a significant impact.

Weighted Nodes—Data-Driven and Unequal-Interval Grid (WN-DU)

In a similar way to DU in Section 3.1 we first identify (jS(ed),jS(ei),jS( f d),jS( f i)) independently
for each univariate asset class, setting the boundaries defining the clusters to be halfway between
consecutive jNQ values (and setting the minimum and maximum boundaries for the first and last
nodes in each asset class as −∞ and +∞ respectively), again giving n(ed) × n(ei) × n( f d) × n( f i)
joint clusters.

Similarly to WN − DE − G and WN − DE − H, in WN − DU 1851 of the 2025 joint clusters
contain no data, with the result that the effective number of nodes in WN − DU is only 174. This has
a pleasant side effect of reducing computational time for the optimisation results in Section 4.2.
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We have not reported this previously as it is not a primary purpose of the paper, since all scenarios
apart from Base have been initially set up to be equally computationally intensive. However, we can
report that using R and the DEoptim package, the time for optimisation is 3354/1614/1020/660 s for
Base/WN − NQ/WN − DE− H/WN − DU respectively.

Note that an unequal-interval hierarchical approach is not possible, as it would require normal
distributions to be fit separately to data throughout the hierarchy, which is not sensible (or sometimes
even possible) for the small number of observations in parts of the hierarchy.

4.1.3. Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) approaches have been found to be useful for estimating
multidimensional integrals that otherwise would face the curse of dimensionality suffered by the
quadrature approaches described above (see Dick et al. 2013). (A QMC approach was not considered
in Section 3.1 as Equation (6) is not a multidimensional integral.)

QMC approaches are analogous to the equally weighted estimation in Equation (9), calculated
as follows:

Ex [Vx+1] ≈
1
r

r

∑
p=1

Vx+1 (jS) (12)

In Equation (12) r is the number of QMC observations chosen, whilst jS is the asset class return
vector for the Sth QMC observation chosen. In a QMC approach, rather than a random simulation
(or bootstrap for data-driven) approach, the choice of jS for which Vx+1 (jS) is calculated is via
a deterministic process designed to improve upon a random approach. In order to be consistent with
WN above we assume r = 2025.

Since QMC methods are applied to integrals across a multi-dimensional unit cube, the values
for which jS are chosen will be based on cumulative densities. These values are determined
from a four-dimensional Halton sequence (see Halton 1964), with a S value having the structure
{uS(ed), uS(ei), uS( f d), uS( f i)} ∈ [0, 1]4. Halton sequences assume independence between the
multi-dimensional variables, hence we need to structure the data in such a way as to allow for this.

Quasi-Monte Carlo—Normal Distribution (QMC-N)

A Cholesky decomposition identical to that described for WN − NQ above is used, with the jS
values from Equation (12) being determined from the normally converted S values, then correlated
through the Cholesky decomposition.

Quasi-Monte Carlo—Lognormal Distribution (QMC-L)

The approach is identical to that described for QMC− N through Equation (12) above, although
in this case the Cholesky decomposition is performed on the continuously compounded log(1 + j) for
each asset class, with the log(1 + jS) values being determined from the normally converted S values,
then correlated through the Cholesky decomposition and converted back to effective rates.

Quasi-Monte Carlo—Data-Driven (QMC-D)

For QMC− D the observed independent residuals from the QMC− N Cholesky decomposition
are ordered, with the jS values in Equation (12) being determined from the observed residual percentiles
based on the S values, then correlated through the QMC− N Cholesky decomposition.

Note that only one data-driven approach is tested, as the concept of the spacing of nodes is
irrelevant in QMC.

4.2. Results

For reasons of brevity, in the multiple stochastic asset setting, we have not provided the results
corresponding to Figures 2 and 3, although they can be obtained from the authors on request. (Note the
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“Retiring” package described at the conclusion of the paper provides the equivalent figures in Figures
A1–A3). It is to be noted that these results were not materially different to those seen in Section 3.2.

In order to determine which scenario gives the closest results to Base, a simultion exercise is
performed, consistent with that described in Section 3.2, with 552,200 simulations performed based
on the 5522 data observations. Figure 5 presents a comparison of the proportionate difference in
utility outcomes for the other scenarios as compared to Base, for each age from 25–64 all starting from
a zero balance.

Figure 5. Utility comparisons between Base and other scenarios for an initial balance of zero.

With the exception of the poor results for NQ in Figure 4, the scale of difference between the
utility results for Base and other scenarios is broadly similar for multiple stochastic assets in Figure 5
as it is for single stochastic assets in Figure 4. It is again clear from Figure 5 that the data-driven
approaches perform the best compared to the Base scenario, with the equal-interval hierarchical-based
approach, WN−DE− H, having utility only 0.01% worse than Base for age 25 and initial balance zero,
and grid-based approaches, WN − DE− G and WN − DU, giving differences of 0.08% and 0.15%
respectively. This is a fantastic result given that the data-driven approaches are also more efficient than
the other approaches, using 948, 252 and 174 nodes for WN − DE− H, WN − DE− G and WN − DU
respectively, compared to 2025 nodes for the other scenarios. The WN − DE − G and WN − DU
results show that equal-interval grids perform better than unequal-interval grids, which is consistent
with the results of single stochastic assets in Figure 4.

Conversely, Quasi-Monte Carlo approaches perform particularly poorly, with drops in utility
compared to Base for age 25 and initial balance zero of 0.57%, 0.30% and 0.30% for QMC − N,
QMC−D and QMC− L respectively. Consistent with the results of single stochastic assets in Figure 4,
the quadrature approach using a log-normal distribution, WN − LQ, performs much better at 0.23%
than using a normal distribution, WN − NQ, at 0.48%.

Trends with age in utility outcomes compared to Base are not particularly strong. Bumps seen in
the trends at later starting ages, particularly in WN− NQ and QMC− N, are a result of idiosyncrasies
in the optimisation procedure leading to very small deviations away from the correct optimal asset
allocation and consumption results, but these do not have any material effect on the interpretation of
the results.
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Note that, in addition to the results described above, each of the above scenarios was tested for
a smaller collection of n(ed) = 5, n(ei) = 5, n( f d) = 3 and n( f i) = 3 giving a multiplied total of
225 nodes. Given the possibility of zero data in joint clusters, as described in Section 4.1, the effective
number of nodes for WN − DE− H, WN − DE− G and WN − DU are 180, 76 and 78 respectively.
Whilst detailed results are not presented here for reasons of brevity, the utility difference compared
to Base for age 25 initial balance zero is 0.48%, 0.23%, 0.14%, 0.71%, 0.44%, 1.33%, 1.51%, and 1.23%
for scenarios WN− NQ, WN− LQ, WN−DE− H, WN−DE− G, WN−DU, QMC− N, QMC− L,
and QMC − D respectively. In a similar way to single stochastic assets, this shows that 225 nodes
is sufficient for no further change in quadrature results with additional nodes, whilst data-driven
approaches move closer to Base with more nodes.

5. Conclusions and Future Research

This paper considers an alternative way of structuring stochastic variables in a dynamic
programming framework where the model structure dictates that numerical methods of solution
are necessary. Rather than estimating integrals within a Bellman equation using quadrature nodes
from a distribution fit to underlying data, we use nodes directly from the underlying data. An example
of the application of this approach is presented using individual lifetime financial modelling.

The results show that determining nodes directly from the data provides results far closer to
a base scenario which uses all data points, than determining nodes from fitted distributions or using
a Quasi-Monte Carlo approach. These results hold for both a single stochastic variable and multiple
stochastic variables, with an added benefit for multiple stochastic variables of using far less nodes than
a quadrature approach.

There is a wealth of potential future research that could follow from this work. Our method
is broadly applicable to any dynamic programming problem involving stochastic and time-based
assumptions. That said, what we have demonstrated in this paper is very basic, and could be expanded
upon in a variety of ways.

For example, the clustering methods employed are very simple, and could potentially be improved
upon by options such as k-means clustering or other approaches (see Fraley and Raftery 1998).
Comparisons between the data-driven approach and alternative quadrature approaches, such as the
use of sparse grids (see Heiss and Winschel 2008) rather than product rules, could also be performed for
multiple stochastic assets. Future work could also look at the impact of using non-parametric estimates
of the entire density function f (j), such as those described in the seminal work of Parzen (1962),
and combining them with other Newton-Cotes estimations.

Furthermore, incorporation of autocorrelation in the data could lead to interesting insights for
various problems. Some prior papers have considered this issue. For example, Campbell et al. (2003) use
a vector autoregressive process to analytically solve a simple consumption and asset allocation problem.
Kopcke et al. (2013) extends this model to incorporate social security benefits and uncertain labour market
earnings, requiring numeric methods of solution. The approach in this paper could certainly be applied to
vector autoregressive processes, or structured cascade relationships like Wilkie (1995), although in these
cases the “data” would be the residuals of these processes rather than the underlying data, in a similar way
to bootstrapping residuals (see page 113 of Efron and Tibshirani 1994).

Given the wide application of dynamic programming in many research and commercial areas,
we consider that the approach demonstrated in this paper will be of considerable interest to a wide
variety of researchers and practitioners, and look forward to these and other future developments in
this area.

Supplementary Materials: The following are available online at www.mdpi.com/2227-9091/5/4/57/s1, R-package
‘Retiring’ containing the code to perform the diagnostic methods and generate the outputs described in the paper.
The package also contains all datasets used as examples in the paper. Please read the “User Guide” for instructions on
the use of the package. A file entitled “Example commands for ‘Retiring’ package” is also provided for ease of use.

www.mdpi.com/2227-9091/5/4/57/s1
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Abbreviations

The following abbreviations are used in this manuscript:

ASX Australian Stock Exchange
AU Australia
AWE AverageWeekly Earnings
CRRA Constant Relative Risk Aversion
DE Data-driven with Equal-interval nodes
DU Data-driven with Unequal-interval nodes
LQ Lognormal distribution Quadrature
MDPI Multidisciplinary Digital Publishing Institute
MSCI Morgan Stanley Capital International
NQ Normal distribution Quadrature
QMC Quasi-Monte Carlo
QMC-D Quasi-Monte Carlo - Data-driven
QMC-L Quasi-Monte Carlo - Lognormal distribution
QMC-N Quasi-Monte Carlo - Normal distribution
S&P Standard & Poor’s
UBS Union Bank of Switzerland
US the United States of America
WN-DE-G Weighted Nodes-Data-driven and Equal-interval Grid
WN-DE-H Weighted Nodes-Data-driven and Equal-interval Hierarchy
WN-DU Weighted Nodes-Data-driven and Unequal-interval grid
WN-LQ Weighted Nodes-Lognormal distribution Quadrature
WN-NQ Weighted Nodes-Normal distribution Quadrature
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