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Abstract: The main objective of this work is to develop a detailed step-by-step guide to the
development and application of a new class of efficient Monte Carlo methods to solve practically
important problems faced by insurers under the new solvency regulations. In particular, a novel
Monte Carlo method to calculate capital allocations for a general insurance company is developed,
with a focus on coherent capital allocation that is compliant with the Swiss Solvency Test. The data
used is based on the balance sheet of a representative stylized company. For each line of business in
that company, allocations are calculated for the one-year risk with dependencies based on correlations
given by the Swiss Solvency Test. Two different approaches for dealing with parameter uncertainty are
discussed and simulation algorithms based on (pseudo-marginal) Sequential Monte Carlo algorithms
are described and their efficiency is analysed.

Keywords: capital allocation; premium and reserve risk; Solvency Capital Requirement (SCR);
Sequential Monte Carlo (SMC); Swiss Solvency Test (SST)

1. Introduction

Due to the new risk based solvency regulations (such as the Swiss Solvency Test FINMA (2007)
and Solvency II European Comission (2009)), insurance companies must perform two core calculations.
The first one involves computing and setting aside the risk capital to ensure the company’s solvency
and financial stability, and the second one is related to the capital allocation exercise. This exercise is a
process of splitting the (economic or regulatory) capital amongst its various constituents, which could
be different lines of business (LoBs), types of exposures, territories or even individual products in
a portfolio of insurance policies. One of the reasons for performing such an exercise is to utilize the
results for a risk-reward management tool to analyse profitability. The amount of capital (or risk)
allocated to each LoB, for example, may assist the central management’s decision to further invest in
or discontinue a business line.

In contrast to the quantitative risk assessment, where there is an unanimous view shared by regulators
world-wide that it should be performed through the use of risk measures, such as the Value at Risk (VaR)
or Expected Shortfall (ES), there is no consensus on how to perform capital allocation to sub-units. In this
work we follow the Euler allocation principle (see, e.g., Tasche (1999) and (McNeil et al. 2010, sct. 6.3)),
which is briefly revised in the next section. For other allocation principles we refer the reader to
Dhaene et al. (2012).
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Under the Euler principle the allocation for each one of the portfolio’s constituents can be
calculated through an expectation conditional on a rare event. Even though, in general, these
expectations are not available in closed form, some exceptions exist, such as the multivariate Gaussian
model, first discussed in this context in Panjer (2001) and extended to the case of multivariate elliptical
distributions in Landsman and Valdez (2003) and Dhaene et al. (2008); the multivariate gamma model
of Furman and Landsman (2005); the combination of the Farlie-Gumbel-Morgenstern (FGM) copula
and (mixtures of) exponential marginals from Bargès et al. (2009) or (mixtures of) Erlang marginals
Cossette et al. (2013); and the multivariate Pareto-II from Asimit et al. (2013).

In this work we develop algorithms to calculate the marginal allocations for a generic model,
which, invariably, leads to numerical approximations. Although simple Monte Carlo schemes (such
as rejection sampling or importance sampling) are flexible enough to be used for a generic model,
they can be shown to be computationally highly inefficient, as the majority of the samples do not
satisfy the necessary conditioning event (which is a rare event). We build upon ideas developed in
Targino et al. (2015) and propose an algorithm based on methods from Bayesian Statistics, namely
a combination of Markov Chain Monte Carlo (for parameter estimation) and (pseudo-marginal)
Sequential Monte Carlo (SMC) for the capital allocation.

As a side result of the allocation algorithm, we are able to efficiently compute both the company’s
overall Value at Risk (VaR) and also its Expected Shortfall (ES), (partially) addressing one of the main
concerns of Embrechts et al. (2014): For High Confidence Levels, e.g., 95% and beyond, the “statistical
quantity” VaR Can only Be Estimated with Considerable Statistical, as well as Model Uncertainty.
Even though the issue of model uncertainty is not resolved, our algorithm can, at least, help to
reduce the ‘̀statistical uncertainty”, measured by a variance reduction factor taking as basis a standard
Monte Carlo simulation with comparable computational cost.

The proposed allocation procedure is described for a fictitious general insurance company with
9 LoBs (see Table 1 and Section 8). Further, within each LoB we also allocate the capital to the one-year
reserve risk (due to claims from previous years) and the one-year premium risk.

Table 1. Initial synthetic balance sheet.

LoB Reserves Premium
1 MTPL 2391.64 503.14
2 Motor Hull 99.08 573.26
3 Property 449.26 748.76
4 Liability 870.27 299.73
5 Workers Compensation (UVG) 1104.66 338.63
6 Commercial Health 271.54 254.21
7 Private Health 7.32 7.20
8 Credit and Surety 49.50 34.64
9 Others 67.64 46.28
Total 5310.92 2805.87

In order to study the premium risk we follow the framework prescribed by the Swiss Solvency
Test (SST) in (FINMA 2007, sct. 4.4). In this technical document, given company-specific quantities,
the distribution of the premium risk is deterministically defined and no parameter uncertainty is
involved. For the reserve risk, we use a fully Bayesian version of the gamma-gamma chain ladder
model, analysed in Peters et al. (2017). As this model is described via a set of unknown parameters,
two different approaches to capital allocation are proposed: a marginalized one, where the unknown
parameters are marginalized prior to the allocation process and a conditional one, which is performed
conditional on the unknown parameters and the parameter is integrated out numerically ex-poste.

The remainder of this paper is organized as follows. Section 2 formally describes marginal risk
contributions (allocations) under the marginalized and conditional models. Section 3 reviews concepts
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of SMC algorithms and how they can be used to compute the quantities described in Section 2. We
set the notation used for claims reserving in Section 4, before formally defining the models for the
reserve risk (Section 5) and the premium risk (Section 6); these are merged together through a copula
in Section 7. Sections 8 and 9 provide details of the synthetic data used, the inferential procedure for
the unknown parameters and the implementation of the SMC algorithms. Results and conclusions are
presented, respectively, in Sections 10 and 11.

2. Risk Allocation for the Swiss Solvency Test

In this section we follow the Euler allocation principle (see, e.g., Tasche (1999) and (McNeil et al. 2010,
sct. 6.3)) and discuss how the risk capital that is held by an insurance company can be split into different
risk triggers. As stochastic models for these risks involve a set of unknown parameters, we present an
allocation procedure for a marginalized model (which arises when the parameter uncertainty is resolved
beforehand) and a conditional model (which is still dependent on unknown parameters).

Although we postpone the construction of the specific claims payments model to Section 5 we
now assume its behaviour is given by a Bayesian model depending on a generic parameter vector
θ, for which a prior distribution is assigned. Probabilistic statements, such as the calculation of the
risks allocated to each trigger, have to be made based on the available data, described by the filtration
{F (t)}t and formally defined in Section 4. This requirement implies that the uncertainty on the
parameter values needs to be integrated out, in a process that must typically be performed numerically.

Therefore, to calculate the risk allocations we approximate the stochastic behaviour of functions
of future observations, with the functions defined in Section 4. For the moment, let us denote by Z
a multivariate function of F (t + 1), the future data, and θ the vector of model parameters. On the
one hand, in the conditional model, we approximate the distribution of the components of the vector
Z | θ, F (t). On the other hand, in the marginalized model, the approximation is performed after the
parameter uncertainty has been integrated out (i.e., marginalized). In this later framework, we
approximate the distribution of the components of Z | F (t), where the random vector Z is defined as
Z = E[Z | F (t)], with expectation taken with respect to θ | F (t). Note that, given F (t), Z is a random
variable, as it depends on future information, i.e., F (t + 1). Both in the conditional and in the
marginalized models we use moment matching and log-normal distributions for the approximations
and couple the distributions via a Gaussian copula.

Suppressing the dependence on the available information, F (t), these two models (marginalized
and conditional) are defined through their probability density functions (p.d.f.’s), fZ(z) and fZ|θ(z | θ),
respectively, which are both assumed to be combinations of log-normal distributions and a gaussian
copula. For the conditional model, as we work in a Bayesian framework, the unknown parameter
vector θ has a (posterior) distribution with p.d.f. fθ(θ). This is, then, combined with the likelihood
fZ|θ(z | θ) to construct fZ(z), the density used for inference under the conditional model.

For the methodology discussed in this work, the important features of these two models are that
fZ(z) is known in closed form, whilst fZ(z) is not.

In summary, the two models presented in Sections 4 to 7 are defined as

Marginalized model: Z ∼ fZ(z); (1)

Conditional model: Z ∼ fZ(z) =
∫

fZ | θ(z | θ) fθ(θ)dθ. (2)

Remark 1. As the “original” model for claims payments is a Bayesian model, we use the Bayesian nomenclature
for both the marginalized and the conditional model. For the former, the Bayesian structure of prior and likelihood
is hidden in Equation (1), as the parameter θ has already been marginalized (with respect to its posterior
distribution). For the later, we explicitly make use of the posterior distribution of θ in Equation (2). Another
strategy, followed in Wüthrich (2015), is to use an “empirical Bayes” approach, fixing the value of the unknown
parameter vector θ, for example at its maximum likelihood estimator (MLE).
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Under the marginalized model we define S = ∑d
i=1 Zi as the company’s overall risk. The SST

requires the total capital to be calculated as the 99% ES of S, given by

ρ(S) = E[S | S ≥ VaR99%
(
S)]. (3)

In turn, the Euler allocation principle states that the contribution of each component Zi to the
total capital in Equation (3) is given by

ρi = E[Zi | S ≥ VaR99%(S)], ∀i = 1, . . . , d. (4)

The allocations for the conditional model follows the same structure, with Zi and S replaced,
respectively, by Zi and S in Equation (4) and reads as

ρi = E[Zi | S ≥ VaR99%(S)], ∀i = 1, . . . , d, (5)

with S = ∑d
i=1 Zi. For the models discussed below the density of fZ(z) is not known in closed form,

adding one more layer of complexity to the proposed method.

Remark 2. Observe that the log-normal approximations are done at different stages in the marginalized and the
conditional models. Therefore, we expect that the results will differ.

Although computing ρi and ρi is a static problem, for the sake of transforming the Monte Carlo
estimation into an efficient computational framework, we embed the calculation of these quantities
into a sequential procedure, where at each step we solve a simpler problem, through a relaxation of
the rare-event conditioning constraint to a sequence of less extreme rare-events. In the next section we
discuss the methodological Monte Carlo approach used to perform this task. The reader familiar with
the concepts of Sequential Monte Carlo methods may skip Section 3.1.

3. SMC Samplers and Capital Allocation

For the marginalized and conditional models presented in Sections 4 to 7 the marginal contributions
in Equations (4)) and (5) cannot be calculated in analytic form for a generic model, so a simulation
technique needs to be employed. In the sequel we provide a brief overview of a class of Monte Carlo
methods, named Sequential Monte Carlo (SMC). For a recent survey in the topic, with focus on economics,
finance and insurance applications the reader is referred to Creal (2012) and Del Moral et al. (2013).
For a generic introductory review we refer the reader to Doucet and Johansen (2009).

3.1. A Brief Introduction to SMC Methods

The class of Sequential Monte Carlo (SMC) algorithms, also called Particle Filters, has its roots
in the fields of engineering, probability and statistics where it was primarily used for sampling
from a sequence of distributions (see, e.g., Gordon et al. (1993) and Del Moral (1996)). In the
context of state-space models, SMC methods can be used to sequentially approximate the filtering
distributions of non-linear and non-Gaussian state space models, solving the same problem as the
Kalman filter—a technique with a long-standing tradition in actuarial mathematics (see, e.g., De Jong
and Zehnwirth (1983) and Verrall (1989)).

The general context of a standard SMC method is that one wants to approximate a (often naturally
occurring) sequence of p.d.f.’s

{
π̃t
}

t≥1 with the support of each function in this sequence is given by

supp
(
π̃t
)
= Rd × . . .×Rd = Rd×t, for t ≥ 1, where t can be any artificial ordering of the sequence

that is problem specific. We assume that π̃t is (only) known up to a normalizing constant, and we write

π̃t(z1:t) = Z−1
t γ̃t(z1:t),

where z1:t = (z1, . . . , zt) ∈ Rd×t.
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3.1.1. SMC Algorithm

Procedurally, we initialize the algorithm sampling a set of N independent particles (as the samples
are denoted in the literature) from the distribution π̃1 and set normalized weights to W(j)

1 = 1/N, for
all j = 1, . . . , N. If it is not possible to sample directly from π̃1, one should sample from an importance
distribution q̃1 and calculate its weights accordingly. Then the particles are sequentially propagated
through each distribution π̃t in the sequence via three main processes: mutation, correction (incremental
importance weighting) and resampling. In the first step (mutation) we propagate particles from time
t− 1 to time t, in the second one (correction) we calculate the new importance weights of the particles.

Without resampling, this method can be seen as a sequence of importance sampling (IS) steps,
where the target distribution at each step t is γ̃t (the unnormalized version of π̃t) and the importance
distribution is given by

q̃t(z1:t) = q̃1(z1)
t

∏
j=2

Kj(zj−1, zj), (6)

where Kj(zj−1, · ) is the mechanism used to propagate particles from time t− 1 to t, known as the
mutation kernel. Therefore, after the mutation step each particle j = 1, . . . , N has (unnormalized)
importance weight given by

w(j)
t =

γ̃t(z
(j)
1:t)

q̃t(z
(j)
1:t)

= w(j)
t−1

γ̃t(z
(j)
1:t)

γ̃t−1(z
(j)
1:t−1)Kt(z

(j)
t−1, z(j)

t )︸ ︷︷ ︸
incremental weight: α

(j)
t

= w(j)
t−1α

(j)
t . (7)

These importance weights can be normalized to create a set of (normalized) weighted particles{
z(j)

1:t , W(j)
t
}N

j=1, with normalized weights W(j)
t =

w(j)
t

∑N
k=1 w(k)

t

. In this case, from the Law of Large Numbers,
N

∑
j=1

W(j)
t ϕ(z(j)

1:t) −→ Eπ̃t [ϕ(Z1:t)] =
∫
Rd×t

ϕ(z1:t)π̃t(z1:t)dz1:t, (8)

π̃t–almost surely as N → ∞, for any test function ϕ such that the expectation of ϕ under π̃t exists (see
Geweke (1989)).

Remark 3. The reader should note that the knowledge of π̃t up to a normalizing constant is sufficient for the
implementation of a generic SMC algorithm, since the normalized weights W(j)

t are the same for both π̃t and γ̃t.

In simple implementations of the SMC algorithm (such as the one discussed above), when the
algorithmic time t increases, the estimates in Equation (8) become, eventually, effectively a function
of one sample point {z(j)

t , W(j)
t }; what is observed, in practice, is that for some particle j, W(j)

t ≈ 1
and for all the others the normalized weights are negligible. This degeneracy is measured using the
Effective Sample Size (ESS) defined in Liu and Chen (1995) and Liu and Chen (1998) as

ESSt =

[
N

∑
j=1

(W(j)
t )2

]−1

∈ [1, N].

This quantity has the interpretation that ESSt is maximized when {W(j)
t , z(j)

t }N
j=1 forms a uniform

distribution on {z(j)
t }N

j=1 and minimized when W(j)
t = 1 for some j. One may also use the Gini index

or the entropy as a degeneracy measure, as discussed, for example, in Martino et al. (2017).
One way to tackle this degeneracy problem is to unbiasedly resample the whole set of weighted

particles, for example, choosing (with replacement) N samples from the system where each z(j)
t is

selected with probability weight W(j)
t . In our algorithms we propose to resample the whole set of

weighted samples whenever it is “too degenerate” and our degeneracy threshold is ESSt < N/2. Many
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different resampling schemes have been suggested in the literature and for a comparison between
them we refer the reader to Douc and Cappé (2005) and Gandy and Lau (2015).

Although the resample step alleviates the degeneracy problem, its successive reapplication at
each stage of the sampler produces the so-called sample impoverishment, where the number of distinct
particles is extremely small. In Gilks and Berzuini (2001) it was proposed to add a “move” step with any
kernel such that the target distribution is invariant with respect to it in order to rejuvenate the system.
This kernel may be, for example, as a Markov Chain Monte Carlo (MCMC) kernel, which would
begin with equally chosen weighted samples from the target distribution and then perturb them under
a single step of a Metropolis Hastings acceptance-rejection mechanism. Note that in this case the
samples start exactly in the target distribution’s stationary regime. Therefore, a single step of the
Metropolis-Hastings accept-reject mutation is strictly valid and no burn-in is required.

More precisely, we can apply any kernel M(ẑ(j)
1:t , z(j)

1:t) that leaves π̃t invariant to move the sample

ẑ(j)
1:t to z(j)

1:t (the hat denotes a sample after the resample step but before the “move” step), i.e.,

π̃t(z1:t) =
∫

M(ẑ1:t, z1:t)π̃t(ẑ1:t)dẑ1:t.

3.1.2. SMC Samplers

Although very general, the SMC algorithm presented above, in principle, requires the sequence
of p.d.f.’s to have an increasing support. However it has been shown in Peters (2005) and
Del Moral et al. (2006) that these algorithms can be applied to sequences of p.d.f.’s defined on the same
support, leading to the so-called SMC sampler algorithm discussed below. This development is central
for the insurance applications explored in this paper.

Given the sequence of densities {πt}t≥1 (and its unnormalized version, {γt}t≥1), where each
element is defined over the same support, say Rd, we create another sequence, defined on Rd×t, the
path space

π̃t(z1:t) ∝ γ̃t(z1:t) = γt(zt)
t−1

∏
s=1

Ls(zs+1, zs), (9)

which, for any Markov kernel Ls(zs+1, zs) is a density with πt(zt) as marginal (which can be seen by
integrating out z1:t−1). Note that, in Equation (9) time runs backwards, from t to 1. For completeness
we define π̃1(z1:1) = π1(z1) and γ̃1(z1:1) = γ1(z1).

If q1 ≡ q̃1 is an IS density targeting π1 ≡ π̃1 then, see Equation (6),

q̃t(z1:t) = q1(z1)
t

∏
j=2

Kj(zj−1, zj),

is defined, for Markov kernels Kj(zj−1, zj), as an IS density targeting π̃t(z1:t). For t = 1 we define
K1 ≡ 1.

As in the SMC algorithm, to generate a set of weighted samples {z(j)
t , W(j)

t }M
j=1 from πt(zt) one

can use a sequence of IS steps on the path space where the unnormalized importance weights are,
at each time step t ≥ 1, given by, see Equation (7),

w(j)
t =

γ̃t(z
(j)
1:t)

q̃t(z
(j)
1:t)

= w(j)
t−1

γt(z
(j)
t )Lt−1(z

(j)
t , z(j)

t−1)

γt−1(z
(j)
t−1)Kt(z

(j)
t−1, z(j)

t )
= w(j)

t−1α
(j)
t , (10)

where w(j)
0 ≡ 1, for all j = 1, . . . , N. The normalized weights are then computed as

W(j)
t =

w(j)
t

∑N
k=1 w(k)

t

.

The pseudo-code of the SMC sampler procedure just described is found in Algorithm 1.
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Algorithm 1: SMC sampler algorithm.

Inputs: (Forward) mutation kernels
{

Kt(zt−1, zt)
}T

t=2, (artificial) backward kernels{
Lt−1(zt, zt−1)

}T
t=2, MCMC move kernel {Mt(ẑt, zt)}T

t=1;
for j = 1, . . . , N do

Sample i.i.d. z(j)
1 ∼ π1( · );

Set w(j)
1 = 1;

Set W(j)
1 = 1

N ;
end
for t = 2, . . . , T do

for j = 1, . . . , N do

Sample z(j)
t ∼ Kt(z

(j)
t−1, · );

Calculate the weights w(j)
t = w(j)

t−1
γt(z

(j)
t )Lt−1(z

(j)
t , z(j)

t−1)

γt−1(z
(j)
t−1)Kt(z

(j)
t−1, z(j)

t )
= w(j)

t−1α
(j)
t ;

end

Calculate the normalized weights W(j)
t =

w(j)
t

∑N
j=1 w(j)

t

;

if ESSt < N/2 then
for j = 1, . . . , N do

Resample ẑ(j)
t , i.i.d from {z(k)t , W(k)

t }N
k=1;

Sample z(j)
t ∼ Mt(ẑ

(j)
t , · ) ;

Set W(j)
t = 1/N ;

end
end

end

Result: Weighted random samples
{

z(j)
t , W(j)

t
}N

j=1 approximating πt, for all t = 1, . . . , T.

The introduction of the sequence of kernels {Lt−1}T
t=2 creates a new degree of freedom in the

design of SMC samplers compared with the usual SMC algorithms, where only the forward mutation
kernels {Kt}T

t=2 should be designed. As discussed in Peters (2005) and Del Moral et al. (2006) if
one wants to minimize the variance of the importance weights one strategy is to use the following
approximation to the optimal backward kernel that minimizes the variance of the incremental weights
(which cannot be computed in practice and must be approximated)

Lt(zt+1, zt) =
γt(zt)Kt+1(zt, zt+1)

1
N ∑N

j=1 w(j)
t Kt+1(z

(j)
t , zt+1)

, (11)

which leads to incremental weights

α
(j)
t =

γt(z
(j)
t )

1
N ∑N

k=1 w(k)
t−1Kt(z

(k)
t−1, z(j)

t )
. (12)

With the methodological tools provided by the SMC samplers we now proceed on how to adapt
these methods to the allocation of risks under our generic marginalized and conditional models.
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3.2. Allocations for the Marginalized Model

For a generic random vector Z = (Z1, . . . , Zd) with known marginal densities and distribution
functions, respectively fZi (zi) and FZi (zi), and copula density c(u1, . . . , ud) on [0, 1]d, due to Sklar’s
theorem (see Sklar (1959) and (McNeil et al. 2010, chp. 5)) the joint density of Z can be written as

fZ(z) = c(u)
d

∏
i=1

fZi (zi),

where u = (u1, . . . , ud) ∈ [0, 1]d and ui = FZi (zi). In order to approximate the marginal risk
contributions ρi from Equation (4) we can use samples from the distribution

π(z) = fZ(z | z ∈ GZ) =
fZ(z)1GZ (z)
P[Z ∈ GZ]

, (13)

where the set GZ = GZ(B) is defined, for B = VaR99%(S), as

GZ =

{
z ∈ Rd :

d

∑
i=1

zi ≥ B

}
, (14)

and the indicator function 1GZ (z) is one when z ∈ GZ and zero otherwise. It should be noted that since
the boundary B in Equation (14) is given by VaR99%(S) with S = ∑d

i=1 Zi we have P[Z ∈ GZ] = 0.01,
see discussion on this point in Targino et al. (2015).

3.2.1. Reaching a Rare Event Using Intermediate Steps

Instead of directly targeting the conditional distribution (Z1, . . . , Zd) | {S ≥ VaR99%(S)} the
idea of the SMC sampler of Algorithm 1 is to sequentially sample from intermediate distributions
with conditioning events that become rarer until the point we reach the distribution of interest
(see Equation (14)). The benefit of such an approach is that the samples (particles) from a previous
step (with a less rare conditioning event) are “guided” to the next algorithmic step (when targeting
a rarer conditioning set) and, if carefully designed, no samples are wasted on the way to the target
distribution, in the sense that no samples are incrementally weighted with a strictly zero weight. This
“herds” the samples into the target sampling region of interest.

In order to sample from the target distribution defined in Equation (13) we use a sequence of
intermediate distributions {πt}T

t=1, such that πT ≡ π and

πt(z) = fZ(z | z ∈ GZt), (15)

with GZt = GZt(Bt) given by

GZt =

{
z ∈ Rd :

d

∑
i=1

zi ≥ Bt

}
.

Remark 4. Differently from Targino et al. (2015), in order to make the algorithm more easily comparable with
the one used for the conditional model, we do not transform the original random variable Z through its marginal
distribution functions. Therefore, instead of sampling from the conditional copula we sample from the conditional
joint distribution of Z.

The thresholds B1, . . . , BT−1 are chosen in order to have increasingly rarer conditioning events as
a function of t, starting from the unconditional joint density. In other words, {Bt}T

t=1 needs to satisfy
0 = B1 < . . . < BT−1 < BT = B = VaR99%(S). Note that the choice B1 = 0 assumes S > 0, P-a.s.,
otherwise B1 = −∞. Depending on the choice of the thresholds {Bt}T−1

t=1 it may be the case that the
densities defined in Equation (15) are only known up to a normalizing constant so, from now on, we
work with γt, the unnormalized version of πt:
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πt(z) ∝ γt(z) = fZ(z)1GZt
(z). (16)

If, at algorithmic time t, we have a set of N weighted samples {W(j)
t , z(j)

t }N
j=1 from πt, with

z(j)
t = (z(j)

1,t , . . . , z(j)
d,t) then we construct the following empirical approximation:

E[Zi | S ≥ Bt] ≈
N

∑
j=1

W(j)
t z(j)

i,t . (17)

It should be noticed, though, that in our application the final threshold BT = B = VaR99%(S) is not
previously known. In these cases, an adaptive strategy, similar to the one studied in Cérou et al. (2012)
can be implemented, where neither B1, . . . , BT−1 nor BT needs to be previously known. More details
on this aspect of the algorithm are provided in Section 9.1.

3.3. Allocations for The Conditional Model

From the discussion in Section 2 we see that the main difference between the marginalized and
conditional models is the fact that the former density is analytically known (in fact, it its approximated
by an analytically known density) whilst the latter is defined through an integral of a known density,
see Equations (1) and (2). In this section we discuss how to adapt the algorithm presented in Section 3.2
for situations where the target density cannot be analytically computed but a positive and unbiased
estimator for it can be calculated.

Following the recent developments on pseudo-marginal methods (see Andrieu and Roberts (2009)
and Finke (2015) for a survey in the topic) we substitute the unknown density fZ in Equation (2)
by a positive and unbiased estimate f̂Z and show the SMC procedure still targets the correct
distribution—a strategy similar to the ones proposed in Everitt et al. (2016) and McGree et al. (2015).
In the context of rare event simulations a similar idea has been independently developed in Vergé et al.
(2016) where the authors study the impact of the parameter uncertainty in the probability of the rare

event, whilst we analyse the impact in expectations conditional to the rare event (as in Equation (5)).
The idea of replacing an unknown density by a positive and unbiased estimate is in the core of

many recently proposed algorithms, such as the Particle Markov Chain Monte Carlo (PMCMC) of
Andrieu et al. (2010), the Sequential Monte Carlo Squared (SMC2) of Chopin et al. (2013) and Fulop
and Li (2013) (see also the island particle filter of Vergé et al. (2015)) and the Importance Sampling
Squared (IS2) of Tran et al. (2014). In the context of Sequential Monte Carlo algorithms this argument
first appeared as a brief note in Rousset and Doucet’s comments of Beskos et al. (2006), where it
reads that “(...) a straightforward argument shows that it is not necessary to know wk(X(i)

t0 :tk
) [the

weights] exactly. Only an unbiased positive estimate ŵk(X(i)
t0 :tk

) of wk(X(i)
t0 :tk

) is necessary to obtain
asymptotically consistent SMC estimates under weak assumptions”.

To introduce the concept we first estimate fZ by fZ( · | θ), which can be seen as a “one sample”
approximation to the integral in Equation (2); then we show how to use an estimator based on M ≥ 1
samples from fθ. These two approaches have been named in the literature (see Everitt et al. (2016)
and references therein) as, respectively, the single auxiliary variable (SAV) and the multiple auxiliary
variable (MAV) methods.

3.3.1. Single Auxiliary Variable Method

To avoid direct use of fZ on the SMC sampler algorithm we provide a procedure on the joint
space of Z and the parameter θ, defined as Y = Rd ×Θ. The reader is referred to Finke (2015) for
an extensive list of known algorithms which can also be interpreted in a extended space way. The target
distribution on this new space is defined as the joint distribution of Z and θ and its marginal with
respect to Z is precisely the density of the conditional model.

Formally, for y = (z, θ), GZ(B) = GZ =
{

z ∈ Rd : ∑d
i=1 zi ≥ B

}
and B = VaR99%(S) we define
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πy(y) ∝ γy(y) = fZ(z | θ) fθ(θ)1GZ
(z),

which has the desired marginal target distribution of interest:

π(z) ∝ γ(z) =
∫

Θ
fZ(z | θ) fθ(θ)dθ1GZ

(z). (18)

Similarly to the densities defined in Equations (9) and (16) we define a sequence of target
distributions both in Y and Y t, respectively, as

π
y
t (yt) ∝ γ

y
t (yt) = fZ(zt | θt) fθ(θt)1GZt

(zt),

and

π̃
y
t (y1:t) ∝ γ̃

y
t (y1:t) = γ

y
t (yt)

t−1

∏
s=1

Ly
s (ys+1, ys)

= fZ(zt | θt) fθ(θt)1GZt
(zt)

t−1

∏
s=1

Ls(zs+1, zs | θs) fθ(θs),

where the second identity specifies the choices of Ly
s , in terms of Ls and fθ.

Assuming we can perfectly sample from the distribution of θ (in our application this distribution
is a posterior, from which samples are generated via simulation algorithms), to move y samples
backwards from time s + 1 to s we split this process into sampling θs from fθ (ignoring θs+1) and then,
conditional on θs, moving zs+1 to zs. In other words, to sample

ys = (zs, θs)
∣∣∣ {ys+1 = (zs+1, θs+1)} ∼ Ly

s (ys+1, ys),

we split the process in two stages,

1. θs ∼ fθ(θs);
2. zs | zs+1 ∼ Ls(zs+1, zs | θs).

The importance distribution on the path space of y can be expressed as

q̃y
t (y1:t) = qy

1 (y1)
t

∏
s=2

Ky
s (ys−1, ys) = q1(z1) fθ(θ1)

t

∏
s=2

Ks(zs−1, zs | θs) fθ(θs),

and, once again, the second identity provides the choices of qy
1 and Ky

s , i.e.,

qy
1 (y1) = q1(z1) fθ(θ1) and Ky

s (ys−1, ys) = Ks(zs−1, zs | θs) fθ(θs).

Therefore, a SMC procedure targeting the sequence {πy
t (yt)}T

t=1 produces unnormalized weights

wy
t =

γ̃
y
t (y1:t)

q̃y
t (y1:t)

= wy
t−1

γ
y
t (yt)Ly

t−1(yt, yt−1)

γ
y
t−1(yt−1)K

y
t (yt−1, yt)

= wy
t−1

fZ(zt | θt) fθ(θt)1GZt
(zt)Lt−1(zt, zt−1 | θt−1) fθ(θt−1)

fZ(zt−1 | θt−1) fθ(θt−1)1GZt−1
(zt−1)Kt(zt−1, zt | θt) fθ(θt)

= wy
t−1

fZ(zt | θt)1GZt
(zt)Lt−1(zt, zt−1 | θt−1)

fZ(zt−1 | θt−1)1GZt−1
(zt−1)Kt(zt−1, zt | θt)

,

that can be used to create weighted samples from πt(zt), which is the desired marginal of π
y
t (yt), the

density required for the capital allocation.
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Remark 5. From the structure of the mutation kernels Ky
t it should be noticed that at each iteration t a new

value of θt needs to be generated and used to sample zt | θt. In other words, for each particle j = 1, . . . , N a
different θ

(j)
t is to be used for each z(j)

t | θ
(j)
t .

3.3.2. Multiple Auxiliary Variable

In the previous algorithm we, indirectly, estimate the density fZ(z) by fZ(z | θ). In this section
we discuss how to use a different and more robust estimator, using M ≥ 1 samples from θ. In the
context of pseudo-marginal Monte Carlo Markov Chain (MCMC) Andrieu and Vihola (2015) show
that reducing the variance of the estimate of the unknown density fZ(z) leads to reduced asymptotic
variance of estimators from the MCMC. For SMC algorithms this strategy has been used, for example,
in McGree et al. (2015) and Everitt et al. (2016).

Before proceeding, we note that even in the case that M = 1 the algorithm still produces
asymptotic and unbiased estimators (when the number of particles N → ∞). However, the rate
of variance reduction in the asymptotic estimates is directly affected by the choice of M (in a non-trivial
manner). Furthermore, the asymptotic variance of Central Limit Theorem (CLT) estimators under the
class of such pseudo-marginal Monte Carlo approaches is strictly ordered in M, with M increasing
reducing the the asymptotic variance.

For any M ≥ 1, a positive and unbiased estimate for fZ(z) can be constructed as

f̂Z(z; ϑ) =
1
M

M

∑
i=1

fZ(z | θ
(i)), (19)

where ϑ = (θ(1), . . . , θ(M)) ∈ ΘM and each θ(m) is sampled independently from fθ(θ). Note that when
only one sample of θ is used to estimate fZ(z) the estimator is reduced to f̂Z(z; ϑ) = fZ(z | θ). Also,
note that f̂Z(z; ϑ)→ fZ(z) point-wise when M→ ∞, by the law of large numbers. Indeed, since the
random variable ϑ has density fϑ(ϑ) = ∏M

i=1 fθ(θ
(i)) we obtain∫

ΘM
f̂Z(z; ϑ) fϑ(ϑ)dϑ =

∫
ΘM

1
M

M

∑
i=1

fZ(z | θ
(i))

M

∏
i=1

fθ(θ
(i))dθ(1) · · · dθ(M)

=
∫

Θ
fZ(z | θ) fθ(θ)dθ = fZ(z).

Therefore the density π(z) constructed in Equation (18) is the marginal of the new target density
defined on YM = Rd ×ΘM

πy(y; ϑ) ∝ γy(y; ϑ) = f̂Z(z; ϑ) fϑ(ϑ)1GZ
(z).

Apart from the cumbersome notation, the same argument from the previous section can be used
to show that a SMC procedure with estimated density f̂Z(z; ϑ) replacing fZ(z) has unnormalized
weights given by

wy
t = wy

t−1

f̂Z(zt; ϑt)1GZt
(zt)Lt−1(zt, zt−1 | ϑt−1)

f̂Z(zt−1; ϑt−1)1GZt−1
(zt−1)Kt(zt−1, zt | ϑt)

,

when targeting a sequence {πt(zt)}T
t=1 with πT(zT) = π(z).

The algorithms described in this section contain several degrees of freedom, whose choices are
discussed in detail in Section 9. In the next section we formally define the elements necessary for
constructing the statistical models underlying the risk drivers Z and Z. We also present the formulas
for the Solvency Capital Requirements (SCRs) under both the conditional and marginalized models.

After this brief introduction to SMC algorithms, in the following section we introduce the random
variables used in the risk allocation process. In particular, we formally define the random vectors
Z and Z discussed in Section 2, and identify its components with the one-year reserve risk and the
one-year premium risk.
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4. Swiss Solvency Test and Claims Development

For the rest of this work we assume all random variables are defined in the filtered probability
space (Ω,F ,P, {F (t)}t≥0). We denote cumulative payments for accident year i = 1, . . . , t until
development year j = 0, . . . , J (with t > J) on the ` = 1, . . . , L LoB by C(`)

i,j . Moreover, in the `-th
LoB incremental payments for claims with accident year i and development year j are denoted by
X(`)

i,j = C(`)
i,j − C(`)

i,j−1. Remark that these payments are made in accounting year i + j.
The information (regarding claims payments) available at time t = 0, . . . , I + J for the `-th LoB is

assumed to be given by

D(`)(t) = {X(`)
i,j : 1 ≤ i ≤ t, 0 ≤ j ≤ J, 1 ≤ i + j ≤ t},

and, similarly, the total information (regarding claims payments) available at time t is denoted as

D(t) =
⋃

1≤`≤L

D(`)(t). (20)

Remark 6. By a slight abuse of notation we also use D(`)(t) and D(t) for the sigma-field generated by the
corresponding sets. Note that D(t) ⊂ F (t) for all t ≥ 0, as we assume that F (t) contains not only information
about claims payments, but also about premium and administrative costs.

The general aim now is to predict the future cumulative payments C(`)
i,j for i + j > t at time t,

given the information F (t), in particular, the so-called ultimate claim C(`)
i,J . For more information we

refer to Wüthrich (2015).

4.1. Conditional Predictive Model

As noted previously, we generically denote parameters in the Bayesian model for the ` LoB by
θ(`). For the ease of exposition, whenever a quantity is defined conditional on θ(`) it is going to be
denoted with a bar on top of it.

At time t ≥ I, LoB ` and accident year i > t− J predictors for the ultimate claim C(`)
i,J and the

corresponding claims reserves are defined, respectively, as

C
(`)
i,J (t) = E[C(`)

i,J | θ
(`), F (t)] and R(`)

i (t) = C
(`)
i,J (t)− C(`)

i,t−i. (21)

Under modern solvency regulations, such as Solvency II European Comission (2009) and the
Swiss Solvency Test FINMA (2007) an important variable to be analysed is the claims development
result (CDR). For accident year i = 1, . . . , I, accounting year t + 1 > I and LoB `, the CDR is defined as

CDR(`)
i (t + 1) = R(`)

i (t)−
(
X(`)

i,t−i+1 +R
(`)
i (t + 1)

)
= C

(`)
i,J (t)− C

(`)
i,J (t + 1), (22)

and an application of the tower property of the expectation shows that (subject to integrability)

E[CDR(`)
i (t + 1) | θ(`), F (t)] = 0. (23)

Thus, the prediction process in Equation (21) is a martingale in t and we aim to study the volatility
of these martingale innovations.

Equation (23) justifies the prediction of the CDR by zero and the uncertainty of this prediction can
be assessed by the conditional mean squared error of prediction (msep):
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msep
CDR(`)

i (t+1) | θ(`),F (t)
(0) = E[(CDR(`)

i (t + 1)− 0)2 | θ(`), F (t)] (24)

= Var
(
CDR(`)

i (t + 1) | θ(`), F (t)
)

= Var
(
C

(`)
i,J (t + 1) | θ(`), F (t)

)
. (25)

Moreover, we denote the aggregated (over all accident years) CDR and the reserves, conditional
on the knowledge of the parameter θ(`), respectively, by

CDR(`)
(t + 1) =

t

∑
i=t−J+1

CDR(`)
i (t + 1) and R(`)

(t) =
t

∑
i=t−J+1

R(`)
i (t). (26)

Using this notation we also define the total prediction uncertainty incurred when predicting

CDR(`)
(t + 1) by zero as

msep
CDR(`)

(t+1) | θ(`),F (t)
(0) = Var

(
t

∑
i=t−J+1

C
(`)
i,J (t + 1)

∣∣∣ θ(`), F (t)
)

.

Remark 7. It should be remarked that, in general, as the parameter vector θ(`) is unknown none of the quantities
presented in this section can be directly calculated unless an explicit estimate for the parameter is used.

4.2. Marginalized Predictive Model

Even though cumulative claims models are defined conditional on unobserved parameter values,
any quantity that has to be calculated based on these models should only depend on observable
variables. Under the Bayesian paradigm, unknown quantities are modelled using a prior probability
distribution reflecting prior beliefs about these parameters.

Analogously to Section 4.1 we define the marginalized (Bayesian) ultimate claim predictor and its
reserves, respectively, as

C
(`)
i,J (t) = E[C(`)

i,J | F (t)] = E[C
(`)
i,J (t) | F (t)] and R(`)

i (t) = C i, J(`)(t)− C(`)
i,t−i. (27)

We also define the marginalized CDR and notice, again using the tower property, that its mean is
equal to zero

CDR(`)
i (t + 1) = C i, J(`)(t)− C i, J(`)(t + 1) with E[CDR(`)

i (t + 1) | F (t)] = 0.

Furthermore, summing over all accident years i we follow Equation (26) and denote byR(`)(t)
and CDR(`)(t+ 1) the aggregated version of the marginalized reserves and CDR, where the uncertainty
in the later is measured via

msepCDR(`)(t+1) | F (t)(0) = Var

(
t

∑
i=t−J+1

C i, J(`)(t + 1)
∣∣∣F (t)) . (28)

4.3. Solvency Capital Requirement (SCR)

In this section we discuss how two important concepts in actuarial risk management, namely
the technical result (TR) and the solvency capital requirement (SCR), can be defined for both the
conditional and the marginalized models.

In this context the TR is calculated netting all income and expenses arising from the LoBs, while
the SCR denotes the minimum capital required by the regulatory authorities in order to cover the
company’s business risks. More precisely, the SCR for accounting year t + 1 quantifies the risk of
having a substantially distressed result at time t + 1, evaluated in light of the available information at
time t.
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As an important shorthand notation, we introduce three sets of random variables, representing
the total claim amounts of the current year (CY) claims and of prior year (PY) claims, the later for both
the conditional and marginalized models. These random variables are defined, respectively, as

Z(`)
CY = C t + 1, J(`)(t + 1), Z(`)

PY =
t

∑
i=t−J+1

(
C

(`)
i,J (t + 1)− C(`)

i,t−i

)
and

Z(`)
PY =

t

∑
i=t−J+1

(
C i, J(`)(t + 1)− C(`)

i,t−i

)
. (29)

In the standard SST model, CY claims do not depend on any unknown parameters and are split
into small claims Z(`)

CY,s for the LoBs ` = 1, . . . , L and into large events Z(p)
CY,l for the perils p = 1, . . . , P.

Small claims are also called attritional claims and large claims can be individual large claims or
catastrophic events, like earthquakes. In this context the company can choose thresholds β(`) such that
claims larger than these amounts are classified as large claims in its respective LoBs.

To further simplify the notation we also group all the random variables related to the conditional
and the marginalized models in two random vectors, defined as follows

Z = (Z1, . . . , Z2L+P) = (Z(1)
PY , . . . , Z(L)

PY , Z(1)
CY,s, . . . , Z(L)

CY,s, Z(1)
CY,l , . . . , Z(P)

CY,l), (30)

Z = (Z1, . . . , Z2L+P) = (Z(1)
PY , . . . , Z(L)

PY , Z(1)
CY,s, . . . , Z(L)

CY,s, Z(1)
CY,l , . . . , Z(P)

CY,l). (31)

Next we give more details on how the TR and the SCR are calculated in the generic structure of
the conditional and the marginalized models.

4.3.1. SCR for the Conditional Model

At time t + 1 the technical result (TR) of the `-th LoB in accounting year (t, t + 1] based on the
conditional model is defined as the following F (t + 1)–measurable random variable:

TR(`)
(t + 1) = Π(`)(t + 1)− K(`)(t + 1)− C

(`)
t+1,J(t + 1) + CDR(`)

(t + 1),

where Π(`)(t + 1) and K(`)(t + 1) are, respectively, the earned premium and the administrative costs of
accounting year (t, t + 1]. For simplicity, we assume that these two quantities are known at time t, i.e.,
the premium and administrative costs of accounting year (t, t + 1] are assumed to be previsible and,
hence, F (t)-measurable. Moreover, it should be noticed that in this context F (t) not only includes the
claims payment information defined in Equation (20). The general sigma-field F (t) should be seen as
a sigma-field generated by the inclusion in D(t) of the information about Π(`)(t + 1) and K(`)(t + 1),
for ` = 1, . . . , L.

Given the technical result for all the LoBs, the company’s overall TR based on the conditional
model, and aggregated cost and premium are denoted, respectively, by

TR(t + 1) =
L

∑
`=1

TR(`)
(t + 1), Π(t + 1) =

L

∑
`=1

Π(`)(t + 1) and K(t + 1) =
L

∑
`=1

K(`)(t + 1).

In order to cover the company’s risks over an horizon of one year, the Swiss Solvency Test is
concerned with the 99% ES (in light of all the data up to time t):

SCR(t + 1) = ES99%[−TR(t + 1) | F (t)],

where SCR denotes the solvency capital requirement.
It is important to notice that even though the ES operator is being applied to a “conditional

random variable”, namely TR, the operator is not being taken conditional on the knowledge of
θ = (θ(1), . . . , θ(L)), otherwise this quantity would not be computable (as discussed in Remark 7).
Instead, the SCR is calculated based on the marginalized version of the conditional model, where
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the parameter uncertainty is integrated out. More precisely, the expected shortfall is based on the
following (usually intractable) distribution

fZ(z | F (t)) =
∫

fZ(z | θ, F (t))π(θ | F (t))dθ.

In order to compute the SCR based on the conditional model we first discuss the measurablity of
the terms in the conditional TR, which can be rewritten as

TR(t + 1) = −K(t + 1) + Π(t + 1) +
L

∑
`=1

t

∑
i=t−J+1

(
C

(`)
i,J (t)− C(`)

i,t−i

)
−

L

∑
`=1

(
Z(`)

PY + Z(`)
CY

)
.

From the above equation we see the first two terms are, by assumption, F (t) measurable and so
are all the terms of the form C(`)

i,t−i (payments already completed by time t), while the last summation
is F (t + 1) measurable and, therefore, a random variable at time t. Due to the dependence on the

unknown parameter θ the conditional ultimate claim predictor C
(`)
i,J (t) is usually not F (t) measurable.

However, under the special models introduced in Section 5 we have that C
(`)
i,J (t) depends only on the

claims data up to time t and not on the unknown parameter vector, making it F (t) measurable. In this
case one has

SCR(t + 1) = K(t + 1)−Π(t + 1)−
L

∑
`=1
R(`)

(t) + ES99%

[
L

∑
`=1

Z(`)
PY + Z(`)

CY

∣∣∣ F (t)] , (32)

where, by assumption,
L

∑
`=1
R(`)

(t) =
L

∑
`=1

t

∑
i=t−J+1

(
C

(`)
i,J (t)− C(`)

i,t−i

)
is F (t)-measurable.

4.3.2. SCR for the Marginalized Model

As the parameter uncertainty is dealt with in a previous step, the calculation of the SCR for the
marginalized model is simpler than its conditional counterpart.

Similarly to the conditional case, we define the TR for the marginalized model as

TR(`)(t + 1) = Π(`)(t + 1)− K(`)(t + 1)− C
(`)
t+1,J(t + 1) + CDR(`)(t + 1),

and its aggregated version as

TR(t + 1) =
L

∑
`=1

TR(`)(t + 1).

Furthermore, the SCR for the marginalized model is given by

SCR(t + 1) = ES99%[−TR(t + 1) | F (t)] (33)

= K(t + 1)−Π(t + 1)−
L

∑
`=1
R(`)(t) + ES99%

[
L

∑
`=1

Z(`)
PY + Z(`)

CY

∣∣∣ F (t)] , (34)

where in this case the expected shortfall is calculated with respect to the density fZ(z | F (t)).

Remark 8. For the models discussed in Section 5, as C
(`)
i,J (t) does not depend on the parameter vector θ and we

also have thatR(`)
(t) = R(`)(t).

Remark 9. As we assume the cost of claims processing and assessment K(t + 1) and premium Π(t + 1) are
known at time t they do not differ from the conditional to the marginalized model.



Risks 2017, 5, 53 16 of 51

5. Modelling of Individual LoBs PY Claims

For the modelling of the PY claims reserving risk we need to model ZPY or ZPY as given in
Equation (29). The uncertainty in these random variables will be assessed by the conditional and
marginalized mean square error of prediction (msep), introduced in Equations (25) and (28). In order
to calculate the msep we must first expand our analysis to the study of the claims reserving uncertainty.
To do so, in this section we present a fully Bayesian version of the gamma-gamma chain-ladder (CL)
model, which has been studied in Peters et al. (2017).

Since in this section we present the model for individual LoBs, for notational simplicity we omit
the upper index (`) from all random variables and parameters.

Model Assumptions 1. [Gamma-gamma Bayesian chain ladder model] We make the following assumptions:

(a) Conditionally, given φ = (φ0, . . . , φJ−1) and σ = (σ0, . . . , σJ−1), cumulative claims (Ci,j)j=0,...,J are
independent (in accident year i) Markov processes (in development year j) with

Ci,j+1 | {F (i + j), φ, σ} ∼ Γ
(
Ci,jσ

−2
j , φjσ

−2
j
)
,

for all 1 ≤ i ≤ t and 0 ≤ j ≤ J − 1.
(b) The parameter vectors φ and σ are independent.
(c) For given hyper-parameters f j > 0 the components of φ are independent such that

φj ∼ lim
γj→1

Γ
(
γj, f j(γj − 1)

)
,

for 0 ≤ j ≤ J − 1, where the limit infers that they are eventually distributed from an improper
uninfomative prior.

(d) The components σj of σ are independent and Fσj -distributed, having support in (0, dj) for given constants
0 < dj < ∞ for all 0 ≤ j ≤ J − 1.

(e) φ, σ and C1,0, . . . , Ct,0 are independent and P[Ci,0 > 0] = 1, for all 1 ≤ i ≤ t.

In Model Assumptions 1 (c) the (improper) prior distribution for φ should be seen as
a non-informative limit when γ = (γ0, . . . , γJ−1)→ 1 = (1, . . . , 1) of the (proper) prior assumption

φj ∼ Γ
(
γj, f j(γj − 1)

)
.

The limit in (c) does not lead to a proper probabilistic model for the prior distribution, however,
based on “reasonable” observations {Ci,j}i,j the posterior model can be shown to be well defined
(see Equation (38)), a result that has been proved using the dominated convergence theorem in
Peters et al. (2017).

From Model Assumptions 1 (a), conditional on a specific value of the parameter vectors φ and σ,
we have that

E[Ci,j+1 | F (i + j), φ, σ] = φ−1
j Ci,j,

Var(Ci,j+1 | F (i + j), φ, σ) = φ−2
j σ2

j Ci,j,
(35)

which provides a stochastic formulation of the classical CL model of Mack (1993).
Even though the prior is assumed improper and does not integrate to one, the conditional

posterior for φj | σj, F (t) is proper and, in addition, also gamma distributed (see Appendix A and
(Merz and Wüthrich 2015, Lemma 3.2)). More precisely, we have that

φj | σ, F (t) ∼ Γ(aj, bj), (36)
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with the following parameters

aj = 1 +
t−j−1

∑
i=1

Ci,jσ
−2
j and bj =

t−j−1

∑
i=1

Ci,j+1σ−2
j . (37)

Therefore, given σ this model belongs to the family of Bayesian models with conjugate priors that
allows for closed form (conditional) posteriors – for details see Wüthrich (2015).

The marginal posterior distribution of the elements of the vector σ is given by

π
(
σj | F (t)

)
∝ hj(σj | F (t)) = Γ(aj)b

−aj
j fσj(σj)

t−j−1

∏
i=1

(Ci,j+1σ−2
j )

Ci,jσ
−2
j

Γ(Ci,jσ
−2
j )

, (38)

with aj and bj defined in Equation (37). We note that as long as Model Assumptions 1 (d) and the
conditions in Lemma A1 are satisfied, then one can ensure the posterior distribution of σ is proper.

Therefore, under Model Assumptions 1 inference for all the unknown parameters can be
performed. It should be noticed, though, that differently from the (conditional) posteriors for φj
Equation (36), the posterior for σj Equation (38) is not recognized as a known distribution. Thus,
whenever expectations with respect to the distribution of σj | F (t) need to be calculated one needs
to make use of numerical procedures, such as numerical integration or Markov Chain Monte Carlo
(MCMC) methods.

5.1. MSEP Results Conditional on σ

Following Model Assumptions 1 we now discuss how to explicitly calculate the quantities
introduced in Section 4. We start with the equivalent of the classic CL factor. From the model structure
in Equation (35) we define the posterior Bayesian CL factors, given σ, as

f̂ j(t) = E[φ−1
j | σj, F (t)], (39)

which, using the gamma distribution from Equation (36), takes the form

f̂ j(t) =
∑

t−j−1
k=1 Ck,j+1

∑
t−j−1
k=1 Ck,j

,

i.e., f̂ j(t) is identical to the classic CL factor estimate.
Following Equation (21) we define the conditional ultimate claim predictor

C i,J(t) = E[Ci,J | σ, F (t)] = Eφ

[
E[Ci,J |φ, σ, F (t)]

∣∣∣ σ, F (t)
]
,

which can be shown (see (Wüthrich 2015, Theorem 9.5)) to be equal to

C i,J(t) = Ci,t−i

J−1

∏
j=t−i

f̂ j(t), (40)

where this is exactly the classic chain ladder predictor of Mack (1993). For this reason we may
take Model Assumptions 1 as a distributional model for the classical CL method. Additionally, the
conditional reserves defined in Equation (21) and Equation (26) are also the same as the classic CL
ones, that is,

R(t) =
t

∑
i=1

C i,J(t)− Ci,t−i. (41)
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The importance of Equation (40) relies on the fact that it does not depend on the parameter vector
σ. In other words, the ultimate claim predictor based on the Bayesian model from Model Assumptions 1
conditional on σ – which is, in general, a random variable – is a real number (independent of σ). This
justifies the argument used on the calculation of Equation (32).

Remark 10. Using the notation from the previous sections the parameter vector σ plays the role of θ as the only
unknown, since, due to conjugacy properties, φ can be marginalized analytically.

For the Bayesian model from Model Assumptions 1 the msep conditional on σ has been derived
in (Wüthrich 2015, Theorem 9.16) as follows, for i + J > t

msepCDRi(t+1) | σ,F (t)(0) =
(
C i,J(t)

)2
[(

1 +
Ψt−i(t)
βt−i(t)

)
J−1

∏
j=t−i+1

(
1 + βj(t)Ψj(t)

)
− 1

]
, (42)

where

βj(t) =
Ct−j,j

∑
t−j
i=1 Ci,j

and Ψj(t) =
σ2

j

∑
t−j−1
k=1 Ck,j − σ2

j

. (43)

Moreover, the conditional msep has been shown to be finite if, and only if, σ2
j < ∑

t−j−1
k=1 Ck,j. We also

refer to Remark 12, below.
The aggregated conditional msep for CDR(t + 1) = ∑t

i=1 CDRi(t + 1) is also derived in
(Wüthrich 2015, Theorem 9.16), and given by

msepCDR(t+1) | σ,F (t)(0) =
t

∑
i=t−J+1

msepCDRi(t+1) | σ,F (t)(0)

+ 2 ∑ ∑
t−J+1≤i<k≤t

C i,J(t)C k,J(t)

[(
1 + Ψt−i(t)

) J−1

∏
j=t−i+1

(
1 + βj(t)Ψj(t)

)
− 1

]
. (44)

Remark 11. The assumption that σ2
j < ∑

t−j−1
k=1 Ck,j is made in order to guarantee the conditional msep is finite

and we enforce this assumption to hold for all the examples presented in this work. See also Remark 12, below.

5.2. Marginalized MSEP Results

The results in the previous section are based on derivations presented in
Merz and Wüthrich (2015) and Wüthrich (2015) where the parameter vector σ is assumed to
be known. In this section we study the impact of the uncertainty in σ over the mean and variance of
C i, J(t + 1) | F (t) in light of Model Assumptions 1, which can be seen as a fully Bayesian version of
the models previously mentioned.

In order to have well defined posterior distributions for σ, through this section we follow
Lemma A1 and assume that, for all development years 0 ≤ j ≤ J − 1 and t ≥ I, we have

(t − j − 1) ∧ I = 1 or at least one accident year 1 ≤ i ≤ (t − j − 1) ∧ I is such that
Ci,j+1

Ci,j
6= f̂ j(t).

For all the numerical results presented this assumption is satisfied.

Lemma 1. The ultimate claim estimator under the marginalized model is equal to the classic chain ladder
predictor, i.e., C i, J(t) = E[Ci,J | F (t)] = C i,J(t).
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Proof. Due to the posterior independence of the elements of φ (also used in Equations (39) and (40))
and the fact that C i,J(t) does not depend on σ we have

C i, J(t) = E[Ci,J | F (t)]
= E

[
E[Ci,J |φ, σ, F (t)] | F (t)

]
= E

[
E
[
E[Ci,J |φ, σ, F (t)] | σ, F (t)

]
| F (t)

]
= E

[
E
[
Ci, t−i

J−1

∏
j=t−i

φ−1
j | σ, F (t)

]
| F (t)

]
= E

[
C i,J(t) | F (t)

]
= C i,J(t).

Proposition 1. The msep in the marginalized model is equal to the posterior expectation of the msep in the
conditional model, i.e.,

msepCDR(t+1) | F (t)(0) = Var
( I

∑
i=1

C i, J(t + 1)
∣∣F (t))

= E[msepCDR(t+1) | σ,F (t)(0) | F (t)]. (45)

Proof. From the law of total variance we have that

Var
( I

∑
i=1

C i, J(t + 1)
∣∣F (t)) = Var

(
E
[ I

∑
i=1

C i, J(t + 1) | F (t), σ
] ∣∣F (t))

+E
[
Var
( I

∑
i=1

C i, J(t + 1) | F (t), σ
) ∣∣F (t)]

= E
[
Var
( I

∑
i=1

C i, J(t + 1) | F (t), σ
) ∣∣F (t)],

and the last equality follows from Lemma 1 and the fact that E[C i,J(t + 1) | F (t), σ] = C i,J(t) is
independent of σ.

Remark 12. Following the conditions required for finiteness of the conditional msep, in the unconditional
case, one can see that msepCDR(t+1) | F (t)(0) < ∞ whenever ∑

t−j−1
k=1 Ck,j > d2

j . Furthermore, we note that
this condition can be controlled during the model specification, i.e., the range of the σ2

j is chosen such that all
posteriors are well-defined.

5.3. Statistical Model of PY Risk in the SST

Note that the distributional models derived in Sections 5.1 and 5.2 are rather complex. To maintain
some degree of tractability, the overall PY uncertainty distribution is usually approximated by
a log-normal distribution via a moment matching procedure.

5.3.1. Conditional PY Model

As discussed in Section 4.3, when modelling the risk of PY claims we work with the random
variables ZPY, defined in Equation (29). Due to their relationship with the conditional CDR, see
Equations (22) and (23) and the results discussed in Section 5.1, we can use the derived properties of
these random variables to construct the model being used for ZPY.
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The conditional mean (see Equations (22), (23) and (41)) and variance (see Equations (25) and (44))
of the random variable ZPY are as follows

E[ZPY | σ, F (t)] = R(t), (46)

Var(ZPY | σ, F (t)) = msepCDR(t+1) | σ,F (t)(0). (47)

Given mean and variance, we make the following approximation, also proposed in the Swiss
Solvency Test (see (FINMA 2007, sct. 4.4.10)).

Model Assumptions 2 (Conditional log-normal approximation). We assume that

ZPY | σ, F (t) ∼ LN
(

µPY, σ2
PY

)
,

with σ2
PY = log

(
msepCDR(t+1) | σ,F (t)(0)

R(t)2 + 1
)

and µPY = log
(
R(t)

)
− σ2

PY
2

.

Although the distribution of ZPY |σ, F (t) under Model Assumptions 1 can not be described
analytically it is simple to simulate from it. To test the approximation of Model Assumptions 2 we
simulate its distribution under the gamma-gamma Bayesian CL model (with fixed σ) and compare it
against the log-normal approximation proposed. For the hyper-parameters presented in Table 2 (and
calculated in Section 8) the quantile-quantile plot of the approximation is presented in Figure 1. For
all the LoBs we see that the log-normal distribution is a sensible approximation to the original model
assumptions. Note that although the parameters used for the comparison are based on the marginalized
model Figures 5 and 6 show that they are “representative” values for the distributions of µPY and σPY.

5.3.2. Marginalized PY Model

As an alternative to the conditional Model Assumptions 2 we use the moments of ZPY | F (t)
calculated in Lemma 1 and Proposition 1 and then approximate its distribution. Note that due to the
intractability of the distribution of σ | F (t) the variance term defined in Equation (45) can only be
calculated numerically, for example, via MCMC.

Model Assumptions 3 (Marginalized log-normal approximation). We assume that

ZPY | F (t) ∼ LN
(

µPY, σ2
PY

)
with σ2

PY = log
(

msepCDR(t+1) | F (t)(0)

R(t)2 + 1
)

and µPY = log
(
R(t)

)
−

σ2
PY
2

.

The same comparison based on the quantile-quantile plot of Figure 1 can be performed for
the marginalized model and the results are presented in Figure 2. Once again, the log-normal
model presents a viable alternative to the originally postulated gamma-gamma Bayesian CL model,
even though for Motor Hull, Property and Others the right tail of the log-normal distribution is
slightly heavier.
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Table 2. Parameters and capital calculations for the marginalized and conditional models.

Reserve/ Standalone Marginalized Conditional
LoB

Premium
σ µ CoVa Expectation

ES99% SCR ES99% SCR Div. Benefit ES99% SCR Div. Benefit
1 2365.44 0.0287 7.7659 2.87% 2365.44 2546.31 180.87 2489.85 124.41 31.22% 2492.05 126.61 30.00%
2 99.37 0.2164 4.5755 21.90% 99.37 173.23 73.86 131.73 32.36 56.19% 132.59 33.21 55.03%
3 405.99 0.1142 5.9998 11.46% 405.99 547.25 141.26 479.11 73.12 48.24% 485.27 79.28 43.88%
4 870.19 0.0315 6.7682 3.15% 870.19 946.06 75.87 905.48 35.29 53.49% 905.29 35.10 53.73%
5 1105.95 0.0193 7.0083 1.93% 1105.95 1,164.04 58.09 1137.06 31.11 46.44% 1136.88 30.93 46.76%
6 274.91 0.0410 5.6156 4.10% 274.91 306.43 31.52 287.33 12.42 60.59% 286.97 12.06 61.74%
7 7.150 0.0547 1.9657 5.48% 7.15 8.26 1.11 7.45 0.30 73.27% 7.43 0.28 74.50%
8 48.18 0.0493 3.8738 4.93% 48.18 54.89 6.71 50.51 2.32 65.36% 50.43 2.25 66.44%
9 72.20 0.1332 4.2706 13.38% 72.2 102.16 29.96 85.32 13.12 56.21% 85.15 12.95 56.77%

Total PY 5249.38 5249.38 5848.63 599.25 5573.84 324.45 45.86% 5582.06 332.67 44.49%
1 503.14 0.0685 6.0958 6.86% 448.94 533.07 84.13 499.16 50.21 40.32% 498.37 49.43 41.25%
2 573.26 0.0702 6.0356 7.03% 402.87 504.20 101.33 472.25 69.38 31.53% 471.66 68.79 32.11%
3 748.76 0.0683 6.3013 6.84% 547.23 654.38 107.15 603.36 56.13 47.62% 602.61 55.38 48.31%
4 299.73 0.0923 5.3596 9.25% 216.70 272.05 55.35 239.69 22.99 58.47% 239.57 22.87 58.69%
5 338.63 0.0648 5.6841 6.49% 303.77 349.69 45.92 319.17 15.40 66.47% 318.71 14.94 67.45%
6 254.21 0.0804 5.4296 8.05% 228.79 282.62 53.83 249.63 20.85 61.28% 249.31 20.52 61.88%
7 7.20 0.1047 1.8628 10.5% 6.48 8.52 2.04 7.01 0.53 73.84% 7.01 0.53 74.06%
8 34.64 0.0981 3.3172 9.84% 27.72 35.84 8.13 30.32 2.60 67.95% 30.28 2.57 68.44%
9 46.28 0.1004 3.6066 10.06% 37.03 48.16 11.14 41.83 4.81 56.83% 41.79 4.77 57.19%

Total CY,s 2805.85 2219.53 2688.53 469.02 2462.42 242.9 48.21% 2459.31 239.8 48.87%
Standalone Marginalized Conditional

Peril β(5) γ α CoVa Expectation
ES99% SCR ES99% SCR Div. benefit ES99% SCR Div. benefit

1 2.50 2.80 3.89 20.14 16.25 4.03 0.15 99.1% 4.01 0.12 99.27%
2 13.35 300 1.85 27.08 191.21 164.13 39.96 12.88 92.15% 39.61 12.53 92.36%
3 6.28 100 1.50 14.34 84.31 69.97 16.5 2.16 96.91% 16.45 2.11 96.98%
4 3.88 100 1.80 8.10 61.34 53.24 8.94 0.84 98.42% 8.91 0.81 98.48%
5 0.50 2.00 1.00 10.00 9.00 1.07 0.07 99.19% 1.12 0.12 98.69%

Total CY,l 54.41 367 312.59 70.5 16.1 94.85% 70.1 15.69 94.98%
Total 8055.26 7523.32 8904.18 1380.86 8106.77 583.45 57.75% 8111.5 588.18 57.40%
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Figure 1. Quantile-Quantile plots for the different lines of business (LoBs) comparing (vertical axis)
the empirical distribution of ZPY | σ, F (t) based on Model Assumptions 1 and (horizontal axis) the
log-normal approximation from Model Assumptions 2. Based on 1000 samples.
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Figure 2. Quantile-Quantile plots for the different LoBs comparing (vertical axis) the empirical
distribution of ZPY | F (t) based on Model Assumptions 1 and (horizontal axis) the log-normal
approximation from Model Assumptions 3 and using posterior samples as in Figures 5 and 6. Based on
1000 samples.
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6. Modelling of Individual LoBs CY Claims

Model Assumptions 1 do not assume any specific distribution for E[Ct+1,J | F (t + 1)], the CY
claims. These claims are treated differently in the Swiss Solvency Test from PY claims and the models
used for these claims are explained in Sections 6.1 and 6.2, below. Throughout this section, we denote
by λCY = λCY,s + λCY,l the expected number of CY claims over the next year, which is the sum of the
expected CY small claims λCY,s and the expected CY large claims λCY,l .

6.1. Modelling of Small CY Claims

As mentioned in the SST Technical Document (FINMA 2007, sct. 4.4.7), the SST does not make
any explicit assumption about the distribution of individual claims; instead, the annual claims expenses are
only represented with their expected value and variance. More precisely, in (FINMA 2007, sct. 8.4.5.2) the
distribution of the premium risk, ZCY,s is assumed to be such that

CoVa2(ZCY,s | F (t)) = a1 +
a2 + 1
λCY,s

, (48)

where the constants a1 and a2 are provided by the regulatory authority (under the names of parameter
uncertainty and random fluctuation, respectively). Their values for the 2015 solvency test are found in
FINMA (2016). In order to fully specify the model for CY small claims one also needs to decide on the
mean of the variable ZCY,s | F (t), but we postpone a detailed discussion on this point until Section 8.2,
where we also present the value of λCY,s.

Model Assumptions 4 (Distribution of CY small claims). For known constants v, rs > 0 and
E[ZCY,s | F (t)] we set

ZCY,s | F (t) ∼ LN
(

µCY,s, σ2
CY,s

)
,

with σ2
CY,s = log

(
a1 +

a2 + 1
λCY,s

+ 1
)

and µCY,s = log(E[ZCY,s | F (t)])−
σ2

CY,s

2
.

6.2. Modelling of Large CY Claims

In the SST (see (FINMA 2007, sct. 4.4.8)), large CY claims are split into two groups. The first group
of large claims are those triggered by the same market-wide event (a hailstorm, for example) and with
many simultaneous (small) claims. These types of claims are likely to affect all market participants
and are called “cumulated claims”. The second group encompasses individual claims with a large
claim amount, which includes, as exemplified in (FINMA 2007, sct. 4.4.8), fire in a factory building.

For each risk trigger, CY large claims are required to be modelled as a compound Poisson random
variable with i.i.d. Pareto severities, i.e.,

ZCY,l =
N

∑
k=1

Yk, (49)

where N ∼ Pois(λ) is the number of large claims in LoB under consideration and Yk
i.i.d.∼ Pareto(β, αβ)

model the intensity of large claims. Here we denote by X ∼ Pareto(β, αβ) a random variable with

density f (x) = αβα

xα+1 , for x ≥ β. It is assumed in the SST that large claims are i.i.d. within the same risk
trigger and also between different risk triggers, and independent of all ZPY and ZCY,s.

As a notational remark, if Z follows a Compound Poisson – Pareto model as a shorthand notation
we write Z ∼ CP-P(λ, β, α), with the same parameter interpretation as in Equation (49).

6.2.1. SST Model for Cumulated Claims

In this section we discuss the modelling of cumulated claims (those triggered by a market-wide
event) which are modelled as an event that impacts the whole market and then scales down to
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an individual insurance company through its market share. In particular, we present the modelling
approach used in (1) Motor Hull LoB due to hail events and (2) Workers Compensation (UVG) LoB
due to a market-wide large accident.

In both cases market-wide parameters for a compound Poisson model with Pareto intensities
have been determined by the regulator, (based on a large claims data set). The aggregated market-wide
loss is given by

Zmkt =
Nmkt

∑
k=1

Yk, mkt ∼ CP-P(λmkt, βmkt, αmkt),

where CP-P(λmkt, βmkt, αmkt) denotes a compound distribution with frequency given by Pois(λmkt)

and severity given by Pareto(βmkt, αmkt). The corresponding market-wide parameter values are found
in FINMA (2016).

Denoting by β the company’s threshold after which losses are classified as large and m its market
share in the `-th LoB, to be consistent with its assumption the company should model market-wide
large events as events above the threshold of

β∗ =
β

m
.

Then, the market-wide total loss (viewed from the specific company in consideration) is defined as

Z∗ =
N∗

∑
k=1

Y∗k ∼ CP-P(λ∗, β∗, αmkt),

from which it is easy to see that the only unknown parameter is λ∗, since in the SST the Pareto
parameter αmkt is kept the same. This frequency parameter is chosen such that the company’s view
of the market-wide events is equivalent to the suggested market-wide process. In other words,
λmkt = P[Y∗k > βmkt]λ

∗ hence

λ∗ = λmkt

(
β/m
βmkt

)−αmkt

. (50)

Therefore, from the company’s point of view, its own large claims are modelled as

Zcomp ∼ CP-P(λ∗, β, αmkt).

Following the SST Technical Document FINMA (2007), an upper bound γ (provided by the
regulator) is included in each Pareto random variable within the random sum. In other words, the final
distribution of the company’s large cumulated claims is given by

Z̃ =
N∗

∑
k=1

Ỹk ∼ CP-P(λ∗, β, αmkt, γ),

where Ỹk ∼ Pareto(β, αmkt, γ), a Pareto distribution defined in [β, γ] with tail index αmkt.
For efficiency purposes, this distribution is approximated by a single Pareto, with the same mean.

This leads us to the following model assumptions.

Model Assumptions 5 (Marginal distribution of cumulated claims). For αmkt, βmkt and γ provided by
the regulator in FINMA (2016), β ∈ {1, 5}, m ∈ (0, 1),

ZCY,l ∼ Pareto
(

λ∗
βαmkt

1− (β/γ)αmkt

(
1

βαmkt−1 −
1

γαmkt−1

)
, αmkt

)
where λ∗ is defined in Equation (50).
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Remark 13. The reader should note that for large CY claims no parameter uncertainty is considered, since both
λmkt, αmkt and γ are given by the regulator, the market share, m can be perfectly calculated and β is chosen by
the company.

6.2.2. SST Model for Individual Claims

For individual large events, the SST provides p1, the probability of observing losses larger than
CHF 1 million and standard values for αβ, for β = 1 and β = 5 (see Table FINMA (2016)). Since
the probability of large claims provided by the SST is based on a lower threshold of CHF 1 million,
a thinning process of the CP-P has to be done if the company decides to use β = 5.

Following the same procedure presented in Section 6.2.1 we can see that the company’s large
individual claims are modelled as

Zcomp ∼ CP-P(λβ, β, αβ),

with an expected number of claims larger than β equal to

λβ = λCY,l = p1λCY

(
β

1

)−αβ

, (51)

where λCY denotes the expected total number of CY claims in the `-th LoB. Similarly, the regulator
also requires a upper bound in the Pareto random variables, leading to the following distribution of
large losses

Z̃ ∼ CP-P(λβ, β, αmkt, γ).

As in Section 6.2.1, the distribution of ZCY,l | F (t) is approximated by a single Pareto, with the
same mean and Pareto index αβ.

Model Assumptions 6 (Marginal distribution of large individual claims). For αβ, p1 and γ provided by
the regulator in FINMA (2016), β ∈ {1, 5} and λCY > 0,

ZCY,l | F (t) ∼ Pareto
(

λβ
βαmkt

1− (β/γ)αmkt

(
1

βαmkt−1 −
1

γαmkt−1

)
, αmkt

)
,

with λβ defined in Equation (51).

7. Joint Distribution of PY and CY Claims

Although the SST does not assume any parametric form for the joint distribution of Z | F (t) or
Z | F (t) (defined in Equations (30) and (31), respectively) it is required that a pre-specified correlation
matrix Λ is used (see FINMA (2016)). In this section we discuss how to use the conditional and
marginalized models to define a joint distribution satisfying this correlation assumption.

It is important to notice, though, that the SST correlation matrix may not be attainable for some joint
distributions, as discussed in Appendix B in the case of log-normal marginals (in Devroye and Letac (2015)
the authors discuss a similar problem). Let us denote by Sn the set of all n× n, symmetric, positive
semi-definite matrices with diagonal terms equal to 1; and by S(C) = Corr(U) the correlation matrix of
a random vector U ∼ C, with elements Ui ∼ [0, 1]. The question asked in Devroye and Letac (2015) is:
given S ∈ Sn, does there exist a copula C such that S(C) = S? The answer is yes, if n ≤ 9 and the authors
postulate that for n ≥ 10 there exists S ∈ Sn such that there is no copula C such that S(C) = S.

It should be noted that, since in the SST the CY large claims are assumed to be independent from
all the other risks, the correlation matrix of (ZPY, ZCY,s, ZCY,l) | F (t) is essentially a correlation matrix
between (ZPY, ZCY,s) | F (t) and the same is true also for the conditional model.

Regardless of assuming a conditional or a marginalized model, SST’s correlation matrix Λ should
be such that, for i, j = 1, . . . , 2L + P (recall that L are the number of LoBs and P the number of perils),

Λi,j = Corr(Zi, Zj | F (t)) = Corr(Zi, Zj | F (t)).



Risks 2017, 5, 53 26 of 51

Remark 14. In the conditional model we need to “integrate out” the parameter uncertainty, otherwise the
(conditional) correlation would be dependent on an unknown parameter and could not be matched with the
numbers provided by the SST.

7.1. Conditional Joint Model

Under Model Assumptions 2, 4, 5 and 6 our interest lies on modelling the joint behaviour
of the vector Z | σ, F (t). Under Model Assumptions 1 it can be shown that the required
conditional independence between ZCY,l and (ZPY, ZCY,s) given F (t) is equivalent to the conditional
independence between ZCY,l and (ZPY, ZCY,s) given F (t) and σ.

Moreover, since all the marginal conditional distributions of the prior year claims and small
current year claims are assumed to be log-normal, following Equations (30) and (31), the notation can
be further simplified to

Zi | σ, F (t) ∼ LN(mi(σ), Vi(σ)), for i = 1, . . . , 2L, (52)

with mi(σ), and Vi(σ) defined in Model Assumptions 2 and 4. For example, for i = L + 1,
mi(σ) = µ

(1)
CY,s, defined in Model Assumptions 4.

We are now ready to define the joint conditional model to be used.

Model Assumptions 7 (Conditional joint model). Based on Model Assumptions 2 and 4 we link the
marginals of the conditional model through a Gaussian copula with correlation matrix Ω, with elements
(Ω)i,j = ωi,j. More formally, given F (t) and σ, the joint distribution of Z is given by

FZ(z1, . . . , z2L; Ω | F (t), σ) = C
(

FZ1
(z1 | F (t), σ), . . . , FZ2L

(z2L | F (t), σ); Ω
)

,

where FZi
( · | F (t), σ) denotes the conditional distribution of Zi | F (t), σ defined in Equation (52) and C( · ; Ω)

is the Gaussian copula with correlation matrix denoted by Ω.

Remark 15. In this section the parameter matrix Ω should be understood as a deterministic variable, differently
from σ and φ. For this reason we do not include it on the right hand side of the conditioning bar. Instead,
whenever Ω needs to be explicitly written, we include it on the left hand side of the bar, separated by the function
(or functional, for expectations) arguments by a semicolon.

In order to match SST’s correlation matrix Λ, under Model Assumptions 1 and 4, the following
equation needs to be solved with respect to Ω:

Λi,j = Corr(Zi, Zj; Ω | F (t)). (53)

To compute the right hand side of the equation above we first notice that

Cov(Zi, Zj; Ω | F (t)) = E[ZiZj; Ω | F (t)]−E[Zi | F (t)]E[Zj | F (t)],

where, from Equation (46) and the discussion in Section 6.1,

E[Zi | F (t)] = E[E[Zi | F (t), σ] | F (t)]

= E[mi | F (t)] =
{
R(i)

(t), if 1 ≤ i ≤ L,

E[Z(i−L)
CY,s | F (t)], if L + 1 ≤ i ≤ 2L,

and from Equation (A3), Appendix B,

E[ZiZj; Ω | F (t)] = E[E[ZiZj; Ω | F (t), σ] | F (t)]

= E

exp

mi +
V2

i + 2Viωi,jV j + V2
j

2
+ mj

 ∣∣∣F (t)
 .
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Therefore, to satisfy Equation (53) Ωi,j needs to be chosen such that the following implicit
relationship (which can be solved through any univariate root search algorithm) holds:

Λi,j

√
Var(Zi | F (t))Var(Zj | F (t)) +E[Zi | F (t)]E[Zj | F (t)]−E[ZiZj; Ω | F (t)] = 0.

7.2. Marginalized Joint Model

Similarly to Section 7.1, in this section we will fully characterize the joint distribution of Z | F (t)
under Model Assumptions 3, 4, 5 and 6.

From these assumptions we define the following notation:

Zi | F (t) ∼ LN(mi, Vi), for i = 1, . . . , 2L. (54)

Model Assumptions 8 (Marginalized joint model). Based on Model Assumptions 3 and 4 we link the
marginal distributions of the marginalized model through a Gaussian copula with correlation matrix Ω, with
elements (Ω)i,j = ωi,j. More formally, given F (t), the joint distribution of Z is given by

FZ(z1, . . . , z2L; Ω | F (t)) = C
(

FZ1(z1 | F (t)), . . . , FZ2L(z2L | F (t)); Ω
)

,

where FZi denotes the conditional distribution of Zi | F (t) defined in (Equation 54) and C( · ; Ω) is the Gaussian
copula with correlation matrix Ω.

In order to match SST’s correlation matrix, in the joint marginalized model the Gaussian copula
correlation Ω is chosen such that (see Equation (A4), Appendix B) it satisfies

Λi,j =
exp{Viωi,jVj} − 1[

(eV2
i − 1)(eV2

j − 1)
]1/2 .

8. Data Description and Parameter Estimation

In this section we discuss how we set up the parameters in the models discussed so far, starting
from the balance sheet of a fictitious insurance company. Using this balance sheet and the information
contained in the SST we generate realistic claims triangles (see Appendix C) and, based on them,
we show how to perform Bayesian inference for the unknown parameters. Our starting point is the
fictitious balance sheet shown in Table 1, which is intended to represent a large insurance company in
Switzerland (for this reason all monetary units should be understood as millions of Swiss Francs (CHF)).

8.1. Hyperparameters for φj

Based on SST’s standard runoff pattern (see Table 3) we first compute the implied CL factors f (`)j
as follows (once again we suppress the index ` of the LoB). If Fj is the deterministic cumulative claims
payment pattern for development year j we define

f j =
Fj+1

Fj
, for j = 0, . . . , J − 1.

These values can, then, be used as a hyperparameter in the prior for φj (see Model Assumptions 1,
item (c)).

To generate data from the model (see Section C) we fix φj = 1/ f j and σj = sj/ f j, where sj is
Mack’s standard deviation estimate calculated from exogenous triangles. The values of sj are presented
in Table 4. That is, {Fj}j should be understood as a (deterministic) prior payment pattern.
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Table 3. Swiss Solvency Test (SST)’s (2015) standard development patterns for claims provision (normalized to have at most 30 development years and rounded to
2 digits).

LoB Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15
1 30.18% 15.63% 5.78% 4.94% 4.43% 4.34% 4.09% 3.92% 3.66% 3.50% 3.08% 2.64% 2.16% 1.86% 1.50% 1.30%
2 81.08% 18.67% 0.24% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 58.24% 35.06% 4.36% 1.37% 0.64% 0.33% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 26.55% 23.53% 8.33% 6.18% 4.79% 4.15% 3.63% 3.14% 2.55% 2.11% 1.80% 1.59% 1.35% 1.20% 1.12% 1.02%
5 40.62% 24.92% 7.14% 4.86% 4.43% 3.13% 2.57% 1.67% 1.31% 1.22% 1.05% 0.69% 0.60% 0.56% 0.51% 0.47%
6 36.83% 47.68% 14.20% 0.88% 0.28% 0.14% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 46.26% 38.05% 10.78% 2.94% 1.27% 0.69% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 45.85% 35.28% 11.35% 3.72% 1.62% 0.91% 0.52% 0.32% 0.20% 0.13% 0.10% 0% 0% 0% 0% 0%
9 58.24% 35.06% 4.36% 1.37% 0.64% 0.33% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

LoB Year 16 Year 17 Year 18 Year 19 Year 20 Year 21 Year 22 Year 23 Year 24 Year 25 Year 26 Year 27 Year 28 Year 29 Year 30
1 1.06% 0.88% 0.73% 0.64% 0.60% 0.53% 0.47% 0.44% 0.41% 0.37% 0.29% 0.21% 0.15% 0.12% 0.10%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0.88% 0.77% 0.72% 0.66% 0.60% 0.55% 0.52% 0.49% 0.45% 0.4% 0.31% 0.22% 0.16% 0.13% 0.11%
5 0.43% 0.40% 0.37% 0.35% 0.33% 0.31% 0.29% 0.27% 0.26% 0.24% 0.23% 0.22% 0.20% 0.19% 0.18%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 4. Mack’s standard deviation parameter estimates, sj, based on exogenous triangles and for the development lengths given in Table 3.

LoB Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 Year 13 Year 14
1 0.5673 0.2280 0.1922 0.2681 0.2683 0.3949 0.2652 0.2641 0.2789 0.3055 0.1458 0.1577 0.2140 0.1001 0.1016
2 0.6640 0.0659
3 1.3614 0.4921 0.3215 0.0875 0.0666
4 0.8248 0.4328 0.4021 0.3644 0.3772 0.2729 0.5268 0.244 0.2786 0.1559 0.2660 0.0776 0.0757 0.1220 0.0418
5 0.9914 0.3317 0.1807 0.1072 0.0740 0.0444 0.0359 0.0255 0.0190 0.0106 0.0166 0.0094 0.0040 0.0105 0.0040
6 0.6069 0.2405 0.0597 0.0371 0.0172
7 0.1053 0.0450 0.0157 0.0113 0.0091
8 0.3098 0.0737 0.0310 0.0203 0.0137 0.0051 0.0020 0.0026 0.0020 0.0014 0.0011
9 0.9163 0.1910 0.1248 0.0340 0.0258

LoB Year 15 Year 16 Year 17 Year 18 Year 19 Year 20 Year 21 Year 22 Year 23 Year 24 Year 25 Year 26 Year 27 Year 28 Year 29
1 0.0466 0.1097 0.1081 0.0583 0.1353 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916
2
3
4 0.0272 0.0886 0.0422 0.0190 0.0238 0.0190 0.0152 0.0122 0.0097 0.0078 0.0062 0.0050 0.0040 0.0032 0.0025
5 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
6
7
8
9
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8.2. Current Year Small and Large Claims

To calculate the expected number of CY claims, λCY, defined in Section 6, we first set our prior
belief for the claims ratio for each LoB, i.e., how much of the premium in that LoB is used to cover
incoming claims (all the rest covers business’ costs). This information is available in Table 5, along with
the average claim amount. Based on these values the expected number of claims is defined as

λCY =
Claims ratio× Premium
Average claim amount

.

Table 5. Claims ratio, average claim amount (in millions of CHF) and market share.

LoB Claims Ratio Average Claim Amount Market Share
1 90% 0.005
2 75% 0.003 20%
3 75% 0.004
4 75% 0.004
5 90% 0.004 10%
6 90% 0.003
7 90% 0.002
8 80% 0.003
9 80% 0.003

Given the expected number of CY claims, λCY, this value is used to compute the expected number
of individual large claims, λCY,l , as in Equation (51). Using the fact that λCY,s = λCY − λCY,l we
calculate the coefficient of variation for small CY claims as given in Equation (48).

The last ingredient in Model Assumptions 4 is E[ZCY,s | F (t)] which is given by

E[ZCY,s | F (t)] = Claims ratio× Premium−E[ZCY,l | F (t)],

and the expectation on the right hand side is given either in Model Assumptions 5 or Model
Assumptions 6, depending on the LoB.

For the large claims from Model Assumptions 5 and 6 we assume the threshold for large claims β

to be equal to 5 (millions of CHF). For the large cumulated claims we use LoBs market share as given
in Table 5. The resulting parameters can be found in Table 2. Note these parameters are the same both
for the marginalized and conditional models.

8.3. Parameter Estimation

In this section we discuss how to compute the posterior distributions of the variance parameters
σj in Model Assumptions 1, which are used to compute quantities such as the marginalized msep from
Section 5.2.

In order to compute the posteriors of σj, we assume priors centred at Mack’s Mack (1993) CL
standard deviation estimator normalized by the CL factor f , both implied by the data. Formally,

σ̂j(t) =

√
ŝ2

j (t)

f̂ j(t)
, ∀0 ≤ j ≤ J − 1, (55)

where ŝ2
J−1(t) = min{ŝ2

J−3(t), ŝ2
J−2(t), ŝ4

J−2(t)/ŝ2
J−3(t)} = min{ŝ2

J−3(t), ŝ4
J−2(t)/ŝ2

J−3(t)}.
To generate samples from the posteriors we use a Metropolis-Hastings algorithm, with proposals

given by a truncated Normal centred at the current point and standard deviation equal to 10× dj. All
the chains are started at the CL variance estimate and the upper limit for the prior, dj = k× σ̂j(t) is set
as k = 5 times the CL variance estimate. To be left with NMCMC = 1000 samples from the posterior we
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ran the Markov chains for 12,500 iterations, discarding the first 20% as a burn-in and keeping every
10th iteration of the remaining simulations.

Some of the results are presented in Figure 3 where one finds the unnormalized posteriors, the
histogram of the MCMC outputs and a red dashed line indicating the CL variance estimate for three
different LoBs: (a) MTPL, (b) Motor Hull and (c) Property. As expected, for unidimensional and
unimodal densities the resulting estimates are highly accurate. It is also worth noticing that the larger
the development year j the more diffuse the posterior is, due to the diminishing amount of data
available. In the limit, when j = J − 1 the information available is not enough to estimate the variance
parameter and, therefore, as can be seen from the posterior distribution derived in Equation (38), the
posterior is the same as the prior.

Using the sample of size NMCMC = 1000 mentioned above, the calculated parameters for the
marginalized model are presented in Table 2. For the conditional model we use the same sample from
the posterior and calculate the one value of σPY and µPY for each sampled value σ. The resulting
(transformed) samples are presented as histograms in Figures 5 and 6 and, for comparison only,
the relevant marginalized parameters are included as a red dashed line.
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Posterior for σ0

MCMC.sigma.out$sigma.sample[, j]

0.0 0.5 1.0 1.5 2.0 2.5

Posterior for σ1

MCMC.sigma.out$sigma.sample[, j]

0 1 2 3

Posterior for σ2

MCMC.sigma.out$sigma.sample[, j]

0.0 0.1 0.2 0.3 0.4 0.5

Posterior for σ3

MCMC.sigma.out$sigma.sample[, j]

0.0 0.1 0.2 0.3 0.4 0.5

Posterior for σ4

0.0 0.1 0.2 0.3 0.4 0.5

(b)

Posterior for σ0

MCMC.sigma.out$sigma.sample[, j]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Posterior for σ1

MCMC.sigma.out$sigma.sample[, j]

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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Figure 3. Posterior distributions for σj for the (a) Motor Third Part Liability (MTPL) (b) Property and
(c) Motor Hull lines of business. One sees solid lines representing the unnormalized posteriors, the
histogram of the Markov Chain Monte Carlo (MCMC) outputs and a red dashed line indicating the
CL standard deviation estimate. Note that for LoB MTPL we only plot selected development periods:
j ∈ {0, 7, 14, 21, 28}.

8.4. The Correlation Matrices

For the copula correlation matrices we follow the procedures outlined in Sections 7.1 and 7.2.
The resulting matrix for the marginalized model is found in Table 6. From FINMA (2016) it can be seen
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the values in ΩPY, CY,s are very similar to ones in the standard ΛPY, CY,s. Also, it worth noticing that
differently from SST’s original correlation matrix, the block ΩPY, CY,s is no longer symmetric, i.e., in

order to have Corr(Z(1)
PY , Z(2)

CY | F (t)) = Corr(Z(2)
PY , Z(1)

CY | F (t)) the term (1, 2) of the matrix ΩPY, CY,s is
not equal to the term (2, 1) of the same matrix.

The results for the copula correlation ΩPY, CY,s follow the same patterns as ΩPY, CY,s and for this
reason its values are omitted.

Table 6. Copula correlation matrix from the marginalized model. Correlation block for the marginalized
model: ΩPY (Table 7); ΩPY, CY,s (Table 8); ΩCY,s (Table 9).

Ω =

 ΩPY ΩPY, CY,s 0L×P

ΩCY,s 0L×P

IP×P


Table 7. Correlation block for the marginalized model: ΩPY .

LoB 1 2 3 4 5 6 7 8 9
1 1 0.1517 0.1505 0.2501 0.5001 0.2501 0.1501 0.2502 0.2511
2 1 0.1520 0.1517 0.1517 0.1517 0.1517 0.1517 0.2532
3 1 0.1505 0.1505 0.1505 0.1505 0.1505 0.2515
4 1 0.2501 0.1501 0.1501 0.1501 0.2511
5 1 0.2501 0.1501 0.2501 0.2511
6 1 0.1501 0.2502 0.2511
7 1 0.1502 0.2511
8 1 0.2511
9 1

Table 8. Correlation block for the marginalized model: ΩPY, CY,s.

LoB 1 2 3 4 5 6 7 8 9
1 0.5004 0.5005 0.1502 0.2505 0.2503 0.2504 0.1504 0.2506 0.2506
2 0.5046 0.5046 0.2528 0.1519 0.2528 0.1518 0.1519 0.1519 0.2529
3 0.1506 0.2509 0.5013 0.2510 0.1506 0.1506 0.1508 0.1507 0.2511
4 0.2503 0.1502 0.2503 0.5008 0.1502 0.1503 0.1504 0.1504 0.2506
5 0.2503 0.2503 0.1502 0.1503 0.5004 0.2504 0.1504 0.2506 0.2506
6 0.2503 0.1502 0.1502 0.1503 0.2503 0.5006 0.2507 0.2506 0.2506
7 0.1502 0.1503 0.1502 0.1504 0.1502 0.2505 0.5010 0.1504 0.2506
8 0.2503 0.1502 0.1502 0.1504 0.2503 0.2504 0.1504 0.5009 0.2506
9 0.2511 0.2511 0.2511 0.2513 0.2511 0.2512 0.2514 0.2513 0.5018

Table 9. Correlation block for the marginalized model: ΩCY,s.

LoB 1 2 3 4 5 6 7 8 9
1 1 0.5006 0.1503 0.2506 0.2504 0.1504 0.1505 0.1505 0.2507
2 1 0.2505 0.1504 0.2504 0.1504 0.1505 0.1505 0.2507
3 1 0.2506 0.1503 0.1504 0.1505 0.1505 0.2507
4 1 0.1504 0.1505 0.1506 0.1506 0.2509
5 1 0.2505 0.1505 0.2507 0.2507
6 1 0.2508 0.2508 0.2508
7 1 0.1507 0.2510
8 1 0.2509
9 1
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9. Details of the SMC Algorithm

9.1. Selection of Intermediate Sets

Recall that a key component of the proposed SMC Sampler solution is to create a relaxation of
the rare-conditional events that constrain the target posterior into a sequence of increasingly difficult
constraints. In this section we discuss how one can select the sequence of constraint relaxations in an
adaptive manner.

For both the marginalized and the conditional models we use an adaptive strategy similar to
Cérou et al. (2012) in order to select adaptively online (as the algorithm runs) the levels B1, . . . , BT , as
well as the total number of intermediate sets T. When levels are being chosen adaptively one of the main
advantages of the proposed SMC algorithm is the ability to estimate, in one run, the company-wide
value at risk, the expected shortfall as well as the risk allocations.

Starting from B0 = 0 (or B0 = 0 if the conditional model is being used) the idea consists of,
at each algorithmic iteration t− 1, choosing the next level, Bt, such that a percentage p0 ∈ (0, 1) of the
(t− 1)–particles is above this set. More formally, we set Bt to be the 1− p0 empirical quantile of the
weighted sample {s(j)

t−1, W(j)
t−1}N

j=1 or {s(j)
t−1, W(j)

t−1}N
j=1, where st−1 and st−1 denote, respectively, the sum

of the components of zt and zt. Therefore, at algorithmic time t the level Bt corresponds to an estimate
of the (1− pt

0)-th quantile of the target distribution. In our examples we set p0 = 0.4, 0.5 and 0.7 which
induces intermediate quantiles seen in Table 10 for the algorithm. Note that, given a value of p0 the
number of levels in the algorithm is deterministic. For example, for p0 = 0.5 there are 7 levels until the
estimated quantile is above 99%.

Table 10. Intermediate quantiles for different values of p0.

p0 1 2 3 4 5 6 7
0.4 0.6 0.84 0.936 0.9744 0.9898 0.9959
0.5 0.5 0.75 0.875 0.9375 0.9688 0.9844 0.9922
0.7 0.3 0.51 0.657 0.7599 0.8319 0.8824 0.9176
p0 8 9 10 11 12 13
0.4
0.5
0.7 0.9424 0.9596 0.9718 0.9802 0.9862 0.9903

An alternative approach to choosing the level sets is to use the classic normalizing constant
estimator derived from the SMC sampler algorithm (see (Del Moral et al. 2006, sct. 3.2.1)). Using the
notation from Section 3 we have that the normalizing constant Zt = P[S > Bt] can be estimated as

Ẑt = Ẑt−1

N

∑
j=1

W(j)
t−1α̃

(j)
t , (56)

where Wt−1 and α̃t are, respectively the normalized and the incremental weights at time t− 1.
Similarly to our proposed estimate, in this alternative route one would choose Bt such that

p0 × 100% of the time t− 1 particles are above this level. Using the estimator in Equation (56) one
could stop the algorithm as soon as Ẑt < α. The main disadvantage of this approach is that although
Ẑt can be proven to be unbiased and asymptotically normally distributed when the number of particles
N → ∞ (see (Del Moral 2004, Propositions 7.4.1 and 9.4.1) and Pitt et al. (2012) for a proof in the special
case of state-space models) one can not guarantee Ẑt ∈ [0, 1]. In our experiments the results based on
this classic estimate were deemed unsatisfactory, as we observed estimates of the normalizing constant
as large as 15, as finite sample realizations.
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9.2. Marginalized Model

9.2.1. The Forward Kernel

Similarly to (Targino et al. 2015, sct. 6.1) we propose a mutation kernel Kt(zt−1, zt) such that
the condition ∑d

i=1 zi,t > Bt is always satisfied. Due to the independence assumption of the CY large
claims (the P Pareto variables) we first independently mutate the Pareto coordinates, following their
true (unconditional) marginal and then mutate the other 2L variables.

First we split the vector into its log-normal and Pareto components, zt = (z′t, z′′t ), where
z′t = (zt,1, . . . , zt,2L) and z′′t = (zt,2L+1, . . . , zt,2L+P). Using this notation and denoting zt,−m the vector
zt without its m-th component, we use

Kt(zt−1, zt) = K′t(z
′
t−1, z′t | z′′t ) K′′t (z

′′
t−1, z′′t )

=

{
1

2L

2L

∑
m=1

[
K′(−m)

t (z′t−1, z′t,−m)K
′(m)
t (z′t−1, z′t,m | z′t,−m, z′′t )

]}

×
2L+P

∏
i=2L+1

Pareto(z′′t ; αi, βi),

where the kernel K′(−m)
t (z′t−1, · ), which mutates all but the m-th dimension of z′t−1, consists of

independent moves in each dimension, i.e.,

K′(−m)
t (z′t−1, z′t,−m) =

2L

∏
i=1
i 6=m

K′(−m,i)
t (z′t−1,i, z′t,i).

Note that these moves are also independent of the P Pareto mutations.
Let us denote {z(j)

t−1, W(j)
t−1}N

j=1 the weighted sample approximating

πt(zt−1) = fZ(zt−1 | zt−1 ∈ GZt−1),

as defined in Equation (15). The components of the mutation kernel are then defined as

K′(−m,i)
t (z′t−1, z′t,i) = LN(z′t,i; µ̂i, σ̂i), for i = 1, . . . , 2L, i 6= m, (57)

where µ̂i and σ̂i are the empirical mean and variance of {z(j)
t−1, W(j)

t−1}N
j=1 when i = 1, . . . , 2L

µ̂t−1,i =
N

∑
j=1

W(j)
t−1z(j)

t−1,i,

σ̂2
t−1,i = µ̂2

t−1,i −
N

∑
j=1

Wt−1

(
z(j)

t−1,i

)2
.

For the mutation of the remaining dimension, m, to ensure all the samples satisfy the condition
∑d

i=1 zi,t > Bt we proceed as follows. First we define

Bz
t (m) = max

{
0, Bt −

d

∑
i=1
i 6=m

zt,i

}
,

and then sample the last component zm,t ∈ [Bz
t (m),+∞) according to

K(m)
t (zt−1, zt,m | zt,−m) = TN(zt,m; µ̂m, σ̂m, Bz

t (m),+∞), for m = 1, . . . , 2L, (58)
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where TN( · ; µ, σ, a, b) denotes the density of a Normal distribution with mean µ and variance σ2

truncated on support [a, b].

9.2.2. The Backward Kernel

For the backward kernel we follow the discussion in Section 3.1.2 and use the (approximation to
the) optimum kernel of Del Moral et al. (2006), given by equation Equation (11)

Lt(zt+1, zt) =
γt(zt)Kt+1(zt, zt+1)

1
N ∑N

j=1 w(j)
t Kt+1(z

(j)
t , zt+1)

,

where w(j)
t denotes the unnormalized weights at time t and the weighted sample {z(j)

t , w(j)
t }N

j=1 targets
the unnormalized density γt(zt). Proceeding in this way the unnormalized weights for the SMC
sampler algorithm (see Algorithm 1) satisfy the following recursion

w(j)
t = w(j)

t−1
γt(zt)

1
N ∑N

k=1 w(k)
t Kt(zt−1, zt)

.

9.2.3. The MCMC Move Kernel

To improve particle diversity after a resampling step (which is performed whenever the effective
sample size drops bellow N/2) the following MCMC move kernel is applied to the particles.

As in (Targino et al. 2015, sct. 6.2) we propose a Gibbs-type update combined with a slice sampler
(see Neal (2003)). For notational simplicity we suppress the dependence in t in the vector zt and denote
v∗(m) = (z∗1 , . . . , z∗m, zm+1, . . . , zd) the vector where the first m components have already been updated
in the Gibbs scan. The full conditional for the m-th component of zt is given by

πt(z∗m | z∗1 , . . . , z∗m−1, zm+1, . . . , zd) ∝ πt(v∗(m)) ∝ fZ(v∗(m))1GZt
(v∗(m)),

which is can be sampled from using an unidimensional slice sampler (see Neal (2003)).

9.3. Conditional Model

Following the discussion in Section 3.3.2 we use equation Equation (19) as an approximation to
the unknown density fZ(z). For our simulations M = 5 samples of the unknown parameter θ are
used, where

θ = (σ(1), . . . , σ(L)),

and each vector σ(`) = (σ
(`)
1 , . . . , σ

(`)
J ) contains all the unknown variance parameters for the `-th LoB.

Therefore, ϑ = (θ(1), . . . , θ(M)) and it should be noticed the superscript have a different interpretation
from those in σ

(`)
j .

As the parameter estimation step described in Section 8.3 is independent of the allocation
process we assume NMCMC samples for each unknown parameter vector σ have already been
created. Therefore, to sample z ∼ fZ(z) we first sample an index n ∼ U({1, . . . , NMCMC}) and
then z ∼ fZ(z | θ(n)).

9.3.1. The Forward Kernel

The forward kernel used for the conditional model follows the same structure as the one used
in the marginalized model and described in Section 9.2.1: first we sample the P independent Pareto
variables (with the same distribution as in the marginalized case) and then the remaining 2L variables.
More precisely,

K′(−m,i)
t (z′t−1, z′t,i | ϑt) = K′(−m,i)

t (z′t−1, z′t,i) = K′(−m,i)
t (z′t−1, z′t,i),
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where the last term is defined in equation Equation (57) and µ̂i and σ̂i are now the empirical mean and
variance of {z(j)

t−1, W(j)
t−1}N

j=1. Likewise,

K′(m)
t (z′t−1, z′t,m | z′t,−m, ϑt) = K′(m)

t (z′t−1, z′t,m | z′t,−m) = K′(m)
t (z′t−1, z′t,m | z′t,−m),

with the last term defined in equation Equation (58). As samples from fϑ(ϑ) have already been
generated through MCMC then the mutation kernel in the extended space, Ky

t (yt−1, yt), is completely
characterized.

9.3.2. The Backward Kernel

As in Section 9.2.2 we use the optimum backward kernel in the extended space Y = Rd ×ΘM,
which for the conditional model leads to the following incremental weights (see Equation (12))

αt =
γ

y
t (yt)

1
N ∑N

j=1 w(j)
t−1Ky

t (yt−1, yt)

=
f̂Z(zt; ϑt) fϑ(ϑt)1GZt

(zt)

1
N ∑N

j=1 w(j)
t−1Kt(zt−1, zt) fϑ(ϑt)

=
f̂Z(zt; ϑt)1GZt

(zt)

1
N ∑N

j=1 w(j)
t−1Kt(zt−1, zt)

.

9.3.3. The MCMC Move Kernel

The MCMC move kernel used for the conditional model needs to keep the target distribution in
the extended space, π

y
t (yt), invariant. The strategy adopted is to first sample ϑ∗ ∼ fϑ(ϑ) and then

zt | ϑ∗ ∼ f̂Z(zt; ϑ∗t )1GZt
(zt).

For the second step above we use exactly the same Gibbs-sampler update as in Section 9.2.3,
with fZ( · ) replaced by f̂Z( · ; ϑt).

10. Results

In this section we present the results of the SMC procedure when used to calculate the expected
shortfall allocations from Equations (4) and (5) of the solvency capital requirement.

Before proceeding to the results calculated via the SMC algorithm, in order to understand the
simulated data presented in Figure 4, in Table 2 we present some results based on a “brute force”
Monte Carlo (rejection-sampling) simulation, which is taken as the base line for comparisons with the
SMC algorithm. The table is divided in three blocks of rows, with PY claims, CY small (CY,s) claims
and CY large (CY,l) claims.

First of all, it should be noticed that the reserves presented on the first block of Table 2 are the
ones implied by the data, which we then assume to be the true ones (ignoring, from now on, the initial
synthetic data from Table 1). That is, based on initial parameters we have generated synthetic claims
development triangles, which naturally deviate slightly from their expected values. The parameters σ

and µ for PY claims are related to the marginalized model (for the parameters of the conditional model
see Figures 5 and 6). It is also important to note that only the PY parameters are different between the
conditional and marginalized models.

For each LoB the standalone expected shortfall (ES) is calculated analytically and its value is,
then, combined with the LoB’s expectation to calculate the solvency capital requirement (SCR). These
values are added up, both within risk type (i.e., PY, CY,s and CY,l) and globally, in order to calculate
the overall standalone capital. For the marginalized and conditional models the columns “ES” and
“SCR” denote, respectively, the expected shortfall and capital allocations to each LoB. These values are
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compared to their standalone counterparts to generate the diversification benefit, which is around 45%
for PY and CY,s claims (regardless of the model used) and ranges between 30% and 70% within the PY
and CY,s groups. Due to the independence assumptions the largest diversification benefit comes from
the CY,l claims, where the capital is reduced by around 95%.

The data presented in Table 2 is calculated as follows. For the marginalized model (and conditional
model in brackets), 5× 109 (2.5× 107) independent samples of the model are generated in order to
calculate the overall VaR99%. Conditional on this value, for each LoB we then generate 5× 107 (5× 105)
samples above the VaR and use the average of these samples as the true ES allocation (presented in
Table 2). In order to asses the variance of the estimators, we divide these samples into Nrep = 500
groups of NMC = 105 (NMC = 103 for the conditional model) simulations. More formally, we
approximate the ES allocations ρi, defined in Equation (4), by

Ê[ρ̂i,MC] =
1

Nrep

Nrep

∑
k=1

ρ̂
(k)
i,MC, (59)

where ρ̂
(k)
i,MC stands for the estimate (using NMC particles) from the k-th run (out of Nrep), which is

defined according to

ρ̂i,MC =
1

NMC

NMC

∑
j=1

Z(j)
i .
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Figure 4. Cumulative claims payment (in millions of CHF). Lighter colours represent more recent
accident years.
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Figure 5. Histogram of the parameter σPY for the conditional model. Red dashed line: σPY .

Similarly to the analysis performed in Peters et al. (2017) the impact of the prior density can be
assessed by comparing the sum of the SCR allocations with the SCR from the “empirical Bayes model”,
i.e., the model where the prior for σ is set as a Dirac mass on σ̂j(t), see Equation (55). In this case we
have that the total capital is equal to SCR = 505.48 and the fully Bayesian model with prior defined
with k = 5 (see Section 8.3) requires 15% more capital (both in the marginalized and conditional cases).

To check the accuracy of the SMC procedure we first analyse the estimate of the level sets
(intermediate VaRs). For p0 = 0.5, Figures 7 and 8 show, respectively, the histogram of the levels
B1, . . . , B7 (as per Table 10) for the marginalized and conditional models. The red dashed bars represent
the true value of the quantiles (based on the “brute force” MC simulations), which is very close to
the mode of the empirical distribution of the SMC estimates. It should be noticed, though, that the
SMC estimates seem to be negatively biased and the bias appears to become more pronounced for
extreme quantiles. Apart from this negligible bias we assume the levels are being sensibly estimated
and proceed, as in Targino et al. (2015), to calculate the relative bias and the variance reduction of the
SMC method when compared to a MC procedure.
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Figure 6. Histogram of the parameter µPY for the conditional model. Red dashed line: µPY .

For each of the LoBs the plots on the Figures 9 and 10 show the relative bias, defined as

Relative Bias =
Ê[ρ̂i,SMC]− Ê[ρ̂i,MC]

Ê[ρ̂i,MC]
,

where Ê[ρ̂i,SMC] is computed analogously to the MC estimate but, instead, using the SMC method,
with NSMC = 100. The behaviour of the two models is very similar, and we observe that the bias in the
PY and CY,s allocations are negligible (less than 5%) while for some of the large CY risks a higher bias
(of more than 10%) may be observed. Apart from the difficulty of performing the estimation based on
Pareto distributions we stress the fact that although these errors may look large, as we can see from
Table 2, their impact in the overall capital are almost imperceptible, due to the small capital charge due
to these risks.
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Figure 7. Histograms levels used in the SMC sampler algorithm with p0 = 0.5 in the marginalized
model. The red dashed bar represents the true value of the α quantile.
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Figure 8. Histograms levels used in the Sequential Monte Carlo (SMC) sampler algorithm with p0 = 0.5
in the conditional model. The red dashed bar represents the true value of the α quantile.
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Figure 9. Bias for the marginalized model. Note that although the bias for some of the CY large claims
is around 10% their allocated capital is rather small, as seen in Figure 11 (a).
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Figure 10. Bias for the conditional model. Note that although the bias for some of the current year (CY)
large claims is around 10% their allocated capital is rather small, as seen in Figure 11 (b).

Another way to compare the SMC calculations is through the actual capital charges, as seen in
Figure 11. In this figure we compare the 99% SCR calculated via the MC scheme discussed above with
the SMC results for the quantile level right before 99% (which, for p0 = 0.5 is 98.44%) and the one right
after it (99.22%). From this figure we see the SMC calculation based on the 99.22% quantile is very
precise, for both the marginalized and conditional models. Visually, the only perceivable difference
comes from the CY,l claims, which accounts (in total) for less than 2% of the overall capital.

To calculate the improvement generated by the SMC algorithm compared to the MC procedure
we need to analyse the variance of the estimates generated by both methods, under similar
computational budgets.

We start by noticing that the expected number of samples in the Monte Carlo scheme in order
to have NMC samples satisfying the α condition is equal to MMC = NMC/(1 − α), which can be
prohibitive if α is very close to 1. Then, similarly to Equation (59) we define the empirical variance of
the MC and the SMC algorithms which are, then, compared as follows

Variance Reduction = MMC × V̂ar(ρ̂i,MC)

/
T × NSMC × V̂ar(ρ̂i,SMC). (60)

The variance reduction statistics defined in Equation (60) takes into account how many samples
one needs to use in order to generate NMC samples via rejection sampling or NSMC using the SMC
algorithm. The later also takes into account the fact that T levels are being used and in each one NSMC
samples need to be generated. For the conditional model we further multiply the denominator by the
number of samples used to estimate the unknown density, which in our examples is set to M = 5.

The results follow on Figures 12 and 13. As in Targino et al. (2015) we observe that the variance of
the SMC estimates become smaller (compared to the MC results) for larger quantiles. In particular,
for the quantiles of interest the variance of the marginal ES allocation estimates are around 100.5 ≈ 3
times smaller than its MC counterparts, while the overall ES estimate is slightly less variable for the
MC scheme.
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Figure 11. Comparison between the “true” allocations (calculated via a large Monte Carlo procedure) and the SMC sampler solution for the (a) marginalized and
(b) conditional models.
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Figure 12. Variance reduction for the marginalized model.
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Figure 13. Variance reduction for the conditional model.

For the marginalized model we also present two plots in Figure 14, related, respectively, to
the sensitivity to (a) the parameter p0 and (b) the number of samples, NSMC. In Figure 14a, for the
same number of samples, NSMC = 100 we analyse the bias relative to the 99% ES allocations of the
first quantile larger than 99% (top plot) and the previous one (bottom plot) for p0 ∈ {0.4, 0.5, 0.7}.
The quantiles used in these different setups are presented in Table 10. Although the results may look
slightly different, the main message is the same: the “higher” quantile is effectively unbiased for PY
and CY,s risks but presents a negative bias of around 10% for some of the CY,l risks.

Regarding the sensitivity to the number of particles in the SMC algorithm, as expected,
the absolute bias decreases when the number of samples increases, as seen in Figure 14b. Although the
SMC algorithm is generically guaranteed to be unbiased when NSMC → +∞ the trade-off between
bias and the variance reduction in the allocation problem may lead us to accept a small bias in order to
have a smaller variance.
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Figure 14. Relative bias in the marginalized model as a function of (a) the parameter p0 and (b) the sample size in the SMC sampler, NSMC.
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11. Conclusions

In this paper we provide a complete and self-contained view of the capital allocation process for
general insurance companies. As prescribed by the Swiss Solvency Test we break down the company’s
overall Solvency Capital Requirement (SCR) into the one-year reserve risk, due to claims from previous
years (PY) and the one-year premium risk due to claims’ payments in the current year (CY). The later is
further split into the risk of normal/small claims (CY,s) and large claims (CY,l). For the premium risk
in each line of business we assume a log-normal distribution for CY,s risks with mean and variance as
per the SST, which also describe a distribution for CY,l risks, in this case Pareto. For the reserve risk, as
in Peters et al. (2017), we postulate a Bayesian gamma-gamma model which, for allocation purposes, is
approximated by log-normal distributions leading to what we name the conditional (when the log-normal
approximation is performed conditional on the unknown parameters) and the marginalized (when the
log-normal approximation is performed after the parameter uncertainty has been integrated out) models.

As seen in Figures 1 and 2, when assuming a Bayesian gamma-gamma model these two
approximations do not deviate considerably from the actual model assumptions. Regarding the allocations,
Figure 11 shows the results for both models are, once again, very close to each other (and to the “true”
allocations, calculated via a large Monte Carlo exercise). Therefore, the decision on which approximation
to use should not interfere with the allocation or reserving results, and is left to the reader.

The allocation process is performed using state-of-the-art (pseudo-marginal) Sequential Monte
Carlo (SMC) algorithms, which are presented in a self-contained and accessible format. Although
the algorithms described form an extremely flexible class, we provide an off-the-shelf version, where
minimal or no tuning is needed. The algorithms are also shown to be computationally efficient in
a series of numerical experiments.

One of the advantages of our proposed methodology is that it is able to compute in one single
loop (1) the value at risk (VaR) and (2) the Expected Shortfall (ES), both at the company level and (3) the
capital allocations for the risk drivers. This procedure should be compared with routinely applied
methodologies, where one simulation is performed to compute the VaR, which is used in a different
simulation to compute the allocations, in a process that accumulate different errors.

Moreover, even ignoring the computational cost of calculating a precise estimate for the required
VaR in a “brute force” Monte Carlo scheme, the proposed SMC algorithm is numerically shown to
provide estimates that are less volatile than comparable “brute force” implementations.

Author Contributions: All authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Posterior Distributions

For ease of exposition we omit the LoB index `. Under Model Assumptions 1 the posterior
distribution of the parameter vectors φ and σ, for t ≥ I, is given by
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π(φ, σ | F (t)) ∝ g(F (t) |φ, σ) fφ(φ) fσ(σ)
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∏
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From the functional form of π(φ, σ | F (t)) it can be seen that the components φj of φ and σj of
σ are independent a posteriori, which is a direct consequence of the prior independence. Moreover,
since π(φ | σ, F (t)) ∝ π(φ, σ | F (t)), we have that

φj | σ, F (t) ∼ Γ(aj, bj), (A1)

with aj = 1 + ∑
t−j−1
i=1 Ci,jσ

−2
j and bj = ∑

t−j−1
i=1 Ci,j+1σ−2

j .
The marginal posterior π(σ | F (t)) and its unnormalized version h(σ | F (t)) are calculated as

π(σ | F (t)) =
∫

π(φ, σ | F (t))dφ

∝
J−1

∏
j=0

Γ(aj)

b
aj
j

fσj(σj)
t−j−1

∏
i=1

(Ci,j+1σ−2
j )

Ci,jσ
−2
j

Γ(Ci,jσ
−2
j )

= h(σ | F (t)).

Lemma A1. (from Peters et al. (2017)) For 0 ≤ j ≤ J − 1 and t ≥ 1 if either t − j − 1 = 1 or at least
one accident year 1 ≤ i ≤ t− j− 1 is such that

Ci,j+1
Ci,j
6= f̂ j(t) then the marginal posterior π(σ | F (t)) is

integrable, i.e., ∫ dj

0
hj(σj | F (t))dσj < ∞.

Appendix B. Correlation Bounds in the Log-Normal–Gaussian Copula Model

As mentioned in Section 7 and discussed, for example in (Embrechts et al. 2002, Fallacy 2), for
given marginal distributions not all linear correlations between −1 and 1 can be achieved. This can
also be seen in the following Lemma (see (Denuit and Dhaene 2003, sct. 2)).
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Lemma A2 (Correlation bounds). Let (X1, X2) be a bivariate random variable with marginal distributions
F1 and F2. Then the correlation between X1 and X2 is bounded by

Cov(F−1
1 (U), F−1

2 (1−U))√
Var(X1)Var(X2)

≤ Corr(X1, X2) ≤
Cov(F−1

1 (U), F−1
2 (U))√

Var(X1)Var(X2)
,

for U uniformly distributed in [0, 1].

Although theoretically interesting, Lemma A2 may provide bounds that are too wide and, in some
cases just state that the correlation lies between −1 and 1. In the sequel we show that in the particular
case of a random vector with log-normal marginals and Gaussian copula it is possible to calculate
precisely the intended correlation and numerically check its limits.

Let us assume a random vector X = (X1, . . . , X2L) is normally distributed with X ∼ N(m, V),
where a general term of the covariance matrix V is given by (V)i,j = Vi,j and Vi,i = V2

i . Moreover, we
denote by Ω = Corr(X) the correlation matrix of the random vector X, i.e.,

V = diag(V1, . . . , V2L) Ω diag(V1, . . . , V2L),

with (Ω)i,j = (Ω)j,i = ωi,j.
If we define Zi = eXi , for i = 1, . . . , 2L then Zi ∼ LN(mi, Vi) with

E[Zi] = exp

{
mi +

V2
i

2

}
,

Var(Zi) = (E[Zi])
2
(

eV2
i − 1

)
. (A2)

On the other hand, since Xi + Xj ∼ N(mi + mj, V2
i + V2

j + 2Viωi,jVj) we have that

E[ZiZj] = E[eXi+Xj ] = exp

{
mi + mj +

V2
i + V2

j + 2Viωi,jVj

2

}
. (A3)

Therefore, using Equations (A2) and (A3) the correlation between Zi and Zj can be written as

Corr(Zi, Zj) =
exp{Viωi,jVj} − 1[

(eV2
i − 1)(eV2

j − 1)
]1/2 . (A4)

Since exp(·) is a strictly increasing function and the marginal distributions of (X1, . . . , X2L) are
continuous, from (McNeil et al. 2010, Proposition 5.6) we can conclude that (Z1, . . . , Z2L) has the same
copula as (X1, . . . , X2L): a Gaussian copula with correlation matrix Ω.

From equation Equation (A4) it is easy to see the correlation between Zi and Zj is a monotone
function of ωi,j which implies that Corr(Zi, Zj) will be minimal when ωi,j = −1 and maximal when
ωi,j = 1. Therefore, for a given pair of standard deviations it is possible to compute the interval of
admissible correlations for the pair (Zi, Zj). In Figure A1 the lower (left plot) and upper (right plot)
present bounds for the correlations.
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Attainable correlations in the Gaussian copula − Log−Normal model
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Figure A1. Lower (left) and upper (right) bound for correlations in a Gaussian-copula model with
Log-Normal marginal distributions, as a function of the scale parameters σ1 and σ2.

Figure A1 shows that even when the copula correlation is set to −1 if at least one of the standard
deviation parameters is “large” then minimum possible correlation between the log-normal variables
is close to zero. For example, if σ1 = σ2 = 2 then the lower bound for the correlations is approximately
−2%. As actuarial risks are usually positively correlated this may not be a problem from the modelling
point of view. The upper limit for the correlations have a different behaviour. If both standard
deviations are the same then the range of attainable correlations is upper bounded by 1, meaning that
any positive correlation can be achieved. Problems arrive when the standard deviations are sufficiently
different from each other. If σ1 = 1 then the correlation is upper bounded by 66% if σ2 = 2, 16% if
σ2 = 3 and about 1% if σ2 = 4.

Appendix C. Data Generating Process

In this appendix we describe the process used to generate claims triangles using the balance sheet
data from Table 1 in a way that the estimated reserves from the data match closely the reserves from
Table 1.

First of all, for each LoB we set the maximum number of development years as the number of
years it takes until Fj = 1, where Fj denotes the cumulative payment pattern for development year j
(see Section 8.1). As claims in the “Motor Third Part Liability (MTPL)” and “Workers Compensation
(UVG)” LoBs should take between 20 and 30 years to settle, we make a simplifying assumption that
I = max(J + 1, 10).

For different accident years we calculate the present value of the runoff pattern, using a constant
claim inflation r = 2% for all years and LoBs. More precisely, we have that

PVi(Fj) = (1 + r)−iFj for j = 1, . . . , J and j + i > I.

For the most recent accident year, i = I, we define the expected ultimate claim by

C∗I,J = R×
∑J

j=1 PI,j

∑J
j=1 Fj

,
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where R denotes the reserves from Table 1 and

PI,j =
PVI(Fj)

∑I
i=1 ∑J

j=1 PVi(Fj)
.

Note that C∗I,J is neither the ultimate claim predictor for the conditional model defined in
Equation (21) nor the marginalized one from Equation (27). In this context C∗I,J is just an auxiliary
variable being used in order to simulate triangles which have estimated reserves similar to the original
ones in Table 1.

For the remaining accident years the expected ultimate claim is taken as the present value of C∗I,J .
In other words,

C∗i,J = PVi−I(C∗I,J) = (1 + r)I−iC∗I,J .

Given all the values of C∗i,J , we compute E∗i = F0 × C∗i,J , the expected initial payment for each
accident year. These values are, then, combined with the coefficients of variation for CY small claims
and used to simulate the first column of our triangles as

Ci,0 ∼ LN(m∗i , V∗i ),

with the auxiliary parameters m∗i = log(E∗i ) − V∗i /2, V∗i = log(1 + CoVa2
CY) and CoVaCY the

coefficient of variation of CY small claims, based on Model Assumptions 4. For the remaining
development years we follow Model Assumptions 1 (a) with φj = 1/ f j and σj = sj/ f j, as discussed in
Section 8.1.

Figure 4 presents the generated cumulative claims payments for all LoBs, where each line
represents the cumulative claims payment. In each plot the lighter colours represent more recent
accident years which are not yet fully developed. The reserves calculated based on this dataset are
presented in Table 2 and given these values the original reserves from Table 1 are ignored.
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