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Abstract: We propose a simple but practical methodology for the quantification of correlation risk in
the context of credit derivatives pricing and credit valuation adjustment (CVA), where the correlation
between rates and credit is often uncertain or unmodelled. We take the rates model to be Hull–White
(normal) and the credit model to be Black–Karasinski (lognormal). We summarise recent work
furnishing highly accurate analytic pricing formulae for credit default swaps (CDS) including with
defaultable Libor flows, extending this to the situation where they are capped and/or floored. We also
consider the pricing of contingent CDS with an interest rate swap underlying. We derive therefrom
explicit expressions showing how the dependence of model prices on the uncertain parameter(s) can
be captured in analytic formulae that are readily amenable to computation without recourse to Monte
Carlo or lattice-based computation. In so doing, we crucially take into account the impact on model
calibration of the uncertain (or unmodelled) parameters.

Keywords: perturbation expansion; Green’s function; model risk; model uncertainty; credit
derivatives; CVA; correlation risk

1. Introduction

1.1. Model Risk Management

Much effort is currently being invested into managing the risk faced by financial institutions
as a consequence of model uncertainty. One strand to this effort is an increased level of regulatory
scrutiny of the performance of the model validation function, both in terms of ensuring that adequate
testing is performed for all models used for pricing and risk management purposes and of enforcing
a governance policy that only models so tested are so used. As is stated in the Supervision and
Regulation Letter of US Federal Reserve (2011):

An integral part of model development is testing, in which the various components of a model and its
overall functioning are evaluated to show the model is performing as intended; to demonstrate that it
is accurate, robust, and stable; and to evaluate its limitations and assumptions.

Another concern is model risk monitoring and management. Here, the idea is that, having validated
models and examined the associated uncertainty, the risk department should monitor and report on the
risk faced by a financial institution, ideally so that senior management can, based on “risk appetite”,
make informed decisions about model usage policy. According to US Federal Reserve (2011):

Validation activities should continue on an ongoing basis after a model goes into use to track known
model limitations and to identify any new ones. Validation is an important check during periods
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of benign economic and financial conditions, when estimates of risk and potential loss can become
overly optimistic and the data at hand may not fully reflect more stressed conditions...Generally, senior
management should ensure that appropriate mitigating steps are taken in light of identified model
limitations, which can include adjustments to model output, restrictions on model use, reliance on
other models or approaches, or other compensating controls.

Here, the notion of best practice is less well established, in particular because different institutions
adopt different approaches to measuring and reporting model risk. In what probably remains the most
definitive book1 on the subject, Morini (2011) asserts:

You will see that not even among quants there is consensus about what model risk is.

Indeed, there are currently regular industry events held at which practitioners and managers from
financial institutions share and discuss their views on current best practice and how this should evolve.
It is not therefore possible to enforce specific regulatory standards in this area, although regulators do
take an interest in how banks perform the model risk governance function.

Central to the task of monitoring and managing model risk or uncertainty is the challenge of how
to measure it. Current practice tends to be a mix of qualitative and quantitative metrics. While the
former are easier to implement, the latter are preferable in terms of the level of control that can be
exercised, particularly if the model risk can be quantified in monetary terms. However, the fact that no
commonly agreed methodology has emerged and such methodologies as have been proposed tend not
to lend themselves to implementation by practitioners means that it is not easy to make progress in
this area.

A common approach taken by financial institutions has been to consider the reserves taken by the
finance function to account for model parameter and/or calibration uncertainty as a proxy measure of
model risk. This is arguably less than satisfactory for a number of reasons, not least that the purpose of
reserves is to provide a protective buffer against, rather than a precise measure of, model risk.

The present paper represents a proposed compromise between rigour and practicality to furnish
model risk metrics against which risk appetite can be compared. We consider specifically rates–credit
correlation risk in relation to credit derivatives pricing, but it is suggested the methodology may be
applicable more widely to other types of model risk and a wider class of financial instruments.

1.2. Layout of the Paper

We begin in Section 2 by reviewing previous methodologies that have been proposed for the
quantification of model risk, before formally outlining our own proposed approach. We go on in
Section 3 to describe the model we shall consider for pricing credit derivatives in the context of
stochastic interest rates and credit intensity, indicating how, following Turfus (2017a), a Green’s
function solution can be obtained as a perturbation expansion, under the assumption that both of these
rates are small. In Section 4, the key results of Turfus (2017a) obtained by application of this Green’s
function to CDS pricing are summarised.

In Section 5, similar expressions for the PV of other credit derivatives, specifically credit-contingent
interest rate swaps (including with capped or floored Libor) and contingent CDS with an interest rate
swap underlying are used in conjunction with those developed in Section 2 to assess the level of model
risk associated with the uncertain parameter(s). Finally, in Section 6, we present some concluding
remarks and a number of directions for possible future work.

1 It should be mentioned that the author in his book eschews the idea that any one book should aim to be definitive.
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2. Model Risk Methodology

2.1. Previous Work

A number of authors have previously visited the question of what constitutes an appropriate
methodology for the quantification of model risk in pricing financial derivatives. In his pioneering
work on the subject, Cont (2004) proposes two approaches. In the first, a family of plausible models is
envisaged, each calibrated to all relevant market instruments and then used to price a given portfolio
of exotic derivatives. The degree of variation in the prices that are observed provides a measure of the
intrinsic uncertainty associated with modelling the price of the portfolio. A second approach, taking
account of the fact that not all models are amenable to calibration to market instruments, compares the
models by penalising them for the pricing error associated with calibration instruments. The pricing
errors for multiple instruments can be combined using various choices of norm, giving rise to a number
of possible measures of model risk.

While intuitively attractive, neither of these approaches appears to have been adopted by
practitioners. This is likely a consequence of the cost of implementing multiple models and re-pricing
under them. Financial institutions usually only have very few models implemented, often just one,
capable of pricing a given exotic option. Furthermore, regulatory pressure has recently been towards
standardising pricing of financial derivatives by restricting or even reducing the size of the set of available
models, which mitigates against the adoption of the kind of approach envisaged by Cont (2004).

More recently, Glasserman and Xu (2014) have proposed an alternative approach based on
maximising the model error subject to a constraint on the level of plausibility. The approach starts from
a baseline model and finds the worst-case error that would be incurred through a deviation from the
baseline model, given a precise constraint on the plausibility of the deviation. Using relative entropy
to constrain model distance leads to an explicit characterization of worst-case model errors. In this
way, they are able to calculate upper bounds on model error. They show how their approach can be
applied to the problems of portfolio risk measurement, credit risk, delta hedging and counterparty risk
measured through credit valuation adjustment (CVA).

Although this approach has the attraction of a rigorous definition and, according to the authors,
is amenable to convenient Monte Carlo implementation, it has the disadvantage that an entropy
constraint specified a priori is not the sort of concept that risk managers are likely to be comfortable
with in defining or expressing risk appetite. However, it is central to the whole approach. Furthermore,
the approach has the disadvantage that it probably offers too much laxity in allowing the joint
probability distribution function governing risk factors to vary freely subject only to the entropy
constraint. Many of the perturbed distributions, including those giving rise to worst-case errors, would
likely be deemed “unrealistic” by practitioners for reasons that cannot easily be encoded through
entropy considerations. An approach that allows the user to be more specific about what is believed to
be “known” and with what degree of certainty using a parametrisation more closely related to market
variables would probably be preferred.

For example, the consensus among practitioners might be that the “best” interest rate model
would be somewhere between a normal and a lognormal process. However, under the proposal of
Glasserman and Xu (2014), if a Hull–White (normal) model were chosen as the baseline, deviations
towards lognormal and away from it would be penalised equally. However, we are really only
interested in assessing the impact of the former.

In his review of the subject Morini (2011), while lamenting the paucity of the model risk literature,
comes down against excessive use of mathematical formalism and numerics that can serve to obscure
the all-important link between specific modelling assumptions and the variability of prices that can
emerge therefrom and advocates a middle path between that and “formal compliance or simple
techniques to produce numbers that are acceptable to put in reports, but lacks [sic] the quantitative
approach that would be needed to understand models deeply.” A useful insight into the sorts
of techniques that are currently used to put numbers into reports has recently been provided by
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Joshi (2017). A more forward-looking perspective on the strategies that are being developed and
implemented for model risk management in financial institutions is provided by Crespo et al. (2017).

In the present work, we look to build to some extent on the basic philosophy of Cont (2004),
but simplifying the methodology in compliance with the advocacy of Morini (2011) and avoiding the
prohibitive cost of implementing multiple numerical models. We shall suggest that key to making
progress is the ability to assess, at least to a good approximation, the impact of more advanced model
features without necessarily having to implement them explicitly in a fully working model.

To this end, we propose that asymptotic analysis that has, in the author’s view, been under-used
in risk management offers a fruitful way forward, certainly in the context of credit derivatives pricing
with which we shall mainly be concerned here. To this end, we draw extensively on the asymptotic
analysis of the impact of rates–credit correlation on CDS pricing in Turfus (2017a) and on contingent
CDS in Turfus (2017b). A key advantage here is that the output of the model risk assessment process is
in the form of analytic formulae rather than numerical routines. The relative transparency of the former
will often furnish insight about which model configurations and inputs give rise to the greatest degree
of uncertainty in terms of output prices. The alternative approach that is typically followed in model
risk analysis is to sample the phase space of all possible market conditions, model parameterisations
and product characteristics in a generally rather unsystematic way and infer conclusions from such
data as are gleaned in the process. An obvious drawback of this approach is that there are no guarantees
that the worst cases where the potential discrepancies are largest are uncovered; or how representative
the numbers in the dataset are of the phase space that has been “sampled”.

We suggest that a further reason why the pricing model risk methodologies that have been
proposed in the literature appear to have had limited traction in financial institutions lies in the
structure of those institutions. Specifically, it is an issue that authority to make judgements in relation
to which models are used, how they are configured and calibrated and how model risk is assessed
is inevitably devolved across multiple functions: front office, market risk, model validation, finance,
CVA desk, etc. For that reason, we propose that a simplified approach, whereby questions about how
price-relevant model parameters are assigned and how the uncertainty associated with these is assessed,
can be considered separately from issues around how their values and assumed uncertainty levels
(or distributions) impact on prices. Our focus in this paper will by choice be on the latter. We note in
this context that a further practical advantage of our proposed approach over the more mathematically
sophisticated approach of Glasserman and Xu (2014) is that the intuition of practitioners tasked
with the responsibility to assess parameter uncertainty levels is better attuned to more immediate
parameters like correlation than the more abstract concept of entropy.

2.2. Proposed Framework

We formally state the problem we are looking to address as follows. Consider a modelM(s, ρ)

which we wish to use as the basis for pricing a portfolio Φ containing derivatives Dk, k = 1, 2, . . . , m.
Here, s = (s1, s2, . . . , sn), with si the value of a credit spread (suitably defined) associated with
maturity Ti, i = 1, 2, . . . , n, and ρ the correlation between rates and credit, the appropriate value of
which is unknown and furthermore not readily ascertainable from market data, or else not in practice
modelled. We wish to consider and indeed quantify, to a good approximation, the dependence of the
portfolio price on the correlation parameter.

To this end, we consider the calibration at time t = 0 of credit spreads in the model to a vector of
market prices p = (p1, p2, . . . , pn) for calibration instruments {I1, I2, . . . , In}. Let us express the
result of such calibration for an assumed value of ρ formally as

s = f (ρ; p) (1)

for some f : [−1, 1]→ Rn. Since the market instrument prices are considered fixed for the time t = 0
of interest, we shall for convenience generally omit the explicit dependence on pi in the following,
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in particular writing component-wise simply si = fi(ρ). There may be other market instruments to
which the model is calibrated, but, if the generated prices of these are not sensitive to ρ (or only very
weakly so), we need not consider them explicitly in our analysis here.

Let us then denote the price calculated for derivative D using modelM(s, ρ), thus calibrated by
V(D;M(s, ρ)). Let us further introduce the shorthand notation

Vk(ρ) = V(Dk;M( f (ρ), ρ)). (2)

From the asymptotic analyses that will be described below, we see that the dependence of credit
derivatives prices on ρ tends to be well captured as a linear function thereof.2 An appropriate measure
of the model risk associated with pricing the derivative portfolio with an assumed value ρ = ρ0 is on
this basis obtained by use of the linear approximation:

R(Φ; ρ0, ∆ρ) := ∆ρ
m

∑
k=1

∂Vk(ρ)

∂ρ

∣∣∣∣∣
ρ=ρ0

(3)

with ∆ρ an estimate of the level of uncertainty or inaccuracy associated with the representation of the
parameter ρ. Performing the required differentiation on (2), we see

∂Vk(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

=

(
n

∑
i=1

∂V(Dk;M(s; ρ))

∂si
f ′i (ρ) +

∂V(Dk;M(s; ρ))

∂ρ

)∣∣∣∣∣
s= f (ρ), ρ=ρ0

. (4)

We seek a convenient practical means of determining f ′i (ρ0). To that end, we note that the ith
calibration condition can be expressed as

V(Ii;M(s; ρ)) = pi, (5)

leading by the same token to(
i

∑
j=1

∂V(Ii;M(s; ρ))

∂sj
f ′j (ρ0) +

∂V(Ii;M(s; ρ))

∂ρ

)∣∣∣∣∣
s= f (ρ), ρ=ρ0

= 0. (6)

Here, we assume that the model is bootstrapped by applying the calibration conditions in order of
maturity, whence there will be no dependence of the price of Ii on sj for j > i. The partial derivatives
in this equality can be computed conveniently by use of the asymptotic modelling approach described
below. From this, the values of f ′i (ρ0) can be inferred recursively. Substituting in (4) and then (3)
gives rise to our representation of the model risk. On the basis of our assumption of approximate
linear dependence of prices on ρ over the range of interest, we propose that our evaluations of f ′j (ρ0),
with typically ρ0 = 0, can consistently be used in place of f ′j (ρ).

Our suggestion here is that, if we can derive analytic approximations to instrument prices taking
into account the uncertain model parameters, this opens the way to obtaining analytic representations
of the partial derivatives in (4) and so to obtaining an estimate of the model risk more conveniently
and in a more transparent form than otherwise. We will illustrate our approach with some examples
from the credit derivatives area, with which the author is most familiar.

2 For other choices of model parameter than ρ, this will often still tend to be the case on the basis that the uncertain/unmodelled
parameter will be of secondary importance; if this were not so, the consequent high degree of uncertainty introduced into
pricing would compromise the utility of the pricing algorithm.
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3. Two-Factor Asymptotic Model

3.1. Underlying Processes

Our modelling approach will be to represent the interest rate rt and the credit default intensity λt

(of a named debt issuer) as correlated mean-reverting short rate processes. In this respect, our approach
is similar to that pioneered by Schönbucher (1999) who took both processes to be normal mean-reverting
diffusions, in other words governed by the Gaussian short rate model of Hull and White (1990).
Solutions were in his case found by constructing a two-dimensional tree. As was pointed out by
Schönbucher (1999), it is a straightforward matter to extend his model to non-Gaussian processes.

A number of authors have followed this suggestion taking the credit process to be lognormal,
governed by a Black and Karasinski (1991) short rate model, which, although less tractable than
a Gaussian model, ensures that credit spreads stay positive (and thus that survival probabilities are
decreasing functions of time). Jobst and Zenios (2001) sought to price portfolios of bonds, modelling
the credit spread for securities in a given rating class in this way, coupled with a Hull–White interest
rate model, but also allowing rating class migrations to take place. A similar approach with only
rates and credit default risk was used by Cortina (2007) to provide analytic solutions for the prices
of defaultable bonds in the assumed absence of correlation, and by Pan and Singleton (2007) who
considered the joint distribution of credit spreads and default loss rates implied by CDS market data.

We will follow the latter authors in taking the interest rate process to be normal, as proposed
by Hull and White (1990), and the credit intensity process to be lognormal, so ensuring positive
intensities, following Black and Karasinski (1991). The correlation ρ between these two processes we
take to be the uncertain model parameter of interest, although we could equally extend our framework
to allow consideration of the credit mean reversion rate, or even its volatility as uncertain model
parameters. We shall find it convenient to work with auxiliary variables xt and yt satisfying the
following Ornstein–Uhlenbeck processes:

dxt = −αrxtdt + σr(t) dW1
t , (7)

dyt = −αλytdt + σλ(t) dW2
t , (8)

where αr, αλ ∈ R+, σr, σλ : R+ → R+ are piecewise continuous functions and dW1
t , dW2

t are correlated
Brownian motions under the risk-neutral measure for t ≥ 0 with

corr(W1
t , W2

t ) = ρ. (9)

These auxiliary variables are related to the interest short rate rt and the credit default intensity λt,
respectively, by

rt = r(t) + r∗(t) + xt, (10)

λt = (λ(t) + λ∗(t))E(yt). (11)

Note that here and below we use subscript-t to indicate stochastic processes; otherwise, all
functions of t are assumed to be deterministic. Here, r(t) is the instantaneous forward rate
(which we allow to take on negative values), λ(t) the associated credit spread (see (15) below) and
E(Xt) := exp

(
Xt − 1

2 [X]t
)

is a stochastic exponential with [X]t the quadratic variation of a process
Xt. Here, all functions and processes in (10) map [0, Tm]→ R (although in practice r∗(t) wil be strictly
positive for t > 0), while those in (11) map [0, Tm]→ R+, where t = 0 is the “as of” date and Tm the
longest maturity date for which the model is calibrated.

The interest rate model obtained in this way is of Hull–White type and the credit intensity
model Black–Karasinski. It is well known that both of these models can be made risk-neutral by
specification of suitable respective drifts, which determine in turn the configurable functions r∗(·) and
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λ∗(·) uniquely. The required form of r∗(t) and λ∗(t) is in practice obtained by calibration of the model
to ensure satisfaction of the no-arbitrage conditions set out below, assumed to apply for all t ∈ (0, Tm].
As we shall see, it proves possible on this basis to determine these functions uniquely in asymptotic
form under the conditions specified above.

3.2. The No-Arbitrage Conditions

The formal no-arbitrage constraints that determine the functions r∗(t) and λ∗(t) are as follows:

E
[
e−
∫ t

0 rs ds
]
= D(0, t), (12)

E
[
e−
∫ t

0 (rs+λs) ds
]
= B(0, t), (13)

under the martingale measure for 0 < t ≤ Tm, where

D(t1, t2) = e−
∫ t2

t1
r(s) ds (14)

is the t1-forward price of the t2-maturity zero coupon bond and

B(t1, t2) = e−
∫ t2

t1
(r(s)+λ(s)) ds (15)

the corresponding risky bond price. We shall assume the bond prices can be ascertained at the initial
time t = 0 from the market, whence we can view (14) and (15) as defining the forward rate r(t) and
associated credit spread λ(t), respectively.

3.3. Derivation of Governing PDE

We consider the general problem of pricing a cash security with maturity T whose payoff depends
on xT . We will also look below at protection instruments whose payoff may depend on τ and xτ ,
where τ is a stopping time in (0, T). We introduce the convenient shorthand notation that, for a process
Xt and function f : R+ → R,

Ex( f (t)Xt) := E( f (t)Xt))|Xt=x, (16)

in terms of which we can re-write (10) and (11) as rt = r(xt, t) and λt = λ(yt, t), where

r(x, t) := r(t) + r∗(t) + xt, (17)

λ(y, t) := (λ(t) + λ∗(t))Ey(yt). (18)

Writing the price of the security at time t ∈ [0, T ∧ τ) as f T
t = f (xt, yt, t), we can infer by

application of the converse of the Feynman–Kac theorem to (7) and (8) in the standard manner that the
function f (x, y, t) satisfies the following backward diffusion equation:(

∂

∂t
+ L− r(x, t)− λ(y, t)

)
f (x, y, t) = 0, (19)

where

L := −αrx
∂

∂x
− αλy

∂

∂y
+

1
2

(
σ2

r (t)
∂2

∂x2 + 2ρσr(t)σλ(t)
∂2

∂x∂y
+ σ2

λ(t)
∂2

∂y2

)
(20)
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with in general lim
t→T−

f T
t = P(xT) for some payoff function P(x).3 In the absence of closed form

solutions to (19) and guided by the work of Hagan et al. (2005), Pagliarani and Pascucci (2011) and
Horvath et al. (2017), we propose a perturbation expansion approach as follows.

For both short rate models, we apply a ‘low rates’ assumption. To this end, we define
small parameters

εr :=
1

αrTm

∫ Tm

0
|r(t)| dt, (21)

ελ :=
1

αλTm

∫ Tm

0
λ(t) dt. (22)

We assume that r(t) and σr(t) are O(εr), while λ(t) is O(ελ). The scaling of r∗(t) and λ∗(t) is
inferred as part of the calculation. We presage our conclusions by writing

r∗(t) ∼ γ∗2,0(t), (23)

λ∗(t) ∼ γ∗1,1(t) + γ∗0,2(t), (24)

with γ∗i,j(t) = O(εr
iελ

j). We rewrite (19) as(
∂

∂t
+ L− r(t)− λ(t)− φε(x, y, t)

)
f (x, y, t) = 0, (25)

where

φε(x, y, t) := h(x, t) + g(y, t), (26)

h(x, t) := r(x, t)− r(t), (27)

g(y, t) := λ(y, t)− λ(t). (28)

We take advantage of the assumed smallness of φε(.) to seek a Green’s function solution G(x, y, t; ξ, η, v)
for (25) as a joint power series in εr and ελ, asymptotically valid in the limit as these two parameters
tend to zero. The details of this calculation are provided in Turfus (2017a) with the conclusions
summarised in Appendix A below.

4. CDS Pricing

We next consider how we can use our Green’s function to price a credit default swap (CDS)
analytically under an assumed rates–credit correlation, again following closely Turfus (2017a).
Although this is a vanilla instrument, its use in calibration means that it is nonetheless important to
have analytic formulae.

4.1. Fixed Coupon Leg

If, as proposed, the risky discount factors B(t1, t2) are assumed known, a coupon payment made
for a payment period [ti−1, ti] with coupon c and ti > 0 can be straightforwardly priced as

PV(i)
Coupon = cB(0, ti)∆i, (29)

with ∆i the relevant year fraction.

3 We shall henceforth write for simplicity f (x, y, T) as a shorthand for lim
t→T−

f (x, y, t).
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4.2. Protection Leg

Turfus (2017a) shows how the price of a protection leg can be derived by solving
a nonhomogeneous version of (25) with the forcing function −(1 − R)λ(y, t) on the r.h.s., where
R is the assumed recovery level of the referenced debt. The result obtained is, in the present notation,

PVProt ∼ (1− R)
∫ T

0

∫ ∞

−∞

∫ ∞

−∞
λ(η, v)G(0, 0, 0; ξ, η, v) dξ dη dv

∼ (1− R)
∫ T

0
B(0, v)

(
λ(v) + ∆λ(v)

)
dv (30)

per unit notional with O(εr(εr + ελ)) relative error, where

∆λ(v) := γ∗1,1(v)− λ(v)
∫ v

0
e−αr(v−u) Irλ(u) du, (31)

with γ∗1,1(·) given by (A28) and Irλ(·) by (A9), provides an O(εrελ) adjustment to the leading order
result. Here, the first term in the expression for ∆λ(·) comes from the application of G0,0 to λ∗(·) and
the second from the application of G1,0 to λ(·). Note that, in the absence of correlation, ∆λ(·) = 0 and
the value of protection is as given under the assumption of deterministic rates.

4.3. Calibration to CDS Market

If we consider our model to be calibrated to risky bond prices, the calibration is at this stage
completely specified, at least to second order accuracy. In particular, we see that f ′i (ρ) = 0 in (4),
simplifying our task.

Alternatively if, as is often the case, the calibration is to a term structure of CDS rates, we can take
the market prices pi associated with maturities Ti to be zero and the associated market instruments to
be ATM CDS. Let us further suppose that the function λ(t) can be taken as piecewise constant between
the Ti, given say by

λ(t) = λi, t ∈ (Ti−1, Ti]. (32)

with T0 ≡ 0. We can then take the si introduced in Section 2.2 above to be given by

siTi =
i

∑
j=1

λj(Tj − Tj−1). (33)

Inference of the f ′i (ρ) is then straightforward, but our task is simplified if we are willing to
consider only the leading order impact of calibration, whence we can neglect theO(ε2

λ) indirect impact
of the λi through the (risky) discount factors in favour of their O(ελ) direct impact in the context of
default-driven payoffs. A straightforward calculation gives rise to the conclusion that

f ′i (ρ) ≈ −
Ti − Ti−1

ρTi

∫ Ti
0 B(0, u)∆λ(u)du∫ Ti

Ti−1
B(0, u)du

(34)

with expected O(ελ) relative errors, which is consistent with our use of (30).4 Equipped with this
additional information, we are in a position to assess the model uncertainty associated with other
derivative types priceable by our model.

4 The errors can in addition be expected to approximate to near zero since the calibration swaps are assumed to be at the
money, whence the (risky) discounting affects both legs almost equally.
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5. Calculating Correlation Risk

5.1. Interest Rate Swap Extinguisher

An interest rate swap extinguisher is an interest rate swap where the cash flows are contingent on
survival of a named debt issuer. We have already considered credit-contingent fixed flows in Section 4.1
above. We now look to price credit-contingent Libor flows. The payoff at time ti for a payment period
[ti−1, ti] is given in the notation defined in Appendix A below by

Payoff = Xti (xti−1 , ti−1)
−1 − 1

∼ D(ti−1, ti)
−1(1 + xti−1 B∗(ti − ti−1))− 1, (35)

with errors = O(ε2
r ). The calculation for the PV of this Libor flow contingent on no default was

performed by Turfus (2017a). This was found to be given by

PV(i)
Libor ∼ B(0, ti)

(
1− ∆L(i)

D(ti−1, ti)
− 1

)
, (36)

with O(ε2
r + ε2

λ) relative error, where

∆L(i) :=
∫ ti

0
λ(v)φ(i)

A (v) dv, (37)

φ
(i)
A (v) :=

∫ ti

ti−1

γ(u, v)Irλ(u ∧ v) du, (38)

γ(u, v) :=

{
e−αλ(v−u), u ≤ v,

e−αr(u−v), u > v
(39)

and Irλ(·) is given by (A9). We here use the binary operators ∧ and ∨ to represent min and max
respectively. In conclusion, the fair price of a payer extinguisher will be

PVExtinguisher =
N

∑
i=1

(
PV(i)

Libor − PV(i)
Coupon

)
(40)

assuming the payments are synchronised. (The extension of the calculation if payments are not
synchronised is trivial.)

A comparison of analytic calculations based on (40) against the results of a finite difference solution
of the underlying PDE is reproduced from Turfus (2017a) in Figure 1 to illustrate a typical parameter
dependence structure and to indicate the level of accuracy that is furnished by our asymptotic method.
The swap extinguisher paid quarterly Libor + 100 bp spread and received a quarterly 400 bp fixed
coupon against a swap notional of 100. The credit default intensity was taken to be 770 bp, with a local
vol of 60% and a mean reversion rate of 0.3. The 10-year swap rate was taken to be 80 bp with a short
rate local volatility increasing from 20 bp to 70 bp and a mean reversion rate of 0.25. As can be seen
from the graph, the use of our linear approximation approach to the model risk is a good one, with the
discrepancy between the two modelling approaches in all cases less than 0.1 bp of notional.
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Figure 1. Impact of correlation on PV for a 5y maturity interest rate swap extinguisher.

It is from here a straightforward matter of differentiation to quantify the model uncertainty
associated with the parameter ρ. For the coupon flows, there is no such dependency to leading order.
For the Libor flows, we have

∂PV(i)
Libor

∂ρ
∼ −B(0, ti)∆L(i)

ρD(ti−1, ti)
. (41)

and, again ignoring the higher order indirect impact of the λj through the (risky) discount factors,
we obtain

∂PV(i)
Libor

∂λj
≈ − B(0, ti)

D(ti−1, ti)

∫ (ti∨Tj−1)∧Tj

Tj−1

φ
(i)
A (v) dv. (42)

From (4), we infer that, if the uncertainty associated with ρ is ∆ρ, the model uncertainty associated
with an interest rate swap extinguisher calibrated to risky bond prices is

Uncertainty ≈ ∆ρ

∣∣∣∣∣ N

∑
i=1

∂PV(i)
Libor

∂ρ

∣∣∣∣∣ (43)

and, if calibration is to CDS rates:

Uncertainty ≈ ∆ρ

∣∣∣∣∣ N

∑
i=1

(
n

∑
j=1

∂PV(i)
Libor

∂λj
f ′j (ρ) +

∂PV(i)
Libor

∂ρ

)∣∣∣∣∣ , (44)

with f ′j (ρ) given by (34). Notice that, in the latter case, the impact of calibration adjustment is such as
to reduce the overall uncertainty (for either a payer or a receiver swap), so ignoring it would be to take
a conservative approach.

5.2. Contingent CDS

We consider next a contingent CDS on an interest rate swap with 10 years to maturity, paying
semi-annual Libor + 40 bp and receiving a quarterly fixed coupon of 250 bp. The result below is from
Turfus (2017b). We look to calculate the cost of providing protection against default of the counterparty,
in other words the counterparty value adjustment (CVA) associated with the payer swap position.
The value of protection up to some horizon T will be governed by the nonhomogeneous version of the
governing PDE: (

∂

∂t
+ L− r(t)− λ(t)− φε(x, y, t)

)
f (x, y, t) = −λ(y, t)Pde f (x, t), (45)
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with Pde f (x, τ) the protection payoff in the event of default at time τ, subject to the final condition
f (x, y, T) = 0. For the swap defined above, we can write

Pde f (x, τ) = max

{
(1− R)

N

∑
i=1

(
V(i)

L (x, τ)− c∆iV
ti
F (x, τ)

)
, 0

}
, (46)

with R the counterparty recovery rate, where the V(i)
L represent the PVs of the Libor flows and the

Vti
F those of the fixed coupon payments associated with the respective payment periods. Using a first

order approximation based on (A18), we have

Vti
F (x, t) = Xti (x, t)

∼ D(t, ti) (1− xB∗(ti − t)) , (47)

with errors = O(ε2
r ), where B∗(·) is given by (A12). Likewise, we have to the same level of accuracy

V(i)
L (x, t) =

Xti−1(x, t)− Xti (x, t), t ≤ ti−1,
Xti (x,t)

Xti (x,ti−1)
− Xti (x, t), ti−1 < t < ti.

∼

D(t, ti−1) (1− xB∗(ti−1 − t))− D(t, ti) (1− xB∗(ti − t)) , t ≤ ti−1,

D(ti−1, t)−1 1−xB∗(ti−t)
1−xti−1 B∗(ti−ti−1)

− D(t, ti) (1− xB∗(ti − t)) , ti−1 < t < ti.
(48)

The solution of (45) is by standard application of the Green’s function expansion (A1): only the
leading order term G0,0(·) is needed for our purposes. We conclude following Turfus (2017b) that,
with O(ε2

r + ε2
λ) relative error, the cost of protection purchased at t = 0 on a payer swap is given by

Vprotection ∼ (1− R)
N

∑
i=1

(
f (i)L − c∆i f ti

F

)
, (49)

where

f w
F :=

∫ w∧T

0
λ(v)B(0, v)D(v, w)N(−d1(ξ

∗(v), v)) dv, (50)

f (i)L :=
(

D(ti−1, ti)
−1 − 1

)
f ti
F + B∗(ti − ti−1)

∫ ti∧T

0
λ(v)B(0, v)D(v, ti)(

γ(ti−1, v)Irλ(v ∧ ti−1)N(−d1(ξ
∗(v), v)) + e−αr |v−ti−1| Ir(v ∧ ti−1)

N′(−d1(ξ
∗(v), v))√

Ir(v)

)
dv, (51)

with Ir(·) and Irλ(·) given by (A7) and (A9), respectively, and

d1(x, v) :=
x− Irλ(v)√

Ir(v)
, (52)

ξ∗(v) := inf{x | Pde f (x, v) > 0}, (53)

where the latter expression need only be calculated to leading order, whence xti−1 can be replaced by x
in (48). We further suppose formally that Pde f (·) = O(εr) as εr → 0 so that the stochastic effects have
a non-trivial impact, which is the situation of interest to us.

A comparison of (49) against the results of a Monte Carlo simulation is reproduced from
Turfus (2017b) in Figure 2 to illustrate a typical parameter dependence structure and to indicate
the level of accuracy that is furnished by our asymptotic method. The credit intensity in this case is
640 bp so not particularly “small”; the local volatility was taken to be 70% with a mean reversion rate
of 0.3. The interest rate market was as in Section 5.1. The contract provided protection on the full value
of the swap (assuming no recovery) for six years in return for semi-annual coupon payments of 400 bp.
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The notional was again taken to be 100. As can be seen, the use of our linear approximation approach
to the model risk remains good, with the discrepancy between the two modelling approaches unlikely
to exceed a few basis points of notional.
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Figure 2. PV dependence of interest rate swap protection on rates–credit correlation level.

It is again a matter of straightforward differentiation to obtain an expression for the correlation
risk associated with this modelling approach. To that end, we note that the relative impact through
d1(·) in the second term in (51) will be O(ελ(εr + ελ)), so we ignore this effect for our leading order
calculation. We further note that, from (31), the relative impact of correlation through calibration is
O(εrελ) and furthermore likely to cancel between legs, so we ignore this too. We obtain

Uncertainty ≈ ∆ρ

∣∣∣∣∣ N

∑
i=1

∫ ti∧T

0
λ(v)B(0, v)D(v, ti)

∂Irλ(v ∧ ti−1)

∂ρ((
D(ti−1, ti)

−1 − 1− c∆i

) N′(−d1(ξ
∗(v), v))√

Ir(v)

+ B∗(ti − ti−1)γ(ti−1, v)N(−d1(ξ
∗(v), v))

)
dv

∣∣∣∣∣. (54)

It may be suggested that the computational effort required here could become burdensome if
N were large. However, the greatest computational effort will be involved in computing ξ∗(v) and
the associated cumulative normal. The values of the latter can be tabulated in advance for a range of
v ∈ [0, T] then interpolation used in the integration. Furthermore, for T ≡ tk, we can re-express

∫ ti∧T

0
≡

i∧k

∑
j=1

∫ tj

tj−1

and factor the integrand into the product of a v-dependent term and an i-dependent term, the latter of
which can be taken outside the integral. This means we must integrate numerically from 0 to T only
once, which is comparatively little effort. This approach was used to good effect by the author in the
computations described in Turfus (2017b).
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5.3. Capped Libor Flows

Finally, we consider the impact of capping a Libor flow such as was considered in Section 5.1
above at some level K > 0, in this case focusing only on the leading order contribution. The calculation
is similar to that presented in Turfus (2017c) where the Libor payment was assumed to be in a foreign
currency, but the results below are new and presented here for the first time. The payoff at time ti for
a payment period [ti−1, ti] is given in previously defined notation by

Payoff = min{Xti (xti−1 , ti−1)
−1 − 1, K∆i}

∼ min{D(ti−1, ti)
−1(1 + xti−1 B∗(ti − ti−1))− 1, K∆i} (55)

with errors = O(ε2
r ). As in the previous section, we assume the payoff to be O(εr) as εr → 0 so that the

stochastic effects have a non-trivial impact in that limit. Because of the appearance of xt−1 in the above
expression, we must first compute the PV as of ti−1. We obtain by straightforward application of our
leading order Green’s function G0,0:

f (xti−1 , yti−1 , ti−1) ∼ B(ti−1, ti)min{D(ti−1, ti)
−1(1 + xti−1 B∗(ti − ti−1))− 1, K∆i}. (56)

To proceed, we define the value

x∗ :=
D(ti−1, ti)(1 + K∆i)− 1

B∗(ti − ti−1))
(57)

as the (asymptotic) representation of the value of xti−1 at which the cap K is hit. Applying our (leading
order) Green’s function again to the payoff at ti−1 to obtain the PV at t = 0, we obtain

f (0, 0, 0) ∼
∫ ∞

−∞

∫ ∞

−∞
G0,0(0, 0, 0; ξ, η, ti−1) f (ξ, η, ti−1) dξ dη

∼ B(0, ti)(D(ti−1, ti)
−1 − 1)−

∫ ∞

−∞

∫ ∞

x∗
G0,0(0, 0, 0; ξ, η, ti−1)(

D(ti−1, ti)
−1(1 + ξB∗(ti − ti−1))− 1− K∆i

)
dξ dη. (58)

Carrying out the required integrations, we conclude

PV(i)
CappedLibor = f (0, 0, 0)

∼ B(0, ti)
( (

D(ti−1, ti)
−1 − 1

)
N(d1(x∗, ti−1)) + K∆i N(−d1(x∗, ti−1))

− D(ti−1, ti)
−1B∗(ti − ti−1)

√
Ir(ti−1)N′(−d1(x∗, ti−1))

)
(59)

with O(εr + ελ) relative error. In a similar vein, for a Libor flow floored at K, we have

PV(i)
FlooredLibor ∼ B(0, ti)

(
K∆i N(d1(x∗, ti−1)) +

(
D(ti−1, ti)

−1 − 1
)

N(−d1(x∗, ti−1))

+ D(ti−1, ti)
−1B∗(ti − ti−1)

√
Ir(ti−1)N′(−d1(x∗, ti−1))

)
. (60)

On this occasion, none of the terms involving d1(·) should be neglected in calculating the model
uncertainty since they constitute the leading order impact of correlation. They furthermore impact
only one leg, not both, so there will be no cancellation between legs as in the previous case. Carrying
out the necessary differentiation, we obtain, for both the capped and the floored cases:
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Uncertainty ∼ ∆ρ

∣∣∣∣∣B(0, ti)
∂Irλ(ti−1)

∂ρ

N′(−d1(x∗, ti−1))√
Ir(ti−1)

(
D(ti−1, ti)

−1 − 1− K∆i

− D(ti−1, ti)
−1B∗(ti − ti−1)

√
Ir(ti−1)d1(x∗, ti−1)

)∣∣∣∣∣. (61)

Again, we ignore the second order impact of correlation through calibration. We mention for
completeness that, if the cap or floor is strongly in or out of the money, the uncertainty resulting
from (61) will be small and possibly comparable with that of the plain Libor. We may in that case look
to compute the latter separately using (44).

6. Conclusions

We have proposed a framework for the quantification of model risk in credit derivatives pricing
in circumstances where the correlation between rates and credit is either uncertain in its value or
not included in the calculation. We considered in particular the cases of (a) an interest rate swap
extinguisher, (b) a contingent CDS on an interest rate swap underlying, and (c) an extinguisher with
capped or floored Libor flows. We derived explicit analytic expressions for the model risk as a function
of the degree of uncertainty associated with the correlation, under an asymptotic assumption of the
interest rate and the credit default intensity being small and taking into account the potential impact
of correlation on model calibration. We propose that the results obtained are accurate enough for risk
management purposes.

Although the cases considered here involve rather simple modelling considerations, we suggest
that the approach advocated has much wider application, including for parameters other than
rates–credit correlation in other multi-factor models. In particular, it is possible to look at asymptotic
modelling involving also the price of a spot underlying such as an equity, an FX rate or an inflation rate.
These quantities could further be assumed to jump in value contingent on default. Modelling then
requires a three-dimensional diffusion process (possibly four, since two interest rates may appear, either
or both of which may be assumed stochastic). Pricing of defaultable FX swaps, quanto CDS, contingent
CDS on FX or equity options, convertible bonds and contingent convertible (CoCo) bonds can all
be handled and analytic expressions for model uncertainty obtained in the manner specified above.
For some examples of asymptotic formulae amenable to such analysis, see Turfus and Schubert (2017),
Turfus (2017c), Turfus (2017d), Turfus (2017e) and Turfus (2018). In cases where a possible jump at
default is assumed, the model uncertainty associated with uncertainty in the expected jump size can
also easily be obtained as an analytic expression.

Much work has also been done by other authors using perturbation approaches to obtain analytic
approximations for prices of numerous option types under local and/or stochastic volatility modelling
assumptions. See, for example, Pagliarani and Pascucci (2011), who considered equity option pricing
under a local volatility assumption, obtaining a perturbation expansion for the relevant Green’s
function much as we did here, and using it to derive asymptotic expressions for option prices. Their
approach was applied also to Asian option pricing in Foschi et al. (2013) and extended, with the
use of some Fourier analysis, to incorporate Lévy jumps in the dynamics of the spot underlying in
Pagliarani and Pascucci (2013). A review of a number of other papers which have presented asymptotic
pricing formulae in recent years has been given by Turfus and Schubert (2017). Our model uncertainty
methodology is potentially applicable also to the results of such work. An interesting prospect for
future work would be to combine asymptotic modelling of stochastic rates and local-stochastic volatility,
as was done by Funahashi (2015), and look at the resultant model uncertainty in options pricing.

Conflicts of Interest: The author declares no conflict of interest.
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Appendix A. Green’s Function

From the analysis of Turfus (2017a), we infer that the Green’s function solution of (25) can be
expanded as

G(x, y, t; ξ, η, v) =
∞

∑
i=0

∞

∑
j=0

Gi,j(x, y, t; ξ, η, v), (A1)

with Gi,j(·) = O(εr
iελ

j). We will for the present purposes be interested only in terms up to second
order, with consequent O(ε3

r + ε3
λ) errors in G(·). We will in all cases be interested in “free-boundary”

Green’s function solutions which tend to zero as x, y → ±∞. The leading order Green’s function
solution subject to these conditions is straightforwardly deduced. It is given by:

G0,0(x, y, t; ξ, η, v) = B(t, v)
∂2

∂ξ∂η
N2(ξ − xe−αr(v−t), η − ye−αλ(v−t); R(t, v)), t < v, (A2)

where N2(x, y; R(t, v)) is a bivariate Gaussian probability distribution function with mean 0 and
covariance matrix

R(t, v) :=

(
Ir(t, v) Irλ(t, v)
Irλ(t, v) Iλ(t, v)

)
(A3)

with

Ir(t1, t2) :=
∫ t2

t1

e−2αr(t2−u)σ2
r (u) du, (A4)

Iλ(t1, t2) :=
∫ t2

t1

e−2αλ(t2−u)σ2
λ(u) du, (A5)

Irλ(t1, t2) := ρ
∫ t2

t1

e−(αr+αλ)(t2−u)σr(u)σλ(u) du. (A6)

For future notational convenience, we also define

Ir(t) := Ir(0, t), (A7)

Iλ(t) := Iλ(0, t), (A8)

Irλ(t) := Irλ(0, t). (A9)

Following Turfus (2017a), we deduce at first order:

G1,0(x, y, t; ξ, η, v) = −
(

xB∗(v− t) +
I∗(t, v)

e−αr(v−t)
∂

∂x

)
G0,0(x, y, t; ξ, η, v) (A10)

and

G0,1(x, y, t; ξ, η, v) = −
∫ v

t
λ(t1)

(
Ey(e−αλ(t1−t)yt)Mt,t1 − 1

)
G0,0(x, y, t; ξ, η, v) dt1, (A11)

where we have defined

B∗(τ) :=
1− e−αrτ

αr
, (A12)

I∗(t, v) :=
∫ v

t
e−αr(v−u) Ir(t, u) du, (A13)

Mt1,t2 G0,0(x, y, t; ξ, η, v) := G0,0

(
x, y, t; ξ, η − e−αλ(v−t2) Iλ(t1, t2), v

)
. (A14)
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Proceeding to second order, we obtain

G2,0(x, y, t; ξ, η, v) =
∫ v

t

(
xe−αr(t1−t) +

Ir(t, t1)

e−αr(t1−t)
∂

∂x

) ∫ v

t1

(
xe−αr(t2−t) +

Ir(t1, t2)

e−αr(t2−t)
∂

∂x

)
G0,0(x, y, t; ξ, η, v) dt2dt1

+
∫ v

t

(
I∗(t, t1)− γ∗2,0(t1)

)
dt1G0,0 (x, y, t; ξ, η, v) , (A15)

G0,2(x, y, t; ξ, η, v) =
∫ v

t
λ(t1)

(
Ey

(
e−αλ(t1−t)yt

)
Mt,t1 − 1

) ∫ v

t1

λ(t2)
(
Ey

(
e−αλ(t2−t)yt

)
Mt1,t2 − 1

)
G0,0(x, y, t; ξ, η, v) dt2dt1

+
∫ v

t
λ(t1)Ey

(
e−αλ(t1−t)yt

) ∫ v

t1

λ(t2)Ey

(
e−αλ(t2−t)yt

)
(

exp
(

e−αλ(t2−t1) Iλ(t, t1)
)
− 1
)
Mt,t1Mt1,t2 G0,0(x, y, t; ξ, η, v) dt2dt1

−
∫ v

t
γ∗0,2(t1)Ey

(
e−αλ(t1−t)yt

)
Mt,t1 G0,0(x, y, t; ξ, η, v) dt1 (A16)

and

G1,1(x, y, t; ξ, η, v) =
∫ v

t

(
xe−αr(t1−t) +

Ir(t, t1)

e−αr(t1−t)
∂

∂x

) ∫ v

t1

λ(t2)
(
Ey

(
e−αλ(t2−t)yt

)
Mt1,t2 − 1

)
G0,0(x, y, t; ξ, η, v) dt2dt1

+
∫ v

t
λ(t1)

(
Ey

(
e−αλ(t1−t)yt

)
Mt,t1 − 1

) ∫ v

t1

(
xe−αr(t2−t) +

Ir(t1, t2)

e−αr(t2−t)
∂

∂x

)
G0,0(x, y, t; ξ, η, v) dt2dt1

+
∫ v

t

∫ v

t1

λ(t2)Ey

(
e−αλ(t2−t)yt

)
e−αλ(t2−t1) Irλ(t, t1)Mt1,t2 G0,0(x, y, t; ξ, η, v) dt2dt1

+
∫ v

t
λ(t1)Ey

(
e−αλ(t1−t)yt

)
B∗(v− t1)Irλ(t, t1)Mt,t1 G0,0(x, y, t; ξ, η, v) dt1

−
∫ v

t
γ∗1,1(t1)Ey

(
e−αλ(t1−t)yt

)
Mt,t1 G0,0(x, y, t; ξ, η, v) dt1. (A17)

Note that the order of integration between t1 and t2 has been reversed compared to Turfus (2017a).
It is a straightforward application of Fubini’s theorem to derive the alternative expressions from
the above.

Finally, determination of the unknown γ∗i,j(·) functions is achieved by calibration of our model
consistent with the no-arbitrage conditions (12) and (13). We must consider the consistent pricing in
the former case of a risk-free cash flow, and in the latter case of a risky cash flow, as we now show.

Appendix A.1. Calibration

Appendix A.1.1. Pricing of Risk-Free Cash Flow

The calculation for a risk-free cash flow in our model is very similar to that performed by
Horvath et al. (2017) and essentially corresponds to taking the distinguished limit as ελ → 0 then
εr → 0. The same result is naturally obtained, namely that f T

t = XT(x, t), where, with the convention
that Fi,j(x, t) = O(εr

iελ
j),

XT(x, t) ∼ D(t, T) (1− F1,0(x, t) + F2,0(x, t)) (A18)



Int. J. Financial Stud. 2018, 6, 39 18 of 20

with O(ε3
r ) errors, and our Green’s function gives rise to

F1,0(x, t) = xB∗(T − t), (A19)

F2,0(x, t) = 1
2 x2B∗(T − t)2 +

∫ T

t
(I∗(t, v)− γ∗2,0(v))dv. (A20)

Of interest to us here is the conclusion that, setting x = y = t = 0 in (A18), satisfying (12) above
to second order accuracy requires us to choose

γ∗2,0(t) = I∗(0, t), (A21)

which is O(ε2
r ), whence, on carrying out the required integration and using (A4), we can re-express

F2,0(x, t) = 1
2 (x2 − Ir(t))B∗(T − t)2 − I∗(0, t)B∗(T − t). (A22)

The second term here is the convexity correction associated with the chosen money market
numéraire, which term noticeably vanishes both at t = 0 and at t = T when the PV is
known deterministically.

Appendix A.1.2. Pricing of Risky Cash Flow

We continue by writing the price at time t of a risky (zero recovery) cash flow at time T as
f T
t = YT(xt, yt, t), noting that, in this case, P(x) = 1 and f T

0 = YT(0, 0, 0) = B(0, T). We look to
derive the general functional form of YT(.) implied by our model, and in the process to determine the
conditions on λ∗(t) necessary to satisfy (13) above. Applying our second order Green’s function to
this problem, we conclude

YT(x, y, t) ∼ B(t, T) (1− F1,0(x, t)− F0,1(y, t) + F2,0(x, t) + F1,1(x, y, t) + F0,2(y, t)) (A23)

with O(ε3
r + ε3

λ) error, where the Fi,0(x, t) are as defined above for i = 1, 2 and we deduce, following
Turfus (2017a),

F0,1(y, t) =
∫ T

t
λ(v)

(
Ey

(
e−αλ(v−t)yt

)
− 1
)

dv, (A24)

F0,2(y, t) = 1
2 F2

0,1(y, t)−
∫ T

t
γ∗0,2(v)Ey

(
e−αλ(v−t)yt

)
dv

+
∫ T

t
λ(v)Ey

(
e−αλ(v−t)yt

) ∫ v

t
λ(u)Ey

(
e−αλ(u−t)yt

) (
exp

(
e−αλ(v−u) Iλ(u)

)
− 1
)

du dv, (A25)

F1,1(x, y, t) = xB∗(T − t)F0,1(y, t)−
∫ T

t
γ∗1,1(v)Ey

(
e−αλ(v−t)yt

)
dv

+
∫ T

t
λ(v)Ey

(
e−αλ(v−t)yt

) ∫ v

t
e−αλ(v−u) Irλ(u) du dv

+
∫ T

t

∫ v

t
λ(u)Ey

(
e−αλ(u−t)yt

)
e−αr(v−u) Irλ(u) du dv. (A26)

Setting x = y = t = 0, we find that the no-arbitrage condition YT(0, 0, 0) = B(0, T) is satisfied by
the expression in (A23) to second order accuracy iff we choose

γ∗0,2(t) = λ(t)
∫ t

0
λ(u)

(
exp

(
e−αλ(t−u) Iλ(u)

)
− 1
)

du, (A27)

γ∗1,1(t) =
∫ t

0

(
λ(t)e−αλ(t−u) + λ(u)e−αr(t−u)

)
Irλ(u) du, (A28)

which areO(ε2
λ) andO(εrελ), respectively. This completes the calibration of our model to second order.
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