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Abstract: A new method for pricing contingent claims based on an asymptotic expansion
of the dynamics of the pricing density is introduced. The expansion is conducted in a
preferred coordinate frame, in which the pricing density looks stationary. The resulting
asymptotic Kolmogorov-backward-equation is approximated by using a complete set of orthogonal
Hermite-polynomials. The derived model is calibrated and tested on a collection of 1075 European-style
‘Deutscher Aktienindex’ (DAX) index options and is shown to generate very precise option prices and
a more accurate implied volatility surface than conventional methods.
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1. Introduction

Modern financial markets contain a rich variety of liquidly traded vanilla and exotic
contracts, contingent on a large number of underlyings. A key requirement in such dense
markets is the consistent valuation of novel and existing derivative contracts to rule out arbitrage
opportunities. Because of market incompleteness, there is no unique risk-neutral Martingale measure,
and hence no unique risk-neutral probability density for valuing such contracts. The necessary
information on risk premia has to be extracted from the observed derivative prices. This is
accomplished by calibrating a specific model to the available data. Usually, such models
are stochastic path models for the underlying, which are calibrated to fit observed option
prices (prominent examples are Bates 1996; Heston 1993; Kou 2002), or observed Black–Scholes implied
volatilities (for example the SABR model of Hagan et al. 2002). A closely related and successful
approach is to parameterize the implied volatility smile and skew, for example as suggested in
(Gatheral 2004, 2006, p. 37), for different times to maturity, and to smoothly connect the time slices,
eliminating calendar spread arbitrage opportunities. Sufficient conditions for elimination of static
arbitrage are provided in Carr and Madan (2005), and an efficient method for computing arbitrage-free
implied volatility surfaces was introduced by Fengler (2009).

A conceptionally different idea is to estimate the arbitrage-free pricing density directly from
available European plain vanilla call prices. This approach is based on the observation of
Breeden and Litzenberger (1978) that the pricing density is given by the undiscounted second derivative
of the European plain vanilla call price. Some suggested methods of this kind can be found in the
works of Ait-Sahalia and Duarte (2003); Ait-Sahalia and Lo (1998); Bondarenko (2003); Figlewski (2010);
Hlavka and Svojik (2009); Huynh et al. (2002); Yatchew and Haerdle (2006). A recent approach by
Filipović et al. (2012) stipulates a so-called ‘Master Equation’ for the time evolution of a fairly general
class of admissible pricing densities, and provides some examples. Even though the idea is vaguely
similar, the method suggested in this paper is entirely different.
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The key idea in the approach suggested here is to generate modified dynamics of the arbitrage-free
pricing density by asymptotic expansion around the classical Black-Scholes dynamics of complete
markets. Asymptotic analysis has proven a very potent tool in deriving new results over the
last fifteen years (see for example Basu and Ghosh 2009; Hagan et al. 2002; Kim 2002; Mazzoni 2015;
Medvedev and Scaillet 2003; Uchida and Yoshida 2004; Whalley and Willmot 1997) whenever certain
parts of a problem can be assumed as small. The first step in this approach is to express the complete
market dynamics of the risk-neutral pricing density in a new coordinate frame, where it looks stationary.
In such a frame, the transition density has to be Dirac’s delta function. If the dynamics of an incomplete
market do not deviate too heavily from those of the complete market, it can be assumed that the
singular transition density is only a first-order approximation of a narrow transition kernel of the
order O(ε∆t) for short time intervals ∆t. Pursuing this avenue leads to an asymptotic version of
the Kolmogorov-backward-equation for the excess dynamics of the incomplete market. This partial
differential equation (PDE) can be solved approximately with the help of a complete set of orthogonal
functions and a few additional assumptions, primarily related to the smallness of the asymptotic terms.

The idea of using a complete set of orthogonal functions to represent an unknown probability
density function is not new. Ait-Sahalia (2002) advanced the Gram–Charlier-series of type A,
utilizing Hermite-polynomials orthogonal to the weighting function e−x2/2 to represent an unknown
probability density. This approach has the advantage that the expansion has a leading Gaussian
term and the coefficients are proportional to the cumulants of the approximated density. Since then,
Hermite-polynomials or cumulant expansions, respectively, were also used in derivative pricing
(c.f. Habtemicael and SenGupta 2016a, 2016b; Mazzoni 2010; Xiu 2014). Even though the suggested
approach is superficially similar to the work of Xiu (2014), it is based on a completely different idea
and has very different implications. Xiu (2014) follows the classical way of representing the unknown
pricing density by a Gram-Charlier-series and solving the resulting Feynman-Kac PDE. There are two
major drawbacks involved. Firstly, following the derivation of Ait-Sahalia (2002), there are powers
of the infinitesimal generator of the original diffusion involved in the computation of the cumulants.
Those terms are exceedingly complicated and have to be evaluated with a computer algebra system,
but more importantly, they are model-dependent. Secondly, the Gram-Charlier-series is not an asymptotic
series in the proper sense (for an excellent discussion of this issue see Blinnikov and Moessner 1998).
Thus, the more expansion terms are involved, the faster the series degenerates, even if the deviation
from normality is merely moderate. The approach suggested here is completely model-independent.
It derives an asymptotic version of the Kolmogorov-backward-PDE from first principles. This equation
contains unknown functions to be represented in terms of an orthogonal series expansion using
Hermite-polynomials, orthogonal with respect to the weighting function e−x2

. This version of the
Hermite-polynomials is much more robust with respect to deviations from normality and is usually
only limited by numerical issues. Of course the coefficients of the orthogonal series expansion have no
connection to the cumulants of the unknown density function. They are instead determined explicitly
from a system of ordinary differential equations and are related to the empirically observed deviations
from normality.

Several aspects of the resulting valuation method are investigated, based on a collection of 1075
European-style index options, contingent on the ‘Deutscher Aktienindex’ (DAX) index. Because of the
decreasing interest rate term structure and some other exceptional market conditions due to the Euro
crisis, and the large number of available contracts with bid-offer spreads below 1%, the DAX index
is an optimal laboratory to survey the properties of the suggested method. In particular, it is shown
that it generates very precise in- and out-of-sample option prices, and that the characteristics of the
implied volatility surface are reconstructed quite satisfactorily over wide ranges of moneyness and
time to maturity. The remainder of the paper is organized as follows:

Section 2 sets the scene for the asymptotic expansion of the incomplete market transition
kernel. Departing from the classical risk-neutral geometrical Brownian motion and the corresponding
time-dependent probability density function, the stationary coordinate frame transformation is
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introduced. Subsequently, the transition density is asymptotically expanded to derive the general
equation for the excess dynamics due to market incompleteness. Finally, the unknown functions in
this equation are expressed in a suitable way for model fitting.

In Section 3 a complete set of orthogonal functions based on Hermite-polynomials is introduced,
in order to approximately solve for the incomplete market dynamics. In the process, the partial
differential equation is transformed into a solvable linear system of ordinary differential equations.
Furthermore, the constituents can be computed recursively. It turns out that there is an intimate
connection between the resulting formula for the time-dependent pricing density and option pricing
by quadrature methods, which is also elaborated at the end of this section.

In Section 4 the resulting model is calibrated to market data. To this end, a quadratic objective
function is defined, which is to be minimized. It is shown that the gradient of this objective function
can be computed analytically, which is instrumental for parameter estimation with quasi-Newton
methods. The results of the calibration procedure are discussed and compared across different model
configurations. The order of relative pricing error in the suggested framework is reduced to the order
of bid-offer spreads of the contracts in the calibration sample.

Section 5 investigates the quality of the implied volatility surface, generated by the calibrated
model. Because many contract types are highly vega-sensitive, implied volatility characteristics are of
particular importance. The suggested method is benchmarked against two state-of-the-art approaches:
the SABR model of Hagan et al. (2002) and the stochastic volatility inspired (SVI) parametrization of the
local volatility surface by Gatheral and Wang (2012), associated with a most likely path approximation.
It is shown that both alternatives provide an inferior fit, compared to the conditional density approach
suggested here.

In Section 6 a collection of 171 European-style capped call and put options are valued.
Those options were not included in the calibration sample and hence form an independent validation
sample. It is also shown how to value contracts with arbitrary payoff functions with Monte Carlo
simulation. This matter is not trivial, because one is not able to draw directly from the arbitrage-free
pricing distribution. Two alternatives—a multinomial approximation and an importance sampling
method—are detailed. The results are again in favor of the conditional pricing density approach.

Section 7 concludes the paper with a summary of the results and a discussion of the pros and cons
of the suggested method.

2. Asymptotic Expansion of the Pricing Density

Assume a probability space (Ω,F , P) is fixed, equipped with a natural filtration F0 ⊆ Ft ⊆ F ,
generated by the P-measurable price processes of the underlying and all derivatives contingent on it,
and with all null sets contained in F0. Classical theory (Black and Scholes 1973; Black 1976) entails a
unique risk-neutral Ito-process

dFt = σFtdWt (1)

under the T-forward measure QT , such that the value of an arbitrary vanilla type contract1, contingent
on its payoff at maturity, is given by

V(St, t) = B0(t; T)EQT
[
V(FT , T)

∣∣∣Ft

]
. (2)

In Equation (2), B0(t; T) is a zero-coupon bond with unit face value maturing at time T, and Ft is
the forward price of the underlying S. The classical model is rejected with overwhelming empirical
proof, partly because of oversimplified assumptions, for example the volatility σ in (1) is assumed
constant and known, and partly because it does not properly reflect all sources of (systematic) risk.

1 In this context, a contract is called vanilla, if it is not path dependent and contains no embedded decisions.
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An example for the latter are jump risks. An attempt to overcome this problem is the jump diffusion
model of Merton (1976) but in order to preserve market completeness and hence the uniqueness of
the pricing measure, jump risks have to be considered purely idiosyncratic, which is barely a realistic
assumption (cf. Lewis 2002). Other risks not accounted for are liquidity risks, default risks, and even
model risks.

Even though other models like those of Heston (1993), Bates (1996) or Hagan et al. (2002)—which
are designed to work properly in incomplete markets after calibration to market data—are
extraordinary successful, results of the Black–Scholes model are approximately correct in many
situations. Therefore, it seems quite natural to expand around the Black–Scholes solution to obtain
a valid result in an incomplete market setup, as long as the deviation from completeness is not too
extreme. To set the scene for such an expansion, the time-dependent probability density of the path
model (1) is subjected to some basic transformations.

Let xt = log Ft be the logarithm of the forward price of the underlying. Due to Ito’s lemma,
the (risk-neutral) probability density function of x is governed by the Fokker–Planck-equation

∂

∂t
qX(x, t) =

1
2

σ2
(

∂

∂x
+

∂2

∂x2

)
qX(x, t), qX(x, t0) = δ(x− x0), (3)

with δ indicating Dirac’s delta function. The solution to this PDE problem can be obtained with
standard methods like Fourier-transform and is known to be

qX(x, t) =
1√

2πσ2(t− t0)
e
− 1

2

(
x−x0+

1
2 σ2(t−t0)

σ
√

t−t0

)2

, for t > t0. (4)

Note that this density is singular at t = t0, which is not a problem because one valid
definition of the delta function is in terms of the limit of a sequence of functions like Equation (4),
δ(x− x0) = limt→t0 qX(x, t) = qX(x, t0), (cf. Lighthill 1980, chp. 2.2). One merely has to remember that
the initial density is not given by Equation (4), but by its limit. This is an important point for the
following transformation, which is singular at t = t0, but the limit relation still holds. Define new
coordinates z(x, t) and τ(x, t), with

z =
x− x0 +

1
2 σ2(t− t0)

σ
√

t− t0
,

τ =
√

t− t0.

(5)

After the transformation qX(x, t)dx = qZ(z, τ)dz, the risk-neutral probability density is
qZ(z, τ) = φ(z), with φ(z) = (2π)−1/2 exp(−z2/2) indicating the standard normal probability density
function. In this new coordinates the probability density is stationary and standardized, making this
particular coordinate system appear more fundamental than all others (a proof of the stationarity of
the transformation is provided in Appendix A). It serves indeed as a laboratory frame for investigating
the deviations from the Black–Scholes solution in that the asymptotic expansion is constructed in this
frame. The PDE problem in the (z, τ) coordinates, corresponding to the problem in Equation (3) in the
(x, t)-coordinates, is

∂

∂τ
qZ(z, τ) = 0, qZ(z, 0) = φ(z). (6)

As discussed previously, one has to remember that qZ(z, 0) is only the limit of qZ(z, τ) when
τ → 0, because the coordinate transformation is singular at τ = 0.

The universal statement implied by Equation (6) is that in the Black-Scholes world, the standardized
risk neutral pricing density is Gaussian and remains Gaussian at all times. One would expect the pricing
density to deviate from this stationary density in incomplete markets, reflecting the unhedgeable
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systematic risk structure of such markets. This deviation is implemented in the next paragraph by
asymptotic expansion.

2.1. Asymptotic Deviation from Market Completeness

In order to determine the mechanism for the deviation from the Black–Scholes solution, write the
pricing density in terms of the law of total probability

qZ(z, τ + ∆τ) =
∫ ∞

−∞
qZ(z, τ + ∆τ|y, τ)qZ(y, τ)dy. (7)

Observe that in the Black–Scholes framework the transition density has to be given by
qZ(z, τ + ∆τ|y, τ) = δ(y− z) in order for Equation (7) to obey the degenerate dynamics in Equation (6).
The key idea of the approach is to assume that in incomplete markets this transition density deviates
from the delta function, and that the systematic risk structure, however it may be composed, is encoded
in the way the transition kernel deviates.

To make this idea more precise, account for some boundary conditions. First, in the limit
∆τ → 0 the transition density has to be the delta function because Equation (7) becomes an identity.
Thus, one can conclude that the space–time interval, occupied by the transition kernel, has to be
proportional to ∆τ for short times (∆τ � 1). Second, the Black–Scholes framework often generates
useful approximative results, thus the spatial expanse of the transition kernel per unit of ∆τ should be
small, indicated by ε. Putting these arguments together, one concludes that the space–time volume
occupied by the transition kernel should be roughly of order ε∆τ. Next, Taylor-expand the initial
density qZ(y, τ) around z to obtain

qZ(y, t) =
∞

∑
n=0

(y− z)n

n!

(
∂

∂z

)n
qZ(z, τ), (8)

and define the auxiliary functions

Mn(z, τ; ∆τ) =
∫ ∞

−∞
(y− z)nqZ(z, τ + ∆τ|y, τ)dy. (9)

Now Equation (7) can be expressed in terms of a Taylor-like series expansion

qZ(z, τ + ∆τ) =
∞

∑
n=0

Mn(z, τ; ∆τ)

n!

(
∂

∂z

)n
qZ(z, τ), (10)

which is very similar to the Kramers–Moyal-backward-expansion (Risken 1989, chp. 4.2). However, this
similarity is only superficial, because the integration in Equation (9) is with respect to the conditioning
variable y, which means that Mn is not a transition moment and Equation (10) is merely a formal series
expansion. Because the transition kernel becomes the delta function in the limit ∆τ → 0, it follows
immediately that M0(z, τ; 0) = 1 and Mn(z, τ; 0) = 0 for all n ≥ 1. If qZ(z, τ + ∆τ|y, τ) is sufficiently
smooth, which is a very mild requirement, Mn(z, τ; ∆τ) can be expanded itself around ∆τ = 0 and
one obtains

Mn(z, τ; ∆τ) = 0 + fn(z, τ)εn∆τ + O(εn∆τ2), (11)

for n ≥ 1, with the yet unknown functions fn(z, τ). Remember that the transition kernel occupies a
space–time volume of order ε∆τ. Therefore, the n-th order auxiliary function has to be roughly of
order εn∆τ. Putting all pieces together one obtains

∂

∂τ
qZ(z, τ) = lim

∆τ→0

qZ(z, τ + ∆τ)− qZ(z, τ)

∆τ
=

∞

∑
n=1

fn(z, τ)εn

n!

(
∂

∂z

)n
qZ(z, τ). (12)
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Clearly one cannot compute the entire sum on the right hand side of Equation (12) and thus
usually a decision has to be made with respect to the terms to abandon. Often terms up to O(ε2) are
considered and all higher orders are neglected. The situation here is different. Because qZ(z, τ) is
a probability density, which by definition is nonnegative everywhere, the Pawula theorem applies
(cf. Risken 1989, chp. 4.3). This remarkable theorem proves that considering the first two terms of the
expansion in Equation (12) is the best possible approximation available, without considering the last
term at infinity. In this case, the contribution from higher-order terms diminishes, because of their
order in ε. Hence, if it is assumed that the contribution of terms of infinite powers of ε vanishes, it can
be concluded that the approximation including O(ε2) terms has to be exact. One therefore obtains
instead of Equation (6) an asymptotic version of the Kolmogorov-backward-equation

∂

∂τ
qZ(z, τ) = ε f1(z, τ)

∂

∂z
qZ(z, τ) +

ε2

2
f2(z, τ)

∂2

∂z2 qZ(z, τ), qZ(z, 0) = φ(z), (13)

with the yet unknown functions f1(z, τ) and f2(z, τ), encoding all information about the deviation of
the systematic risk structure from the classical Black–Scholes world. The next step is to determine these
unknown functions.

2.2. Decoding Market Information

Because of the extremely rich structure of systematic market risk, model-guided determination
of the functions fn(z, τ), apart from a few special cases discussed subsequently, may be generally
impossible. Thus, some assumptions have to be made, allowing for the tractable incorporation of
observed empirical information. The following discussion is focused on the O(ε) function f1(z, τ) but
all arguments carry over to the O(ε2) term. The first assumption is that the function is time separable
and that it has the form

ε f1(z, τ) = e−γτa(z), (14)

where the small number ε is soaked up in the function a(z). There are several reasons for this
particular choice:

• Recall that the (z, τ) coordinates are already dynamically scaled and hence, only the excess
dynamics are to be modeled. These dynamics are governed by additional risk structure, unfolding
over time. For example, liquidity risk is of minor importance in short-term scenarios but has to be
accounted for over longer holding periods. Jump risk contributes to the steepness of the short
term implied volatility smile, but does not affect the long-term structure. If all the additional risk
structure is fully deployed, the deformation of the pricing density is completed. This behavior is
induced in Equation (14).

• This particular choice reproduces some known standard results. For example, in the limit γ→ ∞
one obtains the classical Black-Scholes solution. As a second example, imagine a completely illiquid
market, such that even static hedging is not possible. The choice γ = 0 and a(z) = −µ/σ yields the
solution qZ(z, τ) = φ(z− µτ/σ), which after retransformation to (x, t)-coordinates is immediately
recognized as the time-honored actuarial pricing density under P (cf. Derman and Taleb 2005).

• The plain exponential model for the time dependence is the most parsimonious parametrization
of the problem. By this choice, the subsequent calibration procedure is simplified considerably.
Even if this model is oversimplified in that it implies the whole risk structure to unfold in a
synchronized way, it seems to be at least a good starting point.

The second assumption, essential for recursive computation of the pricing density as shown in the
next section, is that a(z) is sufficiently smooth to be expanded into a power series, a(z) = ∑∞

k=0 akzk.
This is again a relatively mild technical condition. The whole problem now becomes

∂

∂τ
qZ(z, τ) = e−γτ

(
∞

∑
k=0

akzk ∂

∂z
qZ(z, τ) +

∞

∑
k=0

bkzk ∂2

∂z2 qZ(z, τ)

)
, (15)
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again with initial condition qZ(z, 0) = φ(z). Obviously, the sums in Equation (15) cannot be calculated
either. However, one can expect very few coefficients to contribute to the sums for the following line
of reasoning: Departing from the initial standard Gaussian density, roughly 32% of the probability
mass is located at |z| > 1. The outer region of the density would be exposed to violent deformations if
for large k the term akzk or bkzk contributes, respectively. Because the Black–Scholes solution is a good
approximation, the deviation from normality has to be moderate, and hence higher order coefficients
have to be minute.

3. Computation of the Pricing Density

In order to solve the PDE (15) at least approximately, the pricing density is rewritten in terms of a
complete orthogonal system

qZ(z, τ) =
∞

∑
n=0

cn(τ)ψn(z), with ψn(z) =
Hn(z)e−

z2
2√

2nn!
√

π
. (16)

In Equation (16), Hn(z) represents the n-th Hermite-polynomial, orthogonal to the weight
function e−z2

defined by Hn(z) = (−1)nez2
(d/dz)ne−z2

. Observe that this is neither Gram–Charlier-,
nor Edgeworth-expansion2, which are both constructed from orthogonal functions with respect to the
weight function e−z2/2, but a generalized Fourier-series with correctly normalized orthogonal functions,
such that ∫ ∞

−∞
ψn(z)ψm(z)dz = δn,m (17)

holds, with the Kronecker-delta δn,m. Observe further that every orthogonal function ψn(z), apart from
a constant, contains a standard Gaussian term. Thus, this orthogonal system is particularly
well-suited for the problem at hand. Of course, one has to fix a maximum number of expansion
terms to be included, but for small deviations from the normal distribution the series converges
well (Blinnikov and Moessner 1998).

The advantage offered by the Fourier-series expansion is the separation of time and spatial
dependence. Using this advantage, the time dependent values of the Fourier-coefficients in
Equation (16) can be computed by solving an ordinary first-order differential equation system.

Proposition 1. The Fourier-coefficients cn(τ) for n = 0, 1, 2, . . . are determined by the solution of the infinite
dimensional matrix/vector differential equation

d
dτ

c(τ) = e−γτ

(
∞

∑
k=0

ak A(k) +
∞

∑
k=0

bkB(k)

)
c(τ), with

A(k)
n,m =

∫ ∞

−∞
zkψn(z)

(
d
dz

ψm(z)
)

dz and B(k)
n,m =

∫ ∞

−∞
zkψn(z)

(
d2

dz2 ψm(z)
)

dz,

(18)

where c(τ) is the vector containing the coefficients c0(τ), c1(τ), c2(τ), and so forth.

2 See Blinnikov and Moessner (1998) for an excellent survey of both expansions and their properties.
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Proof. Computing the nth Fourier-coefficient and using Equation (15), one obtains

d
dτ

cn(τ) =
∫ ∞

−∞
ψn(z)

(
∂

∂τ
qZ(z, τ)

)
dz

= e−γτ
∞

∑
k=0

(
ak

∫ ∞

−∞
zkψn(z)

(
∂

∂z
qZ(z, τ)

)
dz

+ bk

∫ ∞

−∞
zkψn(z)

(
∂2

∂z2 qZ(z, τ)

)
dz

)
.

(19)

Again substituting the complete orthogonal system in Equation (16) for the density function qZ(z, τ) yields

d
dτ

cn(τ) = e−γτ
∞

∑
m=0

cm(τ)
∞

∑
k=0

(
ak

∫ ∞

−∞
zkψn(z)

(
∂

∂z
ψm(z)

)
dz

+ bk

∫ ∞

−∞
zkψn(z)

(
∂2

∂z2 ψm(z)
)

dz

)
.

(20)

Identifying the integrals as elements

A(k)
n,m =

∫ ∞

−∞
zkψn(z)

(
d
dz

ψm(z)
)

dz and B(k)
n,m =

∫ ∞

−∞
zkψn(z)

(
d2

dz2 ψm(z)
)

dz (21)

of the matrices A(k) and B(k), the problem in Equation (20) can be rewritten in matrix/vector form as

d
dτ

c(τ) = e−γτ

(
∞

∑
k=0

ak A(k) +
∞

∑
k=0

bkB(k)

)
c(τ), (22)

which is the desired result.

It turns out that the matrices A(k) and B(k) can be computed recursively, exploiting particular
properties of the Hermite-polynomials contained in the orthogonal functions. This is a very convenient
fact, because recursive patterns can be efficiently implemented on a computer. The procedures are
detailed in the next paragraph.

3.1. Recursive Computation of the Matrix Entries

The computation scheme for the entries of the matrices A(k) and B(k) is given in the
subsequent proposition.

Proposition 2. For C(k) = A(k) or C(k) = B(k), the following recursion holds

C(k)
n,m =

√
n
2

C(k−1)
n−1,m +

√
n + 1

2
C(k−1)

n+1,m, (23)

with initial conditions

A(0)
n,m =

√
m
2

δn,m−1 −
√

m + 1
2

δn,m+1 and

B(0)
n,m =

√
m(m− 1)

2
δn,m−2 −

2m + 1
2

δn,m +

√
(m + 1)(m + 2)

2
δn,m+2.

(24)

Proof. In order to compute the entries of the matrices A(k)
n,m and B(k)

n,m, two essential properties
of Hermite-polynomials are used. First, the recursive relation between the polynomials
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and their derivatives (d/dz)Hm(z) = 2mHm−1(z), and second, the recurrence relation
Hn+1(z) = 2zHn(z)− 2nHn−1(z) (cf. Abramowitz and Stegun 1970, p. 782). From property number 1
and the definition of the orthogonal functions (16), one immediately obtains

d
dz

ψm(z) =
√

m
2

ψm−1(z)−
√

m + 1
2

ψm+1(z), (25)

and thus for k = 0,

A(0)
n,m =

√
m
2

δn,m−1 −
√

m + 1
2

δn,m+1 and

B(0)
n,m =

√
m(m− 1)

2
δn,m−2 −

2m + 1
2

δn,m +

√
(m + 1)(m + 2)

2
δn,m+2

(26)

follow from the orthonormality in Equation (17). From the recurrence relation, one obtains in terms of
the orthogonal functions

zψn(z) =
√

n
2

ψn−1(z) +

√
n + 1

2
ψn+1(z), (27)

which yields the recursive relation

C(k)
n,m =

√
n
2

C(k−1)
n−1,m +

√
n + 1

2
C(k−1)

n+1,m (28)

for both matrices C(k) = A(k) and C(k) = B(k), respectively.

Note that in the exact case of Equation (18) there are infinitely many matrices of infinite dimensions.
Thus, one has to decide how many terms of the orthogonal expansion to include in the computation,
and which terms of the power series expansion of the unknown functions a(z) and b(z) to abandon.
The former is primarily a technical question of convergence of the Fourier-series, while the latter is a
question of approximating the dynamics of the risk structure correctly. Both are strongly related to the
degree of deviation from normality, but only the coefficients ak and bk immediately affect the model
calibration process. Because it is impossible to determine beforehand which terms of both expansions
might be neglected, different alternatives are compared in Section 4.

3.2. Fourier-Coefficients and Pricing Density

Once the approximations are fixed, the Fourier-coefficients can be calculated immediately.
Knowing all constituents of the matrices A(k) and B(k) from the recursive scheme in Proposition 2,
the system of ordinary differential Equation (18) can be solved

c(τ) = exp

[∫ τ

0
e−γs

(
Ka

∑
k=0

ak A(k) +
Kb

∑
k=0

bkB(k)

)
ds

]
c(0)

= exp

[
1− e−γτ

γ

(
Ka

∑
k=0

ak A(k) +
Kb

∑
k=0

bkB(k)

)]
c(0),

(29)

with c0(0) = (4π)−1/4 and cn(0) = 0 for n ≥ 1, and exp[. . .] denoting the matrix exponential. There are
several alternative methods for calculating a matrix exponential (cf. Moler and van Loan 2003),
such that Equation (29) is quite explicit. Thus, the whole pricing density can be approximated by

qZ(z, τ) ≈ 4√4π φ(z)
N

∑
n=0

cn(τ)√
2nn!

Hn(z), (30)
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or after retransformation into (x, t)-coordinates

qX(x, t) ≈
4
√

4π

σ
√

t− t0
φ

(
x− x0 +

1
2 σ2(t− t0)

σ
√

t− t0

)

×
N

∑
n=0

cn(
√

t− t0)√
2nn!

Hn

(
x− x0 +

1
2 σ2(t− t0)

σ
√

t− t0

)
.

(31)

The retransformation however is of little practical use, because the payoff function of an arbitrary
contingent claim can be easily transformed into (z, τ)-coordinates.

Determination of the power series coefficients ak and bk is a matter of calibration to market data
and has to be done numerically. Completing this procedure results in a model for the time evolution of
the arbitrage-free pricing density, conditional on the information set Ft, representing the market view
of future risks as it stands today. There is no requirement for interpolation or even extrapolation like
in case of nonparametric estimates of implied volatility surfaces. However, one big assumption has
been made about the time separability of the unknown functions in Equation (13) and the temporal
structure of risks in Equation (14). As stated above, this assumption may be oversimplified, leaving a
margin for enhancement of the model fit, at the cost of increased complexity.

3.3. Pricing Vanilla Contracts

One major drawback of the pricing density (Equations (30) and (31)) is that analytical valuation of
vanilla contracts is much harder than in the Black–Scholes case, where all higher polynomial terms Hn

vanish. However, there is a very convenient and computationally efficient way of pricing derivatives
numerically, based on Gauss–Hermite-quadrature. The value of a vanilla contract at time t0 = 0,
maturing at time t = T is given by

V(S0, 0) = B0(0; T)EQT
[
V(FT , T)

∣∣∣F0

]
= B0(0; T)

∫ ∞

−∞
V
(

F0ezσ
√

T− 1
2 σ2T , T

)
qZ(z,

√
T)dz.

(32)

The connection between the forward price and the stock price at t0 is given by F0 = S0/B0(0; T).
Because qZ(z, τ) has a leading standard normal density function, the integral can be approximated by
a weighted sum

V(S0, 0) ≈ B0(0; T)
J

∑
j=1

wjV
(

F0ez(j)σ
√

T− 1
2 σ2T , T

)
4√4π

N

∑
n=0

cn(
√

T)√
2nn!

Hn(z(j)), (33)

with wj indicating the Gauss–Hermite-quadrature weights and z(j) the corresponding quadrature
points. All necessary information about weights and points can be extracted from the eigensystem of
the matrix,

M =



0
√

1 0 . . . 0
√

1 0
√

2
...

0
√

2
. . . . . . 0

...
. . . 0

√
j− 1

0 . . . 0
√

j− 1 0


, (34)

cf. Golub (1973). The eigenvalues of M are the quadrature points, whereas the corresponding
weights are given by the squared first components of the corresponding normalized eigenvectors.
The quadrature is exact for polynomials up to a degree of 2j − 1, indicating an intimate relation
between the Hermite-polynomials involved and the necessary number of quadrature points. However,
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the payoff function of plain vanilla calls and puts is not polynomial, leaving Equation (33) as an
approximation.

Observe that not all terms in (33) rely on the full information of an individual contract.
The Fourier-coefficients cn(

√
T) for example only depend on the time to maturity of the contract,

whereas the Hermite-polynomials Hn(z(j)) do not depend on the contract at all. This suggests
an efficient way of pricing individual contracts. Defining the vector V(m) with components
V(m)

j = wjVm
(

F0ez(j)σ
√

T− 1
2 σ2T , T

)
and the matrix H, with Hj,n = 4

√
4π/
√

2nn!Hn(z(j)), the fair value
of the m-th contract is given by

Vm(S0, 0) ≈ B0(0; T)(V(m))′Hc(
√

T), (35)

where H has to be computed only once, and c(
√

T) only once for each expiry of the whole set
of contracts.

Equipped with both a model for the time evolution of the arbitrage-free pricing density and a
method for pricing plain vanilla options in this framework, the next step is calibrating the model to
market data.

4. Calibration to Market Data

The model calibration process primarily contains three more or less interdependent tasks:

• Determination of a sufficient number of Fourier-terms to be included in the approximation.
• Determination of the optimal model order Ka and Kb.
• Estimation of the model parameters γ, ak, bk based on the available empirical data.

The determination of the optimal number of Fourier-coefficients is only weakly related to the
model order. It is primarily affected by the degree of deviation from normal. The more extensive the
deviation is, the more terms are required for the orthogonal series expansion to converge. Theoretically,
an arbitrary probability density can be approximated with sufficient precision by simply including
enough expansion terms. Practically, numerical problems have to be considered if the desired density
function deviates extensively from the standard normal. Because of finite numerical precision, at some
point including additional terms is no longer beneficial because of rounding errors, effectively
limiting the manageable degree of deviation from normal. Beyond this limit, artifacts like local
negative densities may occur, which cannot be removed or may even be amplified by involving more
expansion terms.

Both remaining determinations are strongly interdependent in that a sufficient model order can
only be identified by judging the fit accomplished by different models. To this end, all potentially
qualifying candidates have to be estimated. This is done numerically by a Newton–Raphson type
scheme, associated with a prespecified objective function. Usually, a weighted sum of squared errors
is to be minimized. In this case

Q =
M

∑
m=1

e−βm

(
Vm −VObs.

m

VObs.
m

)2

(36)

is used, with VObs.
m indicating the observed mid-price of the m-th contingent claim. The weight factor

βm may be chosen to reflect uncertainty induced by the magnitude of the bid-offer spread. In the study
at hand, a large number of vanilla derivatives with spreads below 1% was available, and thus the
individual weight factors were set to βm = 0 for m = 1, . . . , M.

4.1. Data Description

In this analysis, a total of 433 European plain vanilla call options and 471 put options on the
‘Deutscher Aktien’ (DAX) index, quoted as per closing prices on 23 of July 2012, were available. In this
case, 501 of these 904 contracts exhibited a bid-offer spread smaller or equal to 1% and thus were used
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for model calibration. Additionally, 95 capped calls and 76 capped puts of the same date were used as
a validation sample, although they could have been as well used for calibration3.

Figure 1 shows the relative pricing error under the Black–Scholes model for the 501 low spread
contracts. The DAX index itself was quoted at 6419.33 points and the annualized at-the-money (ATM)
implied volatility was about 22.5%.

Figure 1. Relative pricing error of European plain vanilla calls (blue) and puts (red) under Black–Scholes.

The interpolated call (blue) and put (red) surfaces in Figure 1 indicate that the relative error under
Black–Scholes is moderate for in-the-money contracts, but grows formidable for out-of-the-money
contracts. By using the right pricing density, both surfaces should be flattened out in time-to-maturity,
as well as in moneyness direction.

The term structure and hence the prices of zero-coupon bonds of different maturities were
extracted from the calibration sample as well by using put-call parity. After simple algebraic
manipulations the bond price is explicitly given by

B0(0; T) =
S0 − C(S0; K, T) + P(S0; K, T)

K
. (37)

The yield curve extracted from the zero-coupon bond prices is inverted, falling from a 2.25%
return for 4 weeks time to maturity to approximately 0.42% for an 18-month bond. This shape of the
yield curve is due to the sovereign dept crisis, affecting the Euro area since 2010.

Based on the empirical data, the next step is calibrating the model and identifying a suitable model
order. To this end, the whole set of parameters has to be estimated for different model alternatives.

4.2. Gradient of the Objective Function

Define the whole parameter vector θ = (γ, a0, . . . , aKa , b0, . . . , bKb)
′, for a given model. A suitable

estimate for θ can be obtained recursively, departing from a given initial configuration, by an iterative
Newton–Raphson type scheme

θ̂(i+1) = θ̂(i) − αiH(θ̂(i))−1∇Q(θ̂(i)). (38)

In Equation (38) αi indicates an individual step size factor, determined by step halfing or trust
region methods4,H is a model Hessian, for example the identity matrix, resulting in a steepest descent

3 All data was provided by a service of ‘SIX Financial Information’ (http://www.six-financial-information.com) and
‘Smarthouse Media GmbH’ (http://www.smarthouse.de).

4 For an excellent treatment of numerical optimization techniques see Dennis and Schnabel (1983).

http://www.six-financial-information.com
http://www.smarthouse.de
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algorithm, and∇Q is the gradient of the objective function, defined componentwise by∇Qj = ∂Q/∂θj.
In the present analysis, the BFGS-method of Broyden (1970); Fletcher (1970); Goldfarb (1970);
Shanno (1970) has been used, because it converges rapidly and no second derivatives are involved in
the computation of the Hessian model. Thus, an analytical expression for the gradient of the objective
function eliminates the need for finite difference approximations entirely. It turns out that such an
expression can be derived, at least approximately. First, note that the partial derivative of the m-th
term of the objective function in Equation(36), with respect to the j-th parameter is given by

∂Qm

∂θj
= 2

Qm

VObs.
m

∂Vm

∂θj
≈ 2

Qm

VObs.
m

B0(0; T)(V(m))′H
∂c(
√

T)
∂θj

, (39)

where the approximate value of the contract (Equation (35)) was plugged in on the right-hand side
of Equation (39). Obviously, the partial derivatives of Q are linear functions of the partial derivatives
of the Fourier-coefficients given by Equation (29). They are given here as a proposition, the proof of
which can be found in Appendix B.

Proposition 3. The partial derivatives of the Fourier coefficient vector c(τ) with respect to γ, ak and bk are
given by

∂c(τ)
∂γ

=
(1 + γτ)e−γτ − 1

γ2 Xc(τ) (40)

∂c(τ)
∂ak

=
[

I 0
]

exp
[

1− e−γτ

γ
Ã(k)

] [
0

c(0)

]
∂c(τ)
∂bk

=
[

I 0
]

exp
[

1− e−γτ

γ
B̃(k)

] [
0

c(0)

]
, with

(41)

X =
Ka

∑
k=0

ak A(k) +
Kb

∑
k=0

bkB(k) and Ã(k)/B̃(k) =

[
X A(k)/B(k)

0 X

]
,

with [. . .] indicating a block matrix and I the (n× n) identity matrix.

Now, one is able to estimate different models and to compare their fit with respect to their model
order and the residual square error.

4.3. Results of Model Calibration

Table 1 shows the results of the calibration process involving n = 45 Fourier-coefficients,
which turned out to be sufficient over all model orders. Each cell shows the residual root-mean-square
error (RMSE) and the estimated standardized pricing density qZ(z, 1) for contracts with time to
maturity T = 1 year. This is quite close to the stationary density for the most models. Obviously,
the pricing density exhibits significant skewness and a pronounced left tail. The deviation from
normal is excessive, resulting in invalid density estimates for some model candidates, indicated
in gray in Table 1. The degeneration of the density estimates is due to the numerical limits of the
orthogonal series expansion and could not be remedied in the present analysis by involving more
Fourier-terms. Nevertheless, there are some valid and parsimonious candidates with small RMSE,
like the (2, 2)-model.
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Table 1. Model calibration for n = 45 Fourier-coefficients. RMSE: root-mean-square error.

Kb = ∅ Kb = 0 Kb = 2 Kb = 4
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Note that only models with even orders of Kb are reported. This is due to the definition of
the auxiliary functions in Equation (9). Because M2 has a quadratic kernel, the function f2(z, τ) in
Equation (11) should always be positive and thus a power series approximation of this function should
be given by a polynomial of an even degree.

Figure 2 shows the relative pricing error for the calibration sample of 501 European
plain vanilla call- and put-options. Obviously, the observed prices are reconstructed very
precisely by the (2, 2)-model across the whole spectrum of moneyness and time to maturity.
The exact parameter estimates for this model are γ̂ = 2.2636, â = (−1.4561, 0.1086, 0.4159)′ and
b̂ = (−0.1694, 0.1490, 0.0496)′. The root-mean-square error is 1.54%, which is roughly the order of
the bid-offer spreads of the valued contracts, suggesting that a sufficient fit has been accomplished.
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Therefore, the (2, 2)-model will be used in all subsequent benchmarks and numerical computations.
All models were estimated with initial parameter setting γ = 1 and ak = bk = 0.

Figure 2. Relative pricing error of European plain vanilla calls (blue) and puts (red) for Ka = 2, Kb = 2
and n = 45.

5. Implied Volatility Surface

In this section, the implied volatility surface, induced by the preferred (2, 2) model of Section 4,
is analyzed and compared with other methods. The benefit of this investigation is twofold: on the one
hand, volatility surfaces are a widely used tool for calibration of option pricing models to market data
(for an excellent survey on this subject see Gatheral 2006). Their strengths and weaknesses are well
known, and hence they are a convenient instrument for assessing the quality of the suggested method.

On the other hand, conditional pricing density estimation has one important conceptual drawback:
since the whole density is globally conditioned on the information set F0, there is no way to get access
to the transition density between times s and t for s > t0. This implies that valuation of path-dependent
contracts by Monte Carlo simulation is not possible directly. However, this can be remedied by a kind
of reverse engineering. One can use the Dupire-equation (Dupire 1994) to express the local volatility in
terms of implied volatility (for details see for example Van der Kamp 2009, sct. 2.3). Simulation can then
be performed using a geometrical Brownian motion under local volatility as model for the underlying.

The implied volatility surface is compared with the resulting surfaces of two standard approaches:
the SABR model of Hagan et al. (2002) and a local volatility surfaces parametrization suggested by
Gatheral and Wang (2012).

5.1. The SABR Model

Hagan et al. (2002) suggested a parametrization of implied volatility based on an asymptotic
analysis of a parsimonious stochastic volatility model with singular perturbation methods. Their model
is widely used because it is extraordinary easy to fit and generates correct implied volatility dynamics.
Their general asymptotic formula is

σimp(K, T) =
α

(F0K)
1−β

2

(
1 + (1−β)2

24 log2[F0/K] + (1−β)4

1920 log4[F0/K] + . . .
) · z

χ(z)

·
(

1 +

(
(1− β)2

24
α2

(F0K)1−β
+

1
4

ρβνα

(F0K)
1−β

2

+
2− 3ρ2

24
ν2

)
T + . . .

)
,

(42)

with

z =
ν

α
(F0K)

1−β
2 log[F0/K] and χ(z) = log

[√
1− 2ρz + z2 + z− ρ

1− ρ

]
. (43)
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Define the (inverse) log-moneyness k = log[K/F0] and observe that the backbone of the implied
volatility surface in Figure 3 (top left) does not drift vertically in time. Thus, one can set β = 1
(for details see Hagan et al. (2002)). With these new parameters one obtains

σimp(k, T) ≈ − νk
χ(z)

(
1 +

(
ρνα

4
+

2− 3ρ2

24
ν2
)

T
)

, (44)

with z = −νk/α and χ(z) as in Equation (43). This can be easily fitted to the calibration sample, and
the resulting implied volatility surface is shown in Figure 3 (bottom right). It is however not entirely
fair to calibrate the SABR model to the entire volatility surface, because it does not provide temporal
dynamics by construction.

Empirical Data (2,2)-Model

SVI-Parametrization SABR-Model

Figure 3. Implied volatility surfaces—top left: linear interpolated data, top right: estimated (2,2)-model,
bottom left: stochastic volatility inspired (SVI) parametrization, bottom right: SABR model.

5.2. The SVI Parametrization of the Local Volatility Surface

In their paper, Gatheral and Wang (2012) suggest a parametrization of the local volatility surface,
motivated by the structure of stochastic volatility models (‘stochastic volatility inspired’, SVI)

σ2
loc(k, T) = a + b

ρ

(
k√
T
−m

)
+

√(
k√
T
−m

)2
+ δ2T

 , (45)
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which is effectively a hyperbola in the log-strike k. There is an intimate connection between local and
implied volatility. Implied variance is approximately the average over local variance

σ2
imp(k, T) ≈ 1

T

∫ T

0
σ2

loc
(
x̃(t), t

)
dt (46)

along the most likely path x̃(t) from x̃(0) = 0 to x̃(T) = k (cf. Gatheral 2006, chp. 3). Usually it is
very difficult to compute this path and several approaches have been suggested (an incomplete list
covers the work of Berestycki et al. 2002; Gatheral and Wang 2012; Gatheral et al. 2012; Guyon and
Henry-Labordere 2011; Reghai 2006). However, it turns out that the straight line in the log-strike space
is a reasonable first guess. Under this assumption, the line integral in Equation (46) can be expressed as

σ2
imp(k, T) ≈ 1

T

∫ 1

0
σ2

loc
(
αk, αT

)
dα. (47)

The integral in Equation (47) with respect to the SVI parametrization (45) can be computed
analytically. Neglecting the constant of integration, one obtains

∫
σ2

loc
(
αk, αT

)
dα = α(a− bmρ) +

2bkρα3/2

3
√

T

+
bg
(

2h2α− hkm
√

αT + m2T(2δ2T2 − k2)
)

3h2

+
bkδ2m3T3 log

[
h
√

α +
√

T(g
√

h− km)
]

h5/2 ,

(48)

with

h = k2 + δ2T2 and g =

√(√
α

T
k−m

)2

+ αδ2T. (49)

Differentiating (48) with respect to α shows that the integral is indeed correct.
One can now fit the implied volatility surface to the calibration sample. The result is shown in

Figure 3 (bottom left).

5.3. Results of the Benchmark

In order to compute the implied volatility surface, Black–Scholes implied volatilities were calculated
for all out-of-the-money plain vanilla calls and puts, because they contain the most information about
the volatility structure. This leaves 210 observations of the original low spread sample of 501 options,
used for model calibration. This sample is also used for estimation of the SVI and SABR parameters
in order to fit all models with identical information. The full sample of 904 contracts provides
613 observations of implied volatility. The particular model fits are also benchmarked regarding the
full sample.

Figure 3 shows all estimated implied volatility surfaces. In particular, a first-order spline
interpolation of the observation data is given in the upper left quadrant of Figure 3. The upper
right surface is generated by the calibrated (2, 2)-model for the pricing density of Section 4. The lower
left and lower right surfaces are generated by the SVI parametrization of the local volatility surface
and by the SABR model, respectively. The meshing on the surfaces indicates slices of identical time
to maturity (gray) and identical implied volatility (black), to emphasize the different features of the
particular surfaces.

Obviously, none of the suggested models seems to manage the extremely sharp smile in the ultra
short-term region, but this conclusion should be drawn with caution. Short-term out-of-the-money
options are usually traded rarely and hence, quoted prices are not unconditionally reliable. In the data
sample used in this analysis, information about the trading frequency was not provided. The surface
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based on the conditional pricing density (top right) nevertheless seems to cover the features of the
empirical surface quit well, at least for k < 0.25. On the right edge it slightly underestimates the smile.
The SVI parametrization (bottom left) generates an adequate long-term skew but an excessive smile
for k < 0. It also misses the flattening of the surface for k > 0.2 and T > 0.5. The SABR model surface
in the bottom right quadrant seems to cover this particular feature but completely misses the short
term structure of the volatility smile.

The difference between the observed implied volatility surface and the values generated by
the three competitive approaches is shown in Figure 4, focusing on the central moneyness region.
The surface meshing again indicates slices of identical time to maturity (gray) and identical implied
volatility (black). The conditional density (2, 2)-model (top left of Figure 4) fits the observed implied
volatility extremely accurately, whereas the SVI parametrization (top right) underestimates the
mid- and long-term skew, and the SABR model (bottom center) does not generate the correct smile.
It is evident from Figure 4 that the conditional density model generates the best implied volatility fit of
all candidates.

(2,2)-Model SVI-Parametrization

SABR-Model

Figure 4. Difference between observed implied volatility and conditional density (2,2)-model (top left),
SVI parametrization (top right) and SABR model (bottom center).

Table 2 summarizes all models and compares the root-mean-square errors in both the calibration
sample (CS) and the full sample (FS).
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Table 2. RMSE of estimated implied volatility surfaces in the calibration sample (CS) and the full sample (FS).

Model Parameters RMSE CS (M = 210) RMSE FS (M = 613)

(2, 2)

γ = 2.2636

0.38% 6.69%

a0 = −1.456
a1 = 0.1086
a2 = 0.4159
b0 = −0.169
b1 = 0.1490
b2 = 0.0496

SVI

a = −0.004

1.10% 68.68%
b = 0.7373
δ = 0.4259
ρ = −0.995
m = −0.466

SABR

α = 0.2478

0.82% 7.77%β = 1.0000
ρ = −0.609
ν = 0.9550

Again, the conditional pricing density model clearly provides the best fit, in particular in the
calibration sample, where its root mean square error is smaller than half the RMSE of the SABR model.

6. Valuation under the Conditional Pricing Density Model

In this section an additional validation sample of 95 European vanilla capped calls and
76 puts of the same style is priced and analyzed. This is again accomplished numerically by
Gauss–Hermite-quadrature methods like in Section 3.3. An alternative method for valuation is Monte
Carlo simulation. Two different simulation approaches are introduced, one immediately related to
quadrature methods, and the other based on importance sampling.

6.1. Capped Options Valuation

A European vanilla capped option is a unification of a long and a short position in the same plain
vanilla type option, with identical time to maturity but different exercise prices, known as vertical
spread. For example, the payoff of a European vanilla capped call option, with strike K and cap
C > K is

V(FT , T) = max
[
min[FT , C]− K, 0

]
. (50)

With this payoff function, the valuation Equations (33) and (35) respectively and immediately apply.
Figure 5 shows the relative misspricing under the classical Black-Scholes model (left) and the

estimated (2, 2)-model of Section 4 (right).
Obviously, the pricing error is reduced dramatically. The root-mean-square error under the

original Black–Scholes model is 10.72%, whereas the remaining RMSE after conditional pricing density
model fitting is 3.19%. The spread of the analyzed capped options varies between 0.2% and 12.5%.
Thus, the prices predicted by the (2, 2)-model match the observed mid-prices very closely, apart from
a few short-term out-of-the-money contracts.

Nevertheless, the capped option valuation reveals a potential problem of the quadrature based
numerical valuation procedure. The payoff function in Equation (50) clips a narrow interval out of the
entire pricing density, which possibly contains only a small number of quadrature points. Therefore,
numerical results may be inaccurate. There are two possible ways to improve the situation. First,
one could simply increase the number of quadrature points involved in the numerical integration
procedure. This idea breeds two new problems: On the one hand, only a fraction of the additional
points is located in the relevant interval of the payoff function. On the other hand, there are a large



Int. J. Financial Stud. 2018, 6, 30 20 of 26

number of quadrature points, with associated weights very close to zero, which means that the effect of
a considerable amount of computed quadrature points on the valuation result is negligible. The latter
problem at least can be resolved by pruning (cf. Jaeckel 2005).

Figure 5. Valuation of European vanilla capped calls (blue) and puts (red) with the Black–Scholes model
(left) and (2,2)-model of conditional pricing density (right).

Another alternative is Monte Carlo simulation. This is not a trivial task, because one is not able
to draw from the arbitrage-free pricing distribution directly. Nevertheless, two indirect sampling
methods are detailed in the next paragraph.

6.2. Monte Carlo Valuation Methods

A key requirement for Monte Carlo simulation is the ability to draw random numbers from the
relevant probability distribution. Remember that the conditional pricing distribution for any time to
maturity is given by its density function (Equation (30)) in (z, τ)-coordinates. This can be written as

qZ(z, τ) ≈ 4√4π
∫ ∞

−∞
φ(y)

N

∑
n=0

cn(τ)√
2nn!

Hn(y)δ(y− z)dy

≈ 4√4π
J

∑
j=1

N

∑
n=0

wj
cn(τ)√

2nn!
Hn(y)δ(y− z(j)),

(51)

with wj and z(j) again indicating Gauss–Hermite-quadrature weights and points, respectively. However,
the second line of (51) is just an abusive way of writing a multinomial distribution function with values
z(j), occurring with probability

qj =
4√4πwj

N

∑
n=0

cn(τ)√
2nn!

Hn(z(j)), (52)

for j = 1, . . . , J. It is easy to draw from this multinomial distribution.
Figure 6 (left) shows the pricing density, generated with the (2, 2)-model (red), and the distribution

of one million draws from the multinomial approximation as histogram (gray). A total of J = 1000
quadrature points were used and again N = 45 Fourier-terms were included. Both densities coincide
perfectly. Unfortunately, the multinomial approximation method does not resolve the problem
discussed in the previous paragraph.
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-6 -4 -2 0 2 4

Figure 6. One million draws from the multinomial density approximation for T = 1 (left)—capped
option valuation with 100,000 draws from N(0, 2) importance distribution (right).

An alternative approach is based on the idea of choosing a suitable importance density that covers
the z-support of qZ(z, τ) for a desired value of τ, and writes valuation Equation (32) as

V(S0, 0) = B0(0; τ2)
∫ ∞

−∞
Ṽ(z, τ)

qZ(z, τ)

fZ(z, τ)
fZ(z, τ)dz, (53)

with Ṽ(z, τ) = V
(

F0ezστ− 1
2 σ2τ2

, τ2) and the importance density fZ(z, τ). Now, an arbitrary sample of
J realizations may be drawn from the importance distribution FZ(z, τ). An unbiased estimator of (53)
is then given by

V(S0, 0) ≈ B0(0; τ2)
1
J

J

∑
j=1

Ṽ(z(j), τ)
qZ(z(j), τ)

fZ(z(j), τ)
, (54)

where the last term on the right hand side of Equation (54) is called the importance weight or
likelihood ratio. It is even possible to reduce the variance of this estimator below the initial variance,
induced by drawing from the target distribution for a comprehensive treatment of this subject see
(Glasserman 2010, sct. 4.6). If the pricing density qZ(z, 1) is estimated itself with the normal importance
distribution N(0, 2), and J and N set as in the previous example, the result is indistinguishable from
Figure 6 (left).

The valuation procedure for the whole validation sample was repeated with Monte Carlo
simulation based on the N(0, 2)-importance distribution. A total of J = 100,000 points were
drawn for each contract. The resulting relative pricing errors, with all environmental conditions
unchanged, are shown in Figure 6 (right). This is indeed very close to Figure 5 (right), but not identical.
The root-mean-square error is slightly reduced, at 3.14%.

7. Conclusions

A new method for estimating the time evolution of the arbitrage-free pricing density, conditioned
on the observable market information, was suggested. The key idea of the approach is to model
the excess dynamics beyond the classical Black–Scholes dynamics. To this end, a coordinate
transformation was introduced, under which the pricing density looks stationary. In this ‘laboratory
frame’, the excess dynamics are extracted by an asymptotic series expansion, resulting in a
Kolmogorov-backward-equation with O(ε) drift and O(ε2) diffusion terms. This equation is
approximately solved by making a time separable ansatz and using a complete set of orthogonal
Hermite-polynomials.

The resulting model frame was calibrated to market data of the ‘Deutscher Aktienindex’ (DAX)
index and one particular model was singled out and benchmarked against other approaches. It was
shown that the pricing error was reduced to the order of the bid-offer spread and that the implied
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volatility surface, generated by the new method, is closer to the observed one than those generated by
other popular approaches. Finally, a validation sample of 171 capped options was valued. The pricing
error was again reduced dramatically, emphasizing the quality of the model fit.

The suggested approach has a number of appealing properties, but also some drawbacks and
limitations, which should be summarized to present a balanced view:

• Access to the time evolution of the arbitrage free pricing density is very convenient, because any
vanilla contract can be priced immediately and consistently. There is no need for semi-parametric
or non-parametric interpolation, or extrapolation of a volatility surface. Furthermore, one is able
to draw random samples directly from the correct conditional pricing density for any given time
to maturity.

• The estimated pricing density is always conditioned on the present market information F0.
One has no access to transition probabilities, because no (pathwise) model, in terms of a stochastic
process, is formulated. This is a major drawback, because valuation of path dependent options
with Monte Carlo simulation methods is not possible directly. However, those contracts can be
valued indirectly by extracting the Black–Scholes implied volatility surface and computing local
volatilities to be used in a simulation of the corresponding geometrical Brownian motion.

• Using a complete set of orthogonal Hermite-polynomials is a convenient way of translating the
differential operators in the Kolmogorov-backward-equation into infinite dimensional matrices.
One can confidently expect that a finite number of Fourier-terms is sufficient to approximate
the density function to the desired level of accuracy. This means there is a finite dimensional,
and thus computable, approximation to the problem. Unfortunately, numerical issues impose a
limit on the manageable deviation from the normal density. This limit is reached and exceeded in
some models listed in Table 1. The only possible remedy is the use of a better-suited complete
orthogonal system.

• The assumptions regarding time separability and the functional form of time dependence are
somewhat artificial. The functional form is chosen to reproduce some known solutions as special
cases and to ensure tractability of the model. Even though the implications of these assumptions
are by no means implausible, there is a margin for improving the model fit by imposing a richer
time structure. This may possibly also resolve the problem of the short-term implied volatility fit,
which is not satisfactory as observed in Figure 3.

Considering all advantages and drawbacks, the suggested method is very promising and
well-suited for option pricing, even in difficult markets with exceptional conditions. Furthermore,
calibration to market data is easy, because the gradient of the quadratic objective function to be
minimized is available analytically. The results obtained are conclusive and the approach was able to
produce a better implied volatility fit than conventional models.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Stationary Coordinate Frame Transformation

Departing from the original PDE

∂

∂t
qX =

1
2

σ2
(

∂

∂x
+

∂2

∂x2

)
qX (A1)

in terms of x and t, where the arguments were suppressed for notational simplicity, the transformations

z =
x + 1

2 σ2t
σ
√

t
,

τ =
√

t
(A2)
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were suggested with x0 and t0 set to zero, because they merely shift the starting point in the spatial
and time directions. The differentials change under this coordinate transformation as

∂qX
∂t

=
∂qX
∂τ

dτ

dt
+

∂qX
∂z

∂z
∂t

=
∂qX
∂τ

1
2τ

+
∂qX
∂z

( σ

2τ
− z

2τ2

)
∂qX
∂x

=
∂qX
∂z

∂z
∂x

=
∂qX
∂z

1
στ

∂2qX

∂x2 =
∂

∂x

(
∂qX
∂z

1
στ

)
=

∂2qX

∂z2
1

σ2τ2 .

(A3)

Thus, Equation (A1) now becomes

∂qX
∂τ

1
2τ
− ∂qX

∂z
z

2τ2 =
∂2qX

∂z2
1

2τ2 , (A4)

or expressed in a more familiar way

∂qX
∂τ

=
∂qX
∂z

z
τ
+

∂2qX

∂z2
1
τ

. (A5)

Using now the identity qXdx = qZdz yields qX = qZ
dz
dx = qZ

1
στ , and therefore the derivative of qX with

respect to τ becomes
∂qX
∂τ

=
∂qZ
∂τ

1
στ
− qZ

1
στ2 . (A6)

The derivatives of qX with respect to z remain intact, which means that they are only multiplied by a
factor of (στ)−1. Again collecting terms, one obtains

∂qZ
∂τ

=
1
τ

(
∂qZ
∂z

z +
∂2qZ

∂z2 + qZ

)
. (A7)

Because under the coordinate change in Equation(A2), the density qZ becomes the standard normal

density φ(z), and one has ∂qZ
∂z = −zqZ and ∂2qZ

∂z2 = −qZ + z2qZ. Thus, Equation (A7) yields

∂qZ
∂τ

=
1
τ

(
−z2qZ − qZ + z2qZ + qZ

)
= 0, (A8)

which proves the stationarity of the new coordinate frame.

Appendix B. Proof of Proposition 3

The derivative of c(τ) with respect to γ is an immediate consequence of the Hadamards lemma.
By this lemma, the following relation holds for a smooth matrix function X(γ)(

d
dγ

eX(γ)

)
e−X(γ) =

d
dγ

X(γ) +
1
2!

[
X(γ),

d
dγ

X(γ)

]
+

1
3!

[
X(γ),

[
X(γ),

d
dγ

X(γ)

]]
+ . . . ,

(A9)

with the commutator [X, Y] = XY − YX of two arbitrary square matrices X and Y of the same
dimension. In the linear problem (Equation (29)), X(γ) has the particular form

X(γ) = f (γ)X, with f (γ) =
1− e−γτ

γ

and X =
Ka

∑
k=0

ak A(k) +
Kb

∑
k=0

bkB(k),
(A10)
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and thus, (d/dγ)X(γ) = (d f (γ)/dγ)X. The scalar derivative can be pulled out of the commutators
in (A9), and hence all of them vanish because a square matrix always commutes with itself.
One finally obtains

d
dγ

exp [ f (γ)X] =
d f (γ)

dγ
X exp [ f (γ)X] , (A11)

from which the first part of Proposition 3 follows immediately.
For the second part, write the differential equation system in Equation (18) using X as defined in

Equation (A10)
d

dτ
c(τ) = e−γτXc(τ). (A12)

Now, following an idea of Fung (2004), differentiate both sides of Equation (A12) with respect to ak

d
dτ

(
∂

∂ak
c(τ)

)
= e−γτ A(k)c(τ) + e−γτX

∂

∂ak
c(τ). (A13)

By defining the extended Fourier-coefficient vector c̃(τ) =
[
(∂/∂ak)c(τ), c(τ)

]′, one again obtains a
system of linear differential equations

d
dτ

c̃(τ) = e−γτX̃c̃(τ), with X̃ =

[
X A(k)

0 X

]
. (A14)

This system obviously has the solution c̃(τ) = exp
[

f (τ)X̃
]
c̃(0), with c̃(0) =

[
0, c(0)

]′. The second
part of Proposition 3 follows immediately by extracting the first part of the extended coefficient vector.

Derivatives with respect to bk are computed analogously by replacing A(k) with B(k) in Equation (A14).
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