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Abstract: It is well known that there is an intrinsic link between the financial and energy sectors,
which can be analysed through their spillover effects, which are measures of how the shocks to
returns in different assets affect each other’s subsequent volatility in both spot and futures markets.
Financial derivatives, which are not only highly representative of the underlying indices, but can also
be traded on both the spot and futures markets, include Exchange Traded Funds (ETFs), a tradable
spot index whose aim is to replicate the return of an underlying benchmark index. When ETF futures
are not available to examine spillover effects, “generated regressors” are useful for constructing
both financial ETF futures and energy ETF futures. The purpose of the paper is to investigate the
co-volatility spillovers within and across the U.S. energy and financial sectors in both spot and
futures markets, by using “generated regressors” and a multivariate conditional volatility model,
namely diagonal BEKK. The daily data used are from 23 December 1998–22 April 2016. The dataset is
analysed in its entirety and is also subdivided into three distinct subsets. The empirical results show
there is a significant relationship between the financial ETF and energy ETF in the spot and futures
markets. Therefore, financial and energy ETFs are suitable for constructing a financial portfolio from
an optimal risk management perspective and also for dynamic hedging purposes.

Keywords: exchange traded funds; financial and energy sectors; co-volatility spillovers; spot and
futures prices; generated regressors; diagonal BEKK

JEL Classification: C58; G13; G23; G31; Q41

1. Introduction

The Global Financial Crisis (GFC) was not only unexpected and unpredicted, but also had a
marked and sustained impact on the world economy, in general, and also on international financial
markets. After the GFC had subsided, oil prices recovered and stabilized at a price between US$90 and
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US$110 per barrel (see Figure 1). This period of relative stability lasted from January 2011–June 2014.
However, in mid-2014, oil prices nosedived from a high of US$107.95 per barrel to a low of US$26.19
per barrel on 11 February 2016.
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“Coming to the Oil Patch: Bad Loans to Outnumber the Good”, 24 March 2016 (Olson et al. 2016): 

“Fifty-one North American oil-and-gas producers have already filed for bankruptcy since 
the start of 2015, cases totaling $17.4 billion in cumulative debt, according to law firm 
Haynes and Boone LLP. That trails the number from September 2008 to December 2009 
during the global financial crisis, when there were 62 filings, but is expected to grow: About 
175 companies are at high risk of not being able to meet loan covenants, according to 
Deloitte LLP.” 

Figure 1. Crude oil prices: West Texas Intermediate (WTI) (1986–2016), Federal Reserve Economic Data.

According to a World Bank Report (Baffes et al. 2015), the plunge in oil prices was mainly driven
by supply factors, namely the growth of unconventional oil production, such as Canadian oil sand
and U.S. shale oil. In particular, spurred by the shale oil boom, the USA nearly doubled its 2011 daily
production levels to over 11 million barrels in June 2014. This surge allowed the USA to surpass Saudi
Arabia as the oil and natural gas liquids global production leader, as reported by the International
Energy Agency (IEA) (Smith 2014, Bloomberg, 4 July).

Responding to the surge in unconventional oil production, at the 166th OPEC meeting held on
27 November 2014, OPEC decided not to curtail daily production, choosing instead to maintain a
stable production of 30 million barrels per day, a policy enacted on 14 December 2011. This decision
represented abandonment of OPEC’s price targeting policy, with the trade-off of possibly maintaining
their current market share. However, this course of action may well have led to persistently low
oil prices.

Such low oil prices have major ramifications on the banking sector. In addition to having to
increase reserves for losses in the oil and gas portfolio, banks have also tried to shrink the credit
lines offered to energy companies, even as energy companies become more dependent on banking
loans. This sentiment was echoed by Devi Aurora, a senior director at Standard & Poor’s in New York,
who was reported to have said (McLannahan and Gray 2016): “[Energy] Companies have a tendency
to draw on bank lines once other options dry up.”

Faced with the dual pressures of low oil prices and a compromised ability to generate cash flows,
oil companies are increasingly in danger of defaulting on loans. As reported in the Wall Street Journal,
“Coming to the Oil Patch: Bad Loans to Outnumber the Good”, 24 March 2016 (Olson et al. 2016):

“Fifty-one North American oil-and-gas producers have already filed for bankruptcy since
the start of 2015, cases totaling $17.4 billion in cumulative debt, according to law firm
Haynes and Boone LLP. That trails the number from September 2008 to December 2009
during the global financial crisis, when there were 62 filings, but is expected to grow:
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About 175 companies are at high risk of not being able to meet loan covenants, according
to Deloitte LLP.”

From recent data, it is clear that oil price collapses of greater than 50% are not unprecedented
events. For example, in 1986, there was a similar supply glut, which also led to a plunge in oil prices.
In particular, that year marked OPEC’s decision to revert its production target back to 30 million barrels
per day, ending a significant decline in oil production since the Iran-Iraq war in 1979. This reversion,
combined with an influx of oil supply from Mexico and the North Sea, caused the price of oil to collapse
from US$26.53 per barrel on 6 January 1985 to US$10.25 per barrel at its low point on 31 March 1986.

Around this time, the U.S. government attempted to stimulate the sluggish economy and guard
against deflation through several monetary and fiscal policies such as interest rate cuts. In spite of
these measures, low oil prices persisted, thereby contributing to a global economic slowdown and a
major downward correction in global financial markets on 19 October 1987. This day, known as Black
Monday, saw the S&P 500 drop 20.4%, falling from 282.7 down to 225.06.

Another significant plunge in oil prices, this time of the order of 40%, occurred between
October 1997 and March 1998 amid the Asian Financial Crisis. This crisis was propelled primarily
by an unexpected speculative attack on the Thai baht. The resulting drastic devaluation of the Thai
currency not only wrought considerable damage to the East Asian economy, but also had a significant
impact on global financial markets. The US Federal Reserve decided to bail out a well-known hedge
fund, Long Term Capital Management (LTCM), on 23 September 1998. During the economic slump,
which lasted from 1997–1998, the global oil demand receded substantially, with oil prices reaching a
low of US$10.82 per barrel on 10 December 1998.

The most dramatic example of a sudden oil price collapse occurred a decade later in the wake
of the Global Financial Crisis (GFC). While there is no consensus on the exact starting and ending
dates of the GFC, for the purposes of this paper, we consider the GFC to span the time period from
9 October 2007–9 March 2009, which corresponds to the S&P 500 dropping from a high of 1565.26 to a
low of 672.88. Oil prices reached a historical high of US$145.31 per barrel on 3 July 2008, but tumbled
to US$30.28 per barrel just six months later, on 23 December 2009.

The GFC was spurred by a tsunami of financial chaos, including the housing bubble, which,
in turn, led to an epidemic of defaults in subprime mortgages. Subsequently, banks and insurance
companies sold trillions of dollars of Credit Default Swaps (CDSs), which not only involved subprime
mortgage loans, but also many other financial instruments and institutions. This resulted in Lehman
Brothers going bankrupt on 15 September 2008, and the U.S. Treasury deciding to bail out AIG in the
same month. The GFC led to a dramatic diminution in the global oil demand and, in turn, tumbling
energy prices (Van Vactor 2009).

In light of the preceding discussion, it is clear that there is an intrinsic link between the financial
and energy sectors. One way to analyse the link between two or more sectors is by analysing their
spillover effects, which are measures of how the shocks to returns in different assets affect each other’s
subsequent volatility in both spot and futures markets.

In conducting spillover effects analysis, an important consideration is the choice of indices
used to represent the assets or sectors under comparison. One reasonable selection of measures to
examine volatility spillovers between the energy and financial sectors is the Energy Select Sector index
(Ticker: IXE) and the Financial Select Sector index (Ticker: IXM). Both of these are sub-indices of the
S&P500, reflecting the overall economic condition of their respective sectors. One shortcoming of using
these indices, however, is the fact that they are not tradable and hence may be of little practical use
to investors.

One way to overcome this drawback is by employing derivatives of the IXE and IXM indices,
as opposed to the indices themselves. Financial derivatives, which are not only highly representative of
the underlying indices, but can also be traded on both the spot and futures markets, include Exchange
Traded Funds (ETFs), otherwise known as implied tradable spot prices. Another financial derivative
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that has not yet been considered in practice, primarily as it typically does not exist in many financial
markets, but may well have practical importance, is ETF futures.

Krause and Tse (2013) argue that ETFs are now an important source of information dissemination
in equity markets and provide evidence regarding uni-directional price discovery and bi-directional
volatility spillovers in ETFs. The empirical findings are relevant to market participants and Canadian
market regulators as circuit-breakers in Canada are tied to U.S. market conditions.

Lau et al. (2017) investigate the spillovers and volatility transmission among white precious metals
and gold, oil and global equity. Relying on ETFs, they analyse return spillovers using an EGARCH model
and frequency dynamics (see (McAleer and Hafner 2014a, 2014; Chang and McAleer 2017a) for some
serious issues associated with EGARCH). The empirical results highlight the role of gold ETFs as the most
influential market.

With respect to multi-objective portfolio optimization related to financial markets, Sawik (2008)
considers a three-stage lexicographic approach for multi-criteria portfolio optimization by mixed
integer programming, while Sawik (2012a) analyses bi-criteria portfolio optimization models with
percentile and symmetric risk measures by mathematical programming, and Sawik (2012b) examines a
downside risk approach for multi-objective portfolio optimization.

For the reasons specified above, in order to examine the relationship between the energy and
financial sectors, we will examine not only IXE and IXM, but also ETFs and ETF futures in conducting
spillover effects analysis within and across these two sectors. In particular, for both the energy and
financial sectors, we will select one index (namely, IXE or IXM), one ETF and construct one ETF futures
from which to analyse all 15 possible pairwise combinations of spillover effects. The list of indices,
ETFs and ETF futures that we will use in the empirical analysis is as follows: Financial Select Sector
Index (IXM), Energy Select Sector Index (IXE), Financial Select Sector SPDR Fund (XLF), Energy Select
Sector SPDR Fund (XLE), Financial ETF futures (XLFf) and Energy ETF futures (XLEf).

An important point to clarify is that, despite the delisting of ETF futures on 1 March 2011, due to
low trading volume, our analysis will include up-to-date ETF futures data from each sector. This is
made possible by the use of “generated regressors” to construct both financial ETF futures and energy
ETF futures. Further details on this methodological approach are discussed in Section 3.

An Exchange Traded Fund (ETF) is a tradable spot index whose aim is to replicate the return of an
underlying benchmark index. For instance, SPDR® S&P 500® ETF, issued by State Street Bank & Trust
Company, tracks the performance of the S&P 500 Index. In contrast to investing in a single stock,
ETFs invest in a basket of stocks or commodities, thereby diversifying the non-systematic risk and
decreasing the levels of risk and volatility. Furthermore, unlike actively-managed mutual funds,
most ETF managers take a passive management style and collect lower managing fees. Whereas
mutual funds are limited to trades based on end-of-day prices, ETFs are traded like stocks.

In addition to the points listed above, ETFs have the following additional advantages over
traditional mutual funds:

(i) ETFs offer greater transparency compared with mutual funds in the sense that ETFs are required
to reveal their holdings data on a daily basis, whereas mutual funds are mandated only to disclose
holdings data on a quarterly basis.

(ii) ETFs are more flexible than mutual funds because investors can short sell them when they
are bearish on the market. Although short selling may be considered risky compared with
conventional investing, it can be a useful strategy if executed by savvy investors when the market
is overvalued.

As discussed above, the purpose of this paper is to investigate spillover effects within and across
the energy and financial sectors in terms of both the U.S. spot and futures markets by applying indices,
ETF and ETF futures. For the empirical analysis, we select two indices and two ETFs and generate
two ETF futures from which to analyse all 15 possible pairwise combinations of spillover effects.
Specifically, the list of variables we use is as follows: Financial Select Sector Index (IXM), Energy
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Select Sector Index (IXE), Financial Select Sector SPDR Fund (XLF), Energy Select Sector SPDR Fund
(XLE), Financial ETF futures (XLFf) and Energy ETF futures (XLEf). In order to carry out this analysis,
the techniques to be used are generated regressors and the multivariate conditional volatility diagonal
BEKK model. The empirical result will be discussed in greater detail in Section 5.

The remainder of the paper is organized as follows. In Section 2, the brief literature on the topic is
reviewed. In Section 3, the empirical models are presented, and the data are discussed in Section 4.
In Section 5, the empirical results are analysed, and some concluding comments are given in Section 6.

2. Brief Literature Review

The literature on the use of ETFs and testing for co-volatility spillovers is rather
sparse. Chang et al. (2015) conducted a comprehensive review of the literature related to co-volatility
spillovers between energy markets and agricultural commodities. One of the major findings of their
review paper was that most researchers fail to employ valid statistical techniques in testing for spillover
effects. Multivariate conditional volatility models, namely BEKK and DCC, have typically been used
to test for spillover effects between energy and agricultural markets. However, these models are either
problematic in and of themselves (in the case of DCC), or have been used incorrectly and misleadingly
(in the case of BEKK).

Specifically, the DCC model lacks regularity conditions, while a serious technical deficiency
related to estimating the full BEKK and DCC models through Quasi-Maximum Likelihood Estimates
(QMLE) is the absence of any asymptotic properties. In contrast, the diagonal BEKK conditional
volatility model possesses both regularity conditions and associated asymptotic properties. For these
reasons, Chang et al. (2018) applied the diagonal BEKK conditional volatility model in testing volatility
spillovers for bio-ethanol, sugarcane and corn spot and futures prices, while this paper also applies the
diagonal BEKK model in testing the volatility spillover effects within and across the U.S. financial and
energy markets. In this context, Chang and McAleer (2017b) developed a simple test for causality in
volatility, which can be used for testing volatility spillovers.

As described above, an Exchange Traded Fund (ETF) is a tradable asset whose aim is to track
an underlying index representing the economic condition of an entire sector. Thus, ETFs have
great value to investors as they facilitate a systematic reduction in risk within a trading portfolio.
Chang and Ke (2014) applied ETFs in the U.S. energy sector to investigate the causality between flows
and returns through the Vector-Autoregressive (VAR) model to test four hypotheses, namely the
price pressure, information, feedback trading and smoothing hypotheses. One noteworthy aspect of
their methodology was the fact that they analysed not just the entire sample period, but also divided
the data into three sub-periods, namely before, during and after the Global Financial Crisis (GFC),
a methodology also used by McAleer et al. (2013). The use of the three sub-periods will also be
considered in the paper.

Chen and Huang (2010) used ETFs to examine volatility spillovers, albeit in a rudimentary
manner, between an ETF and its underlying stock index in nine different countries. They used the
GARCH-ARMA and EGARCH-ARMA models and found that there were volatility spillover effects
for the stock index and ETF. Unfortunately, as in the case of estimating the full BEKK and DCC models
through Quasi-Maximum Likelihood Estimation (QMLE) methods, EGARCH has no known regularity
conditions (see McAleer and Hafner 2014a), and the statistical properties of the estimated parameters
are not available except by assumption (see Martinet and McAleer 2018).

One paper that used the diagonal BEKK model to examine ETFs was by Chang et al. (2016).
The authors investigated the causality and spillover effects between VIX, consisting of different moving
average processes, and ETF returns by using vector autoregressive (VAR) models and diagonal BEKK
models. The empirical results show that daily VIX returns have: (1) significant negative effects on
European ETF returns in the short run; (2) stronger significant effects on single market ETF returns than
on European ETF returns; and (3) lower impacts on the European ETF returns than on S&P500 returns.
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In some financial research contexts, it may be necessary or advantageous to generate a new
index representing a certain sector that may be of interest. One way in which this may be performed
is through the use of generated variables. Chang (2015) applied generated variables to develop a
daily Tourism Financial Conditions Index (TFCI), based on nominal exchange rates, interest rates and
a tourism industry stock index that is listed on the Taiwan Stock Exchange. The empirical results
indicated that the generated TFCI was accurately estimated through the estimated conditional means
of the tourism stock index returns. More recently, Chang et al. (2017) used a similar approach to obtain
a monthly Tourism Financial Conditions Index (TFCI) based on factor analysis and macroeconomic
variables to capture general economic activity. The use of market returns on the tourism stock index as
the sole indicator of the tourism sector, as compared with the general activity of economic variables on
tourism stocks using TFCI, is shown to provide an exaggerated and excessively volatile explanation of
tourism financial conditions.

As described above, the paper is interested in the co-volatility spillover effects across and within
the financial and energy sectors in both the spot and futures markets. While energy and financial
indices and ETFs are already available to analyse spot markets, it is necessary to use generated variables
to construct ETF futures to analyse futures markets.

The paper combines several of the elements reviewed above to create a novel methodology to test
for spillover effects in a statistically valid and comprehensive way that can be of immense practical
use to investors. In particular, we use the diagonal BEKK model, which, as mentioned above, has valid
asymptotic and regularity properties as compared with the full BEKK and DCC models, in order to
test for spillovers within and across the financial spot (indices and ETFs) and futures (ETF futures via
generated regressors) markets. This analysis is conducted for four time periods, namely before-GFC,
during-GFC, after-GFC and the entire sample period.

3. Methodology

The primary purpose of this paper is to test volatility spillover effects among ETF and ETF futures in
the financial and energy sectors. In the previous literature, a great deal of confusion has arisen about how
spillover effects should be tested, with published academic papers often using questionable methodologies.
Indeed, many so-called tests of spillovers are not, in fact, tests of spillovers at all. The following section
presents three novel tests of spillovers, namely full volatility spillovers, full co-volatility spillovers and
partial co-volatility spillovers. For further details, see Chang et al. (2015).

Tests of spillovers require the estimation of a multivariate volatility model, with appropriate
regularity conditions and asymptotic properties of the Quasi Maximum Likelihood Estimation (QMLE)
of the associated parameters underlying the conditional mean and conditional variance. As the first step
of the estimation of multivariate conditional volatility model is the estimation of multiple univariate
conditional volatility models, an appropriate and widely-used univariate conditional volatility model
will be discussed below.

This section is organized as follows:

(1) a brief discussion of the most widely-used univariate conditional volatility model;
(2) the definition of three novel spillover effects;
(3) a discussion of the most widely-used multivariate model of conditional volatility.

In order to accommodate volatility spillover effects, alternative multivariate volatility models
of the conditional covariances are available. Examples of such multivariate models include:
(1) the diagonal model of Bollerslev et al. (1988); (2) the vech and diagonal vech models of
Engle and Kroner (1995); (3) the Baba et al. (1985) (BEKK) multivariate GARCH model (see also
(Engle and Kroner 1995)); (4) the Constant Conditional Correlation (CCC) (specifically, multiple univariate
rather than multivariate) GARCH model of Bollerslev (1990) (5) Ling and McAleer (2003) vector
ARMA-GARCH (VARMA-GARCH) model; (6) the VARMA-asymmetric GARCH (VARMA- AGARCH)
model of McAleer et al. (2009); (7) Engle (2002) Dynamic Conditional Correlation (technically, dynamic
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conditional covariance rather than correlation model) (DCC) model; and (8) Tse and Tsui (2002) Varying
Conditional Correlation (VCC) model. For further details on most of these multivariate models,
see, for example, McAleer (2005).

The first step in estimating multivariate models is to obtain the standardized shocks from the
conditional mean returns shocks. For this reason, the most widely-used univariate conditional volatility
model, namely GARCH, will be presented briefly, followed by the most widely-estimated multivariate
conditional covariance model, namely diagonal BEKK.

Consider the conditional mean of financial returns as follows:

yt = E(yt|It−1 ) + εt (1)

where the returns, yt = ∆logPt, represent the log-difference in financial commodity or agricultural
prices, Pt, It−1 is the information set at time t − 1 and εt is a conditionally heteroskedastic returns
shock. In order to derive conditional volatility specifications, it is necessary to specify the stochastic
processes underlying the returns shocks, εt.

3.1. Univariate Conditional Volatility Models

Alternative univariate conditional volatility models are of interest in single index models to
describe individual financial assets and markets. Univariate conditional volatilities can also be used
to standardize the conditional covariances in alternative multivariate conditional volatility models
to estimate conditional correlations, which are particularly useful in developing dynamic hedging
strategies. The most popular univariate conditional volatility model is discussed below, together with
the associated regularity conditions, as well as the conditions underlying the asymptotic properties of
consistency and asymptotic normality. A deeper discussion of the material presented in this section is
available in, for example, Chang et al. (2018).

Random coefficient autoregressive process and GARCH

Consider the random coefficient autoregressive process of order one:

εt = φtεt−1 + ηt (2)

where φt ∼ iid(0, α), ηt ∼ iid(0, ω), and ηt = εt/
√

ht is the standardized residual.
Tsay (1987) derived the ARCH(1) model of Engle (1982) from Equation (2) as:

ht = E
(

ε2
t |It−1

)
= ω + αε2

t−1 (3)

where ht is conditional volatility and It−1 is the information set available at time t − 1. The use of an
infinite lag length for the random coefficient autoregressive process in Equation (2), with appropriate
geometric restrictions (or stability conditions) on the random coefficients, leads to the GARCH model
of Bollerslev (1986). From the specification of Equation (2), it is clear that both ω and α should be
positive, as they are the unconditional variances of two separate stochastic processes.

The QMLE of the parameters of ARCH and GARCH have been shown to be consistent and
asymptotically normal in several papers. For example, Ling and McAleer (2003) showed that the
QMLE for GARCH(p,q) is consistent if the second moment is finite. Moreover, a weak sufficient
log-moment condition for the QMLE of GARCH(1,1) to be consistent and asymptotically normal is
given by:

E
(

log
(

αη2
t + β

))
< 0, |β| < 1

which is not easy to check in practice as it involves two unknown parameters and a random variable.
The more restrictive second moment condition, namely α + β < 1, is much easier to check in practice.
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In general, the proofs of the asymptotic properties follow from the fact that ARCH and GARCH
can be derived from a random coefficient autoregressive process (see McAleer et al. (2008) for a general
proof of multivariate models that are based on proving that they satisfy the regularity conditions given
in Jeantheau (1998) for consistency).

3.2. Multivariate Conditional Volatility Models

The multivariate extension of univariate GARCH is given as variations of the BEKK model
in Baba et al. (1985) and Engle and Kroner (1995). In order to establish volatility spillovers in a
multivariate framework, it is useful to define the multivariate extension of the relationship between
the returns shocks and the standardized residuals, that is ηt = εt/

√
ht. The multivariate extension

of Equation (1), namely yt = E(yt|It−1 + εt), can remain unchanged by assuming that the three
components are now, respectively, m× 1 vectors, where m is the number of financial assets.

The multivariate definition of the relationship between εt and ηt is:

εt = D1/2
t ηt (4)

where Dt = diag(h1t, h2t, . . . , hmt) is a diagonal matrix comprising the univariate conditional volatilities.
Define the conditional covariance matrix of εt as Qt. As the m × 1 vector, ηt, is assumed to be
independently and identically distributed (iid) for all m elements, the conditional correlation matrix
of εt, which is equivalent to the conditional correlation matrix of ηt, is given by Γt. Therefore,
the conditional expectation of (4) is defined as:

Qt = D1/2
t ΓtD1/2

t (5)

Equivalently, the conditional correlation matrix, Γt, can be defined as:

Γt = D−1/2
t QtD−1/2

t (6)

Equation (5) is useful if a model of Γt is available for purposes of estimating Qt, whereas
Equation (6) is useful if a model of Qt is available for purposes of estimating Γt.

Equation (5) is convenient for a discussion of volatility spillover effects, while both Equations (5)
and (6) are instructive for a discussion of asymptotic properties. As the elements of Dt are consistent
and asymptotically normal, the consistency of Qt in (5) depends on consistent estimation of Γt, whereas
the consistency of Γt in (6) depends on consistent estimation of Qt. As both Qt and Γt are products of
matrices, neither the QMLE of Qt nor Γt can be asymptotically normal, based on the definitions given
in Equations (5) and (6).

3.3. Full and Partial Volatility and Co-Volatility Spillovers

Volatility spillovers are defined in Chang et al. (2015) as the delayed effect of a returns shock in
one asset on the subsequent volatility or co-volatility in another asset. Therefore, a model relating
Qt to returns shocks is essential, and this will be addressed in the following sub-section. Spillovers
can be defined in terms of full volatility spillovers and full co-volatility spillovers, as well as partial
co-volatility spillovers, as follows:

(1) Full volatility spillovers:
∂Qiit/∂εkt−1, k 6= i (7)

(2) Full co-volatility spillovers:
∂Qijt/∂εkt−1, i 6= j, k 6= i, j (8)
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(3) Partial co-volatility spillovers:

∂Qijt/∂εkt−1, i 6= j, k = either i or j (9)

where i, j, k = 1 . . . m; εt is returns shocks and Qt is the conditional covariance matrix of εt.
Volatility spillovers in the spot and derivatives markets are crucial for purposes of dynamic

hedging. Full volatility spillovers occur when the returns shock from financial asset k affects
the volatility of a different financial asset i. Full co-volatility spillovers occur when the returns
shock from financial asset k affects the co-volatility between two different financial assets, i and j.
Partial co-volatility spillovers occur when the returns shock from financial asset k affects the co-volatility
between two financial assets, i and j, one of which can be asset k. When m = 2, only Options (1) and (3)
are possible as full co-volatility spillovers depend on the existence of a third financial asset.

As mentioned above, spillovers require a model that relates the conditional volatility matrix, Qt,
to a matrix of delayed returns shocks. The most frequently-used models of multivariate conditional
covariance are alternative specifications of the BEKK model, with appropriate parametric restrictions,
which will be considered below.

3.4. Diagonal and Scalar BEKK

The vector random coefficient autoregressive process of order one is the multivariate extension of
Equation (2) and is given as:

εt = Φtεt−1 + ηt (10)

where εt and ηt are m× 1 vectors, Φt is an m×m matrix of random coefficients and: Φt ∼ iid(0, A),
ηt ∼ iid(0, QQ′).

Technically, a vectorization of a full (that is, non-diagonal or non-scalar) matrix A to vec A
can have a dimension as high as m2 × m2, whereas vectorization of a symmetric matrix A to vec
A, starting with the diagonal elements for stacking the matrix, can have a dimension as low as
m(m− 1)/2×m(m− 1)/2.

In the case where A is either a diagonal matrix or the special case of a scalar matrix, A = aIm,
McAleer et al. (2008) showed that the multivariate extension of GARCH(1,1) from Equation (10),
incorporating an infinite geometric lag in terms of the returns shocks, is given as the diagonal or scalar
BEKK model, namely:

Qt = QQ′ + Aεt−1ε′t−1 A′ + BQt−1B′ (11)

where A and B are both either diagonal or scalar matrices. The matrix A is crucial in the interpretation
of symmetric and asymmetric weights attached to the returns shocks, as well as the subsequent analysis
of spillover effects.

McAleer et al. (2008) showed that the QMLE of the parameters of the diagonal or scalar BEKK
models were consistent and asymptotically normal, so that standard statistical inference on testing
hypotheses is valid. Moreover, as Qt in (11) can be estimated consistently, Γt in Equation (6) can also
be estimated consistently.

In terms of volatility spillovers, as the off-diagonal terms in the second term on the right-hand side
of Equation (11), εt−1ε′t−1 A′, have typical (i,j) elements aiiajjεit−1ε jt−1, i 6= j, i, j = 1, . . . , m, there are
no full volatility or full co-volatility spillovers. However, partial co-volatility spillovers are not only
possible, but they can also be tested using valid statistical procedures.

3.5. Triangular, Hadamard and Full BEKK

Without actually deriving the model from an appropriate stochastic process, Baba et al. (1985) and
Engle and Kroner (1995) considered the full BEKK model, as well as the special cases of triangular and
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Hadamard (element-by-element multiplication) BEKK models. The specification of the multivariate
model is the same as the specification in Equation (11), namely:

Qt = QQ′ + Aεt−1ε′t−1 A′ + BQt−1B′ (12)

except that A and B are full, Hadamard or triangular matrices, rather than diagonal or scalar matrices,
as in (11).

Although it is possible to examine spillover effects using each of these models, it is not possible
to test or analyse spillover effects as the QMLE of the parameters in Equation (12) have no known
asymptotic properties.

Although estimation of the full, Hadamard and triangular BEKK models is available in some
standard econometric and statistical software packages, it is not clear how the likelihood functions
might be determined. Moreover, the so-called “curse of dimensionality”, whereby the number of
parameters to be estimated is excessively large, makes convergence of any estimation algorithm
somewhat problematic. This is in sharp contrast to a number of published papers in the literature,
whereby volatility spillovers have been tested incorrectly based on the off-diagonal terms in the matrix
A in Equation (12).

3.6. Generated Regressors

One of the primary purposes of the paper is to investigate the spillover effects within and across
the energy and financial sectors for both U.S. spot and futures market by applying indices, ETF and
ETF futures. While energy and financial indices and ETFs are already available for spot markets, it is
necessary to use generated variables to construct ETF futures for futures markets. The generated
ETF futures proposed in the paper focus on economic activities related to the financial and energy
industries, respectively. The three components of the Financial ETF futures (XLFf), each of which can
be constructed from data downloaded from Bloomberg or Yahoo Finance, are as follows:

(1) Financial Select Sector SPDR Fund (XLF);
(2) Generic 1st S&P 500 index futures (SP1); and
(3) Generic 1st FTSE 100 index futures (Z1).

The other three components of the energy ETF futures (XLEf), each of which can be constructed
from data downloaded from Bloomberg or Yahoo Finance, are as follows:

(1) Energy Select Sector SPDR Fund (XLE);
(2) Generic 1st Crude Oil WTI futures (CL1); and
(3) Generic 1st Natural Gas futures (NG1).

The ETF futures discussed above are based on estimation of a regression model, which may
be referred to as the generating model. The model-based weights for the components of financial
ETF futures and energy ETF futures are estimated by OLS. The traditional method of examining the
statistical properties of generated variables, and more specifically generated regressors, uses variables
that are typically stationary. In empirical finance, the variables considered can be financial returns,
in which the variables are typically stationary, or financial stock prices, where the variables are
typically non-stationary.

The specific model that is used to generate ETF futures is based on financial price variables, all of
which are non-stationary. Consequently, there would seem to be no known optimality properties for
the OLS estimates of ETF futures. For this reason, the generated variable is interpreted as an estimate
of ETF, with no optimal statistical properties claimed for the estimated parameters in the generating
model. In comparison, where the variables are stationary, Ordinary Least Squares (OLS) can be shown
to be efficient (see, for example, (McAleer and McKenzie 1991; McAleer 1992; Fiebig et al. 1992)).
For the purposes of determining whether the generated ETF futures are a reasonable construction of
the latent variable, R2 will be used as a statistical indicator.
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The models to be estimated below are linear in the variables, with the appropriate weights to be
estimated empirically. Accordingly, XLFf is defined as:

XLF ft = c + θ1XLFt−1 + θ2SP1t−1 + θ3Z1t−1 + ut, ut ∼ D
(

0, σu
2
)

(13)

where c denotes the constant term and ut denotes the shocks to XLFf, which need not be independently
or identically distributed, especially for daily data. The parameters θ1, θ2 and θ3 are the weights
attached to one-period lagged financial ETF, Generic 1st S&P 500 index futures and Generic FTSE
100 index futures, respectively.

As XLFf is a latent variable, it is necessary to link XLFf to observable data. The latent variable is
defined as being the conditional mean of an observable variable, namely the Financial Select Sector
SPDR Fund (XLF), which is a tradable spot index, reflecting the financial select index that is listed on
the NYSE, as follows:

XLFt = XLF ft + υt, υt ∼ D
(

0, συ
2
)

(14)

where XLF is observed, XLFf is latent and the measurement error in XLF is denoted by υt, which need
not be independently or identically distributed, especially for daily data.

Given the zero mean assumption for υt, the means of XLF and XLFf will be identical, as will their
estimates. Using Equations (13) and (14), the empirical model for estimating the weights for XLF is
given as:

XLFt = c + θ1XLFt−1 + θ2SP1t−1 + θ3Z1t−1 + εt, εt = ut + υt ∼ D
(

0, σε
2
)

(15)

where εt = ut + υt, which should be distinguished from the return shocks, εt, in Equations (1) and (4)
above, need not be independently or identically distributed, especially for daily data.

The parameters in Equation (15) can be estimated by OLS or QMLE, depending on the specification
of the conditional volatility of εt, to yield estimates of XLF, if SP1 and Z1 are stationary. As XLF
is a non-stationary price, there is no reason to expect the combined error, εt, to be conditionally
heteroskedastic. Alternatively, Instrumental Variables (IV) or the Generalized Method of Moments
(GMM) can be used to estimate the parameters in Equation (15) to obtain an estimate of XLF and,
hence, also an estimate of the latent variable, XLFf, although finding suitable instruments can be
problematic when daily data are used.

Cointegration can also be used to estimate the parameters in Equation (15), but only if consistent
estimates of the parameters are desired, and if statistical inference is intended for the estimates. As we
are interested only in the fitted values of ETF to generate ETF futures, namely XLF to obtain XLFf,
these alternative methods are eschewed in favour of the Ordinary Least Squares (OLS) estimates.
In view of the definition in Equation (14), the estimates of XLF will also provide estimates of the
latent XLFf.

Similar logic to the above applies to the energy case. XLEf is defined as follows:

XLEt = XLE ft + υt, υt ∼ D
(

0, συ
2
)

(16)

where XLE is observed, XLEf is latent and the measurement error in XLE is denoted by υt, which need
not be independently or identically distributed, especially for daily data.

Given the zero mean assumption for υt, the means of XLE and XLEf will be identical, as will their
estimates. Using Equations (13) and (14), the empirical model for estimating the weights for XLE is
given as:

XLEt = c + θ1XLEt−1 + θ2CL1t−1 + θ3NG1t−1 + εt, εt = ut + υt ∼ D
(

0, σε
2
)

(17)

where εt = ut + υt need not be independently or identically distributed, especially for daily data.
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As there would seem to be no known optimality properties for the OLS estimates of ETF futures,
the OLS estimates of XLE will be used to estimate XLEf, though no optimality properties are claimed
for the generated XLE futures.

4. Data and Variables

As shown in Table 1, we choose the following indices, ETFs and ETF futures for the empirical
analysis: Financial Select Sector Index (IXM), Energy Select Sector Index (IXE), Financial Select Sector
SPDR Fund (XLF), Energy Select Sector SPDR Fund (XLE), Financial ETF futures (XLFf) and Energy
ETF futures (XLEf).

Table 1. Data description.

Variable Name Definitions Exchange Source

IXM Financial Select Sector Index Non-tradable Bloomberg
IXE Financial Select Sector Index Non-tradable Bloomberg
XLF Financial Select Sector SPDR Fund NYSE Yahoo Finance
XLE Energy Select Sector SPDR Fund NYSE Yahoo Finance
XLFf financial ETF futures Generated Regressors
XLEf energy ETF futures Generated Regressors

Constituents of Financial ETF futures (XLFf)

XLF Financial Select Sector SPDR Fund NYSE Yahoo Finance
SP1 Generic 1st S&P 500 futures CME Bloomberg
Z1 Generic 1st FTSE 100 futures LIFFE Bloomberg

Constituents of Energy ETF futures (XLEf)

XLE Energy Select Sector SPDR Fund NYSE Yahoo Finance
CL1 Generic 1st Crude Oil WTI futures NYMEX Bloomberg
NG1 Generic 1st Natural Gas futures NYMEX Bloomberg

The Financial Select Sector index (Ticker: IXM), launched on 16 December 1998, is a sub-index
of S&P500 comprising 92 financial-related S&P 500 stocks. The classification is based on the Global
Industry Classification Standard (GICS®). The index represents the performance of the U.S. financial
industry. Components of the Financial Select Sector are weighted by their float-adjusted market
capitalization, and the Select Sector Indices are rebalanced quarterly. The three largest constituents
of the financial sector are Berkshire Hathaway B, Wells Fargo & Co and JP Morgan Chase & Co.
The related ETF tracking IXM is the Financial Select Sector SPDR Fund (Ticker: XLF), as listed on the
New York Stock Exchange.

Correspondingly, the Energy Select Sector index (Ticker: IXE), launched on 16 December 1998, is a
sub-index of S&P500 comprised of 38 energy-related stocks of the S&P 500. The classification is based
on the Global Industry Classification Standard (GICS®). This index represents the performance of the
U.S. energy industry. Components of the Energy Select Sector are weighted by their float-adjusted
market capitalization, and the Select Sector Indices are rebalanced quarterly. The related ETFs tracking
IXE is the Energy Select Sector SPDR Fund (Ticker: XLE), as listed on the New York Stock Exchange.

The Financial Select Sector SPDR® Fund (Ticker: XLF), issued by SSGA Funds Management, Inc.
and listed on the New York Stock Exchange since 16 December 1998, is the most representative financial
ETF, with the largest total assets and average trading volume in the financial sector. This ETF seeks to
replicate the performance of the Financial Select Sector Index. As of 31 May 2016, the industry
allocation of XLF consisted of banks (34.47%), Real Estate Investment Trusts (REITs) (18.30%),
insurance (16.83%), diversified financial services (13.04%), capital markets (12.01%), consumer finance
(4.92%), real estate management and development (0.29%) and unassigned (0.10%). The top three
holdings of XLF are Berkshire Hathaway Inc. Class B (8.84%), JPMorgan Chase & Co. (8.04%) and
Wells Fargo & Company (7.87%).
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Correspondingly, the Energy Select Sector SPDR® Fund (Ticker: XLE), issued by SSGA Funds
Management, Inc. and listed on the New York Stock Exchange since 16 December 1998, is the most
representative energy ETF, with the largest total assets and average trading volume in the energy sector.
This ETF seeks to replicate the performance of the Energy Select Sector Index. As of 31 May 2016,
the industry allocation of XLE consisted of oil gas and consumable fuels (83.19%), energy equipment
and services (16.66%) and unassigned (0.15%). The top three holdings of XLE are Exxon Mobil
Corporation (18.85%), Chevron Corporation (14.68%) and Schlumberger NV (8.37%).

The financial ETF futures (XLFf) was generated from the Financial Select Sector SPDR® Fund
(XLF), Generic 1st S&P 500 index futures (Bloomberg ticker: SP1) and Generic 1st FTSE 100 index
futures (Bloomberg ticker: Z1). The Generic 1st S&P 500 index futures is the continuous contract
constructed by the front-month futures contract of S&P 500 index futures (Ticker: SPX), the latter
having been introduced by the Chicago Mercantile Exchange (CME) in 1982. Meanwhile, the Generic
1st FTSE 100 index futures is the continuous contract constructed by front-month futures contract of
FTSE 100 index futures, the latter having been launched by the London International Financial Futures
and Options Exchange (LIFFE) in 1984.

Estimation of XLFf using generated regressors via the software R is shown in Equation (18):
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ADF Test 
Variables No Trend and Intercept With Intercept With Trend and Intercept 

IXM_Return −74.8746 * −74.8663 * −74.8584 * 
IXE_Return −52.3193 * −52.3291 * −52.3299 * 
XLF_Return −75.4704 * −75.4632 * −75.4554 * 
XLE_Return −52.2382 * −52.2581 * −52.2579 * 
XLFf_Return −75.5023 * −75.4951 * −75.4872 * 
XLEf_Return −52.2497 * −52.2692 * −52.2693 * 

PP Test 
Variables No Trend and Intercept with Intercept with Trend and Intercept 

IXM_Return −76.5683 * −76.5589 * −76.5513 * 
IXE_Return −72.0880 * −72.1263 * −72.1402 * 
XLF_Return −77.5130 * −77.5103 * −77.5032 * 
XLE_Return −71.8730 * −71.9392 * −71.9946 * 
XLFf_Return −77.5604 * −77.5577 * −77.5502 * 
XLEf_Return −71.9054 * −72.0151 * −72.0267 * 

where XLEf is Energy ETF futures, XLE is Energy Select Sector SPDR® Fund, CL1 is Generic 1st
Crude Oil WTI futures, NG1 is Generic 1st Natural Gas futures, and t-ratios are shown in parentheses.
As stated previously, the t-ratios do not have the standard asymptotic normal distribution as the
variables are non-stationary, but the extremely high value of R2 suggests that the generated variable is
a useful construction of the latent variable.

Daily data for the financial select sector index, energy select sector index, financial ETF, energy
ETF and the constituents of the financial ETF futures and energy ETF futures (namely, Generic 1st S&P
500 index futures, Generic 1st FTSE 500 index futures, Generic 1st Crude Oil futures and Generic 1st
Natural Gas futures) were downloaded from Bloomberg or Yahoo Finance. In the case of a national
holiday, the missing value is replaced by the value of the previous day. ETF fund returns are calculated
by taking the log difference of adjusted prices and multiplying by 100, that is (log Pt − logPt−1)× 100.
The relevant descriptive statistics are shown in Table 2, implying that the returns of all variables are
not normal. The Augmented Dickey–Fuller (ADF) and PP (Phillips–Perron) test for unit roots are
shown in Table 3. The unit roots tests indicate that the returns of all variables are stationary.
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Table 2. Descriptive statistics (22 December 1998–22 April 2016).

Variables Mean Maximum Minimum Std. Dev. Skewness Kurtosis

Return (%)

IXM_Return −0.00001 7.47123 −8.09431 0.85274 −0.07166 18.32649
IXE_Return 0.00992 7.61806 −7.51765 0.75370 −0.37323 12.69031
XLF_Return 0.00324 11.85519 −8.28167 0.86750 0.33284 24.25198
XLE_Return 0.01286 6.62314 −6.77485 0.75686 −0.41494 12.02135
XLFf_Return 0.00329 11.83412 −8.26734 0.86482 0.33368 24.23240
XLEf_Return 0.01290 6.61355 −6.76537 0.75571 −0.41562 12.02699

Note: The Jarque–Bera–Lagrange Multiplier test is asymptotically chi-squared and is based on testing skewness and
kurtosis against the null hypothesis of a normal distribution.

Table 3. Unit Root Tests. ADF, Augmented Dickey–Fuller; PP, Phillips–Perron.

ADF Test

Variables No Trend and Intercept With Intercept With Trend and Intercept

IXM_Return −74.8746 * −74.8663 * −74.8584 *
IXE_Return −52.3193 * −52.3291 * −52.3299 *
XLF_Return −75.4704 * −75.4632 * −75.4554 *
XLE_Return −52.2382 * −52.2581 * −52.2579 *
XLFf_Return −75.5023 * −75.4951 * −75.4872 *
XLEf_Return −52.2497 * −52.2692 * −52.2693 *

PP Test

Variables No Trend and Intercept with Intercept with Trend and Intercept

IXM_Return −76.5683 * −76.5589 * −76.5513 *
IXE_Return −72.0880 * −72.1263 * −72.1402 *
XLF_Return −77.5130 * −77.5103 * −77.5032 *
XLE_Return −71.8730 * −71.9392 * −71.9946 *
XLFf_Return −77.5604 * −77.5577 * −77.5502 *
XLEf_Return −71.9054 * −72.0151 * −72.0267 *

Note: * denotes that the null hypothesis of a unit root is rejected at the 1% level.

The empirical analysis was conducted in its entirety and also subdivided into three
sub-periods, namely (i) before-GFC, from 22 December 1998–8 October 2007; (ii) during-GFC,
from 9 October 2007–9 March 2009; (iii) after-GFC, from 10 March 2009–22 April 2016; (iv) all (full
sample), from 22 December 1998–22 April 2016. The numbers of observations for each period are 2292,
370, 1859 and 4521, respectively.

5. Empirical Results for Co-Volatility Spillovers

5.1. Hypothesis Testing of Co-Volatility Spillovers

This paper uses the diagonal BEKK model, in which the co-volatility spillover effects are a function
of the diagonal elements of matrix A and the returns shocks of asset i at time t − 1. A rejection of the
null hypothesis H0, as shown in the definition of the test of co-volatility spillover effects in Section 3,
indicates the significance of the co-volatility spillovers from the returns shocks of asset j at time t − 1
to the co-volatility between assets i and j at time t.

In the empirical analysis, we selected two indices and two ETFs and generated two ETF
futures, from which to analyse all 15 possible pairwise combinations of spillover effects based on
the multivariate diagonal BEKK model, specifically the co-volatility spillovers for all cases in which
the estimates of A in the diagonal BEKK model are significant. The diagonal BEKK model shown in
Equation (11) was estimated by QMLE using the econometric software package EViews 8.
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The list of variables used is as follows: Financial Select Sector Index (IXM), Energy Select Sector
Index (IXE), Financial Select Sector SPDR Fund (XLF), Energy Select Sector SPDR Fund (XLE), Financial
ETF futures (XLFf) and Energy ETF futures (XLEf).

5.2. Calculating Average Co-Volatility Spillovers

Table 4 shows the estimates of the diagonal elements of A in the diagonal BEKK model for each
pairwise comparison analysed (as described below), while Table 5 shows the mean returns shocks
for each asset, both for the entire time period and for each of the three sub-periods. Table 6 shows
the mean co-volatility spillovers, which are calculated by applying the definition of the co-volatility
spillover effects discussed in Section 3.

Table 4. Estimation of diagonal elements of A in BEKK. GFC, Global Financial Crisis.

Group 1: Cross-Sector Spot-Spot

Case Asset 1 Asset 2 A Before-GFC During-GFC After-GFC All

1.a IXE IXM
A1(1,1) 0.191 * 0.310 * 0.225 * 0.227 *
A1(2,2) 0.262 * 0.226 * 0.247 * 0.253 *

1.b XLE XLF
A1(1,1) 0.202 * 0.290 * 0.224 * 0.235 *
A1(2,2) 0.320 * 0.230 * 0.244 * 0.272 *

1.c XLE IXM
A1(1,1) 0.192 * 0.290 * 0.225 * 0.227 *
A1(2,2) 0.261 * 0.227 * 0.249 * 0.253 *

1.d IXE XLF
A1(1,1) 0.204 * 0.312 * 0.224 * 0.236 *
A1(2,2) 0.323 * 0.228 * 0.243 * 0.273 *

Group 2: Cross-Sector Futures-Futures

Case Asset 1 Asset 2 A Before-GFC During-GFC After-GFC All

2.a XLEf XLFf
A1(1,1) 0.202 * 0.291 * 0.224 * 0.234 *
A1(2,2) 0.320 * 0.230 * 0.242 * 0.271 *

Group 3: Cross-Sector Spot-Futures

Case Asset 1 Asset 2 A Before-GFC During-GFC After-GFC All

3.a IXM XLEf
A1(1,1) 0.267 * 0.254 * 0.301 * 0.286 *
A1(2,2) 0.178 * 0.272 * 0.188 * 0.191 *

3.b XLF XLEf
A1(1,1) 0.352 * 0.249 * 0.297 * 0.337 *
A1(2,2) 0.174 * 0.275 * 0.185 * 0.191 *

3.c IXE XLFf
A1(1,1) 0.165 * 0.313 * 0.260 * 0.234 *
A1(2,2) 0.365 * −0.037 0.189 * 0.251 *

3.d XLE XLFf
A1(1,1) 0.161 * 0.307 * 0.259 * 0.233 *
A1(2,2) 0.362 * −0.041 0.187 * 0.250 *

Group 4: Within-Sector Spot-Spot

Case Asset 1 Asset 2 A Before-GFC During-GFC After-GFC All

4.a IXM XLF
A1(1,1) 0.301 * 0.471 * 0.313 * 0.299 *
A1(2,2) 0.299 * 0.439 * 0.313 * 0.300 *

4.b IXE XLE
A1(1,1) 0.187 * 0.408 * 0.278 * 0.257 *
A1(2,2) 0.186 * 0.403 * 0.271 * 0.253 *

Group 5: Within-Sector Spot-Futures

Case Asset 1 Asset 2 A Before-GFC During-GFC After-GFC All

5.a IXM XLFf
A1(1,1) 0.267 * 0.272 * 0.256 * 0.277 *
A1(2,2) 0.331 * 0.531 * 0.373 * 0.321 *

5.b XLF XLFf
A1(1,1) 0.321 * 0.171 * 0.296 * 0.315 *
A1(2,2) 0.306 * 0.477 * 0.257 * 0.291 *

5.c IXE XLEf
A1(1,1) 0.211 * 0.274 * 0.233 * 0.228 *
A1(2,2) 0.192 * 0.609 * 0.336 * 0.304 *

5.d IXM XLEf
A1(1,1) 0.267 * 0.254 * 0.301 * 0.286 *
A1(2,2) 0.178 * 0.272 * 0.188 * 0.191 *

Note: * denotes significant at the 1% level.
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Table 5. Mean return shocks.

Group 1: Cross-Sector Spot-Spot

Case Asset Before-GFC During-GFC After-GFC All

1.a
IXE −0.011204 −0.071687 −0.008686 −0.011357
IXM −0.006777 −0.072454 0.001743 −0.020297

1.b
XLE −0.011494 −0.065577 −0.007675 −0.011257
XLF −0.007065 −0.065807 0.002071 −0.020948

1.c
XLE −0.010616 −0.062126 −0.008207 −0.010482
IXM −0.006639 −0.069262 0.001767 −0.019909

1.d
IXE −0.012103 −0.074886 −0.008168 −0.012156
XLF −0.007285 −0.069917 0.002027 −0.02138

Group 2: Cross-Sector Futures-Futures

Case Asset Before-GFC During-GFC After-GFC All

2.a
XLEf −0.01166 −0.067914 −0.007756 −0.011694
XLFf −0.007 −0.057135 0.002322 −0.021018

Group 3: Cross-Sector Spot-Futures

Case Asset Before-GFC During-GFC After-GFC All

3.a
IXM −0.010596 −0.08784 −0.000715 −0.0222
XLEf −0.005352 −0.043396 −0.009213 −0.000729

3.b
XLE −0.012874 −0.091973 −0.001053 −0.024498
XLEf −0.005131 −0.04453 −0.008712 −0.000712

3.c
IXE −0.009224 −0.071131 −0.009599 −0.014442

XLFf −0.003639 0.001534 0.006691 −0.013987

3.d
XLE −0.010088 −0.064578 −0.009295 −0.014803
XLFf −0.004424 0.000471 0.006743 −0.014104

Group 4: Within-Sector Spot-Spot

Case Asset Before-GFC During-GFC After-GFC All

4.a
IXM −0.011165 −0.08912 0.003486 −0.018308
XLF −0.012522 −0.086464 0.003553 −0.01781

4.b
IXE −0.007966 −0.075882 −0.007843 −0.014385
XLE −0.007481 −0.072072 −0.007864 −0.014581

Group 5: Within-Sector Spot-Futures

Case Asset Before-GFC During-GFC After-GFC All

5.a
IXM −0.010662 −0.066578 0.005485 −0.020032
XLFf −0.000539 0.001660 −0.000476 4.67E-06

5.b
XLF −0.014975 −0.045831 0.002275 −0.024073
XLFf 2.41E-05 0.000424 −6.16E-05 1.01E-05

5.c
IXE −0.005847 −0.064652 −0.007429 −0.012769

XLEf 0.000311 0.003213 −0.000369 −0.000497

5.d
XLE −0.009237 −6.82E-06 −3.66E-08 −0.016685
XLEf 1.10E-06 −2.69E-05 −3.84E-07 −6.85E-06

Note: Mean return shocks are calculated over the respective sample or sub-sample periods.
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Table 6. Mean co-volatility spillovers.

Group 1: Cross-Sector Spot-Spot Spillover Effects

Case Asset i Asset j Before-GFC During-GFC After-GFC All

1.a.1 IXE IXM −0.000561 −0.005022 −0.000483 −0.000652
1.a.2 IXM IXE −0.000339 −0.005076 0.000097 −0.001166
1.b.1 XLE XLF −0.000743 −0.004374 −0.000419 −0.000720
1.b.2 XLF XLE −0.000457 −0.004389 0.000113 −0.001339
1.c.1 XLE IXM −0.000532 −0.004090 −0.000460 −0.000602
1.c.2 IXM XLE −0.000333 −0.004560 0.000099 −0.001143
1.d.1 IXE XLF −0.000797 −0.005327 −0.000445 −0.000783
1.d.2 XLF IXE −0.000480 −0.004974 0.000110 −0.001377

Group 2: Cross-Sector Futures-Futures Spillover Effects

Case Asset i Asset j Before-GFC During-GFC After-GFC All

2.a.1 XLEf XLFf −0.000754 −0.004545 −0.000420 −0.000742
2.a.2 XLFf XLEf −0.000452 −0.003824 0.000126 −0.001333

Group 3: Cross-Sector Spot-Futures Spillover Effects

Case Asset i Asset j Before-GFC During-GFC After-GFC All

3.a.1 IXM XLEf −0.000504 −0.006069 −0.000040 −0.001213
3.a.2 XLEf IXM −0.000254 −0.002998 −0.000521 −0.000040
3.b.1 XLF XLEf −0.000789 −0.006298 −0.000058 −0.001577
3.b.2 XLEf XLF −0.000314 −0.003049 −0.000479 −0.000046
3.c.1 IXE XLFf −0.000556 Insignificant −0.000472 −0.000848
3.c.2 XLFf IXE −0.000219 Insignificant 0.000329 −0.000822
3.d.1 XLE XLFf −0.000588 Insignificant −0.000450 −0.000862
3.d.2 XLFf XLE −0.000258 Insignificant 0.000327 −0.000822

Group 4: Within-Sector Spot-Spot Spillover Effects

Case Asset i Asset j Before-GFC During-GFC After-GFC All

4.a.1 IXM XLF −0.001005 −0.018427 0.000342 −0.001642
4.a.2 XLF IXM −0.001127 −0.017878 0.000348 −0.001598
4.b.1 IXE XLE −0.000277 −0.012477 −0.000591 −0.000935
4.b.2 XLE IXE −0.000260 −0.011850 −0.000592 −0.000948

Group 5: Within-Sector Spot-Futures Spillover Effects

Case Asset i Asset j Before-GFC During-GFC After-GFC All

5.a.1 IXM XLFf −0.000942 −0.009616 0.000383 −0.001781
5.a.2 XLFf IXM −0.000048 0.000240 −0.000033 0.000000
5.b.1 XLF XLFf −0.001471 −0.003738 0.000173 −0.002207
5.b.2 XLFf XLF 0.000002 0.000035 −0.000005 0.000001
5.c.1 IXE XLEf −0.000237 −0.010788 −0.000582 −0.000885
5.c.2 XLEf IXE 0.000013 0.000536 −0.000029 −0.000034
5.d.1 XLE XLEf −0.000615 −0.000001 −2.25E-09 −0.001069
5.d.2 XLEf XLE 7.32E-08 −0.000003 −2.36E-08 −4.39E-07

Note: Co-volatility spillover =; mean co-volatility spillovers use the mean return shocks from Table 5.

As can be seen in Table 6 and the explanation below, the data were separated into five groups,
which will be described in detail below.

Group 1: Cross-sector spot-spot spillover effects, specifically the spillover effects between each of
the pairs: (a) financial index and energy index, (b) financial ETF and energy ETF, (c) financial index
and energy ETF and (d) energy index and financial ETF.

Group 2: Cross-sector futures-futures spillover effects, specifically the spillover effects between
(a) financial ETF futures and energy ETF futures.
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Group 3: Cross-sector spot-futures spillover effects, specifically the spillover effects between each
of the pairs: (a) financial index and energy ETF futures, (b) financial ETF and energy ETF futures,
(c) energy index and financial ETF futures and (d) energy ETF and financial ETF futures.

Group 4: Within-sector spot-spot spillover effects, specifically the spillover effects between
(a) financial index and financial ETF and (b) energy index and energy ETF.

Group 5: Within-sector spot-futures spillover effects, specifically the spillover effects between
each of the pairs: (a) financial index and financial ETF futures, (b) financial ETF and financial ETF
futures, (c) energy index and energy ETF futures and (d) energy ETF and energy ETF futures.

The following paragraphs describe the average co-volatility spillover effects for each of the
five groups mentioned above and also across each of the four time periods, namely “before- GFC”,
“during-GFC”, “after-GFC”, and “all”.
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In Group 1, before-GFC, namely cross-sector spot-spot spillovers, it was found that in all
cases, co-volatility spillovers were statistically significant and negative. For each of the four pairs,
the magnitude of the spillovers of the financial spot asset, namely IXM (Financial Select Sector Index)
or XLF (financial ETF), on subsequent co-volatility between itself and its corresponding energy spot
asset, namely IXE (Energy Select Sector Index) or XLE (energy ETF), was numerically greater than the
spillovers of the energy spot asset on the same subsequent co-volatility pair.

In Group 1, during-GFC, it was found that in all cases, co-volatility spillovers were again
statistically significant and negative. For each pair, the magnitude of the spillovers of the financial spot
asset, namely IXM (Financial Select Sector Index) or XLF (financial ETF), on subsequent co-volatility
between itself and its corresponding energy spot asset, namely IXE (Energy Select Sector Index) or
XLE (energy ETF), was similar to the spillover effect of the energy spot asset on the same subsequent
co-volatility pair.

In Group 1, after-GFC, it was found that in all cases, co-volatility spillovers were statistically
significant. For each pair, the spillovers of the financial spot asset, namely IXM (Financial Select Sector
Index) or XLF (financial ETF), on subsequent co-volatility between itself and its corresponding energy
spot asset, namely IXE (Energy Select Sector Index) or XLE (energy ETF), was negative and greater
than the positive spillovers of the energy spot asset on the same subsequent co-volatility pair.

In terms of the aggregation of the three periods for Group 1, it was found that in all cases,
co-volatility spillovers were statistically significant and negative. For each pair, the magnitude of the
spillovers of the financial spot asset, namely IXM (Financial Select Sector Index) or XLF (financial ETF),
on subsequent co-volatility between itself and its corresponding energy spot asset, namely IXE (Energy
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Select Sector Index) or XLE (energy ETF), was less than the spillovers of the energy spot asset on the
same subsequent co-volatility pair.
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(financial ETF), respectively, was greater than the spillovers of the spot asset on the same subsequent
co-volatility pair.

In Group 3, during-GFC, it was found that co-volatility spillovers between XLEf (energy ETF
futures) and XLF (financial ETF) or IXM (financial index), namely Cases 3.a.1 to 3.b.2, were statistically
significant and negative. For each pair, the magnitude of spillovers of XLEf (energy ETF futures) on
subsequent co-volatility between itself and its corresponding cross-sector spot asset, namely IXM
(Financial Select Sector Index) or XLF (financial ETF), was greater than the spillovers of the spot asset
on the same subsequent co-volatility pair. However, in each of the cases involving the co-volatility
between financial ETF futures and a spot energy asset (namely, energy ETF or energy index), specifically,
Cases 3.c.1 to 3.d.2, non-significant co-volatility effects were found.

In Group 3, after-GFC, it was found that in all cases, co-volatility spillovers were statistically
significant. For each pair, the magnitude of the spillover effect of XLFf (financial ETF futures) on
subsequent co-volatility between itself and its corresponding cross-sector energy spot asset, namely
IXE (Energy Select Sector Index) or XLE (energy ETF), was greater than the spillovers of the energy
spot asset on the same subsequent co-volatility pair. However, the spillovers of XLEf (energy ETF
futures) on subsequent co-volatility between itself and its corresponding cross-sector financial spot
asset, namely IXM (financial Select Sector Index) or XLF (financial ETF), were positive and smaller
than the negative spillovers of the financial spot asset on the same subsequent co-volatility pair.

In Group 3, combining all three periods, it was found that in all cases, co-volatility spillovers
were statistically significant and negative. For each pair, the magnitude of spillovers of XLFf (financial
ETF futures) on subsequent co-volatility between itself and its corresponding cross-sector energy spot
asset, namely IXE (Energy Select Sector Index) or XLE (energy ETF), was similar to the spillovers of the
energy spot asset on the same subsequent co-volatility pair. However, the spillovers of XLEf (energy
ETF futures) on subsequent co-volatility between itself and its corresponding cross-sector financial
spot asset, namely IXM (financial Select Sector Index) or XLF (financial ETF), were than the spillovers
of the financial spot asset on the same subsequent co-volatility pair.
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In Group 4, it was found that in all cases, co-volatility spillovers were statistically significant
over the four time periods. In terms of the magnitude of within-sector spot-spot co-volatility effects,
the spillovers of IXM (Financial Select Sector Index) on subsequent co-volatility between itself and XLF
(financial ETF) were similar to the spillovers of XLF on the same subsequent co-volatility pair, namely
Cases 4.a.1 and 4.a.2. This symmetry was also found for the pair involving co-volatility spillovers
between the XLE (energy ETF) and IXE (energy index), namely Cases 4.b.1 and 4.b.2.
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In Group 5, in both before-GFC and the aggregation of all three sub-periods, it was found that
in all cases, co-volatility spillovers were statistically significant. For each pair, the magnitude of the
spillovers of the futures asset, namely XLFf (financial ETF futures) and XLEf (energy ETF futures),
on subsequent co-volatility between itself and its corresponding within-sector spot asset, namely IXM
(Financial Select Sector Index) or XLF (financial ETF) and IXE (Energy Select Sector Index) or XLE
(energy ETF), respectively, was greater than the spillovers of a given spot asset on the same subsequent
co-volatility pair.

In Group 5, during-GFC and after-GFC, it was found that in all cases, co-volatility spillovers were
statistically significant. In terms of the magnitude of within-sector spot-futures co-volatility effects,
for each pair, the spillovers of XLFf (financial ETF futures) on subsequent co-volatility between itself
and its corresponding within-sector spot asset, namely IXM (Financial Select Sector Index) or XLF
(financial ETF), were greater than the spillovers of the financial spot asset on the same subsequent
co-volatility pair.

With regard to the within energy sector spot-futures co-volatility effect, the spillovers of XLEf
(energy ETF futures) on subsequent co-volatility between itself and XLE (energy ETF) and the spillovers
of XLE on the same subsequent co-volatility pair, namely Cases 5.d.1 and 5.d.2, were both significant,
albeit, close to zero. However, the spillovers of XLEf (energy ETF futures) on subsequent co-volatility
between itself and IXE (Energy index) were greater than the spillovers of the energy index on the same
subsequent co-volatility pair, namely Cases 5.c.1 and 5.c.2.

All of the results pertaining to the five groups can be summarized by way of the six key findings
given below. The terms symmetric and asymmetric, which are defined in terms of absolute values
of spillover effects, are used for the first three findings. In particular, if a spillover pair is symmetric,
it implies similar absolute values of spillover effects in both cases, based on casual empiricism. If a
spillover effect pair is asymmetric, this indicates dissimilar absolute values of spillover pairs (in terms
of casual empiricism in comparing the point estimates).

1. Asymmetric spillover effects were found in all cases of spot-spot and futures-futures across
sectors (see Groups 1 and 2).

2. Symmetric spillover effects were found in all cases of spot-spot between the financial ETF and
financial index, as well as between the energy ETF and energy index in all periods (see Group 4).

3. Asymmetric spillover effects were found in all cases of spot-futures ETF within sectors. Moreover,
in all cases, spillover effects of ETF futures on its co-volatility with the corresponding ETF are
stronger than in the reverse case (see Group 5).

4. The co-volatility spillovers in all groups over all time periods are statistically significant, except
for Cases 3.c.1 to 3.d.2 during-GFC.
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5. Additionally, with the exception of the insignificant cases, the co-volatility spillovers are stronger
during-GFC than for the other time periods (see Groups 1, 2 and 4).

6. In terms of the current relationship between the financial and energy sectors, the After-GFC
spillovers are of greater relevance than the spillovers of the three sub-periods combined into a
single sample.

6. Concluding Remarks

The primary purpose of the paper was to investigate the co-volatility spillovers within and across
the U.S. energy and financial sectors in both their spot (namely, IXE, IXM, XLF and XLE) and futures
(namely, XLFf and XLEf) markets, by using “generated regressors” and a multivariate conditional
volatility model, namely diagonal BEKK. The daily data used in the empirical analysis are from
23 December 1998–22 April 2016. The dataset was analysed in its entirety and also subdivided into
three time periods, namely “before-GFC”, “during-GFC” and “after-GFC”.

In Group 1, before and after the Global Financial Crisis, the magnitude of the spillovers of the
financial spot asset, namely IXM (Financial Select Sector Index) or XLF (financial ETF), on subsequent
co-volatility between itself and its corresponding energy spot asset, namely IXE (Energy Select Sector
Index) or XLE (energy ETF), was greater than the spillovers of the energy spot asset on the same
subsequent co-volatility pair.

However, during the GFC, the pattern changed dramatically. All of the spillovers were stronger,
and the spillovers of the financial spot asset on the subsequent co-volatility between itself and its
corresponding energy spot asset was similar to the spillovers of the energy spot asset on the same
subsequent co-volatility pair.

Other significant spillover patterns were also found between the financial ETF index and the
energy ETF index in their spot-spot, spot-futures and futures-futures co-volatility, namely Groups 2
and 3, when combining all three periods. In terms of the within-sector spot-spot and spot-futures
markets, namely Groups 4 and 5, significant spillovers of ETF futures on subsequent co-volatility
between ETF and ETF futures were also found.

It is well known that there is an intrinsic practical link between the financial and energy sectors,
which can be analysed through their spillover effects, which are measures of how the shocks to returns
in different assets affect each other’s subsequent volatility in both spot and futures markets. Moreover,
it is apparent that there is an intrinsic relationship between the financial ETF and energy ETF, both in
their spot and futures markets. The empirical results showed that energy ETF and financial ETF
have statistically significant co-volatility spillovers for all time periods. From a financial managerial
perspective, these empirical results suggest that financial and energy ETFs are suitable for constructing
a financial portfolio from an optimal risk management perspective and also for dynamic hedging
purposes. Failure to do so would miss out on optimal hedging and risk insurance for purposes of
managing financial portfolios.
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