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Abstract: Weather derivatives are contingent claims with payoff based on a pre-specified weather
index. Firms exposed to weather risk can transfer it to financial markets via weather derivatives.
We develop a utility-based model for pricing baskets of weather derivatives under default risk on the
issuer side in over-the-counter markets. In our model, agents maximise the expected utility of their
terminal wealth, while they dynamically rebalance their weather portfolios over a finite investment
horizon. Using dynamic programming approach, we obtain semi-closed forms for the equilibrium
prices of weather derivatives and for the optimal strategies of the agents. We give an example on
how to price rainfall derivatives on selected stations in China in the universe of a financial investor
and a weather exposed crop insurer.

Keywords: dynamic programming; pricing; risk management

MSC: 90C39; 91G20; 91B25

1. Introduction

Weather derivatives (WDs) are contingent claims with payoffs determined by future weather
events as temperature, snowfall, and rainfall. Hedging with WDs reduces exposure to weather
volatility and stabilises profits of a weather exposed agent. Firms operating in energy, tourism,
agriculture, and insurance sectors use WDs to hedge their weather risks. Investigations in
Peréz-González and Yun (2013) show that weather risk management with WDs leads to an increase
in firm value. Moreover, WDs are also attractive for a purely financial investor as their payoffs are
acyclic, uncorrelated with financial assets, and, therefore, contribute to portfolio diversification.

Frequently, the structure of agent’s weather exposure is complicated, such that, it is more beneficial
to purchase a basket of WDs on several underlying weather indices rather than on a single one to
manage weather risks in an optimal way. For a financial investor, positions in multiple WDs strengthen
the positive portfolio diversification effect. To increase the hedging efficiency and to achieve a higher
degree of portfolio diversification, both weather exposed business and financial investors are, therefore,
interested in holding a portfolio of multiple WDs. While valuing baskets of such derivatives, market
participants should also account for the dependence in the underlying weather indices.

We develop a simple utility-based model for pricing such baskets of customised WDs on multiple
dependent underlying indices. We address here the problem of WD pricing in over-the-counter (OTC)
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markets, where fewer interested agents transfer their specific non-financial weather risks among
themselves through creating and trading customised weather dependent claims. We perceive a model
which is flexible enough to handle a wide range of customised WDs and allows dynamic trading in the
sence that the agents rebalance their portfolios (or renegotiate the contracts) at some predetermined
discrete time points in their finite investment horizon. As in Çanakoǧlu and Özekici (2009) we use a
dynamic programming approach for portfolio optimisation combined in our case with zero-net-supply
condition for WDs to determine their equilibrium prices.

We choose an equilibrium pricing approach based on utility maximisation for several reasons.
First, we anticipate that the OTC transactions of WDs involve a limited number of participants.
Thus, the interaction of their individual supply and demand functions will give the equilibrium
price. Further, due to the market incompleteness standard arguments imposing an existence of
a unique pricing measure fail, see Heath et al. (1992). Models based on pure weather dynamics
impose restrictive assumptions in order to choose the appropriate equivalent martingale measure,
see Alaton et al. (2002), Benth et al. (2007), and López Cabrera et al. (2013). In our model, involved
agents construct WD securities in zero net supply, thus, they complete the WD market. Moreover, the
chosen utility-based pricing approach naturally reflects the risk attitudes of each agent and facilitates
via dynamic programming the derivation of explicit prices for WDs in a multi-period framework.

Most previous works on utility-based WD pricing either fail to price derivatives on multiple
dependent underlying indices simultaneously (Carmona and Diko 2005; Lee and Oren 2010;
Leobacher and Ngare 2011) or they impose restrictive assumptions on the dynamics of the underlying
weather indices (Horst and Müller 2007; Chaumont et al. 2006). Consumption based model of
Cao and Wei (2004) prices multiple WDs in an extended pure exchange economy of Lucas (1978)
on the macroeconomic level and is not feasible for a limited number of weather market participants
and a short contract duration typical for OTC markets. We contribute to this literature by providing
a model for pricing baskets of customised WDs on multiple dependent underlying indices. In our
framework, market participants account for the possible dependence between the weather indexes
that determine the payoffs of their weather portfolios. The applicability of our pricing model is not
restricted to any particular type of WDs. Various kinds of WDs can be priced in our framework.

Our further contribution is the introduction of counterparty default risk into the pricing model for
WDs. The importance of counterparty default risk for pricing was addressed, for example, in Hull and
White (1995), Jarrow and Turnbull (1995), and Wu and Chung (2010). We show that the introduction of
a non-zero issuer default probability significantly depresses the demand for WDs through correcting
expectations of future portfolio payoffs in utility terms downwards.

We illustrate our approach on pricing rainfall derivatives. These derivatives can be used to
hedge agricultural volumetric risks, see Musshoff et al. (2010). Traditionally, volumetric risk hedging
in agriculture is taken over by the crop insurance as Glauber et al. (2002). Therefore, a crop insurer
frequently faces indirect losses caused by rainfall surplus/deficit through its impact on crop production.
Whenever the weather exposed income of such an insurer depends on rainfall outcomes in a number
of geographical sites where the insured farmers are operating, a basket of rainfall derivatives should
be used for hedging the risks.

We give the pricing example for China. Chinese farmers are exposed to pronounced weather risks
as Turvey and Kong (2010). According to The World Bank (2007) the existing agricultural insurance
schemes are too expensive for Chinese agricultural producers. Trading WDs can play an important
role in transferring a part of the weather exposure of crop insurer to financial markets and so make
crop insurance affordable for Chinese farmers.

Our empirical analysis addresses the effects of the increasing investment horizon, default risk,
market volatility, and capital costs on the demand and on the supply for WDs.

The structure of the paper is as follows. In Section 2 we, first, derive the multi-asset dynamic
pricing model for WDs in the absence of any default risk. Next, we extend the model to account for
counterparty default risk and a possibility of an alternative financial investment. Section 3 shows an
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example of pricing rainfall derivatives using historical rainfall data for China and features a discussion
of further applications. In Section 4 we summarise our results.

2. Dynamic Pricing Model for Weather Derivatives

In this section, we construct a dynamic pricing model for WDs with multiple assets. First,
we introduce a market design and notation. Then, we derive equilibrium prices for WDs without
any default risk. Next, we study the implications of counterparty default risk and of an alternative
financial investment.

2.1. Assumptions and Notation

1. Assets. There are WDs on S weather indices (at different geographical sites and/or on different
weather events) that are priced at times t = 0, 1, . . . , T − 1. At T the payoff of each WD is
determined and the cash settlement takes place. The non-negative price of the WD on underlying
s in time t is denoted as Wt,s where s = 1, . . . , S and t = 1, . . . , T − 1. The final value WT,s
corresponds to the non-negative payoff of the sth WD. We denote the vector of prices at t as
Wt = (Wt,1, Wt,2, . . . , Wt,S)

>. Besides the WDs, a risk free asset Bt with a constant per period
return r is available. Trading with Bt is not restricted in any way, that is, unlimited borrowing and
lending at the interest r in each t is allowed. We assume there is no transaction costs on the asset
market. No capital addition or withdrawals are possible throughout the investment horizon, such
that the agents are exposed to self-financing constraints.

2. Agents. There are J + 1 heterogeneous market participants, indexed by i, with the risk preferences
described by the exponential utility function of the form Ui(x) = − exp(−aix), where ai > 0 is
the risk aversion of agent i. All agents have the same multi-period investment horizon of length T.
They invest at t = 0 and they consume their terminal wealth at t = T. At t = 1, . . . , T − 1 agents
rebalance their weather portfolios and renegotiate the prices for WDs. All agents are endowed
with an initial wealth of zero monetary units. We distinguish between J buyers, indicated by
subscript j, j = 1, . . . , J, who hedge weather exposure of their random income Ij, and a purely
financial investor, indicated by subscript m, who issues WDs. Each buyer holds a basket of WDs
on the relevant weather indices to hedge weather caused fluctuations in her profits. The issuer
holds positions in all S WDs. A portfolio of agent i includes αi,t = (αi,t,1, . . . , αi,t,S)

> shares of
the corresponding WDs and βi,t shares of the asset Bt. Both α·,· and β·,· are real valued, that is,
all assets are perfectly divisible and short sales are allowed. We denote the value of ith agent’s
portfolio at time t as Vi,t, where Vi,t = α>i,tWt + βi,tBt. In each period t of the investment horizon,
the agents maximise their expected utility of the terminal wealth with the available WDs and attain
their demand and supply for the WDs. That is, in each period t < T every agent i determines
her self-financing trading strategy (αi,t+1, βi,t+1)

>
t=0,1,...,T , in particular, she constructs the optimal

hedging portfolio given the state of the system at time t. Partial market clearing with respect to
WDs determines the equilibrium prices for the WDs.

3. State. The observable state of the system at time t, denoted byWt, contains values of the underlying
weather indices at t and the variables regarding default risk at t. The random state Wt+1 is
characterised by the conditional distribution function Φt(w′, w) = Pr(Wt+1 ≤ w′|Wt = w).
We assume that this transition function Φ satisfies the Feller property Stokey et al. (1989).
Expectation taken with respect to Φt(·) is denoted by Et(·).
Each agent j ∈ J is faced with the following discrete time stochastic control system:

Vj,t+1 = gj,t{Vj,t, (αj,t,s)s∈Sj ,Wj,t}, t = 0, 1, . . . , T (1)

where Vj,t incorporates portfolio value of agent j with Vj,0 = 0. (αj,t,s)s∈Sj are controls of the agent

in the system (1). The law of motion gj,t : R|Sj |+1 ×R|Sj | ×R|Sj | 7→ R|Sj |+1 maps to the next state
of the stochastic system.
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2.2. Pricing WDs without Default Risk

We now derive a dynamic pricing model for WDs with multiple assets under the market design
described by assumptions 1 to 3. For the moment, we assume that there is no default risk. The terminal
wealth of buyer j at T is her profit Πj,T :

Πj,T = Ij + α>j,TWT + β j,T BT

= Ij + Vj,T
(2)

with Ij being a random income that depends on some weather indices entering the final payoff WT .
β j,T BT and α>j,TWT are the payoffs of the risk free asset and of the basket of the WDs; together they
constitute Vj,T , the terminal portfolio value of buyer j. Let αj,t+1:T denote trading strategies of agent j
from t + 1 to T. Portfolio choice problem of buyer j in each t = 0, 1, . . . , T − 1 is:

max
αj,t+1:T∈RS×(T−t)

Et
{

Uj
(
Πj,T

)}
s.t. α>j,t+1Wt + β j,t+1Bt −Vj,t = 0.

(3)

That is, in each period of the investment horizon T buyer j maximises expected utility of her
terminal wealth with respect to all future trading strategies, subject to a self-financing portfolio.

The terminal wealth of investor m at T is:

Πm,T = −α>m,TWT + βm,T BT = Vm,T (4)

with α>m,TWT and βm,T BT being the payoffs of the WDs portfolio and the risk free asset respectively.
Investor’s portfolio choice problem in each t = 0, 1, . . . , T − 1 is:

max
αm,t+1:T∈RS×(T−t)

Et {Um (Πm,T)}

s.t. α>m,t+1Wt − βm,t+1Bt + Vm,t = 0.
(5)

In t < T investor m maximises expected utility of her terminal wealth with respect to all future
trading strategies, subject to a self-financing portfolio.

Note, that under assumptions 1 to 3, the constraints in the optimization problems (3) and (5) are
non-empty, compact and continuous in V·,· andW·, U·(·) is continuous and bounded, and transition
function Φ is Feller (by assumption). Thus, continuous law of motion g·,· ensures the
existence of optimal solutions to the problems above and continuity of the value function (see
Stokey et al. 1989, p. 62).

Following Pennacchi (2008) we solve the multi-period portfolio choice problems (3) and (5)
using dynamic programming. Let Ji,t(Vi,t, αi,t+1:T ,Wt) denote the expected utility of agent i in time t.
It depends on the agent’s current portfolio value Vi,t, the current stateWt, and the trading strategies
αi,t+1:T in the time span t + 1 to T (here indicated by subscript t + 1 : T). Let J∗i,t(Vi,t,Wt) be the
expected utility maximised with respect to the strategies of agent i from t + 1 on. Formally, in each t
J∗i,t(Vi,t,Wt) is obtained by:

J∗i,t(Vi,t,Wt) = max
αi,t+1:T∈RS×(T−t)

{Ji,t(Vi,t, αi,t+1:T ,Wt)} . (6)

According to the principle of dynamic programming the expected utility of agent i in t can be
rewritten as:

Ji,t(Vi,t, αi,t+1,Wt) = Et
[

J∗i,t+1{Vi,t+1(αi,t+1),Wt+1}
]
. (7)
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Combining (6) and (7), we obtain a recursive expression for J∗i,t(Vi,t,Wt):

J∗i,t(Vi,t,Wt) = max
αi,t+1∈RS

Et
[

J∗i,t+1{Vi,t+1(αi,t+1),Wt+1}
]

(8)

with the boundary condition at T

J∗i,T(Vi,T ,WT) = Ui(Ii + α>i,TWT + βi,T BT), (9)

and with βi,T BT = Vi,T − α>i,TWT .
Starting with t = T − 1 and using (8), we recursively solve for supply and demand in each t for

all the WDs, denoted in vector form as:

Wi
t (αi,t+1) = {Wi

t,1(αi,t+1), . . . , Wi
t,S(αi,t+1)}>, i = j, m. (10)

Imposing partial market clearing for WD securities (zero net supply), ∑J
j=1 α∗j,t+1,s = α∗m,t+1,s,

delivers the equilibrium prices Wt = Wm
t (α∗m,t+1) for all t = 0, . . . , T− 1, where ∗ identifies the optimal

values. Specific forms of buyer’s demand and investor’s supply are given in Propositions 1 and 2 below.

Proposition 1. Let the utility function of the buyer j be of the exponential form with risk aversion aj > 0.
Let the assumptions 1 to 3 hold and let Θj,t < ∞ in (13) hold for t ≤ T. Then, jth buyer’s reverse demand for

WD s, W j
t,s(αj,t+1), and her optimal utility level J∗j,t(Vj,t,Wt) are given recursively by:

W j
t,s(αj,t+1) =

Et{exp(−ajα
>
j,t+1Wt+1RT−(t+1))Θj,t+1Wt+1,s}

Et{exp(−ajα
>
j,t+1Wt+1RT−(t+1))Θj,t+1}R

, (11)

J∗j,t(Vj,t,Wt) = − exp(−ajVj,tRT−t)Θj,t, (12)

Θj,t = exp(ajRT−tα∗>j,t+1Wt)Et{exp(−ajRT−(t+1)α∗>j,t+1Wt+1,s)Θj,t+1}, (13)

for t = 0, . . . , T − 1, Θj,T = exp(−aj Ij) and R = 1 + r.

Proof. See Appendix A.

Proposition 2. Let the utility function of the investor be of the exponential form with risk aversion am > 0.
Let the assumptions 1 to 3 hold and let Θm,t < ∞ in (16) hold for t ≤ T. Then, investor’s reverse supply for
WD s, Wm

t,s(αm,t+1), and her optimal utility level J∗m,t(Vm,t,Wt) are given recursively by:

Wm
t,s(αm,t+1) =

Et

[
exp

{
am(α>m,t+1Wt+1,sRT−(t+1))Θm,tWt+1,s

}]
Et

{
exp

(
amα>m,t+1Wt+1RT−(t+1)

)
Θm,t

}
R

, (14)

J∗m,t(Vm,t,Wt) = − exp(−amVm,tRT−t)Θm,t, (15)

Θm,t = exp(−amα∗>m,t+1WtRT−t)Et
{

exp(amRT−t+1α∗>m,t+1Wt+1)Θm,t+1
}

(16)

for t = 0, . . . , T − 1, Θm,T = 1 and R = 1 + r.

Proof. The proof is very similar to the proof of Proposition 1 and is omitted.

The results above show that the reverse demand and supply for the sth WD at time t are
determined by the interaction of the terms proportional to the marginal expected utility of the next
period as well as future expected utilities in Θi,t+1 that embrace optimal future trading behaviour,
αi,t+1:T . Moreover, the reverse demand and supply are both influenced by capital costs or risk-free rate
r. Changes in r will, therefore, influence the resulting WD prices.
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The expressions obtained are of a semi-closed form, since the expectations entering (11) and (14)
have, in general, no explicit representation and have to be computed numerically using, for example,
Monte Carlo techniques.

2.3. Default Risk

As we already mentioned, OTC derivatives are subject to counterparty default risk or credit risk
as termed in Golden et al. (2007). In this section we consider incorporation of issuer default risk into
the pricing model for WDs.

As in Golden et al. (2007), we consider dichotomous default risk modelled by a payoff proportion
parameter λt with values in {0, 1}. While λt = 1 means that the counterparty fully meets its obligations
in t, λt = 0 inherits the situation where the counterparty does not perform at all. We assume that λt is
independent of all other random variables in the model, and P(λt+1 = 0) = pt, P(λt+1 = 1) = 1− pt,
where pt is the probability of investor’s default at t + 1. Parameters λt and pt are known to the buyers
by t. Once the investor defaults, she is not going to meet any obligations in subsequent periods,
and λt:T = 0.

Clearly, under investor’s default risk, the payoff vector of the WDs is a multiple of λT , that is,
λTWT . If the investor has met all her obligations up to period t < T, then the contribution of the next
period WD prices is λt+1Wt+1. Hence, the jth buyer’s demand for WD s in (11) has to be modified to
account for the default risk in the following way:

W j
t,s(αj,t+1) =

Et{exp(−ajα
>
j,t+1λt+1Wt+1RT−(t+1))Θ̃j,t+1λt+1Wt+1,s}

Et{exp(−ajα
>
j,t+1λt+1Wt+1RT−(t+1))Θ̃j,t+1}R

(17)

with

Θ̃j,t = exp(ajRT−tα∗>j,t+1Wt)

· Et{(1− pt) exp(−ajRT−(t+1)α∗>j,t+1λt+1Wt+1,s)Θ̃j,t+1 + ptΘj,T}, (18)

and Θj,T = exp(−aj Ij).
To derive (17) we consider all probable outcomes of λt+1 at each t. Thus, in T − 1, if λT−1 = 1 we

solve the maximisation problem (3) with the payoff of the WDs scaled by λT and equal to λTWT . As a
result, we find α∗j,T > 0, WT−1 > 0, and J∗j,T−1(Vj,T−1,WT) which is equal to:

J∗j,T−1(Vj,T−1,WT−1) = − exp
{
−ajVj,T−1R

}
Θ′j,T−1 (19)

with
Θ′j,T−1 = exp{ajα

∗>
j,T WT−1R}ET−1

[
exp{−aj(α

∗>
j,T λTWT)}Θj,T

]
. (20)

If λT−1 = 0 α∗j,T = 0, WT−1 = 0, and

J∗j,T−1(Vj,T−1,WT−1) = − exp
{
−ajVj,T−1R

}
Θ′j,T−1, (21)

where Θ′j,T−1 = ET−1(Θj,T).
We move one period backwards to T − 2. If now λT−2 = 1 we maximise:

Jj,T−2(Vj,T−2, αj,T−1,WT−2) = ET−2{J∗j,T−1(Vj,T−1,WT−1)}
= ET−2[− exp

{
−ajVj,T−1R

}
Θ̃j,T−1],

(22)

Θ̃j,T−1 = exp{ajα
∗>
j,T WT−1R}ET−1

[
(1− pT−1) exp{−aj(α

∗>
j,T λTWT)}Θj,T + pT−1Θj,T

]
. (23)
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Note, that the expectation in the first line of (22) is taken under the joint distribution of λT−1

and the other random variables of the model, and in the second line—only with respect to the joint
distribution of the later ones. J∗j,T−2(Vj,T−2,WT−2) is in this case:

J∗j,T−2(Vj,T−2,WT−2) = − exp
{
−ajVj,T−2R

}
Θ′j,T−2 (24)

with

Θ′j,T−2 = exp(ajα
∗>
j,T−1WT−2R)ET−2

[
exp{−aj(α

∗>
j,T−1λT−1WT−1)}Θ̃j,T−1

]
(25)

If λT−2 = 0 then α∗j,T−1 = 0, WT−2 = 0, and

J∗j,T−2(Vj,T−2,WT−2) = − exp
{
−ajVj,T−2R

}
Θ′j,T−2, (26)

where Θ′j,T−2 = ET−2(Θj,T). Then, the following expectation reads:

ET−3{J∗j,T−2(Vj,T−2,WT−2)} = ET−3[− exp
{
−ajVj,T−2R

}
Θ̃j,T−2] (27)

with
Θ̃j,T−2 = exp(ajα

∗>
j,T−1WT−1R)

·ET−2
[
(1− pT−2) exp{−aj(α

∗>
j,T λTWT)}Θ̃j,T−1 + pT−2Θj,T

]
.

(28)

By backward induction we obtain (17) and (18).
From (17) we observe that a non-zero issuer default probability influences adversely the demand

for the WDs through correcting the expectations of the future portfolio values and the marginal
expected utility of the WD payoffs downwards.

2.4. Alternative Investment

Frequently, the model assumptions implying that the agents’ portfolios contain only the risk free
asset besides WDs do not hold. This will often be the case for the investor’s portfolio. In the following,
we relax this restriction and allow the investor to invest in the financial market.

Let’s amend the assumptions made in Section 2.1 with the following:

1a Assets. Let assumption 1. hold. Let Ft be a quoted price of an exchange traded financial asset
at time t. While Ft is given, Ft+1 is random, bounded, and predictable at t. Trading with Ft is
not restricted in any way, that is, short and long positions in the asset in each t are possible.
We assume there is no transaction costs on the asset market. As before, no capital addition or
withdrawals are possible throughout the investment horizon, such that the agents are exposed to
self-financing constraints.

For example, Ft can be a share value of an exchange traded fund tracking some financial portfolio,
or it can represent the value of the market portfolio itself at t.

2a Agents. Let assumption 2. hold. Now, issuer m holds additionally fm,t shares of the exchange
traded financial asset with exogenous price Ft. Also, f·,· is real valued, that is, all assets are
perfectly divisible and short sales are allowed. The value of the issuer’s portfolio at time t
becomes Vm,t = α>m,tWt − fm,tFt + βm,tBt.

As before, in each period t of the investment horizon, agents maximise their expected utility
of the terminal wealth with the available WDs and attain their demand and supply for the
WDs. That is, in each period t < T issuer m determines her self-financing trading strategy
(αm,t+1, βm,t+1, fm,t+1)

>
t=0,1,...,T , in particular, she constructs the optimal hedging portfolio given the

state of the system at time t. Partial market clearing with respect to WDs determines the equilibrium
prices for the WDs.
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3a State. Let assumption 3. hold. The observable state of the system at time t, denoted byWt, contains
additionally the quoted price Ft. The random state Wt+1 is characterised by the conditional
distribution function Φt. Expectation taken with respect to Φt is denoted by Et(·).

Under assumptions 1a-3a, the terminal wealth of investor m at T is:

Πm,T = −α>m,TWT − fm,T FT + βm,T BT = Vm,T (29)

with α>m,TWT , fm,T FT , and βm,T BT being the payoffs of the WDs portfolio, the alternative financial
investment, and the risk free asset respectively. Investor’s portfolio choice problem in each
t = 0, 1, . . . , T − 1 is:

max
αm,t+1:T∈RS×(T−t)

Et {Um (Πm,T)}

s.t. α>m,t+1Wt + fm,t+1Ft − βm,t+1Bt + Vm,t = 0.
(30)

As before, in each t < T investor m maximises expected utility of her terminal wealth with respect
to all future trading strategies, subject to a self-financing portfolio. The expected utility of the investor
in t, Jm,t(Vm,t, αm,t+1:T , fm,t+1:T ,Wt), is now also a function of her trading strategies on the financial
market, denoted as fm,t+1:T .

Keeping in mind these modifications and following the steps of Section 2.2, we have to modify
investor’s supply for WD s in (14) in the following way:

Wm
t,s(αm,t+1, fm,t+1) =

Et

[
exp

{
amRT−(t+1)(α>m,t+1Wt+1,s + fm,t+1Ft+1)Θm,tWt+1,s

}]
Et

[
exp

{
amRT−(t+1)(α>m,t+1Wt+1,s + fm,t+1Ft+1)Θm,t

}]
R

, (31)

J∗m,t(Vm,t,Wt) = − exp(−amVm,tRT−t)Θm,t, (32)

Θm,t = exp{−amRT−t(α∗>m,t+1Wt + f ∗m,t+1Ft)}·
Et
[

exp{amRT−t+1(α∗>m,t+1Wt+1 + f ∗m,t+1Ft)Θm,t+1}
]

(33)

for t = 0, . . . , T − 1, Θm,T = 1 and R = 1 + r. In (33), f ∗m,t+1 should be chosen such that it satisfies:

Ft =
Et

[
exp

{
amRT−(t+1)(α>m,t+1Wt+1,s + f ∗m,t+1Ft+1)Θm,tFt+1

}]
Et

[
exp

{
amRT−(t+1)(α>m,t+1Wt+1,s + f ∗m,t+1Ft+1)Θm,t

}]
R

, (34)

We obtained (34) by maximising Jm,t(Vm,t, αm,t+1:T , fm,t+1:T ,Wt) with respect to fm,t+1:T in each t
as in Section 2.2.

Note, that now the reverse supply for the sth WD also depends on the position in the alternative
financial investment. Thus, any changes in its price process will influence investor’s supply for the
sth WD.

3. Pricing Weather Derivatives Using Weather Data

In this section, we show an example on how to price rainfall derivatives using historical weather
data from China and discuss other applications of the pricing approach presented.

3.1. Pricing Chinese Rain

Chinese farmers are exposed to pronounced weather risks as Turvey and Kong (2010).
According to The World Bank (2007) the existing agricultural insurance schemes are too expensive for
Chinese agricultural producers. One of the causes might be the fact that crop insurer are exposed to
variability in precipitation due to the impact of the later on farmers’ crop production. Trading WDs
can play an important role in transferring part of the weather exposure to financial markets and so
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make crop insurance affordable for farmers. Since the weather exposed income of such a crop insurer
is generally dependent on the rainfall in a number of geographical sites where the insured farmers
are located, a basket of rainfall derivatives on the relevant sites should be used for hedging the risks.
Motivated by this example, we illustrate pricing a basket of rainfall options on two weather stations
Changde and Enshi1 located in an agricultural area of China.

3.1.1. Setup

Our representative buyer is an insurer who offers crop insurance to farmers in the agricultural area
of Changde and Enshi is, therefore, exposed to fluctuations in the local rainfall amount. The company
discovers that its income is highly dependent on the cumulative precipitation in Changde and Enshi
during May, and wants to hedge its rainfall exposure by holding a portfolio of put options on
cumulative rainfall in these sites. Suppose, there is an investor who wants to issue such rainfall
derivatives on the two of the relevant sites: Changde and Enshi. Then, the parties consider pricing a
basket of derivatives containing two put options on cumulative precipitation over May in Changde
and Enshi. They construct the put options as plain vanilla options on the underlying rainfall indices
computed as the sums of monthly rainfall over May measured in each of the sites. Both options mature
at the end of the measurement period, that is, on the 31st of May. We also suppose that the parties
agree to renegotiate the put prices in the middle of the measurement period: on the 15th of May.

LetRz,i denote the rainfall measured in the station i in day z. The cumulative precipitation over a
period Z is then ∑z∈ZRz,i. Thus, a put option on the cumulative precipitation in Z in station i with
strike Ki (in precipitation units) has the payoff:

k max{Ki − ∑
z∈Z
Rz,i, 0} (35)

where k specifies the tick value of the option in monetary units.
Suppose, the insurer’s income I1 exhibits a non-linear dependence to the rainfall index in May

of the form I1 ∼ logN{µI(Rz,i), σI(Rz,i)} with µI(Rz,i) = 10 + ∏i∈1,2 ∑z∈MayRz,i/Ki and σI(Rz,i) =

0.1{1 + ∑i∈1,2(1−Rz,i/Ki)
2} parametrize the dependence of I1 to the rainfall of Changde (indexed

by 1) and Enshi (indexed by 2) respectively. Further parameters to specify are: the risk aversion
aj = am = 10−4, the strikes K1 = K2 = 1000 and the tick value k = 1 monetary units per mm
precipitation measured.

The log-return on the alternative investment in the investor’s portfolio is assumed to follow a
normal distribution with zero mean and annual volatility σF = 0.1 in the law volatility scenario and
σF = 0.25 in the high volatility scenario. The value of the alternative investment in t = 0 is normalized
to a hundred monetary units, that is F0 = 100.

We compute the prices for the put options assuming different investment horizons T. If T = 1,
in t = 0 (prior to the 1st of May) the agents negotiate the prices for the specified options under
their current states of the world W1,0 and W2,0 respectively, and at t = T (here, on 31 May) the
settlement occurs according to the terminal time with realized payoffs WT . T = 2 means that the
agents additionally renegotiate the prices at t = 1 (here, on 15 May). The renegotiation at t = 1 takes
place under the new circumstances arising from their new statesW1,1 andW2,1 respectively. The final
payments are then settled according to the realizations of W2. In our example, the stateWi,t, i = 1, 2
includes the evolution of the rainfall, the observed price process Wn,n≤t, Ft, λt, pt, and r. The evolution
to the next stateWi,t+1 conditional on the realization ofWi,t is described by continuous function gi,t.
The terminal state of the insurerW1,T contains also her realised income I1.

At t ≤ T denote the index value underlying the payoff in (35) in station i as RXt,i. Then, RX0,i = 0,
RXT,i = ∑z∈1.−31.MayRz,i, and by T = 2 RX1,i = ∑z∈1.−15.MayRz,i. The corresponding put option

1 Station numbers given by the World Meteorological Organisation are 57662 for Changde and 57447 for Enshi.
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price, denoted as Wt,i, corresponds in t = T to the put payoff, WT,i = max(Ki − RXT,i, 0), and for t < T
Wt,i it is defined by the intersection of buyer’s demand (17) and investor’s supply (14).

3.1.2. Generation of Dependent Rainfall Paths on a Daily Basis

We use a model for multi-site rainfall generation proposed by Wilks (1998). This model accounts
for spatial correlation of rainfall occurrences and rainfall amounts, and is flexible enough to describe
different rainfall-based indexes. Based on Wilks (1998) we give the basic ideas of the model below:

Precipitation at time t in station s′ Rs′ ,t is modelled as:

Rs′ ,t = rs′ ,tXs′ ,t, (36)

where Xs′ ,t takes values {0, 1} and represents a rainfall occurrence at time t in station s′ and rs′ ,t
is a positive random variable for the rainfall amount. This structure ensures that Rs′ ,t equals zero
whenever Xs′ ,t is zero and there is no rain and Rs′ ,t equals rs′ ,t whenever rainfall occurs. Xs′ ,t are
assumed to form a Markov chain with two states, wet and dry:

Xs′ ,t =

{
1 (wet, ≥ Xmin),
0 (dry, < Xmin).

(37)

We take a first order Markov model where the probability of a wet day depends only on the
state in the previous day. Our justification of this choice is based on the Bayesian information criteria
(BIC), see Katz (1981) where the lowest value of the test statistics indicates the appropriate order of the
Markov chain. The transition probabilities to the wet state are:

P(Xs′ ,t = 1|Xs′ ,t−1 = 0) = p01,s′ ,t, (38)

P(Xs′ ,t = 1|Xs′ ,t−1 = 1) = p11,s′ ,t. (39)

The multi-site feature is added to the model through the generation of correlated occurrences in
neighbour locations. We define the threshold probability ps′ ,crit:

pcrit,s′ ,t =

{
p01,s′ ,t if Xs′ ,t−1 = 0,
p11,s′ ,t if Xs′ ,t−1 = 1,

(40)

and Xs′ ,t can be generated using

Xs′ ,t =

{
1 if ws′ ,t ≤ Φ−1(pcrit,s′ ,t),
0 if ws′ ,t > Φ−1(pcrit,s′ ,t).

(41)

Here Φ(·) is the cumulative distribution function of the standard normal distribution, {ws,t}s∈S ∼
N(0|S|, Σ), with Σs,s′ = Corr(ws,t, ws′ ,t) such that the empirical correlations Corr(Xs,t, Xs′ ,t) of the
rainfall occurrences are mimicked in the generated rainfall occurrence series, see Wilks (1998) for
further details.

The multi-site rainfall amount, conditioned on a rainy day, rs,t|Xs,t = 1 follows a mixture of two
exponential distributions with a time dependent mixing parameter γs,t and time changing means
β1,s,t, β2,s,t. Following Wilks (1998) we can generate rainfall amounts at time t in site s using

rs,t = rmin − βs,t log Φ(vs,t) (42)

where

βs,t =

{
β1,s,t if Φ(ws,t)/ps,crit ≤ γs,t,
β2,s,t if Φ(ws,t)/ps,crit > γs,t,

(43)
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and vs,t are normal covariates correlated such that the generated rainfall time series mimic the empirical
correlation in the rainfall data.

Now we estimate the parameters for the multi-site rainfall generation in Changde and Enshi
based on the rainfall data. Table 1 summarises the daily rainfall data for Changde and Enshi acquired
via Research Data Centre of CRC 649 (Collaborative Research Centre 649: Economic risk).

Table 1. Description of the rainfall data.

Station Number Latitude Longitude Start Date End Date

Changde 57,662 29.05 111.68 1951/01/01 2009/11/30
Enshi 57,447 30.28 109.47 1951/08/01 2009/11/30

BIC in Table 2 indicates that the first order Markov chain is appropriate to model the rainfall
occurencies in the data.

The parameters for the rainfall amounts were estimated using maximum likelihood. For the
analysed rainfall data p01,1,t∈May = 0.39 and p11,1,t∈May = 0.59 whereas p01,2,t∈May = 0.43
and p11,2,t∈May = 0.64 where the indices 1 and 2 refer to Changde and Enshi respectively.
The empirical counterpart of Corr(X1,t∈May, X2,t∈May) appears to be 0.53, in order to mimic
this correlation Corr(w1,t∈May, w2,t∈May) must be set to 0.76. The empirical counterpart of
Corr(r1,t∈May, r2,t∈May|X1,t∈May = 1, X2,t∈May = 1) is 0.16 for the considered data, and in order to
obtain this correlation in the generated rainfall series Corr(v1,t∈May, v2,t∈May) must be 0.25.

Table 2. BIC criterion for different orders of Markov model for the rainfall occurrences in May

Order/BIC Changde Enshi

0 70.83 60.02
1 53.21 43.21
2 53.47 44.69
3 65.64 59.72

The results on fitting the mixture of two exponential distributions to ri,t∈May|Xi,∈May = 1,
i = {1, 2} are presented in Table 3.

Table 3. Maximum Likelihood estimator for the mixture of two exponential distributions for the
rainfall amounts.

Parameter Changde Enshi

γ·,t∈[τ1,τ2] 0.78 0.58
β1,·,t∈[τ1,τ2] 15.90 23.14
β2,·,t∈[τ1,τ2] 0.62 1.86

In our Monte Carlo example, we generate the correlated rainfall time series in Changde and Enshi
using the estimated parameters and (36) 104 times.

3.1.3. Results

By altering T, p, r and σF we obtain the put prices on the rainfall in Changde and Enshi under
different market scenarios, see Table 4. All prices are normalized to the price obtained for T = 1, p = 0,
r = 0.01 and σF = 0.1 to enable the comparison.

The shift of the demand curve by changing probability to default and capital costs is shown
in Figure 1.
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Figure 1. Shifts of the demand curves by increasing default risk (top) and capital costs (bottom). Top:
the default risk probability pt = p changes from 0 (dashed) to 0.01, 0.05, 0.10 (solid lines, thicker with
increasing p). Bottom: capital cost p.a. r changes from 1% (dashed) to 5%, 10%, 15% (solid lines, thicker
with increasing r) for σF = 0.1. Both plots: the x-axis shows αj,1,1, the buyer’s position in the put option
on the rainfall in Changde during May (CRMay,1) with strike K = 100 and investment horizon T = 1;
the y-axis shows W0,1(αj,1), the price our representative buyer is willing to pay for such an option,
where αj,1 = (αj,1,1, αj,1,2)

> and while αj,1,2, the position in the other put option on the rainfall in Enshi
during May (CRMay,2) is kept constant.

The prices are significantly lower under a non-zero default probability and increasing capital
costs. Whereas non-zero default probability has no effect on the supply of the WDs, the demand curve
shifts downwards which results in lower equilibrium prices for the rainfall options. A higher risk-free
rate r also results in lower WD prices to compensate for higher capital costs.

Figure 2 shows buyer’s demand in t = 0 for different time horizons T. In the “flexible” case
T = 2 the WD prices are renegotiated at t = 1, and in the case T = 1 no rebalancing takes place.
From Figure 2 we observe that buyer’s demand price elasticity at t = 0 is lower in the “flexible” case.
Consistent with the classical result of Allen and Postlewaite (1984), already at t = 0 individual demand
reflects all agents’ expectations, including the expectations about future trading behaviour.
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Figure 2. Shifts of the demand curves by increasing investment horizon T. Buyer’s demand with
investment horizon T = 1 (dashed) and T = 2 (solid). Thinner lines correspond to the case capital costs
r = 5% and probability of issuer’s default pt = p = 0; thicker lines correspond to capital costs r = 5%
and probability of issuer’s default pt = p = 0.05 for σF = 0.1. The x-axis shows αj,1,1, the buyer’s
position in the put option on the rainfall in Changde during May (CRMay,1) with strike K = 100;
the y-axis shows W0,1(αj,1), the price our representative buyer is willing to pay for such an option,
where αj,1 = (αj,1,1, αj,1,2)

> and while αj,1,2, the position in the other put option on the rainfall in Enshi
during May (CRMay,2) is kept constant.

Table 4. Put option prices on cumulative rainfall in Changde and Enshi under different market scenarios.

Scenarios Put on CRMay,1 Put on CRMay,2
T = 1 T = 2 T = 1 T = 2

σF = 0.1
r = 1% p = 0 100.00 100.30 100.00 96.68
r = 5% p = 0 99.67 99.95 98.81 96.35
r = 1% p = 0.05 91.22 93.95 86.74 87.45
r = 5% p = 0.05 90.87 93.62 85.95 87.12
σF = 0.25
r = 1% p = 0 100.00 100.31 100.23 96.68
r = 5% p = 0 99.67 99.97 99.71 96.36
r = 1% p = 0.05 91.23 94.23 86.88 87.73
r = 5% p = 0.05 90.92 93.99 86.47 87.51

Figure 3 shows investor’s supply in t = 0 for different time horizons T and for different levels
in volatility of the alternative investment in the investor’s portfolio. In the “flexible” case T = 2 the
WD prices are renegotiated at t = 1, and in the case T = 1 no rebalancing takes place. From Figure 3
we observe that the price elasticity of the investor’s supply at t = 0 is lower in the “flexible” case.
Moreover, the reaction of the supply to the changes in market volatility is very subtle in the “flexible”
case (under 1% and is not visible in the graph), as the downward shift of the supply curve is quite
pronounced for T = 1. In this case, increase in market volatility (or volatility of the alternative
investment) significantly stimulates investor’s supply for WDs.

Our example shows pricing rainfall options. The presented pricing model, however, is not limited
to any particular kind of weather derivatives. In fact, it is possible to price various weather derivatives
with such underlying indices as snowfall, sunshine hours, number of sunny days, number of rainy
days, wind speed, and other weather indices of a practical relevance for retail, tourism and renewable
energy operators.

Along with the other assumptions, the premise is the existence of a probabilistic model that
precisely enough describes the distribution and the time evolution of the underlying weather index.
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Then, the conditional expectations of agents’ utilities, which determine their supply and demand,
can be approximated using Monte Carlo samples from the fitted probabilistic model. Applying partial
market clearing condition, one obtains the equilibrium prices for weather derivatives.

αm,1,1

W
0,

1(α
m

,1
)

Figure 3. Shifts of the supply curves by increasing volatility of the alternative investment. Investor’s
supply with investment horizon T = 1 (dashed) and T = 2 (solid). Thinner lines correspond to the
case low volatility of the alternative investment; thicker lines correspond to high volatility. The x-axis
shows αm,1,1, the investor’s position in the put option on the rainfall in Changde during May (CRMay,1)
with strike K = 100; the y-axis shows W0,1(αm,1), the price for which the investor is willing to sell such
an option, where αm,1 = (αm,1,1, αm,1,2)

> and while αm,1,2, the position in the other put option on the
rainfall in Enshi during April and May (CRMay,2) is kept constant.

4. Summary

We derive a dynamic utility-based model for pricing baskets of weather derivatives on multiple
dependent underlying indices. Using dynamic programming approach to portfolio optimisation over a
finite investment horizon and partial market clearing, we obtain semi-closed forms for the equilibrium
prices of weather derivatives and for the optimal trading strategies. We provide extensions of the
model to account for counterparty default risk and a possibility of an alternative financial investment.

As expected, there is an adverse effect of increasing default risk and capital costs on the demand
for weather derivatives and on their prices. We find, however, a stimulating effect of increasing market
volatility on the supply for weather derivatives.

We apply the proposed model to price rainfall options using historical rainfall data of agricultural
provinces Changde and Enshi in China. The equilibrium put option prices on cumulative rainfall over
May are compared for different market scenarios. The effects of increasing default risk, capital costs,
investment horizon, and market volatility are assessed.
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Appendix A

Proof of Proposition 1. We prove the assertion by backward induction starting with t = T− 1. Utility
maximisation problem of buyer j in T − 1:

max
αj,T∈RS

Jj,T−1(Vj,T−1, αj,T ,Wj,T−1)

s.t. α>j,TWT−1 + β j,T BT−1 −Vj,T−1 = 0.
(A1)

The expected utility in T − 1 reads:

Jj,T−1(Vj,T−1, αj,T ,Wj,T−1) = ET−1
{
− exp

(
−ajΠj,T

)}
. (A2)

By plugging the self-financing constraint in (A2) we obtain

Jj,T−1(Vj,T−1, αj,T ,Wj,T−1) = ET−1[− exp{−aj(Ij + α>j,TWT + RVj,T−1 − Rα>j,TWT−1)}]. (A3)

Taking the first derivative of (A3) with respect to αj,T , we win the gradient vector with the sth
entry equal to:

∂Jj,T−1(Vj,T−1,αj,T ,Wj,T−1)

∂αj,T,s
= aj exp{−aj(Vj,T−1 − α>j,TWT−1)R}
·ET−1

[
exp{−aj(Ij + α>j,TWT)}(WT,s − RWT−1,s)

] (A4)

for s = 1, . . . , S. Taking the second derivative of (A3) with respect to αj,T gives the Hessian matrix H
with ss′th entry:

∂2 Jj,T−1(Vj,T−1,αj,T ,Wj,T−1)

∂αj,T,s∂αj,T,s′
= −a2

j exp{−aj(Vj,T−1 − α>j,TWT−1)R}
·ET−1

[
exp{−aj(Ij + α>j,TWT)}(WT,s − RWT−1,s)(WT,s′ − RWT−1,s′)

] (A5)

for s, s′ = 1, . . . , S. The Hessian H defined entry-wise by (A5) is negative semi-definite, since for any
nonzero x ∈ RS:

x>Hx = −a2
j exp{−aj(Vj,T−1 − α>j,TWT−1)R}

·ET−1
[

exp{−aj(Ij + α>j,TWT)}
{

∑S
s=1 xs(WT,s − RWT−1,s)

}2] (A6)

is always smaller or equal to zero. Hence, we obtain the maximiser of (A3) by setting the gradient (A4)
coordinate-wise to zero, in particular:

ET−1
[

exp{−aj(Ij + αj,TWT)}(WT,s − RWT−1,s)
]
= 0. (A7)

In T− 1 the current prices WT−1 are known and can be taken out of the expectation in (A7). Thus,
we obtain the reverse demand of the jth buyer for each s ∈ S as:

W j
T−1,s(αj,T) =

ET−1

[
exp

{
−aj(Ij + α>j,TWT)

}
WT,s

]
ET−1

[
exp

{
−aj(Ij + α>j,TWT)

}]
R

=
ET−1

{
exp(−ajα

>
j,TWT)Θj,TWT,s

}
ET−1

{
exp(−ajα

>
j,TWT)Θj,T

}
R

(A8)

with Θj,T = exp(−aj Ij).
Applying partial market clearing or zero-net-supply condition to all WDs, we find α∗j,T and

WT−1 = Wm
T−1(α

∗
m,T). Then, the maximised utility of buyer j at T − 1 is:

J∗j,T−1(Vj,T−1,Wj,T−1) = J{Vj,T−1, α∗j,T , WT−1,Wj,T−1}
= − exp

{
−ajVj,T−1R

}
Θj,T−1

(A9)
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with
Θj,T−1 = exp{ajα

∗>
j,T WT−1R}ET−1

[
exp{−aj(α

∗>
j,T WT)}Θj,T

]
. (A10)

J∗j,T−1(Vj,T−1,Wj,T−1) is of the exponential form like the utility function itself, and the induction
hypothesis holds for t = T − 1. Assume, that it holds for t = T, T − 1, . . . , k. Then, in k− 1:

max
αj,k∈RS

Jj,k−1{Vj,k−1, αj,k,Wj,k−1}

s.t. α>j,kWk−1,s + β j,kBk−1 −Vj,k = 0.
(A11)

is the constrained utility maximisation problem faced by buyer j. The expected utility in k− 1 is:

Jj,k−1{Vj,k−1, αj,k,Wj,k−1} = Ek−1

{
J∗j,k(Vj,k,Wj,k)

}
= Ek−1

{
− exp(−ajVj,kRT−k)Θj,k

}
,

(A12)

where

Θj,k = exp(ajRT−kα∗>j,k+1Wk)Ek{exp(−ajRT−(k+1)α∗>j,k+1Wk+1,s)Θj,k+1}. (A13)

Now we use the following identity:

Vj,k = R(Vj,k−1 − α>j,kWk−1) + α>j,kWk (A14)

to rewrite (A12) as a function of αj,k:

Jj,k−1(Vj,k−1, αj,k,Wj,k−1) = Ek−1

(
− exp[−aj{R(Vj,k−1 − α>j,kWk−1) + α>j,kWk}RT−k]Θj,k

)
. (A15)

By taking the derivative of (A15) with respect to αj,k we find the gradient with sth entry:

∂Jj,k−1(Vj,k−1,αj,k ,Wj,k−1)

∂αj,k,s
= ajRT−k exp{−aj(Vj,k−1 − α>j,kWk−1)RT−k+1}

·Ek−1
{
− exp(−ajα

>
j,kWkRT−k)Θj,k(Wk,s − RWk−1,s)

} (A16)

As in (A6) the Hessian is also negative semi-definite. Thus, the maximiser of (A15) is found by
setting the gradient (A16) to zero, that is:

Ek−1
{
− exp(−ajα

>
j,kWkRT−k)Θj,k(Wk,s − RWk−1,s)

}
= 0. (A17)

We obtain the reverse demand of the jth buyer for each s ∈ S as:

W j
k−1,s(αj,k) =

Ek−1

{
exp(−ajα

>
j,kWkRT−k)Θj,kWk,s

}
Ek−1

{
exp(−ajα

>
j,kWkRT−k)Θj,k

}
R

(A18)

Partial market clearing in k− 1 determines α∗j,k, Wk−1 = Wm
k−1(α

∗
m,k) and the maximised utility of

buyer j in this period:

J∗j,k−1(Vj,k−1,Wj,k−1) = Jj,k−1{Vj,k−1, α∗j,k,Wj,k−1}
= − exp

{
−ajVj,k−1R

}
Θj,k−1

(A19)
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with
Θj,k−1 = exp{ajα

∗>
j,k Wk−1R}Ek−1

[
exp{−aj(α

∗>
j,k Wk)}Θj,k

]
, (A20)

which completes the proof.
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