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Abstract In this manuscript, the reliability of a robotic

system has been analyzed using the available data (con-

taining vagueness, uncertainty, etc). Quantification of

involved uncertainties is done through data fuzzification

using triangular fuzzy numbers with known spreads as

suggested by system experts. With fuzzified data, if the

existing fuzzy lambda–tau (FLT) technique is employed,

then the computed reliability parameters have wide range

of predictions. Therefore, decision-maker cannot suggest

any specific and influential managerial strategy to prevent

unexpected failures and consequently to improve complex

system performance. To overcome this problem, the pre-

sent study utilizes a hybridized technique. With this tech-

nique, fuzzy set theory is utilized to quantify uncertainties,

fault tree is utilized for the system modeling, lambda–tau

method is utilized to formulate mathematical expressions

for failure/repair rates of the system, and genetic algorithm

is utilized to solve established nonlinear programming

problem. Different reliability parameters of a robotic sys-

tem are computed and the results are compared with the

existing technique. The components of the robotic system

follow exponential distribution, i.e., constant. Sensitivity

analysis is also performed and impact on system mean time

between failures (MTBF) is addressed by varying other

reliability parameters. Based on analysis some influential

suggestions are given to improve the system performance.

Keywords Reliability analysis � Robotic system �
Nonlinear programming � Fuzzy lambda–tau technique

Abbreviatons
~P Fuzzy set ~P
n Number of components

in the system

t Time t

ki System ith component

failure rate

si System ith component

repair time

ks System failure rate

ss System repair time
~Pðk1; k2; . . .; kn; s1; s2; . . .; snÞ Time-independent fuzzy

reliability index
~Pðt=k1; k2; . . .; kn; s1; s2; . . .; snÞ Time-dependent fuzzy

reliability index

a Alpha-cut

Pmin Minimum value of

function P

Pmax Maximum value of

function P

x Generic element

VkiðxÞ Membership value of x

in fuzzy set ~ki
VsiðxÞ Membership value of x

in fuzzy set ~si
AsðtÞ System availability at

time t
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RsðtÞ System reliability at

time t

Mi ith motor as system

component

Si ith sensor as system

component

Br Bearing as system

component

Rl Roller as system

component

Pc Probability of crossover

Pm Probability of mutation

l Bit length

Acronyms

FLT Fuzzy lambda–tau

FTA Fault tree analysis

GAs Genetic algorithms

NSGA Nondominated sorting genetic algorithm

MTBF Mean time between failures

ENOF Expected number of failures

Introduction

Industrial systems usually have complex structures, and

thus, the analysis and optimization of their performance

require adequate knowledge of human operators and sys-

tem information for achieving desired industrial goals. To

achieve desired industrial goals, a robotic system is widely

being used, and therefore, the importance of the robot

reliability and quality has been increased. The study of

robot reliability is very complex, since a lot of interlocking

variables are involved in evaluation of various reliability

levels of these systems (Sharma et al. 2010). The research

on robotic systems is reported very large in the literature;

however, limited work has been reported on reliability of

robotic systems (Leuschen et al. 1998; Carreras et al. 1999;

Carlson and Murphy 2003; Sharma et al. 2008; Kumar

et al. 2012. Specifically, Khodabandehloo (1996) used

fault tree for the safety and reliability analysis of robotic

system. To improve the safety and reliability of robot

manipulator, (Walker and Cavallero 1996a; Walker and

Cavallaro 1996b) used fault tree analysis(FTA) during

design phase of the manipulator. Dhillon and Yang (1996)

analyze safety and reliability of robotic systems using

supplementary variable and Markov techniques, while

Carreras et al. (1999) and later on Carreras and Walker

(2000) applied interval method for the same purpose.

Leuschen et al. (2001) developed a novel fuzzy Markov

modeling approach for analyzing fault tolerant of a robot

designed for hazardous waste removal. Stancliff et al.

(2006) presented a quantitative method for mission relia-

bility estimation of various mobile robots working as

teams. The reliability of mechanical robots was improved

by Korayem and Iravani (2008) using failure mode analysis

and function deployment approach.

From the literature, one can observe that approaches

discussed so far for reliability analysis use probabilistic

assumptions and crisp historical data which is in general

limited and contains vagueness, uncertainty, etc. Practi-

cally, for system reliability analysis, constant failure rate

model is being utilized, because most of the technical

systems show this type of behavior, having some kind of

uncertainties (Das 2008; Knezevic and Odoom 2001).

Unfortunately, crisp historical data are not sufficient to

account for the available uncertainties. Using vague, lim-

ited and imprecise data and information about any system

such as a robotic system modeling analysis and optimiza-

tion of the system’s overall performance are very difficult.

Thus, the issue of robot reliability is related to uncertainty,

and in lack of proper knowledge, it is difficult to analyze

and predict its behavior. In addition, a system analyst is

unable to suggest any necessary action to optimize the

performance of a robotic system by enhancing its relia-

bility. Fuzzy sets as suggested by many researchers are

used to account for the uncertainties involved in the

available information, i.e., in the extracted data (Chen

1994; Cai 1996; Bai and Asgarpoor 1996). In view of

above limitations and the applicability of fuzzy set theory

for quantifying involved uncertainties, Sharma et al. (2008)

analyzed the performance of a complex robotic system

using fuzzy lambda–tau(FLT) methodology. In FLT, tra-

ditional lambda–tau method (Mishra 1992) is coupled with

fuzzy set theory and a-cut interval arithmetic operations to

analyze fuzzy reliability of any repairable system, and has

Table 1 Basic expressions of lambda–tau methodology

Gate ! kAND sAND kOR sOR

Expressions Qn
j¼1 kj

"
Pn

i¼1

Qn

j ¼ 1

i 6¼ j

sj

# Qn

i¼1
si

Pn

j¼1

"
Qn

i ¼ 1

i 6¼ j

si

#
Pn

i¼1 ki
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been employed to analyze the fuzzy reliability of various

industrial systems including butter–oil, paper, and fertilizer

manufacturing plants, waste clean up manipulator etc

(Komal et al. 2009, 2010; Kumar et al. 2012). It is noticed

that FLT gives wide spreads for computed fuzzy reliability

parameters of any complex repairable system with

numerous components.

Considering the influence of growing event of fuzzi-

ness, it may be possible that the decision-maker may

suggest some impressive corrections which may improve

the system performance. However, it may also be pos-

sible that after incorporating suggested corrections, sys-

tem performance may not improve up to the desired

level, because suggestions are inappropriate due to the

wide ranges of prediction. To reduce the range of pre-

diction and to make effective decisions, soft computing-

based techniques were developed for analyzing the fuzzy

reliability of complex repairable systems (Komal et al.

2009, 2010).

The aim of the present work is to analyze the reliability

of a robotic system up to a desired degree of accuracy

under uncertain environment by reducing the complexity in

calculations and utilizing available raw data. The aim is

also to reduce the ranges of the prediction for computed

reliability indices, so that better decisions may be drawn

from the analysis which may help to optimize the perfor-

mance of the system.

The paper is organized as follows. Section 2 describes

the methodology. Robotic system is described together

with obtained results in Sect. 3. Sensitivity analysis is also

performed in this section followed by concluding remarks

in Sect. 4.

Methodology

The main aim of the paper is to evaluate the performance

of a robotic system by utilizing vague, imprecise, and

uncertain data. For the reliability analysis of any repairable

system, the following assumptions are being used in the

literature:

• the failures and repair rates of the components are

statistically independent and obey exponential distri-

bution function;

• the product of the failure rate and repair time is small

(less than 0.1);

• after repairs, the repaired component is considered as

good as new;

• system structure is precisely known.

Existing Fuzzy Lambda-Tau (FLT) technique

Fuzzy lambda–tau technique developed by Knezevic and

Odoom (2001) is a traditional method for analyzing fuzzy

reliability of the system. In this methodology, Petri-

nets(PN) is used for the qualitative modeling and lambda–

tau method of solution derived in Mishra (1992) is utilized

for quantitative modeling. In lambda–tau method, mathe-

matical expressions for failure rate (ks) and repair time (ss)
of the system are formulated in terms of its constituting

component’s failure rates (ki’s) and repair times (si’s). The
basic expressions of lambda–tau method are expressed in

Table 1. The various reliability parameters can be evalu-

ated according to Table 2 using fuzzy arithmetic operations

given in (Table 3).

Table 2 Some reliability

indices for repairable system

with constant repair rate model

Reliability indices Expressions

Mean time to failure MTTFs ¼ 1
ks

Mean time to repair MTTRs ¼ 1
ls
¼ ss

Mean time between failures MTBFs ¼ MTTFs þMTTRs

Expected Number of Failures ENOFsð0; tÞ ¼ ksls t
ksþls

þ k2s
ðksþlsÞ2

½1� e�ðksþlsÞt�

Availability AsðtÞ ¼ ls
ksþls

þ ks
ksþls

e�ðksþlsÞt

Reliability RsðtÞ ¼ e�ks t

Table 3 Basic operations on

fuzzy numbers
Operation Crisp Fuzzy

Addition Aþ B ~Aþ ~B ¼ ½aðaÞ1 þ b
ðaÞ
1 ; a

ðaÞ
3 þ b

ðaÞ
3 �

Subtraction A� B ~A� ~B ¼ ½aðaÞ1 � b
ðaÞ
3 ; a

ðaÞ
3 � b

ðaÞ
1 �

Multiplication A � B ~A � ~B ¼ ½aðaÞ1 � bðaÞ1 ; a
ðaÞ
3 � bðaÞ3 �

Division A� B ~A� ~B ¼ ½aðaÞ1 � b
ðaÞ
3 ; a

ðaÞ
3 � b

ðaÞ
1 �, if 0 62 ½bðaÞ1 ; b

ðaÞ
3 �
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This approach is suitable for small-scale simplified

systems. If FLT is implemented for analyzing fuzzy reli-

ability of any complex system with numerous components,

then computed fuzzy reliability indices have wide spreads.

The reason is the growing event of fuzziness due to the use

of a-cut interval arithmetic operations in the computations

(Chen 1994). Thus, using highly uncertain data and the

obtained results, decision-maker cannot suggest any

specific and influential managerial strategy to prevent

unexpected failures and consequently to improve the

industrial system performance. To overcome this problem,

a hybridized technique is used in this paper and described

in the next subsection.

Hybridized technique

This technique utilizes fuzzy set theory to quantify uncer-

tainties, fault tree to model the system, and lambda–tau

method to formulate the mathematical expressions of sys-

tem’s failure/repair rates and the genetic algorithm is uti-

lized to solve established nonlinear programming

problems. The expression of the various reliability

parameters of the system is evaluated in terms of compo-

nent’s failure rate and repair time of the system using

Tables 1 and 2. The evaluated reliability parameters so

obtained are nonlinear as the system has complex structure.

The failure and repair data of system’s components are

exponentially distributed and, therefore, are not precisely

known. Quantification of involved uncertainties is done

through data fuzzification using triangular fuzzy numbers.

The optimization problem (1) is used for finding system

fuzzy reliability parameters.

Minimize/maximize:

~Pðk1; k2; . . .; kn; s1; s2; . . .; snÞ or ~Pðt=k1; k2; . . .; kn; s1;
s2; . . .; snÞ ð1Þ

Subject to : ¼ mkiðxÞ� a;

msiðxÞ� a;

0� a� 1;

i ¼ 1; 2; . . .; n:

Here, ~Pðk1; k2; . . .; kn; s1; s2; . . .; snÞ and ~Pðt=k1; k2;
. . .; kn; s1; s2; . . .; snÞ are time-independent (system failure

rate, repair time, and MTBF) and time-dependent (system

reliability, availability, and ENOF) fuzzy reliability

parameters, respectively. The obtained minimum and

maximum values of ~P are denoted by Pmin and Pmax,

respectively. The membership function values of ~P at Pmin

and Pmax are both a, that is

m ~PðPminÞ ¼ m ~PðPmaxÞ ¼ a: ð2Þ

The optimization problem so obtained is highly non-

linear. Various methods and algorithms have been devel-

oped for optimization and have been utilized in various

research areas (Tillman et al. 1980; Ravi et al. 1997, 2000;

Konak et al. 2006). Genetic algorithms (GAs) is one of the

most effective evolutionary algorithms. Genetic algorithms

have been applied to the optimization of various reliability

problems (Juang et al. 2008; Lapa et al. 2006; Martorell

et al. 2005; Konak et al. 2006; Komal et al. 2009, 2010).

Any nonlinear optimization problem without checking

the convexity and differentiability of objective functions

can be solved effectively using Genetic algorithms (Gold-

berg 1989; Konak et al. 2006). Therefore, we have selected

GAs as a tool to solve the optimization problem (1). In the

literature, the variety of GAs are available such as binary-

coded GA, real-coded GA, NSGA, etc. Among the many

GAs available in the literature, the present study utilizes

binary-coded GA to solve above formulated nonlinear

optimization problems. In the beginning of the solution

process, failure rates (ki’s) and repair times (si’s) of sys-
tem’s components are encoded as the strings of selected bit

length l, a parameter of GA, that finally constitute a

chromosome. For the maximization problem (1), the

objective function is considered as the fitness function,

while reciprocal of the objective function is considered as

the objective function for the minimization problem (1).

Roulette wheel selection process is employed for the

selecting potentially useful solutions for the recombination.

Crossover and mutation are another two important basic

operators used in any GA. There are many types of

crossover and mutation operators depending upon the type

of encoding and also on a problem. In the present study,

one-point crossover and random-point mutation operators

are employed. Maximum number of generations and

change in population fitness value are used to stop the

optimization process. The coding of the above developed

GA has been done in MATLAB 7.1 environment. Different

sets of values of all the parameters of GA are tested and the

best set of values is selected for analysis which gives better

optimum solution of the problem. After solving above

formulated nonlinear optimization problems (1) for each

cut-level a using developed binary-coded GA, we have

fuzzy reliability indices with reduced spread at each cut-

level a.

System description and results

In the present study, various reliability parameters of a

robotic system with a conveyer unit are evaluated. The

system consists of two robots and one conveyor unit

between them. This system may be utilized as a conveyor

446 J Ind Eng Int (2018) 14:443–453
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system in industries. There are three joints in each robot.

Each joint has one motor (Mi; 1� i� 6) and one sensor

(Si; 1� i� 6). The conveyor unit has a bearing (Br) and a

roller (Rl) as its components. The fault tree model of the

robot is depicted in Fig. 1. Minimal cut sets of the system

are {Mi; 1� i� 6}; {Si; 1� i� 6}; {Br}; and {Rl} which

are obtained using matrix method (Knezevic and Odoom

2001).

Using Table 1, the expression for the system failure rate

(ks) and repair time (ss) takes the following forms:

ks ¼
X14

i¼1

ki ð3Þ

ss ¼
P14

i¼1 kisi
ks

: ð4Þ

Utilizing these expressions along with expressions given in

Table 2, the system reliability parameters are obtained. The

failure rate and repair time of the main components of the

robotic system following exponential distribution and their

values are given in Table 4 (Sharma et al. 2010). Quan-

tification of involved uncertainties in crisp input data is

done through data fuzzification using triangular fuzzy

numbers with �15;�25 and �50% spreads. For an

example, the input for �15% (failure rate and repair time)

for the motor is shown in Fig. 2. Using fuzzy input and

expressions for reliability parameters, fuzzy reliability

parameters of the system have been evaluated using

hybridized technique for mission time t ¼ 100(h) to ana-

lyze the behavior of the system. For this technique, a

nonlinear optimization problem (1) has been formulated.

To solve the established optimization problem (1), the

parameters of GA are taken as follows:

Population size = 120

Probability of crossover (Pc) = 0.85

MRSF

OR

CU

OR

OR

R2

M1

OR

R1

M6M2
M3

M4 M5S1
S2 S3

Rl Br S4 S5 S6

Fig. 1 Fault tree of robotic

system

Table 4 Failure rates and repair times data for robotic system

Component Failure rate (ki) (h
�1) Repair time (si) (h)

Motors (M; 1� i� 6) 1:85	 10�5 2.0

Sensors (S; 7� i� 12) 2:35	 10�5 2.0

Bearing (Br; i ¼ 13 ) 1:55	 10�5 1.0

Roller (Rl; i ¼ 14 ) 1:50	 10�5 2.0
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Fig. 2 Fuzzy input for motor
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Probability of mutation (Pm) = 0.005

Number of iterations = 500

Number of runs = 20.

The fuzzy reliability parameters of the system under con-

sideration have also been evaluated using the existing FLT

(Sharma et al. 2010). The computed results have been

plotted in Fig. 3 for �15% uncertainty level. Results

clearly indicate that the used hybridized technique provides

better fitted results in comparison to FLT technique. Thus,

the prediction range for any reliability parameter at each

cut-level a is decreased which will be beneficial for making

sound decisions. The crisp and defuzzified values using
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Fig. 3 Fuzzy reliability indices plots for robotic system with �15% uncertainty
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FLT technique and the hybridized technique with �15,

�25, and �50% spreads are calculated. The calculated

values are tabulated in Table 5. It is obvious from this

table that the defuzzified values are changing with the

change of spread. Defuzzified values of failure rate, repair

time, and ENOF increase as the level of uncertainty

increases. In addition, defuzzified values of MTBF, relia-

bility, and availability decrease as the level of uncertainty

increases. For example, the defuzzified value of failure rate

of the system increases by 0:3612% and further 11:2013%

for FLT technique, while 0.52 and 0:8599% for hybrid

technique, when spread changes from �15 to �25%, and

�25 to �50%, respectively. Similarly defuzzified value of

MTBF of the system decreases by 8:7976% and further

6:6626% for FLT technique, while 1.4408 and 0:8524% for

hybridized technique when spread changes from �15 to

�25%, and �25 to �50%, respectively.

The effects of various combinations of reliability, failure

rate, and availability onto the system MTBF are studied

through sensitivity analysis. The effects are shown graph-

ically for both the techniques. The repair time and ENOF

are varying along x-axis and y-axis, respectively, whereas

MTBF is plotted along z-axis. For the analysis, nine dif-

ferent combinations of reliability, failure rate, and avail-

ability are considered. For the both techniques, in all the

nine combinations, ranges of repair time and ENOF are

fixed and computed by their membership functions

(Fig. 4b, d) at cut-level a ¼ 0. The ranges of repair time

are taken as 1.2221–3.0264 for FLT technique and 1.6987–

2.2236 for hybridized technique, respectively. The ranges

of ENOF are taken as 0.0239–0.03248 for FLT technique

and 0.0247–0.0320 for hybridized technique, respectively.

The effects on MTBF for FLT technique are shown

graphically in Fig. 4 and for hybridized technique in Fig. 5,

respectively. The ranges of MTBF so obtained are tabu-

lated in Table 6. From Table 6, we can observe that for the

first combination, the chosen values of reliability, failure

rate, and availability are 0:9722; 2:825	 10�4; and 0:9994,

respectively. The calculated ranges of MTBF are

3072.808– 4160.350, and 3117.559–4037.021 for FLT

technique and hybridized technique, respectively. One can

observe that for this combination, the prediction range of

MTBF is reduced by approximately 16% from FLT tech-

nique when hybridized technique is utilized. From this

observation, we can conclude that if system analyst uses

results based on hybridized technique, then he may have

less range of prediction, and finally, he will lead to more

sound decisions. Similar behavior has also been noticed for

rest other combinations. Based on the above observations,

the system analyst can analyze the critical behavior of the

system and he can prepare a suitable plan for maintenance.

Conclusion

In this paper, a hybridized technique is used for the per-

formance analysis of a robotic system. Various reliability

parameters such as system failure rate, repair time, MTBF,

ENOF, availability, and reliability are calculated. The

calculated reliability parameters are in the form of fuzzy

membership functions. Depending upon the confidence

level ‘a’, the analyst can predict the behavior of the sys-

tem(s). The defuzzified values of reliability indices for

different level of uncertainties with their crisp values have

been computed and tabulated. It can be concluded that the

system analyst should perform the system maintenance on

the basis of defuzzified MTBF rather than the crisp value.

Similarly, it can be realized that with increasing repair

time, the reduced value of reliabillity/availability is more

conservative than that of the crisp value. Based on the

Table 5 Crisp and defuzzified

values of reliability parameters

of the system

Reliability parameters Crisp Defuzzified values at (spread)

�15% �25% �50%

Failure rate (	10�4h�1) 2.825000 FLT: 2.825013 2.835217 3.152798

Hybridized:2.827082 2.841784 2.866221

Repair time (h) 1.945133 2.034763 2.203569 3.204719

1.947378 1.948024 1.944006

MTBF (h) 3541.768 3522.729 3212.815 2998.759

3570.878 3519.429 3489.429

ENOF 0.028235 0.028315 0.029719 0.029915

0.028254 0.028402 0.028646

Availability 0.999450 0.998406 0.988321 0.987799

0.999447 0.999446 0.999443

Reliability 0.972145 0.971501 0.968925 0.942509

0.972120 0.971982 0.971745
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Fig. 4 Behavior analysis plots for robotic system using FLT technique results
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Fig. 5 Behavior analysis plots for robotic system using hybridized technique results
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above observations, the system analyst can analyze the

critical behavior of the system and he can prepare a suit-

able plan for effective maintenance.

We can also conclude that hybridized technique gives

reduced range of reliability indices at any cut level. Using

these results, the prediction of system behavior can be

observed more confidently. This will help the management

in reassignment of the resources, taking maintenance

decisions effectively, getting more availability of the sys-

tem, and, therefore, exaggerating the productivity of the

system.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give
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